JP2010151472A - Observation stand of observation object and observation method - Google Patents

Observation stand of observation object and observation method Download PDF

Info

Publication number
JP2010151472A
JP2010151472A JP2008327315A JP2008327315A JP2010151472A JP 2010151472 A JP2010151472 A JP 2010151472A JP 2008327315 A JP2008327315 A JP 2008327315A JP 2008327315 A JP2008327315 A JP 2008327315A JP 2010151472 A JP2010151472 A JP 2010151472A
Authority
JP
Japan
Prior art keywords
observation
sample liquid
tube member
flow path
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008327315A
Other languages
Japanese (ja)
Other versions
JP5234460B2 (en
Inventor
Yukihisa Fujita
幸久 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2008327315A priority Critical patent/JP5234460B2/en
Publication of JP2010151472A publication Critical patent/JP2010151472A/en
Application granted granted Critical
Publication of JP5234460B2 publication Critical patent/JP5234460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an observation method which enables the observation of the observation object contained in an observation sample solution from many aspects. <P>SOLUTION: In the observation method for observing the observation object by allowing the observation sample solution containing the observation object to flow in a predetermined direction, a pipe member 6 having a large number of microprotrusions 12 provided to at least a part of the inner peripheral surface thereof is used and a sample solution supply means 16 for supplying the observation sample solution is connected to one end side of the pipe member 6 while a sample solution recovery means 18 for recovering the observation sample solution is connected to the other end side of the pipe member 6. If the observation sample solution is allowed to flow to the sample solution recovery means 18 from the sample solution supply means 16 through the pipe member 6, the observation object contained in the observation sample solution collides with a large number of the minute protrusions 12 when the observation sample solution flows through the pipe member 6 and the observation object is revolved by utilizing the flow of the observation sample solution in the predetermined direction due to the collision. As a result, the observation object can be observed from many aspects using a microscope. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、体細胞、植物細胞、細菌、ウイルスなどの観察体を観察するための観察台及び観察方法に関する。   The present invention relates to an observation table and an observation method for observing an observation body such as a somatic cell, a plant cell, a bacterium, or a virus.

体細胞などの観察体を観察するためにスライドグラスを利用したプレパラートが用いられている(例えば、特許文献1参照)。このプレパラートは、例えば、スライドグラスに観察体を含む観察試料液を一滴落とし、次いでグラスカバーでもって気泡が入らないように観察試料液をゆっくり被い、その後、グラスカバーからあふれた観察試料を吸収し、このような手順によって形成される。   In order to observe an observation body such as a somatic cell, a preparation using a slide glass is used (for example, see Patent Document 1). This preparation, for example, drops one drop of the observation sample liquid containing the observation body onto a slide glass, and then slowly covers the observation sample liquid so that bubbles do not enter with the glass cover, and then absorbs the observation sample overflowing from the glass cover. However, it is formed by such a procedure.

特公平7−69253号公報Japanese Examined Patent Publication No. 7-69253

上述したプレパラートを用いた観察では、観察すべき観察体がスライドグラスとカバーグラスとの間で静止状態に保持され、このように静止状態に保持された観察体を顕微鏡で観察するようになる。一般的に、観察体は三次元的な立体構造であるが、上述したプレパラートによる観察では、観察体を平面的にしか見ることができず、それ故に、観察体の特定の一面しか観察することができず、観察体を多面的に見ることができる観察台及び観察方法の実現が強く望まれている。   In the observation using the above-described preparation, the observation object to be observed is held stationary between the slide glass and the cover glass, and the observation object held in this stationary state is observed with a microscope. In general, the observation object has a three-dimensional structure. However, in the observation using the above-described preparation, the observation object can be seen only in a plane, and therefore, only one specific surface of the observation object is observed. Therefore, it is strongly desired to realize an observation table and an observation method capable of viewing the observation body from various angles.

本発明の目的は、観察試料液に含まれた観察体を多面的に観察することができる観察台及び観察方法を提供することである。   An object of the present invention is to provide an observation table and an observation method capable of observing an observation body contained in an observation sample solution from multiple angles.

本発明の請求項1に記載の観察体の観察方法は、観察体を含む観察試料液を所定方向に流して前記観察体を観察するための観察方法であって、内周面の少なくとも一部に多数の微小突部が設けられた観察流路を有する流路部材を用い、前記観察流路の一端側に前記観察試料液を供給するための試料液供給手段を接続し、前記観察流路の他端側に前記観察試料液を回収するための試料液回収手段を接続し、前記試料液供給手段から前記観察流路を通して前記試料液回収手段に前記所定方向に前記観察試料液を流し、前記観察流路を流れる際に前記観察試料液に含まれる前記観察体を前記多数の微小突部に衝突させ、かかる衝突によって前記観察試料液の前記所定方向の流れを利用して前記観察体を回動させることを特徴とする。   The observation method for an observation body according to claim 1 of the present invention is an observation method for observing the observation body by flowing an observation sample liquid containing the observation body in a predetermined direction, and at least a part of the inner peripheral surface. A flow path member having an observation flow path provided with a large number of microprojections is connected to a sample liquid supply means for supplying the observation sample liquid to one end side of the observation flow path. A sample solution collecting means for collecting the observation sample solution is connected to the other end of the sample solution, and the observation sample solution is caused to flow in the predetermined direction from the sample solution supply means to the sample solution collecting means through the observation channel, The observation body contained in the observation sample liquid is caused to collide with the large number of minute protrusions when flowing through the observation flow path, and the observation body is moved using the flow in the predetermined direction of the observation sample liquid due to the collision. It is made to rotate.

また、本発明の請求項2に記載の観察体の観察方法では、前記流路部材は前記観察流路を有する管部材から構成され、前記管部材をスライドグラスに橋渡しするように載置し、前記管部材を覆うようにカバーグラスを載置し、前記スライドグラスと前記カバーグラスとの間に封入剤を充填して前記管部材を固定することを特徴とする。   Moreover, in the observation method of the observation body according to claim 2 of the present invention, the flow path member is composed of a tube member having the observation flow path, and is placed so as to bridge the tube member to a slide glass, A cover glass is placed so as to cover the tube member, and the tube member is fixed by filling an encapsulant between the slide glass and the cover glass.

また、本発明の請求項3に記載の観察体の観察方法では、前記管部材の内径は50〜1000μmであり、前記管部材の前記多数の突起の高さは0.5〜10μmであることを特徴とする。   Moreover, in the observation method of the observation body according to claim 3 of the present invention, the inner diameter of the tube member is 50 to 1000 μm, and the height of the many protrusions of the tube member is 0.5 to 10 μm. It is characterized by.

また、本発明の請求項4に記載の観察体の観察方法では、前記観察試料液は、前記試料液供給手段と前記試料液回収手段との間の圧力差、又は前記試料液供給手段に収容された前記観察試料液と前記試料回収手段に収容された回収液との濃度差を利用して、前記試料液供給手段から前記管部材を通して前記試料液回収手段に流れることを特徴とする。   In the observation method for an observation body according to claim 4 of the present invention, the observation sample liquid is stored in the pressure difference between the sample liquid supply means and the sample liquid recovery means or in the sample liquid supply means. Using the concentration difference between the observed sample liquid and the collected liquid stored in the sample collecting means, the sample liquid is supplied from the sample liquid supply means to the sample liquid collecting means through the tube member.

