JP2010151464A - Salt measuring device for structure surface - Google Patents

Salt measuring device for structure surface Download PDF

Info

Publication number
JP2010151464A
JP2010151464A JP2008327227A JP2008327227A JP2010151464A JP 2010151464 A JP2010151464 A JP 2010151464A JP 2008327227 A JP2008327227 A JP 2008327227A JP 2008327227 A JP2008327227 A JP 2008327227A JP 2010151464 A JP2010151464 A JP 2010151464A
Authority
JP
Japan
Prior art keywords
holding chamber
steel structure
liquid holding
liquid
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008327227A
Other languages
Japanese (ja)
Other versions
JP5476714B2 (en
Inventor
Mitsuru Sasakura
巳鶴 笹倉
Yoshiharu Ito
芳晴 伊藤
Satoshi Takizawa
諭 瀧澤
Toshinao Morita
俊直 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2008327227A priority Critical patent/JP5476714B2/en
Publication of JP2010151464A publication Critical patent/JP2010151464A/en
Application granted granted Critical
Publication of JP5476714B2 publication Critical patent/JP5476714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a salt measuring device for a surface of a structure having high measurement precision. <P>SOLUTION: The salt measuring device includes: a device body 30 having an operation panel 30a and a display section 30b along with an arithmetic processing unit; and a detection section 11 that is connected to the device body 30 for detection in contact with a surface S of a steel structure. The detection section 11 includes: a liquid holding chamber 12 that has an opening 12a at one end and receives and holds demineralized water for extracting salt when measuring the salt; a liquid supply channel 13 for supplying demineralized water to the liquid holding chamber 12; a stirring element 14 for stirring liquid in the liquid holding chamber 12; a sensor 15 for measuring salt, where a detection end is exposed into the liquid holding chamber 12; a sealing member 18 that is adhered to the surface S of the steel structure and keeps a liquid-tight state of the liquid holding chamber 12; a magnet 19 for attracting the detection section 11 on the surface S of the steel structure; and a separation means 20 for separating one portion of the sealing member 18 from the surface S of the steel structure against magnetic force of the magnet 19. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種構造物の表面に付着した塩分を抽出採取すると同時に、その塩分測定を行う装置に関する。   The present invention relates to an apparatus for extracting and collecting salt attached to the surface of various structures and simultaneously measuring the salt.

鉄道用や道路用の橋梁、船舶、プラントの大型タンク等のような鋼を用いた構造物は、腐蝕を防止するため、新しく建造する時あるいはメンテナンス時に表面塗装を行う必要がある。   Steel structures such as railway and road bridges, ships, and large tanks in plants need to be surface-coated when newly constructed or maintained in order to prevent corrosion.

しかし、これら鋼構造物の表面に海塩粒子等の塩分が付着したまま表面塗装を行うと、塗膜に膨れや層間剥離が生じたり、鋼構造物の素地表面に錆が発生したりして防食効果が得られなくなる。そのため、表面塗装を行う前に、鋼構造物表面の塩分濃度を測定し、鋼構造物表面の清浄度を管理することが従来から行われている。   However, if surface coating is performed with salt such as sea salt particles attached to the surface of these steel structures, the coating film may swell or delaminate, or rust may occur on the surface of the steel structure. The anticorrosion effect cannot be obtained. Therefore, before performing surface coating, it is conventionally performed to measure the salinity concentration on the surface of the steel structure and to manage the cleanliness of the surface of the steel structure.

鋼構造物表面に付着する塩分の濃度は、鋼構造物の種類や環境等により異なるが、海岸付近では1000mg/mを超えることがある。この塩分を洗浄やサンドブラスト等によって取り除き、表面塗装を行う前の段階で、通常50〜300mg/m程度に設定される管理濃度以下にする必要がある。 The concentration of salt attached to the surface of the steel structure varies depending on the type of steel structure and the environment, but may exceed 1000 mg / m 2 near the coast. This salt content is removed by washing, sandblasting, etc., and it is necessary to make it below the control concentration which is usually set to about 50 to 300 mg / m 2 at the stage before surface coating.

このような場合に、鋼構造物表面の塩分濃度を測定する装置として、特許文献1〜3には図1に示すように、検出部1を鋼構造物表面Sに当接させ、検出部1に設けられた液保持室2にシリンジ等の純水供給源Wから液供給流路3を経て塩分抽出用の純水を供給し、液保持室2に設けられた撹拌子4を用いて純水を撹拌して鋼構造物表面Sから塩分を溶解抽出した後、その液の電気伝導率をセンサー5で測定することにより、鋼構造物表面Sの塩分濃度を測定する装置が知られている。   In such a case, as an apparatus for measuring the salinity concentration on the surface of the steel structure, as shown in FIG. 1 in Patent Documents 1 to 3, the detection unit 1 is brought into contact with the steel structure surface S to detect the detection unit 1. Pure water for salt extraction is supplied from a pure water supply source W such as a syringe to the liquid holding chamber 2 provided in the liquid via the liquid supply flow path 3, and purified using a stirrer 4 provided in the liquid holding chamber 2. An apparatus is known that measures the salt concentration of the steel structure surface S by stirring the water and dissolving and extracting the salt content from the steel structure surface S and then measuring the electrical conductivity of the liquid with the sensor 5. .

特許第3912776号公報Japanese Patent No. 3912776 実公平4−5003号公報No. 4-5003 実公平6−13475号公報Japanese Utility Model Publication No. 6-13475

上記測定装置は、精度の高い測定を行うためには、液保持室2に受入れて保持する純水の量が常に一定であることが望ましい。そのため、従来、純水を受入れる際に液保持室2内の空気を排気するエア抜き流路が複数本設けられていた。   In order for the measurement apparatus to perform highly accurate measurement, it is desirable that the amount of pure water received and held in the liquid holding chamber 2 is always constant. Therefore, conventionally, a plurality of air vent channels for exhausting the air in the liquid holding chamber 2 when receiving pure water have been provided.

例えば、図1に示す装置では、液保持室2の開口部2a側と上底面2b側にそれぞれ第1のエア抜き流路6及び第2のエア抜き流路7が設けられている。これにより、真下(天井面)や斜め下を向く鋼構造物表面Sの塩分濃度を測定する場合は、開口部2a側に設けられた第1のエア抜き流路6から空気を抜き、真上や斜め上を向く鋼構造物表面Sの塩分濃度を測定する場合は、液保持室2の上底面2b側に設けられた第2のエア抜き流路7から空気を抜くことによって、液保持室2に常にほぼ一定量の純水を受入れて測定を行うことができる。尚、垂直な鋼構造物表面Sの塩分濃度を測定する場合は、第1のエア抜き流路6又は第2のエア抜き流路7のいずれの流路を使用してもよい。   For example, in the apparatus shown in FIG. 1, a first air vent channel 6 and a second air vent channel 7 are provided on the opening 2 a side and the upper bottom surface 2 b side of the liquid holding chamber 2, respectively. As a result, when measuring the salinity concentration of the steel structure surface S facing directly downward (ceiling surface) or diagonally downward, air is extracted from the first air vent channel 6 provided on the opening 2a side. When measuring the salinity concentration of the steel structure surface S facing diagonally upward, the liquid holding chamber is obtained by removing air from the second air vent channel 7 provided on the upper bottom surface 2b side of the liquid holding chamber 2. 2 can always receive a substantially constant amount of pure water for measurement. In addition, when measuring the salinity concentration of the vertical steel structure surface S, any one of the first air vent channel 6 or the second air vent channel 7 may be used.

しかしながら、図2に示すように、液保持室2の開口部2aの周囲には、液保持室2内を液密状態に保つため、シリコーンゴム等からなるO−リング等のシール部材8が設けられている。第1のエア抜き流路6の排気口6aはこのシール部材8よりも液保持室2側に設けなければならないので、真下や斜め下を向く鋼構造物表面Sの塩分濃度を測定する場合は少なくともシール部材8の厚み分だけ空気Aを排気することができず、測定値に誤差が含まれる原因になっていた。   However, as shown in FIG. 2, a sealing member 8 such as an O-ring made of silicone rubber is provided around the opening 2a of the liquid holding chamber 2 in order to keep the liquid holding chamber 2 in a liquid-tight state. It has been. Since the exhaust port 6a of the first air vent channel 6 must be provided closer to the liquid holding chamber 2 than the seal member 8, when measuring the salinity of the steel structure surface S facing directly below or diagonally downward, The air A cannot be exhausted at least as much as the thickness of the seal member 8, causing an error in the measured value.

本発明は、かかる従来の事情に鑑みてなされたものであり、真下や斜め下を向く鋼等の構造物表面の塩分濃度を測定する場合であっても、液保持室がほぼ満液になるまで純水を受入れることが可能な測定精度の高い塩分測定装置を提供することを目的とする。   The present invention has been made in view of such conventional circumstances, and even when the salinity concentration of the surface of a structure such as steel facing directly below or obliquely below is measured, the liquid holding chamber is almost full. An object of the present invention is to provide a salinity measuring apparatus with a high measurement accuracy capable of receiving pure water up to.

上記目的を達成するため、本発明が提供する請求項1に記載の構造物表面の塩分測定装置は、演算処理装置と共に操作パネル及び表示部を備えた装置本体と、該装置本体に接続され構造物表面に当接させて検出を行う検出部とからなり、該検出部は、一端に開口部を有し且つ塩分測定の際に塩分抽出用の純水を受入れて保持する液保持室と、純水を液保持室に供給する液供給流路と、液保持室内の液を撹拌する撹拌子と、液保持室内に検出端を露出させた塩分測定用センサーと、構造物表面に密着して液保持室の液密状態を保つシール部材と、検出部を構造物表面に吸着させる磁石と、シール部材の一部分を磁石の磁力に抗して構造物表面から離間させる離間手段とを備えていることを特徴としている。   In order to achieve the above object, a salinity measuring device for a surface of a structure according to claim 1 provided by the present invention comprises a device body including an operation panel and a display unit together with an arithmetic processing device, and a structure connected to the device body. A detection unit that performs detection by contacting the object surface, the detection unit having an opening at one end and receiving and holding pure water for salt extraction at the time of salt measurement; and A liquid supply channel for supplying pure water to the liquid holding chamber, a stirrer for stirring the liquid in the liquid holding chamber, a salt measurement sensor with the detection end exposed in the liquid holding chamber, and the surface of the structure A seal member that maintains a liquid-tight state of the liquid holding chamber, a magnet that attracts the detection unit to the surface of the structure, and a separating unit that separates a part of the seal member from the surface of the structure against the magnetic force of the magnet. It is characterized by that.

上記本発明の構造物表面の塩分測定装置においては、上記離間手段は、構造物表面とこれに当接する検出部の当接面との間に挟み込まれる介在部材であることを特徴としている。   In the salinity measuring apparatus for a surface of a structure according to the present invention, the separation means is an interposed member that is sandwiched between the surface of the structure and a contact surface of a detection unit that contacts the structure surface.

上記本発明の構造物表面の塩分測定装置においては、上記離間手段は、構造物表面に当接する検出部の当接面から出没する可動部材であることを特徴としている。   In the above-described salinity measuring apparatus for a structure surface according to the present invention, the separation means is a movable member that appears and disappears from a contact surface of a detection unit that contacts the structure surface.

上記本発明の構造物表面の塩分測定装置においては、上記可動部材は、当接面から突出した位置と退避した位置との間で回転自在又は出入自在であることを特徴としている。   In the salinity measuring apparatus for a surface of a structure according to the present invention, the movable member is characterized in that it can rotate or move in and out between a position protruding from the contact surface and a retracted position.

上記本発明の構造物表面の塩分測定装置においては、上記可動部材は、構造物表面に当接する当接具を有しており、構造物表面とこれに当接した当接具との位置関係を変化させることなく上記可動部材は当接面から出没可能であることを特徴としている。   In the salinity measuring apparatus for a structure surface according to the present invention, the movable member has a contact tool that contacts the structure surface, and the positional relationship between the structure surface and the contact tool that contacts the structure surface. The movable member can be projected and retracted from the contact surface without changing the angle.