また、本発明の請求項5に記載の観察体の観察台は、観察体を含む観察試料液を所定方向に流して前記観察体を観察するための観察台であって、スライドグラスと、前記スライドグラスの上側に配設された流路部材と、を備え、前記流路部材の観察流路の内周面の少なくとも一部に多数の微小突部が設けられていることを特徴とする。   Moreover, the observation stand for the observation body according to claim 5 of the present invention is an observation stand for observing the observation body by flowing an observation sample liquid including the observation body in a predetermined direction, and includes a slide glass, A flow path member disposed on the upper side of the slide glass, and a plurality of minute protrusions are provided on at least a part of the inner peripheral surface of the observation flow path of the flow path member.

また、本発明の請求項6に記載の観察体の観察台では、前記流路部材と前記スライドグラスとの間に封入剤が充填されていることを特徴とする。
また、本発明の請求項7に記載の観察体の観察台では、前記流路部材は管部材から構成され、前記管部材の上側にカバーグラスが配設され、前記スライドグラスと前記カバーグラスとの間の空間に前記管部材を被うように前記封入剤が充填されることを特徴とする。
Moreover, in the observation stand for an observation body according to claim 6 of the present invention, an encapsulant is filled between the flow path member and the slide glass.
Moreover, in the observation stand of the observation body according to claim 7 of the present invention, the flow path member is formed of a tube member, a cover glass is disposed on the upper side of the tube member, and the slide glass, the cover glass, The encapsulant is filled so as to cover the space between the tube members.

更に、本発明の請求項8に記載の観察体の観察台では、前記管部材の内径は50〜1000μmであり、前記管部材の前記多数の突起の高さは0.5〜10μmであることを特徴とする。   Furthermore, in the observation stand for an observation body according to claim 8 of the present invention, the inner diameter of the tube member is 50 to 1000 μm, and the height of the plurality of protrusions of the tube member is 0.5 to 10 μm. It is characterized by.

本発明の請求項1に記載の観察体の観察方法によれば、内周面の少なくとも一部に多数の微小突部が設けられた観察流路を有する流路部材が用いられ、この観察流路の一端側に試料液供給手段が接続され、その他端側に試料液回収手段が接続される。そして、観察体(例えば、人体細胞などの体細胞、植物細胞、細菌、ウイルスなど)を含む観察試料液は、試料液供給手段から観察流路を通して試料液回収手段に流れ、この観察流路を通して流れる際に、観察試料液に含まれる観察体は観察流路の多数の微小突部に衝突し、かかる衝突によって観察試料液の流れを利用して観察体がゆっくりと回動され、その結果、観察試料液に含まれた観察体を多面的に観察することができる。   According to the observation method for an observation body according to claim 1 of the present invention, a flow path member having an observation flow path provided with a large number of microprojections on at least a part of the inner peripheral surface is used. A sample solution supply means is connected to one end side of the path, and a sample solution recovery means is connected to the other end side. An observation sample liquid containing an observation body (for example, a somatic cell such as a human body cell, a plant cell, a bacterium, or a virus) flows from the sample liquid supply means to the sample liquid recovery means through the observation flow path, and passes through the observation flow path. When flowing, the observation body contained in the observation sample liquid collides with a large number of microprojections in the observation flow path, and the collision causes the observation body to slowly rotate using the flow of the observation sample liquid. The observation body contained in the observation sample liquid can be observed from multiple sides.

また、本発明の請求項2に記載の観察体の観察方法によれば、観察部材としての管部材がスライドグラスに橋渡しするように載置され、この管部材を覆うようにカバーグラスが載置され、スライドグラスとカバーグラスとの間に封入剤が充填されるので、スライドグラス上に管部材を固定してその取扱いを容易にすることができる。   Moreover, according to the observation method for observing object according to claim 2 of the present invention, the tube member as the observation member is placed so as to bridge the slide glass, and the cover glass is placed so as to cover the tube member. Since the encapsulant is filled between the slide glass and the cover glass, the tube member can be fixed on the slide glass to facilitate its handling.

また、本発明の請求項3に記載の観察体の観察方法によれば、管部材の内径が50〜1000μmであり、管部材の多数の突起の高さが0.5〜10μmであるので、観察体としての体細胞、細菌、ウイルスなどを観察するのに好都合に適用することができ、微小突部に衝突した際に観察試料液の流れを利用して観察体をゆっくり回動させて観察することが可能となる。   Moreover, according to the observation method of the observation body according to claim 3 of the present invention, the inner diameter of the tube member is 50 to 1000 μm, and the height of many protrusions of the tube member is 0.5 to 10 μm. It can be applied conveniently for observing somatic cells, bacteria, viruses, etc. as an observing body. When it collides with a microprojection, the observation body is slowly rotated using the flow of the observing sample liquid. It becomes possible to do.

また、本発明の請求項4に記載の観察体の観察方法によれば、試料液供給手段と試料液回収手段との間の圧力差(又は試料液供給手段に収容された観察試料液と試料回収手段に収容された回収液との濃度差)を利用して観察試料液を流すので、観察試料液をゆっくりと少しずつ流すことができ、このように流すことによって、観察体が管部材内の微小突部に衝突した際に観察試料液の流れを利用してゆっくりと回動させることができる。   In addition, according to the observation method for an observation body described in claim 4 of the present invention, the pressure difference between the sample liquid supply means and the sample liquid recovery means (or the observation sample liquid and the sample accommodated in the sample liquid supply means) Since the observation sample liquid is flowed using the difference in concentration with the collected liquid stored in the collecting means), the observation sample liquid can be flowed slowly little by little. Can be slowly rotated using the flow of the observation sample liquid when it collides with the microprojection.

また、本発明の請求項5に記載の観察体の観察台によれば、スライドグラスの上側に観察流路を有する流路を配設したので、観察流路を通して観察試料液を流すことによって、観察試料液に含まれた観察体を顕微鏡で観察することができる。また、観察流路の内周面の少なくとも一部に多数の微小突部が設けられているので、観察試料液を観察流路を通して流して観察する際に、観察試料液に含まれる観察体は観察流路の多数の微小突部に衝突し、かかる衝突によって観察試料液の流れを利用して観察体がゆっくりと回動されるようになり、従って、観察試料液に含まれた観察体を多面的に観察することが可能となる。   Moreover, according to the observation stand of the observation body according to claim 5 of the present invention, since the flow path having the observation flow path is disposed on the upper side of the slide glass, by flowing the observation sample liquid through the observation flow path, The observation body contained in the observation sample solution can be observed with a microscope. In addition, since a large number of minute protrusions are provided on at least a part of the inner peripheral surface of the observation channel, when the observation sample solution is flowed through the observation channel and observed, the observation object included in the observation sample solution is It collides with a large number of microprojections in the observation channel, and the collision causes the observation body to slowly rotate using the flow of the observation sample liquid. Therefore, the observation body contained in the observation sample liquid is It becomes possible to observe from multiple sides.

また、本発明の請求項6に記載の観察台によれば、流路部材としての管部材とスライドガラスとの間に封入剤が充填されているので、管部材をスライドグラスに固定して観察することができる。   Moreover, according to the observation stand according to claim 6 of the present invention, since the encapsulant is filled between the tube member as the flow path member and the slide glass, the tube member is fixed to the slide glass and observed. can do.