また、上記本発明の構造物表面の塩分測定装置においては、上記可動部材は、検出部に穿設された貫通孔に貫入された棒状部材であり、磁石の磁力に抗して突出した状態を維持する係止機構を備えていることを特徴としている。   In the salinity measuring apparatus for a surface of a structure according to the present invention, the movable member is a rod-like member that is inserted into a through-hole that is formed in the detection unit, and protrudes against the magnetic force of the magnet. It is characterized by having a locking mechanism for maintaining.

本発明によれば、液保持室がほぼ満液になるまで純水を受入れることができるので、精度の高い塩分測定を行うことができる。   According to the present invention, since pure water can be received until the liquid holding chamber is almost full, highly accurate salinity measurement can be performed.

図3を参照しながら本発明に係る構造物表面の塩分測定装置の一具体例を説明する。この塩分測定装置は、図示しない演算処理装置と共に操作パネル30a及び表示部30bなどを備えた装置本体30と、装置本体30にコードを介して接続された検出部11とからなり、軽量小型で持ち運びできる簡易な装置である。検出部11は、略円柱状部分11aと、その先端部に形成されたフランジ部11bとからなる外形を有しており、このフランジ部の当接面11sが鋼構造物表面Sに当接するようになっている。   A specific example of the salinity measuring apparatus for the structure surface according to the present invention will be described with reference to FIG. This salinity measuring apparatus is composed of an apparatus main body 30 provided with an operation panel 30a, a display unit 30b and the like together with an arithmetic processing unit (not shown), and a detection unit 11 connected to the apparatus main body 30 via a cord, and is lightweight and small in size. It is a simple device that can. The detection unit 11 has an outer shape composed of a substantially cylindrical portion 11a and a flange portion 11b formed at the tip thereof, so that the contact surface 11s of the flange portion contacts the steel structure surface S. It has become.

検出部11は、塩分抽出用の純水を受入れて保持する2〜20ml程度の容量の液保持室12を有している。液保持室12は、受入れた純水を鋼構造物表面Sに接触させてそこに付着している塩分を抽出採取できるように、所定の開口面積を有する好適には円形の開口部12aを有している。液保持室12は、開口部12aに対向する上底面12bと、これを囲む側面12cによって画定されており、これらの面は好適にはABS、PVC(ポリ塩化ビニル)、PMMA(アクリル)、PA(ポリアミド)、PTFE(フッ素樹脂)、PVDF(ポリフッ化ビニリデン)、エポキシ等の樹脂から形成されている。   The detection unit 11 has a liquid holding chamber 12 having a capacity of about 2 to 20 ml for receiving and holding pure water for salt extraction. The liquid holding chamber 12 has a preferably circular opening 12a having a predetermined opening area so that the received pure water can be brought into contact with the surface S of the steel structure and the salt adhering thereto can be extracted and collected. is doing. The liquid holding chamber 12 is defined by an upper bottom surface 12b facing the opening 12a and a side surface 12c surrounding the opening 12a. These surfaces are preferably ABS, PVC (polyvinyl chloride), PMMA (acrylic), PA. (Polyamide), PTFE (fluororesin), PVDF (polyvinylidene fluoride), and epoxy resin.

開口部12aの周縁にはシリコーンゴム等からなるO−リング等のシール部材18が設けられている。このシール部材18は、当接面11sが鋼構造物表面Sに当接した時にそこに密着して液保持室12の液密状態を保つ。シール部材18の外側には永久磁石19が設けられている。これにより当接面11sを鋼構造物表面Sに吸着させることができる。   A seal member 18 such as an O-ring made of silicone rubber or the like is provided at the periphery of the opening 12a. When the contact surface 11s comes into contact with the steel structure surface S, the seal member 18 is in close contact with the steel structure surface S and maintains the liquid-tight state of the liquid holding chamber 12. A permanent magnet 19 is provided outside the seal member 18. Thereby, the contact surface 11s can be adsorbed to the steel structure surface S.

塩分を抽出採取する純水は、図3に例示するシリンジや軟質プラスチック容器等の純水供給源Wから液供給流路13を介して液保持室12に供給される。液供給流路13の一端部には、かかる純水供給源Wが着脱自在に取り付けられるように接続部13aが設けられている。   Pure water from which salt is extracted and collected is supplied to the liquid holding chamber 12 through the liquid supply channel 13 from a pure water supply source W such as a syringe or a soft plastic container illustrated in FIG. A connecting portion 13a is provided at one end of the liquid supply channel 13 so that the pure water supply source W is detachably attached.

検出部11は、更に液保持室12内の液を約500〜3000rpmの回転数で撹拌する撹拌子14を有している。この撹拌子14はモーター14aによって駆動される。モーター14aの駆動開始及び停止はスイッチ14bで行われ、モーター14aの電源は電池14cから供給される。   The detection unit 11 further includes a stirrer 14 that stirs the liquid in the liquid holding chamber 12 at a rotational speed of about 500 to 3000 rpm. The stirring bar 14 is driven by a motor 14a. Driving start and stop of the motor 14a are performed by the switch 14b, and the power of the motor 14a is supplied from the battery 14c.

液保持室12内の液体の電気伝導度は、塩分測定用センサー15により測定される。この塩分測定用センサー15は、上底面12b又は側面12cから露出するように設けるのが望ましい。塩分測定用センサー15で測定した電気伝導率は液体の温度変化によって変動するため、これを補償する温度センサー(図示せず)が設けられても良い。これら塩分測定用センサー15や温度センサーは、リード線によって装置本体30の演算処理装置に接続されている。   The electrical conductivity of the liquid in the liquid holding chamber 12 is measured by the salt content measurement sensor 15. The salinity measurement sensor 15 is desirably provided so as to be exposed from the upper bottom surface 12b or the side surface 12c. Since the electrical conductivity measured by the salinity measurement sensor 15 varies depending on the temperature change of the liquid, a temperature sensor (not shown) for compensating for this may be provided. The salinity measurement sensor 15 and the temperature sensor are connected to the arithmetic processing unit of the apparatus main body 30 by lead wires.

液保持室12の上底面12b側には、外部に連通するエア抜き流路17が設けられていることが望ましい。これにより、真上や斜め上を向いている鋼構造物表面Sを測定する場合は、純水を受入れる際に、エア抜き流路17から液保持室12内の空気を抜き出すことができる。エア抜き流路17の出口部には、純水の受入れ完了後に液保持室12内を液密状態に保つため、開閉可能なエア抜き栓17aが設けられている。尚、操作性を良くするため、エア抜き流路17は液供給流路13に対向する位置に設けられるのが好ましい。   It is desirable that an air vent channel 17 communicating with the outside is provided on the upper bottom surface 12 b side of the liquid holding chamber 12. Thereby, when measuring the steel structure surface S which faces directly upward or diagonally upward, the air in the liquid holding chamber 12 can be extracted from the air vent channel 17 when pure water is received. An air vent plug 17a that can be opened and closed is provided at the outlet of the air vent channel 17 in order to keep the liquid holding chamber 12 in a liquid-tight state after the completion of receiving pure water. In order to improve operability, the air vent channel 17 is preferably provided at a position facing the liquid supply channel 13.

真下や斜め下を向いている鋼構造物表面Sや垂直な鋼構造物表面Sを測定する場合は、後述する離間手段を用いてエア抜きが行われるため、液保持室12の開口部12a側にエア抜き流路を設けなくてもよい。また、エア抜き流路17を設けた場合は、図1に示すように、上底面12bの形状を、その中央部に向かうに従って開口部12a側に徐々に隆起するような逆錐状に形成してもよい。これにより、液保持室12に純水を供給する際、純水の流れに伴って液保持室12の空気は上底面12bのテーパー面に沿ってその周縁部に向けてスムースに移動し、そこに位置するエア抜き流路17から外部に排気される。   When measuring a steel structure surface S that faces directly below or diagonally downward or a vertical steel structure surface S, air is removed using a separation means described later, and therefore the opening 12a side of the liquid holding chamber 12 It is not necessary to provide an air vent channel in Further, when the air vent channel 17 is provided, as shown in FIG. 1, the shape of the upper bottom surface 12b is formed in an inverted conical shape that gradually rises toward the opening 12a toward the center. May be. As a result, when pure water is supplied to the liquid holding chamber 12, the air in the liquid holding chamber 12 moves smoothly along the tapered surface of the upper bottom surface 12b toward the peripheral edge with the flow of pure water. The air is exhausted to the outside from the air vent channel 17 located at the position.

検出部11は、純水の供給時にシール部材18の一部分を永久磁石19の磁力に抗して鋼構造物表面Sから離間させる離間手段20を備えている。これにより、真下や斜め下を向いている鋼構造物表面Sや垂直(鉛直下方向)な鋼構造物表面Sを測定する場合は、純水を受入れる際に、シール部材18の一部分と鋼構造物表面Sとの間を離間させ、その隙間から液保持室12内の空気を抜き出すことができる。   The detection unit 11 includes a separation unit 20 that separates a part of the seal member 18 from the steel structure surface S against the magnetic force of the permanent magnet 19 when pure water is supplied. As a result, when measuring the steel structure surface S facing directly or obliquely downward or the vertical (vertical downward) steel structure surface S, a part of the seal member 18 and the steel structure are received when pure water is received. The space between the object surface S can be separated, and the air in the liquid holding chamber 12 can be extracted from the gap.

離間手段20によって離間させる距離は、開口部12aの形状及び開口面積、シール部材18の厚み、検出部11の当接面11sの大きさに応じて適宜定められる。具体的には、下記の数式から離間させる距離Tを求めることができる。   The distance to be separated by the separating means 20 is appropriately determined according to the shape and opening area of the opening 12a, the thickness of the seal member 18, and the size of the contact surface 11s of the detection unit 11. Specifically, the distance T to be separated can be obtained from the following mathematical formula.

[数1]
T=(tanθ×L)+h
[Equation 1]
T = (tan θ × L) + h

ここで、距離Lは、図4(a)に示すように、位置P1と位置P2との間の距離であり、位置P1は、離間手段20によって最も鋼構造物表面Sから離れている当接面11sの端部が、離間手段20を引き抜いた時又は退避させた時に当接する鋼構造物表面S上の位置であり、位置P2は、離間手段20によって離間している時に鋼構造物表面Sに密着しているシール部材18の一部分の内の中央部である。また、角度θは、図4(b)に示すように、離間手段20によって離間した状態を真横から見た時の鋼構造物表面Sと当接面11sとがつくる角度である。更に、高さhは、図4(c)に示すように、シール部材18が鋼構造物表面Sに密着したときにシール部材18によって生じる隙間(距離)である。尚、上記数式からも分るように、距離Tは角度θだけ傾けたことにより離間した距離に、上記シール部材18によって生じる隙間を合算した値となる。   Here, the distance L is a distance between the position P1 and the position P2, as shown in FIG. 4A, and the position P1 is the abutment farthest from the steel structure surface S by the separating means 20. The end of the surface 11s is a position on the steel structure surface S that contacts when the separating means 20 is pulled out or retracted, and the position P2 is the steel structure surface S when separated by the separating means 20. This is the central portion of a portion of the seal member 18 that is in close contact with the surface. Further, as shown in FIG. 4B, the angle θ is an angle formed by the steel structure surface S and the contact surface 11s when the state separated by the separating means 20 is viewed from the side. Furthermore, the height h is a gap (distance) generated by the seal member 18 when the seal member 18 comes into close contact with the steel structure surface S, as shown in FIG. As can be seen from the above formula, the distance T is a value obtained by adding the gap generated by the seal member 18 to the distance separated by inclining by the angle θ.