また、本発明の請求項7に記載の観察台によれば、管部材の上側にカバーグラスを配設し、このカバーグラスとスライドグラスとの間の空間に封入剤を充填したので、管部材を確実に固定して観察体を所望の通りに観察することができる。   Moreover, according to the observation stand according to claim 7 of the present invention, the cover glass is disposed on the upper side of the tube member, and the space between the cover glass and the slide glass is filled with the encapsulant. Can be securely fixed and the observation body can be observed as desired.

更に、本発明の請求項8に記載の観察体の観察台によれば、管部材の内径は50〜1000μmであり、管部材の前記多数の突起の高さは0.5〜10μmであるので、観察体としての人体細胞、細菌、ウイルスなどを多面的に観察するのに好都合に適用することができる。   Furthermore, according to the observation stand for an observation body according to claim 8 of the present invention, the inner diameter of the tube member is 50 to 1000 μm, and the height of the numerous projections of the tube member is 0.5 to 10 μm. The present invention can be advantageously applied to multifaceted observation of human body cells, bacteria, viruses and the like as observation bodies.

以下、添付図面を参照して、本発明に従う観察体の観察台及び観察方法について説明する。図1は、本発明に従う観察台の一実施形態を示す斜視図であり、図2は、図1におけるII−II線による断面図であり、図3は、図1におけるIII−III線による断面図であり、図4は、観察体の回動のメカニズムを説明するための拡大説明図であり、図5は、管部材の製作における吹付け工程を説明するための図であり、図6は、管部材の製作における加熱溶着工程を説明するための図であり、図7は、管部材の製作におけるプレパラート載置工程を説明するための図であり、図8は、管部材の製作における封入剤充填工程を説明するための図である。   Hereinafter, an observation table and an observation method for an observation body according to the present invention will be described with reference to the accompanying drawings. 1 is a perspective view showing an embodiment of an observation table according to the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. 3 is a sectional view taken along line III-III in FIG. FIG. 4 is an enlarged explanatory view for explaining a mechanism of rotation of the observation body, FIG. 5 is a view for explaining a spraying process in manufacturing the tube member, and FIG. FIG. 7 is a diagram for explaining a heat welding process in the production of the pipe member, FIG. 7 is a diagram for explaining a preparation mounting process in the production of the pipe member, and FIG. 8 is an enclosure in the production of the pipe member. It is a figure for demonstrating an agent filling process.

図1〜図3において、図示の観察台2は、ベースとなるスライドグラス4と、スライドグラス4の上側に配設された管部材6と、この管部材6の上側に配設されたカバーグラス8とから構成され、スライドグラス4とカバーグラス8との間の空間に封入剤10が充填される。(尚、図1においては充填剤を省略して示している)。スライドグラス4、カバーグラス4及び管部材6は、例えば透明なガラス材料から形成され、スライドグラス4及びカバーグラス6は例えば市販されているものを用いることができる。   1 to 3, the illustrated observation table 2 includes a slide glass 4 serving as a base, a tube member 6 disposed on the upper side of the slide glass 4, and a cover glass disposed on the upper side of the tube member 6. 8 and the space between the slide glass 4 and the cover glass 8 is filled with the encapsulant 10. (In FIG. 1, the filler is omitted). The slide glass 4, the cover glass 4, and the tube member 6 are made of, for example, a transparent glass material, and commercially available slide glass 4 and cover glass 6 can be used.

この観察台2を用いて観察体P(図4参照)を観察するときには、観察体Pを含む観察試料液がこの管部材6を通して流れ、このことに関連して、管部材6は次のように構成される。管部材6の内周面の少なくとも一部に多数の微小突部12(図4も参照)が設けられる。このような微小突部12は、例えば管部材6と同じ材料(例えば、透明なガラス材料)から形成され、後述するように、ガラス粉末を加熱溶着することによって管部材6の内周面に一体的に設けることができる。   When the observation body P (see FIG. 4) is observed using the observation table 2, the observation sample liquid containing the observation body P flows through the tube member 6, and in this connection, the tube member 6 is as follows. Configured. A large number of minute protrusions 12 (see also FIG. 4) are provided on at least a part of the inner peripheral surface of the tube member 6. Such a minute protrusion 12 is formed of, for example, the same material as the tube member 6 (for example, a transparent glass material), and is integrated with the inner peripheral surface of the tube member 6 by heating and welding glass powder as will be described later. Can be provided.

この実施形態では、流路部材としての管部材6の内周面、即ち観察流路14を規定する周面の全域に多数の微小突部12がほぼ均一に設けられている。管部材6の内側の断面形状(即ち、流路14を規定する周面の断面形状)は、円形状に形成されており、このような断面形状にすることによって、観察試料液を流しながら観察体Pを後述するように多面的に観察することができる。尚、管部材6の内側断面形状(即ち、観察流路14)を楕円形状にしてもよく、このような楕円形状にすることによって、スライドグラス4に固体した状態での管部材6の厚みを薄くすることができ、顕微鏡を用いて観察するときの観察が容易となる。   In this embodiment, a large number of minute protrusions 12 are provided substantially uniformly over the entire inner peripheral surface of the tube member 6 as the flow channel member, that is, the entire peripheral surface defining the observation flow channel 14. The cross-sectional shape inside the tube member 6 (that is, the cross-sectional shape of the peripheral surface that defines the flow path 14) is formed in a circular shape, and by using such a cross-sectional shape, observation is performed while flowing the observation sample liquid. The body P can be observed from multiple sides as will be described later. The inner cross-sectional shape of the tube member 6 (that is, the observation channel 14) may be elliptical, and by making such an elliptical shape, the thickness of the tube member 6 in a solid state on the slide glass 4 can be reduced. It can be made thin, and observation when observing using a microscope becomes easy.

管部材6内径は、50〜1000μmにするのが好ましく、このような大きさに形成することによって、観察体Pとしての体細胞(細胞集塊)、細菌、ウイルスなどを多面的に観察するのに好都合に適用することができる。この管部材6の内径(即ち、観察流路14の直径)は、観察すべき観察体Pの大きさによって適宜に選定され、観察体Pの最大のものを基準にして2〜3倍の大きさにするのが望ましい。一般的に、顕微鏡を用いて観察する細胞集塊の最大の大きさは約300μm程度であり、このような細胞集塊を観察する場合、その内径が1000μm程度に形成され、このような大きさにすることによって、管部材6に詰まることなく観察体Pをその内周面の微小突部12に所望の通りに衝突させることができる。   The inner diameter of the tube member 6 is preferably 50 to 1000 μm. By forming the tube member 6 in such a size, somatic cells (cell clumps), bacteria, viruses, and the like as the observation body P are observed in a multifaceted manner. Can be applied conveniently. The inner diameter of the tube member 6 (that is, the diameter of the observation channel 14) is appropriately selected according to the size of the observation body P to be observed, and is 2 to 3 times larger than the maximum of the observation body P. It is desirable to make it. In general, the maximum size of a cell clump observed using a microscope is about 300 μm, and when observing such a cell clump, the inner diameter is formed to be about 1000 μm. By doing so, the observation body P can be caused to collide with the minute protrusions 12 on the inner peripheral surface thereof as desired without clogging the tube member 6.

多数の微小突部12の大きさ、即ち内側に突出する突出高さは、0.5〜10μmにするのが望ましく、このような高さに設定することによって、観察体を後述する如く衝突させて回動させることができる。微小突部の突出高さが0.5μmより低くなると、観察体が衝突し難く、また衝突したとしてもほとんど回動することなく下流側に流れるようになり、またその突出高さが10μmを超えると、これらの突起が観察試料液の流れに対する大きな抵抗となる。   The size of the large number of microprojections 12, that is, the projecting height projecting inward is preferably 0.5 to 10 μm, and by setting such a height, the observation object is caused to collide as described later. Can be rotated. If the protrusion height of the microprojection is lower than 0.5 μm, the observation object will hardly collide, and even if it collides, it will flow to the downstream side with little rotation, and the protrusion height will exceed 10 μm. These projections become a great resistance to the flow of the observation sample liquid.

このような管部材6は、スライドグラス4の上側に横方向(スライドグラスの長手方向に対して垂直な方向であって、図1において左上から右下の方向)に橋渡しするように配設され、その片側(図1及び図2において左側)に試料液供給手段16が接続され、その他側(図1及び図2において右側)に試料液回収手段18が接続される。この実施形態では試料液供給手段16及び試料液回収手段18がスポイト20,22から構成され、供給側のスポイト20の先端部24が管部材6の一端部内に(観察流路14の片側に)挿入接続され、回収側のスポイト22の先端部26が管部材6の他端部内に(観察流路14の他側に)挿入接続され、この場合、図2に矢印30で示すように、観察試料液は、供給側のスポイト20から管部材6(観察流路14)を通して回収側のスポイト22へと所定方向(図2において右方)に流れる。尚、上述したと反対に、管部材6の上記片側に試料液回収手段18(回収側のスポイト22)を接続し、その上記他側に試料液供給手段16(供給側のスポイト20)を接続するようにしてもよく、かかる場合、観察試料液は矢印30で示す方向とは反対方向に流れる。   Such a tube member 6 is arranged on the upper side of the slide glass 4 so as to bridge in the lateral direction (the direction perpendicular to the longitudinal direction of the slide glass and from the upper left to the lower right in FIG. 1). The sample solution supply means 16 is connected to one side (left side in FIGS. 1 and 2), and the sample solution recovery means 18 is connected to the other side (right side in FIGS. 1 and 2). In this embodiment, the sample liquid supply means 16 and the sample liquid recovery means 18 are constituted by the droppers 20 and 22, and the tip 24 of the dropper 20 on the supply side is in one end of the tube member 6 (on one side of the observation channel 14). The distal end portion 26 of the dropper 22 on the collection side is inserted and connected into the other end of the tube member 6 (to the other side of the observation channel 14). In this case, as shown by an arrow 30 in FIG. The sample solution flows in a predetermined direction (rightward in FIG. 2) from the dropper 20 on the supply side through the tube member 6 (observation flow path 14) to the dropper 22 on the collection side. Contrary to the above, the sample liquid recovery means 18 (recovery side dropper 22) is connected to the one side of the tube member 6, and the sample liquid supply means 16 (supply side dropper 20) is connected to the other side. In such a case, the observation sample liquid flows in a direction opposite to the direction indicated by the arrow 30.

試料液供給手段16として観察試料液が収容される供給側容器から構成し、試料液回収手段18として観察試料液が回収される回収側容器から構成し、供給側容器を例えば供給チューブを介して管部材6の一端側に接続し、回収側容器を例えば回収チューブを介して管部材6の他端側に接続し、例えば送給ポンプ(又は重力など)を利用して、供給側容器から供給チューブ、管部材及び回収チューブを介して回収側容器に観察試料液を流すようにしてもよい。   The sample liquid supply means 16 is composed of a supply side container in which an observation sample liquid is accommodated, and the sample liquid recovery means 18 is composed of a recovery side container in which the observation sample liquid is recovered, and the supply side container is, for example, via a supply tube Connected to one end side of the pipe member 6, connected to the other end side of the pipe member 6 via a recovery tube, for example, and supplied from the supply side container using, for example, a feed pump (or gravity) The observation sample solution may be flowed to the collection side container through the tube, the pipe member, and the collection tube.

観察試料液としては、例えば有機溶剤を用いることができ、封入剤を適度にキシレンで薄めたものを好都合に用いることができる。観察試験液としては、観察体P(例えば、細胞集塊)を色素により染色し、染色後有機溶剤で透徹した場合、有機溶剤を選択する必要がある。生体染色などを行い、水溶性溶液中で観察する場合、水やアルコール等の適宜な液体を用いることができる。   As the observation sample solution, for example, an organic solvent can be used, and an encapsulant that is appropriately diluted with xylene can be used conveniently. As the observation test solution, it is necessary to select an organic solvent when the observation body P (for example, cell agglomeration) is stained with a dye and transparentized with an organic solvent after staining. When performing vital staining or the like and observing in an aqueous solution, an appropriate liquid such as water or alcohol can be used.

この観察台2は、例えば図5〜図8に示すようにして製作することができる。観察台2の管部材6を製作するには、例えば透明ガラス材料から形成されたガラス毛細管32(例えば、ヘマトクリット管)を用いるとともに、透明ガラス材料から形成されたグラス粉末34(例えば、カバーグラス8を微小に磨り潰したもの)を用意する。ガラス粉末34としては大きさが0.5〜10μm程度のものを用いる。そして、例えばスポイト36にガラス粉末34を吸い込ませた後、図5に示すようにスポイト36を押してスポイト36内のガラス粉末34をガラス毛細管32内に吹き付け、このように吹き付けることによって、ガラス粉末34をガラス毛細管32の内周面に実質上均一に付着させることができる。例えば、ガラス粉末34に静電気を付与し、この静電気を利用してガラス毛細管32の内周面に付着させるようにしてもよい。   The observation table 2 can be manufactured, for example, as shown in FIGS. In order to manufacture the tube member 6 of the observation table 2, for example, a glass capillary tube 32 (for example, a hematocrit tube) formed from a transparent glass material is used, and a glass powder 34 (for example, a cover glass 8) formed from a transparent glass material is used. Prepare a finely ground material). A glass powder having a size of about 0.5 to 10 μm is used. Then, for example, after the glass powder 34 is sucked into the dropper 36, the dropper 36 is pushed to spray the glass powder 34 in the dropper 36 into the glass capillary 32 as shown in FIG. Can be substantially uniformly attached to the inner peripheral surface of the glass capillary tube 32. For example, static electricity may be applied to the glass powder 34 and the static electricity may be applied to the inner peripheral surface of the glass capillary 32.

次いで、図6に示すように、ガラス毛細管32を加熱してガラス粉末34をその内周面に溶着させる。加熱には例えばガスバーナ38を用い、このガスバーナ38の火炎によって均一に加熱されるように、矢印40で示す軸方向に移動させるとともに、矢印42で示す周方向に回動させる。このように加熱すると、ガラス粉末34が溶融し、溶融したガラス粉末34がガラス毛細管32の内周面に溶着し、このようにして多数の微小突部12を有する管部材6を製作することができる。   Next, as shown in FIG. 6, the glass capillary 32 is heated to weld the glass powder 34 to the inner peripheral surface thereof. For example, a gas burner 38 is used for heating, and the gas burner 38 is moved in the axial direction indicated by the arrow 40 and rotated in the circumferential direction indicated by the arrow 42 so that the gas burner 38 is heated uniformly by the flame. When heated in this manner, the glass powder 34 is melted, and the melted glass powder 34 is welded to the inner peripheral surface of the glass capillary tube 32, and thus the tube member 6 having a large number of microprojections 12 can be manufactured. it can.