角度θは、0.1〜3.0°であることが好ましい。0.1°未満では離間している時のシール部材18の一部分と鋼構造物表面Sとの間の隙間が狭すぎて効率良く空気を抜き出すことができなくなる。一方、3.0°より大きくなれば、永久磁石19の磁力が鋼構造物に届きにくくなり、検出部11が鋼構造物表面Sから外れて落下するおそれがある。尚、鋼構造物表面Sと当接面11sとを離間した状態で液保持室12にその容量を超える純水が若干供給された場合は、水面が当接面11sから盛り上がるが、上記角度範囲内では水の表面張力の影響により漏れることはない。   The angle θ is preferably 0.1 to 3.0 °. If the angle is less than 0.1 °, the gap between a part of the seal member 18 and the steel structure surface S when they are separated from each other is too narrow to efficiently extract air. On the other hand, if the angle is larger than 3.0 °, the magnetic force of the permanent magnet 19 becomes difficult to reach the steel structure, and the detection unit 11 may be detached from the steel structure surface S and fall. When pure water exceeding the capacity is supplied to the liquid holding chamber 12 in a state where the steel structure surface S and the contact surface 11s are separated from each other, the water surface rises from the contact surface 11s. No leakage occurs due to the surface tension of water.

離間手段20の一具体例としては、図5の(a)に示すような、鋼構造物表面Sとこれに当接する検出部11の当接面11sとの間に挟み込まれる介在部材120を用いることができる。この介在部材120は例えば丸棒や板状部材からなり、長手方向に差し込むようにして挟み込まれる。板状部材の場合は、その幅は20mm以下であることが好ましい。20mmを超えると、挟み込んだ時にシール部材18の一部分が鋼構造物表面Sから離間する距離が広がりすぎ、前述したように、検出部11が鋼構造物表面Sから外れて落下するおそれがある。   As a specific example of the separation means 20, an interposition member 120 sandwiched between the steel structure surface S and the contact surface 11 s of the detection unit 11 that contacts the steel structure surface S as shown in FIG. 5A is used. be able to. The interposition member 120 is made of, for example, a round bar or a plate-like member, and is interposed so as to be inserted in the longitudinal direction. In the case of a plate-like member, the width is preferably 20 mm or less. If it exceeds 20 mm, the distance at which a part of the seal member 18 is separated from the steel structure surface S becomes too wide when sandwiched, and the detection unit 11 may fall off the steel structure surface S as described above.

上記介在部材120の材質は、永久磁石19の磁力の影響を受けにくい材質であることが好ましい。具体的には、アルミニウム、チタン、ステンレス等の非磁性金属や、ポリエチレン、ポリプロピレン、ABS、ポリスチレン、ポリカーボネイト等のプラスチック素材や、これらの複合材料を挙げることができる。   The material of the interposition member 120 is preferably a material that is not easily affected by the magnetic force of the permanent magnet 19. Specific examples include nonmagnetic metals such as aluminum, titanium, and stainless steel, plastic materials such as polyethylene, polypropylene, ABS, polystyrene, and polycarbonate, and composite materials thereof.

尚、液保持室12内への純水の受入れが完了した後は、図5の(b)に示すように当接面11sを鋼構造物表面Sに当接させるべく、永久磁石19の磁力に抗して簡単に介在部材120を引き抜くことができるのが好ましいので、介在部材120の端部には屈曲部や凹凸部等が設けられていたり、ひも等が結び付けられていたりすることが好ましい。また、介在部材120の不使用時に紛失することのないように、検出部11に取り付けることができるような構造になっていることがより好ましい。   In addition, after the acceptance of the pure water into the liquid holding chamber 12 is completed, the magnetic force of the permanent magnet 19 is brought into contact with the steel structure surface S as shown in FIG. It is preferable that the intervening member 120 can be easily pulled out against the above, so that it is preferable that the end of the intervening member 120 is provided with a bent portion, an uneven portion or the like, or a string is tied. . Moreover, it is more preferable that the structure is such that it can be attached to the detection unit 11 so as not to be lost when the interposition member 120 is not used.

離間手段20の他の具体例として、鋼構造物表面Sに当接する検出部11の当接面11sから出没する可動部材を用いることができる。例えば、図6に示すように、当接面11sから突出した位置と退避した位置との間で回転自在なレバー220を用いることができる。このレバー220は、検出部11の不使用時や塩分測定時は、図6の(b)に示すように、当接面11sから突出しないように当接面11sに対して垂直に起こしておき、液保持室12内に純水を受入れる時は、図6の(a)に示すように、当接面11sに対して所定の角度だけ傾けてレバー220の端部を当接面11sから突出させる。これにより、永久磁石19の磁力に抗してシール部材18の一部分を鋼構造物表面Sから離間させることができる。   As another specific example of the separation means 20, a movable member that protrudes and appears from the contact surface 11 s of the detection unit 11 that contacts the steel structure surface S can be used. For example, as shown in FIG. 6, a lever 220 that can rotate between a position protruding from the contact surface 11s and a position retracted can be used. When the detection unit 11 is not used or when salinity is measured, the lever 220 is raised vertically with respect to the contact surface 11s so as not to protrude from the contact surface 11s, as shown in FIG. 6B. When pure water is received in the liquid holding chamber 12, as shown in FIG. 6A, the end of the lever 220 protrudes from the contact surface 11s by being inclined by a predetermined angle with respect to the contact surface 11s. Let Thereby, a part of the sealing member 18 can be separated from the steel structure surface S against the magnetic force of the permanent magnet 19.

この離間状態においても、永久磁石19の磁力は鋼構造物に強く及んでいるので、検出部11が鋼構造物表面Sから外れて落下することがない上、液保持室12内への純水の受入れが完了した後は、当接面11sに対して垂直な方向にレバー220を起こすだけで、この磁力によって検出部11は鋼構造物表面Sに引きつけられてシール部材18の全周が鋼構造物表面Sに密着する。   Even in this separated state, the magnetic force of the permanent magnet 19 is strongly applied to the steel structure, so that the detection unit 11 does not fall off the steel structure surface S, and the pure water into the liquid holding chamber 12 does not fall. After the acceptance is completed, the lever 220 is merely raised in a direction perpendicular to the contact surface 11s, and the magnetic force attracts the detection unit 11 to the steel structure surface S, so that the entire circumference of the seal member 18 is steel. Adheres to the surface S of the structure.