次に、図7に示すように、スライドグラス4の上側に管部材6を配設し、その上側にカバーグラス8を配設する。このとき、管部材6はスライドグラス4の長手方向略中央部に横方向に橋渡しするように(即ち、横切るように)載置され、またカバーグラス8はこの管部材6を覆うように載置される。   Next, as shown in FIG. 7, the tube member 6 is disposed on the upper side of the slide glass 4, and the cover glass 8 is disposed on the upper side thereof. At this time, the tube member 6 is placed so as to bridge in the lateral direction (that is, so as to cross) in the longitudinal center of the slide glass 4, and the cover glass 8 is placed so as to cover the tube member 6. Is done.

その後、図8に示すように、スライドグラス4とカバーグラス8との間の空間に封入剤10を充填し、この充填剤10によって管部材8の周囲を包むようにする。このような封入剤10としては例えば カナダバルサムなどを用いることができ、このような封入剤10が乾燥して管部材6が固定され、このようにして図1〜図3に示す観察台2を製作することができる。   Thereafter, as shown in FIG. 8, the space between the slide glass 4 and the cover glass 8 is filled with an encapsulant 10, and the periphery of the tube member 8 is wrapped by the filler 10. For example, Canadian balsam or the like can be used as such an encapsulant 10, and the encapsulant 10 is dried and the tube member 6 is fixed. Thus, the observation table 2 shown in FIGS. Can be produced.

次に、図1〜図4を参照して、上述したようにして製作された観察台2を用いた観察体Pの観察について説明する。観察に際して、観察台2を顕微鏡(図示せず)の観察領域に取り付ける。そして、図2に示すように、観察体Pを含む観察試料液の入った供給側スポイト20を管部材6の片側に接続し、何も入っていない回収側スポイト22を管部材6の他側に接続する。   Next, with reference to FIGS. 1 to 4, observation of the observation body P using the observation table 2 manufactured as described above will be described. At the time of observation, the observation table 2 is attached to an observation region of a microscope (not shown). Then, as shown in FIG. 2, the supply side dropper 20 containing the observation sample liquid containing the observation body P is connected to one side of the tube member 6, and the recovery side dropper 22 containing nothing is connected to the other side of the tube member 6. Connect to.

供給側及び回収側スポイト20,22をこのように接続した状態において、供給側スポイト20をゆっくり押しながら供給側スポイト20内の観察試料液を矢印30(図2参照)で示すように管部材6を通して流して回収側スポイト22に回収する(このとき、観察試料液の流れをスムースにするために、回収側スポイト22を押した状態からゆっくり解放する)。   In the state where the supply side and recovery side syringes 20 and 22 are connected in this way, the observation sample liquid in the supply side syringe 20 is slowly pressed on the supply side syringe 20 as shown by the arrow 30 (see FIG. 2). And then collected in the collection side syringe 22 (At this time, in order to make the flow of the observation sample liquid smooth, the collection side syringe 22 is slowly released from the pressed state).

このように観察試料液を管部材6を通してゆっくり流すと、図4に示すように、観察試料液に含まれた観察体Pの一部(具体的には、管部材6の内周面近傍を矢印40で示す方向に流れる観察体)が管部材6内周面の微小突部12に衝突し、かかる衝突によって観察体Pにおける衝突部位では矢印40で示す方向の移動が停止する一方、この衝突部位と反対側の部位では観察試料液の矢印40で示す方向の流れが作用する。その結果、微小突部12に衝突した観察体Pは観察試料液の流れを利用して回動し、管部材6の内周面の図4において上側近傍を流れる観察体Pは、矢印42で示すように図4において反時計方向に回動するようになり、またその内周面の図4において下側近傍を流れる観察体Pは、矢印44で示すように図4において時計方向に回動するようになる。   When the observation sample liquid is slowly flowed through the tube member 6 in this way, as shown in FIG. 4, a part of the observation body P contained in the observation sample liquid (specifically, the vicinity of the inner peripheral surface of the tube member 6 is (Observation body flowing in the direction indicated by the arrow 40) collides with the minute protrusion 12 on the inner peripheral surface of the tube member 6, and this collision stops movement in the direction indicated by the arrow 40 at the collision site in the observation body P. The flow in the direction indicated by the arrow 40 of the observation sample liquid acts at the site opposite to the site. As a result, the observation body P that has collided with the minute protrusion 12 rotates using the flow of the observation sample liquid, and the observation body P that flows in the vicinity of the upper side in FIG. As shown in FIG. 4, the observation body P that rotates in the counterclockwise direction in FIG. 4 and flows in the vicinity of the lower side in FIG. To come.

このように観察体Pが回動しながら下流側に動くので、顕微鏡でもって所定の観察領域を見ているのみでもって観察体Pを多面的に見ることができ、簡単な方法でもって観察体Pをより詳細に観察することが可能となる。   Thus, since the observation body P moves downstream while rotating, the observation body P can be viewed in a multifaceted manner only by looking at a predetermined observation region with a microscope, and the observation body can be viewed with a simple method. It becomes possible to observe P in more detail.

この観察方法では、観察試料液としてある程度の粘性を有する液体を用いるのが望ましく、このような液体を用いることによって、観察試料液の流れをゆっくりとすることができるとともに、観察体Pの回動速度もその粘性でもって遅くすることができ、観察体Pの詳細な観察がより容易となる。尚、観察体Pの衝突による回動の速度は、観察試料液の流速及び粘性、管部材6の内径、観察体Pの大きさなどの影響を受け、その観察が容易となるように観察試料液の流速及び粘性、管部材の内径などが適宜に設定される。   In this observation method, it is desirable to use a liquid having a certain degree of viscosity as the observation sample liquid. By using such a liquid, the flow of the observation sample liquid can be made slow and the rotation of the observation body P can be performed. The speed can also be decreased by the viscosity, and the detailed observation of the observation body P becomes easier. Note that the rotation speed due to the collision of the observation body P is affected by the flow rate and viscosity of the observation sample liquid, the inner diameter of the tube member 6, the size of the observation body P, and the like, so that the observation sample can be easily observed. The flow rate and viscosity of the liquid, the inner diameter of the tube member, and the like are appropriately set.

上述した観察方法では、供給側スポイト20内の観察試料液を管部材6を通して回収側スポイト22に回収しており、このように2つのスポイトを用いて観察する場合、供給側スポイト20内の観察試料液を回収側スポイト22に流した後においては、回収側スポイト22に観察試料液が充填され、供給側スポイト20が空となるので、次は回収側スポイト22を供給側スポイトと、また供給側スポイト20を回収側スポイトとして利用することによって、観察試料液に含まれた観察体Pを繰り返し観察することができる。   In the observation method described above, the observation sample liquid in the supply side dropper 20 is collected in the collection side dropper 22 through the tube member 6, and when observation is performed using two droppers in this way, the observation in the supply side dropper 20 is observed. After flowing the sample liquid into the collection side dropper 22, the collection side dropper 22 is filled with the observation sample liquid, and the supply side dropper 20 is emptied. Next, the collection side dropper 22 is supplied to the supply side dropper. By using the side dropper 20 as the collection side dropper, the observation body P contained in the observation sample liquid can be repeatedly observed.