レバー220は図6に示す形状に限定されるものではなく、図7の(a)に示すように、当接面11sに対して垂直な方向に起こした時に突出するように、突出側端部を凸状にしたレバー220aを用いてもよいし、図7の(b)に示すように、当接面11sに対して垂直な方向に起こした位置から左右どちらの方向に傾けても突出するように、突出側端部を矩形形状にしたレバー220bを用いてもよい。   The lever 220 is not limited to the shape shown in FIG. 6, and as shown in FIG. 7A, the protruding side end portion protrudes when raised in a direction perpendicular to the contact surface 11s. A lever 220a having a convex shape may be used, or as shown in FIG. 7B, the lever 220a protrudes even if it is tilted in either direction from the position raised in the direction perpendicular to the contact surface 11s. As described above, a lever 220b having a protruding end portion in a rectangular shape may be used.

鋼構造物表面Sに当接する検出部11の当接面11sから出没する可動部材の他の具体例としては、当接面11sから突出した位置と退避した位置との間で出入自在な部材を用いることができる。例えば、図8に示すように、検出部11の当接面11sに交差するねじ孔21をフランジ部11bに設け、このねじ孔21にねじ状部材320を螺合させて、ねじ状部材320の螺合の度合いに応じてねじ状部材320の先端部を当接面11sから出没させてもよい。これにより、シール部材18の一部分を鋼構造物表面Sから離間させる際のねじ状部材320の突出位置を、図8の(a)に示す最大突出位置と図8の(b)に示す退避位置との間の任意の位置にすることができる。この場合、ねじ状部材320には突出させようとする力とともに回転力も加わることになり、結果的にこの先端と接する鋼構造物表面Sにはこれらの力が加わることになる。   As another specific example of the movable member protruding and retracting from the contact surface 11s of the detection unit 11 that contacts the steel structure surface S, a member that can be freely moved between a position protruding from the contact surface 11s and a retracted position is used. Can be used. For example, as shown in FIG. 8, a screw hole 21 intersecting the contact surface 11 s of the detection unit 11 is provided in the flange portion 11 b, and a screw member 320 is screwed into the screw hole 21, so that the screw member 320 Depending on the degree of screwing, the tip of the screw-shaped member 320 may be protruded from and abutted on the contact surface 11s. Thereby, the protruding position of the screw-like member 320 when separating a part of the seal member 18 from the steel structure surface S is set to the maximum protruding position shown in FIG. 8 (a) and the retracted position shown in FIG. 8 (b). Can be in any position between. In this case, a rotational force is applied to the screw-like member 320 as well as a force to be protruded. As a result, these forces are applied to the steel structure surface S in contact with the tip.

上記ねじ状部材320の先端部には、図9に示すように、鋼構造物表面Sに当接する当接具320aを別部材として有してもよい。別部材とすることにより、当接具320aを鋼構造物表面Sから突出させたい場合には、ねじ状部材320を上方へ螺合させつつ回転させることになるが、当接具320aはこれに従って回転することはなく、突出させようとする力のみが加わる。これにより、当接具320aと鋼構造物表面Sとの当接した時の位置関係を保ったまま、ねじ状部材320を図9の(a)に示す最大突出位置と図9の(b)に示す退避位置との間で出没させることができる。その結果、鋼構造物表面Sの当接部分に傷を付けるおそれがなくなる。   As shown in FIG. 9, a contact tool 320a that contacts the steel structure surface S may be provided as a separate member at the tip of the screw member 320. When it is desired to project the contact tool 320a from the steel structure surface S by using a separate member, the screw-shaped member 320 is rotated while being screwed upward. It does not rotate, only the force to make it project. Thus, while maintaining the positional relationship when the contact tool 320a and the steel structure surface S are in contact with each other, the screw-like member 320 is moved to the maximum projecting position shown in FIG. 9 (a) and FIG. 9 (b). It can be made to appear and retract between the retracted positions shown in FIG. As a result, there is no possibility of scratching the contact portion of the steel structure surface S.

当接面11sから突出した位置と退避した位置との間で出入自在な部材は、図8や図9に示すようなねじ孔に螺合するねじ状部材に限定されるものではなく、図10に示すように、フランジ部11bに穿設されたねじ溝のない貫通孔121に、ねじ溝のない棒状部材420を貫入したものを用いてもよい。これにより、ノック式ボールペンの如く棒状部材420の末端部を押すだけで簡易に先端部を突出させることができる。   The member that can be freely inserted and removed between the position protruding from the contact surface 11s and the retracted position is not limited to a screw-like member screwed into the screw hole as shown in FIGS. As shown in the figure, a rod-shaped member 420 having no thread groove may be inserted into the through hole 121 having no thread groove formed in the flange portion 11b. As a result, the tip can be easily projected by simply pushing the end of the rod-shaped member 420 like a knock-type ballpoint pen.

但し、この棒状部材420の場合は、永久磁石19の磁力に抗して突出した状態を維持する係止機構を備えていることが望ましい。例えば、図10に示すように、貫通孔121の内壁に対向する棒状部材420の側面に小孔420aを穿設し、ここを出没する係合具420b及び該係合具420bを突出する方向に付勢するばね等の付勢手段420cを収納する。棒状部材420の先端部が当接面11sから退避している時は、この係合具420bは貫通孔121の内壁に押圧されて小孔420a内に退避せしめられている。   However, in the case of this rod-shaped member 420, it is desirable to include a locking mechanism that maintains the protruding state against the magnetic force of the permanent magnet 19. For example, as shown in FIG. 10, a small hole 420a is formed in the side surface of the rod-shaped member 420 facing the inner wall of the through-hole 121, and the engaging tool 420b protruding and retracting the small hole 420a and the direction in which the engaging tool 420b protrudes. Energizing means 420c such as a spring for energizing is housed. When the tip of the rod-shaped member 420 is retracted from the contact surface 11s, the engaging tool 420b is pressed against the inner wall of the through hole 121 and retracted in the small hole 420a.