この観察方法では、観察試料液としては、例えば有機溶剤を用いることができ、封入剤をキシレンで薄めたものを好都合に用いることができる。
以上、本発明に従う観察体を観察するための観察台及び観察方法の実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。
In this observation method, for example, an organic solvent can be used as the observation sample solution, and an encapsulating agent diluted with xylene can be conveniently used.
As described above, the embodiments of the observation table and the observation method for observing the observation body according to the present invention have been described. However, the present invention is not limited to such embodiments, and various embodiments can be made without departing from the scope of the present invention. Variations or modifications are possible.

例えば、上述した実施形態の観察台では、スライドグラスの上側に管部材を配設し、この管部材の上側にカバーグラスを配設し、スライドグラスとカバーグラスとの間の空間に封入剤を充填したが、このような形態に限定されず、スライドグラスの上側に管部材を配設し、スライドグラスと管部材との間に封入剤を充填するようにしてもよく(カバーグラスを省略したもの)、或いは、スライドグラスの上側に管部材を設けるようにしてもよい(カバーグラス及び封入剤を省略したもの)。   For example, in the observation table of the above-described embodiment, a tube member is disposed on the upper side of the slide glass, a cover glass is disposed on the upper side of the tube member, and an encapsulant is placed in a space between the slide glass and the cover glass. Although it was filled, it is not limited to such a form, You may make it arrange | position a tube member on the upper side of a slide glass, and you may make it fill with an encapsulant between a slide glass and a tube member (a cover glass was abbreviate | omitted). Or a tube member may be provided on the upper side of the slide glass (the cover glass and the encapsulant are omitted).

また、上述した実施形態では、流路部材として管部材を用いているが、このような管部材に限定されず、板状又はブロック状の部材に観察流路を形成し、このような板状部材又はブロック状部材を流路部材として用いることができる。   In the above-described embodiment, the pipe member is used as the flow path member. However, the present invention is not limited to such a pipe member, and the observation flow path is formed on a plate-like or block-like member, and such a plate-like member is used. A member or a block-like member can be used as the flow path member.

また、上述した実施形態の観察台では、管部材の内周面の全域に多数の微小突部を設けているが、その全域に設ける必要はなく、その内周面の少なくとも一部に設けることによって上述した所望の効果を達成することができる。例えば、管部材の上流側部(試料液供給手段側の部分)にあっては上部内周面(又は下部内周面)に多数の微小突部を設け、その下流側部(試料液回収手段側の部分)にあっては下部内周面(又は上部内周面)に多数の微小突部を設けるようにしてもよい。   In the observation table of the above-described embodiment, a large number of minute protrusions are provided over the entire inner peripheral surface of the tube member. However, it is not necessary to provide the micro projections over the entire area, and provided over at least a part of the inner peripheral surface. The above-mentioned desired effect can be achieved. For example, in the upstream part of the pipe member (part on the sample liquid supply means side), a number of microprojections are provided on the upper inner peripheral surface (or lower inner peripheral surface), and the downstream side part (sample liquid recovery means) In the side portion, a large number of minute protrusions may be provided on the lower inner peripheral surface (or the upper inner peripheral surface).

また、例えば観察体が4方向に回転するように、図9及び図10に示すように構成することができる。尚、図9及び図10において、図1〜図8に示す部材と実質上同一の部材には同一の参照番号を付し、その説明を省略する。   Further, for example, the observation body can be configured as shown in FIGS. 9 and 10 so as to rotate in four directions. 9 and 10, members substantially the same as those shown in FIGS. 1 to 8 are given the same reference numerals, and descriptions thereof are omitted.

図9及び図10において、この他の形態の観察台2Aでは、流路部材としての管部材6Aに修正が施されており、管部材6Aの内周面に周方向に実質上等間隔をおいて4つの突部領域52a,52b,52c,52dが設けられている。各突部領域52a,52b,52c,52dには多数の微小突部12が設けられ、これら微小突部には、上述した実施形態と同様に、グラス粉末から後述するように形成することができる。   9 and 10, in the observation platform 2A of this other form, the tube member 6A as the flow path member is modified, and the inner circumferential surface of the tube member 6A is substantially equidistantly spaced in the circumferential direction. Four projecting regions 52a, 52b, 52c, and 52d are provided. Each protrusion region 52a, 52b, 52c, 52d is provided with a large number of minute protrusions 12, and these minute protrusions can be formed from glass powder as described later, as in the above-described embodiment. .

この形態では、管部材6Aがその軸方向(図9において左下から右上の方向、図10において左右方向)に連続して設けられた4つの部分54a,54b,54c,54dから構成され、これらの部分54a,54b,54c.54dに対応する突部領域52a,52b,52c,52dが設けられ、図9において左下から右上に向けて(図10において左から右に向けて)見て、管部材6Aの部分54aにはその左横内面に突部領域52aがその部分54bにはその上内面に突部領域52bが、その部分52cにはその右横内面に突部領域52cが、またその部分54dにはその下内面に突部領域52dが周方向に実質上90度の間隔をおいて設けられている。   In this embodiment, the pipe member 6A is composed of four portions 54a, 54b, 54c, 54d that are continuously provided in the axial direction (the direction from the lower left to the upper right in FIG. 9, the left-right direction in FIG. 10). Portions 54a, 54b, 54c. Projection regions 52a, 52b, 52c, and 52d corresponding to 54d are provided. When viewed from the lower left to the upper right in FIG. 9 (from the left to the right in FIG. 10), the portion 54a of the pipe member 6A has its The left side inner surface has a projecting region 52a on its portion 54b, its upper inner surface has a projecting region 52b, its portion 52c has its right inner surface on its right side, and the portion 54d has its lower inner surface. Protrusion regions 52d are provided at substantially 90 degree intervals in the circumferential direction.

この形態では、周方向に間隔をおいて4つの突部領域52a,52b,52c,52dを設けているが、これに限定されず、この突部領域を周方向に2つ又は3つ、或いは5つ以上設けるようにしてもよい。また、この形態では、管部材6Aの部分54a,54b,54c,54dに対応して突部領域52a,52b,52c,52dを設けているが、このような構成に限定されず、これらの領域52a,52b,52c,52dを管部材6Aの一端から他端まで設けるようにしてもよい。   In this embodiment, four projecting regions 52a, 52b, 52c, and 52d are provided at intervals in the circumferential direction. However, the present invention is not limited to this, and there are two or three projecting regions in the circumferential direction. Five or more may be provided. In this embodiment, the protrusion regions 52a, 52b, 52c, and 52d are provided corresponding to the portions 54a, 54b, 54c, and 54d of the pipe member 6A. 52a, 52b, 52c, and 52d may be provided from one end to the other end of the pipe member 6A.

図9に示す観察台2Aに用いる管部材6Aは、例えば図10に示すようにして製作することができる。まず図10(a)に示すように、ガラス毛細管321に極微細な線62(例えば、極微細なピアノ線)を通し、この線62にグラス粉末64を付け、グラス粉末64が付いた部位をガラス毛細管32内に位置付ける。そして、線62をガラス毛細管32の内面に押し付け、その内周面の特定部位に一端から他端にわたってグラス粉末64を付着させる。尚、これとは逆に、線62にグラス粉末64を付け、グラス粉末64が付いた線62をガラス毛細管32に通すようにしてもよい。   The tube member 6A used for the observation table 2A shown in FIG. 9 can be manufactured, for example, as shown in FIG. First, as shown in FIG. 10A, an extremely fine wire 62 (for example, an extremely fine piano wire) is passed through a glass capillary tube 321, glass powder 64 is attached to the wire 62, and a portion with the glass powder 64 is attached. Position in the glass capillary 32. And the wire | line 62 is pressed on the inner surface of the glass capillary 32, and the glass powder 64 is made to adhere to the specific site | part of the internal peripheral surface from one end to the other end. On the contrary, the glass powder 64 may be attached to the wire 62, and the wire 62 with the glass powder 64 may be passed through the glass capillary 32.

その後、図10(b)で示すように、上述したと同様に、例えばガスバーナ(図示せず)を用いて加熱し、付着したグラス粉末をガラス毛細管32の内面に溶着させる。このようにしてガラス毛細管32の内周面の一部に突部領域66を形成する。   Thereafter, as shown in FIG. 10B, similarly to the above, heating is performed using, for example, a gas burner (not shown), and the attached glass powder is welded to the inner surface of the glass capillary tube 32. In this manner, the protruding region 66 is formed on a part of the inner peripheral surface of the glass capillary 32.

次に、図10(c)で示すように、このガラス毛細管32を一点鎖線68a,68b,68cで示す個所で切断し、部分54a,54b,54c,54dの4つに分析する。   Next, as shown in FIG. 10C, the glass capillary 32 is cut at the locations indicated by the alternate long and short dash lines 68a, 68b, 68c, and analyzed into four parts 54a, 54b, 54c, 54d.

しかる後に、図10(d)で示すように、部分54aに対して部分54bを図10(d)の左から右に見て時計方向に90度回動した位置関係に位置付け、部分54aと部分54bとを加熱などによって溶融接合する。また、部分54bに対して部分54cを図10(d)の左から右に見て時計方向に90度回動した位置関係に位置付けて部分54bに部分54cを溶融接合し、更に部分54cに対して部分54dを同様に時計方向に90度回動した位置関係に位置付けて部分54dを部分54cに溶融接合し、このようにして管部材6Aを製作することができる。   Thereafter, as shown in FIG. 10 (d), the portion 54b is positioned relative to the portion 54a so as to rotate 90 degrees clockwise as viewed from the left to the right in FIG. 10 (d). 54b is melt-bonded by heating or the like. Further, the portion 54c is positioned in a positional relationship rotated 90 degrees clockwise as viewed from the left to the right in FIG. 10D with respect to the portion 54b, and the portion 54c is melt bonded to the portion 54b. Similarly, the portion 54d is similarly positioned 90 ° clockwise and melted and joined to the portion 54c. Thus, the tube member 6A can be manufactured.

このように製作した管部材6Aは、上述したと同様にしてスライドグラス4に載置し、カバーグラス8を載せ、スライドグラス4とカバーグラス8との間に封入剤10を充填して図9に示す通りの観察台2Aを製作することができる。   The tube member 6A thus manufactured is placed on the slide glass 4 in the same manner as described above, the cover glass 8 is placed, and the encapsulating agent 10 is filled between the slide glass 4 and the cover glass 8 as shown in FIG. 2A can be manufactured.

本発明に従う観察台の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the observation stand according to this invention. 図1におけるII−II線による断面図。Sectional drawing by the II-II line in FIG. 図1におけるIII−III線による断面図。Sectional drawing by the III-III line in FIG. 観察体の回動のメカニズムを説明するための拡大説明図。The enlarged explanatory view for explaining the mechanism of rotation of an observation object. 管部材の製作における吹付け工程を説明するための図。The figure for demonstrating the spraying process in manufacture of a pipe member. 管部材の製作における加熱溶着工程を説明するための図。The figure for demonstrating the heat welding process in manufacture of a pipe member. 管部材の製作におけるプレパラート載置工程を説明するための図。The figure for demonstrating the preparation mounting process in manufacture of a pipe member. 管部材の製作における封入剤充填工程を説明するための図。The figure for demonstrating the mounting agent filling process in manufacture of a pipe member. 他の形態の観察台を示す断面図。Sectional drawing which shows the observation stand of another form. 図9の観察台を製作するための工程を説明するための図。The figure for demonstrating the process for manufacturing the observation stand of FIG.

符号の説明Explanation of symbols

2,2A 観察台
4 スライドグラス
6,6A 管部材
8 カバーグラス
10 封入剤
12 微小突部
16 試料液供給手段
18 試料液回収手段
32 ガラス毛細管
34 ガラス粉末
52a,52b,52c,52d 突部領域
P 観察体
2,2A Observation table 4 Slide glass 6,6A Tube member 8 Cover glass 10 Encapsulant 12 Microprojection 16 Sample liquid supply means 18 Sample liquid recovery means 32 Glass capillary 34 Glass powder 52a, 52b, 52c, 52d Projection area P Observation body

Claims (8)