一方、貫通孔121の内壁部には、棒状部材420の先端部が所定の突出位置にきたときに係合具420bが嵌り込むような係合孔121aが穿設されている。これにより、棒状部材420の末端部が押されて棒状部材420の先端部が当接面11sから突出する際、係合具420bは、貫通孔121の内壁を摺動し、棒状部材420の先端部が所定の突出位置にきた時に、付勢手段420cの付勢力によって小孔420aから突出して係合孔121aに係合する。これにより、永久磁石19の磁力により棒状部材420を退避させようとする力が働いても、棒状部材420の先端部は当接面11sから突出した位置で固定される。   On the other hand, an engagement hole 121a is formed in the inner wall portion of the through hole 121 so that the engagement tool 420b can be fitted when the tip end of the rod-shaped member 420 comes to a predetermined protruding position. Accordingly, when the distal end of the rod-shaped member 420 is pushed and the tip of the rod-shaped member 420 protrudes from the contact surface 11 s, the engaging tool 420 b slides on the inner wall of the through hole 121, and the tip of the rod-shaped member 420. When the portion comes to a predetermined protruding position, it protrudes from the small hole 420a by the urging force of the urging means 420c and engages with the engaging hole 121a. As a result, even if a force for retracting the rod-shaped member 420 is exerted by the magnetic force of the permanent magnet 19, the tip of the rod-shaped member 420 is fixed at a position protruding from the contact surface 11s.

棒状部材420の先端部を当接面11sから退避させる時は、係合孔121aまで延びる押圧棒121bを付勢手段420cの付勢力に抗して押すことによって係合具420bと係合孔121aとの係合が外れ、永久磁石19の磁力によって棒状部材420が退避すると共に、検出部11が鋼構造物表面Sに引きつけられてシール部材18の全周が鋼構造物表面Sに密着する。   When the tip of the rod-shaped member 420 is retracted from the contact surface 11s, the engagement tool 420b and the engagement hole 121a are pushed by pressing the pressing rod 121b extending to the engagement hole 121a against the urging force of the urging means 420c. And the rod-shaped member 420 is retracted by the magnetic force of the permanent magnet 19, and the detection unit 11 is attracted to the steel structure surface S and the entire circumference of the seal member 18 is in close contact with the steel structure surface S.

シール部材18の一部分と鋼構造物表面Sとの間の隙間から液保持室12内の空気を抜き出すには、上記した種々の離間手段20が常に上側に位置するように検出部11を鋼構造物表面Sに取り付けるのが望ましい。このため、図11に示すように、検出部11には鋼構造物表面Sに当接する当接面11sの傾きを示す水準器22が設けられているのが好ましい。水準器22のタイプは棒状や円状等任意のものを用いてもよい。尚、上記レバー220、220a、220b、ねじ状部材320、当接具320a及び棒状部材420の材質としては、上記介在部材120の材質として挙げたもの以外に、磁性金属を用いることもできる。   In order to extract the air in the liquid holding chamber 12 from the gap between a part of the seal member 18 and the steel structure surface S, the detection unit 11 is provided with a steel structure so that the above-described various separating means 20 are always located on the upper side. It is desirable to attach to the object surface S. For this reason, as shown in FIG. 11, it is preferable that the detection unit 11 is provided with a level 22 that indicates the inclination of the contact surface 11s that contacts the steel structure surface S. The type of the level 22 may be any type such as a rod or circle. In addition, as a material of the levers 220, 220a, 220b, the screw-like member 320, the contact tool 320a, and the rod-like member 420, a magnetic metal can be used in addition to the materials mentioned for the interposition member 120.

以上説明したように、純水の受入れ時に液保持室12内に空気がほとんど残留しなくなるので、液保持室12内には常に一定量の純水を受入れることができる。その結果、液量の相違による塩分濃度の測定誤差をなくすことができ、精度の高い測定を行うことが可能となる。   As described above, since almost no air remains in the liquid holding chamber 12 when pure water is received, a fixed amount of pure water can always be received in the liquid holding chamber 12. As a result, it is possible to eliminate the measurement error of the salinity concentration due to the difference in the liquid amount, and it is possible to perform the measurement with high accuracy.

上記した塩分測定装置を使用して真下又は斜め下を向く鋼構造物表面Sや垂直な鋼構造物表面Sに付着した塩分の濃度を測定する方法を次に説明する。先ず、検出部11の当接面11sを鋼構造物表面Sに近づけて、永久磁石19の磁力によって、検出部11を鋼構造物表面Sに吸着させる。この時、離間手段20によってシール部材18の一部分は鋼構造物表面Sから離間している。この状態で純水供給源Wから液供給流路13を介して所定量の純水を液保持室12に注入する。純水が注入されていくに従って、液保持室12内の空気は、シール部材18の該一部分と鋼構造物表面Sとの隙間から外部に排気される。   Next, a method for measuring the concentration of the salt attached to the steel structure surface S facing vertically or obliquely downward or the vertical steel structure surface S using the above-described salinity measuring apparatus will be described. First, the contact surface 11 s of the detection unit 11 is brought close to the steel structure surface S, and the detection unit 11 is attracted to the steel structure surface S by the magnetic force of the permanent magnet 19. At this time, a part of the seal member 18 is separated from the steel structure surface S by the separating means 20. In this state, a predetermined amount of pure water is injected into the liquid holding chamber 12 from the pure water supply source W through the liquid supply channel 13. As pure water is injected, the air in the liquid holding chamber 12 is exhausted to the outside through the gap between the portion of the seal member 18 and the steel structure surface S.

純水の注入が完了すると、離間手段20を検出部11の当接面11sから退避させるか抜き取ってシール部材18の全周を鋼構造物表面Sに密着させて液保持室12の液密状態を保つ。その後、スイッチ14bをオンにして撹拌子14を回転させて液保持室12内の液体を撹拌し、鋼構造物表面Sに付着している塩分を溶解抽出する。所定時間経過後、スイッチ14bをオフにして撹拌子14の回転を停止する。液保持室12内の液体に溶解抽出された塩分の濃度は、液保持室12内の塩分測定用センサー15で検出され、電気信号に変換されて装置本体30の演算処理部に送られて処理され、表示部30bに鋼構造物表面Sの単位面積当たりの塩分濃度として表示される。   When the injection of pure water is completed, the separation means 20 is retracted or removed from the contact surface 11s of the detection unit 11, and the entire circumference of the seal member 18 is brought into close contact with the steel structure surface S, so that the liquid holding chamber 12 is in a liquid-tight state. Keep. Thereafter, the switch 14b is turned on to rotate the stirrer 14 to stir the liquid in the liquid holding chamber 12, and dissolve and extract the salt attached to the steel structure surface S. After a predetermined time has elapsed, the switch 14b is turned off to stop the rotation of the stirring bar 14. The concentration of the salt dissolved and extracted in the liquid in the liquid holding chamber 12 is detected by the salt measuring sensor 15 in the liquid holding chamber 12, converted into an electrical signal, sent to the arithmetic processing unit of the apparatus main body 30, and processed. Then, it is displayed as the salinity concentration per unit area of the steel structure surface S on the display unit 30b.

図3に示す塩分測定装置用い、以下に具体的に説明するように、離間手段20によって液保持室12の開口部12aの回りに設けられたシール部材18の一部分を鋼構造物表面Sから離間させた状態で液保持室12に純水を注入して漏れの有無を調べた。この塩分測定装置は、検出部11のフランジ部11bの直径が94mmであり、シール部材18には環の直径40mmのO−リングを使用した。このO−リングは、鋼構造物表面Sに密着させたときは、当接面11sと鋼構造物表面Sとの間の隙間が0.6mmであった。   Using the salinity measuring apparatus shown in FIG. 3, as will be described in detail below, a part of the seal member 18 provided around the opening 12a of the liquid holding chamber 12 is separated from the steel structure surface S by the separating means 20. In this state, pure water was injected into the liquid holding chamber 12 to check for leakage. In this salinity measuring apparatus, the diameter of the flange portion 11 b of the detection unit 11 is 94 mm, and an O-ring having a ring diameter of 40 mm is used as the seal member 18. When this O-ring was brought into close contact with the steel structure surface S, the gap between the contact surface 11s and the steel structure surface S was 0.6 mm.

離間手段20として、フランジ部11bの縁部から5mm内側の位置に、高さ2mmの板状の介在部材を挟み込んで、真下を向く鋼構造物表面Sに永久磁石19の磁力で検出部11を吸着させて純水を供給した。尚、この時の鋼構造物表面Sと当接面11sとがつくる角度θは1.2°であった。その結果、液保持室12内の空気を良好に抜き出すことができ、液保持室12が満液にならない限り純水が漏れることはなかった。   As the separating means 20, a plate-shaped interposition member having a height of 2 mm is sandwiched at a position 5 mm inside from the edge of the flange portion 11b, and the detection unit 11 is moved by the magnetic force of the permanent magnet 19 on the steel structure surface S facing directly below. Pure water was supplied after adsorption. The angle θ formed by the steel structure surface S and the contact surface 11s at this time was 1.2 °. As a result, the air in the liquid holding chamber 12 could be satisfactorily extracted, and pure water did not leak unless the liquid holding chamber 12 was full.

高さ2mmの板状の介在部材はそのままにして、垂直な鋼構造物表面Sに永久磁石19の磁力で検出部11を吸着させて純水を供給した。この時、介在部材のある側(当接面11sの端部が最も鋼構造部表面Sから離れている側)が最上面となるような位置にした。その結果、液保持室12が満液になる前に純水が漏れ出した。そこで、板状の介在部材を高さ1.2mmのものに交換して再度垂直な鋼構造物表面Sに検出部11を吸着させて純水を供給したところ、液保持室12が満液にならない限り純水が漏れることはなかった。尚、この時の鋼構造物表面Sと当接面11sとがつくる角度θは0.4°であった。   The plate-shaped interposition member having a height of 2 mm was left as it was, and pure water was supplied by adsorbing the detection unit 11 to the vertical steel structure surface S by the magnetic force of the permanent magnet 19. At this time, the side where the intervening member is located (the side where the end of the contact surface 11 s is farthest from the steel structure surface S) is the top surface. As a result, pure water leaked before the liquid holding chamber 12 became full. Therefore, when the plate-shaped interposition member is replaced with a 1.2 mm height member and the detection unit 11 is again adsorbed to the vertical steel structure surface S and pure water is supplied, the liquid holding chamber 12 becomes full. Pure water did not leak unless it was. The angle θ formed by the steel structure surface S and the contact surface 11s at this time was 0.4 °.

従来の塩分測定装置の検出部の概略の部分断面側面図である。It is a partial fragmentary sectional side view of the detection part of the conventional salt content measuring apparatus. 従来の塩分測定装置の液保持室に純水を受入れた時の様子を示した概略の部分断面側面図である。It is the general | schematic fragmentary sectional side view which showed the mode when the pure water was received in the liquid holding chamber of the conventional salt content measuring apparatus. 本発明の一実施態様に係る塩分測定装置の概略の部分断面側面図である。It is a partial fragmentary side view of the outline of the salinity measuring apparatus which concerns on one embodiment of this invention. 本発明の一実施態様に係る塩分測定装置の検出部を鋼構造物表面から離間させた時の様子を示した概略図である。It is the schematic which showed the mode when the detection part of the salinity measuring apparatus which concerns on one embodiment of this invention was spaced apart from the steel structure surface. 本発明の離間手段の一具体例を示した概略図である。It is the schematic which showed the specific example of the separation means of this invention. 本発明の離間手段の他の具体例を示した概略図である。It is the schematic which showed the other specific example of the separation means of this invention. 図6の離間手段の変形例を示した概略図である。It is the schematic which showed the modification of the separation means of FIG. 本発明の離間手段