観察体を含む観察試料液を所定方向に流して前記観察体を観察するための観察方法であって、内周面の少なくとも一部に多数の微小突部が設けられた観察流路を有する流路部材を用い、前記観察流路の一端側に前記観察試料液を供給するための試料液供給手段を接続し、前記観察流路の他端側に前記観察試料液を回収するための試料液回収手段を接続し、前記試料液供給手段から前記観察流路を通して前記試料液回収手段に前記所定方向に前記観察試料液を流し、前記観察流路を流れる際に前記観察試料液に含まれる前記観察体を前記多数の微小突部に衝突させ、かかる衝突によって前記観察試料液の前記所定方向の流れを利用して前記観察体を回動させることを特徴とする観察体の観察方法。   An observation method for observing the observation body by flowing an observation sample liquid including the observation body in a predetermined direction, the flow comprising an observation flow path provided with a large number of microprojections on at least a part of an inner peripheral surface A sample liquid for connecting the sample liquid supply means for supplying the observation sample liquid to one end side of the observation flow path using a path member and for collecting the observation sample liquid to the other end side of the observation flow path The recovery means is connected, the observation sample liquid is allowed to flow in the predetermined direction from the sample liquid supply means to the sample liquid recovery means through the observation flow path, and is included in the observation sample liquid when flowing through the observation flow path A method for observing an observing object, wherein the observing object is caused to collide with the plurality of minute protrusions, and the observing object is rotated by using the flow of the observation sample liquid in the predetermined direction by the collision. 前記流路部材は前記観察流路を有する管部材から構成され、前記管部材をスライドグラスに橋渡しするように載置し、前記管部材を覆うようにカバーグラスを載置し、前記スライドグラスと前記カバーグラスとの間に封入剤を充填して前記管部材を固定することを特徴とする請求項1に記載の観察体の観察方法。   The flow path member is composed of a tube member having the observation flow path, the tube member is placed so as to bridge a slide glass, a cover glass is placed so as to cover the tube member, and the slide glass and The observation method according to claim 1, wherein the tube member is fixed by filling an encapsulating agent between the cover glass and the cover glass. 前記管部材の内径は50〜1000μmであり、前記管部材の前記多数の突起の高さは0.5〜10μmであることを特徴とする請求項2に記載の観察体の観察方法。   The observation method of the observation body according to claim 2, wherein the inner diameter of the tube member is 50 to 1000 µm, and the height of the many protrusions of the tube member is 0.5 to 10 µm. 前記観察試料液は、前記試料液供給手段と前記試料液回収手段との間の圧力差、又は前記試料液供給手段に収容された前記観察試料液と前記試料回収手段に収容された回収液との濃度差を利用して、前記試料液供給手段から前記管部材を通して前記試料液回収手段に流れることを特徴とする請求項2又は3のいずれかに記載の観察体の観察方法。   The observation sample liquid includes a pressure difference between the sample liquid supply means and the sample liquid recovery means, or the observation sample liquid stored in the sample liquid supply means and a recovery liquid stored in the sample recovery means. 4. The observation method for an observation body according to claim 2, wherein the difference in concentration is used to flow from the sample solution supply means to the sample solution recovery means through the tube member. 観察体を含む観察試料液を所定方向に流して前記観察体を観察するための観察台であって、スライドグラスと、前記スライドグラスの上側に配設された流路部材と、を備え、前記流路部材の観察流路の内周面の少なくとも一部に多数の微小突部が設けられていることを特徴とする観察体の観察台。   An observation table for observing the observation body by flowing an observation sample liquid containing the observation body in a predetermined direction, comprising a slide glass, and a flow path member disposed on the upper side of the slide glass, An observation table for an observation body, wherein a plurality of minute protrusions are provided on at least a part of the inner peripheral surface of the observation channel of the channel member. 前記流路部材と前記スライドグラスとの間に封入剤が充填されていることを特徴とする請求項5に記載の観察台。   The observation table according to claim 5, wherein an encapsulant is filled between the flow path member and the slide glass. 前記流路部材は管部材から構成され、前記管部材の上側にカバーグラスが配設され、前記スライドグラスと前記カバーグラスとの間の空間に前記管部材を被うように前記封入剤が充填されることを特徴とする請求項6に記載の観察体の観察台。   The flow path member is composed of a pipe member, a cover glass is disposed on the upper side of the pipe member, and the space between the slide glass and the cover glass is filled with the encapsulant so as to cover the pipe member. The observation table for an observation body according to claim 6, wherein the observation table is an observation table. 前記管部材の内径は50〜1000μmであり、前記管部材の前記多数の突起の高さは0.5〜10μmであることを特徴とする請求項7に記載の観察体の観察台。   The observation base for an observation body according to claim 7, wherein an inner diameter of the tube member is 50 to 1000 µm, and a height of the plurality of protrusions of the tube member is 0.5 to 10 µm.
JP2008327315A 2008-12-24 2008-12-24 Observation table for observation object and observation method Expired - Fee Related JP5234460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327315A JP5234460B2 (en) 2008-12-24 2008-12-24 Observation table for observation object and observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327315A JP5234460B2 (en) 2008-12-24 2008-12-24 Observation table for observation object and observation method

Publications (2)

Publication Number Publication Date
JP2010151472A true JP2010151472A (en) 2010-07-08
JP5234460B2 JP5234460B2 (en) 2013-07-10

Family

ID=42570762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327315A Expired - Fee Related JP5234460B2 (en) 2008-12-24 2008-12-24 Observation table for observation object and observation method

Country Status (1)

Country Link
JP (1) JP5234460B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840519A (en) * 1981-09-03 1983-03-09 Meisei Electric Co Ltd Sealing method of sample for microscope
JPS6380216A (en) * 1986-09-24 1988-04-11 Bio Meito:Kk Plastic slide glass
JPH0769253B2 (en) * 1993-03-19 1995-07-26 松浪硝子工業株式会社 Preparation and glass plate used for it
WO2006101051A1 (en) * 2005-03-18 2006-09-28 Effector Cell Institute, Inc. Cell observation aiding instrument and method of cell observation therewith
JP2008196860A (en) * 2007-02-08 2008-08-28 Ario Techno Kk Particulate detection device and microorganism detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840519A (en) * 1981-09-03 1983-03-09 Meisei Electric Co Ltd Sealing method of sample for microscope
JPS6380216A (en) * 1986-09-24 1988-04-11 Bio Meito:Kk Plastic slide glass
JPH0769253B2 (en) * 1993-03-19 1995-07-26 松浪硝子工業株式会社 Preparation and glass plate used for it
WO2006101051A1 (en) * 2005-03-18 2006-09-28 Effector Cell Institute, Inc. Cell observation aiding instrument and method of cell observation therewith
JP2008196860A (en) * 2007-02-08 2008-08-28 Ario Techno Kk Particulate detection device and microorganism detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012053254; 国立病院総合医学会講演抄録集 Vol.61st, Page.580 P-2-148, 2007 *

Also Published As

Publication number Publication date
JP5234460B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
Yu et al. Design of capillary microfluidics for spinning cell-laden microfibers
Kamperman et al. Ultrahigh-throughput production of monodisperse and multifunctional janus microparticles using in-air microfluidics
JP6908667B2 (en) Sterilized solution product bag
Chen et al. Advanced microfluidic devices for fabricating multi‐structural hydrogel microsphere
ES2737887T3 (en) Drop formation procedure in a microfluidic circuit
Quevedo et al. Interfacial polymerization within a simplified microfluidic device: capturing capsules
JP4427459B2 (en) Chemical analysis apparatus and chemical analysis cartridge
Lee et al. Microfabricated sampling probes for in vivo monitoring of neurotransmitters
Sugaya et al. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent
WO2016085739A1 (en) Systems and methods for encapsulation of actives in compartments or sub-compartments
Gimondi et al. Microfluidic devices: a tool for nanoparticle synthesis and performance evaluation
Osouli-Bostanabad et al. Microfluidic manufacture of lipid-based nanomedicines
Fontana et al. Nuts and bolts: microfluidics for the production of biomaterials
CN108525715A (en) Micro-channel structure, micro-fluidic chip and the method that microballoon is quantitatively wrapped up for drop
Maged et al. Merits and advances of microfluidics in the pharmaceutical field: design technologies and future prospects
JP2022506528A (en) Anti-clogging microfluidic multi-channel device
JP5234460B2 (en) Observation table for observation object and observation method
Zhang et al. Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers
Evens et al. Producing hollow polymer microneedles using laser ablated molds in an injection molding process
Wang et al. Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: From plug to sphere
CN108073743A (en) The system and method for separation sub-micron nano particle is focused on based on nonNewtonian percolation
ES2872473T3 (en) Procedure and device for the generation of simple and compound micrometric emulsions
ES2310967B2 (en) MANUFACTURING METHOD FOR M ICROMETRIC SCALE FLUID FOCUSING DEVICE
JP4973721B2 (en) Microparticle structure and method for producing microparticles using the same
CN103372247B (en) Medical grade syringe filters and injection filter preparation methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees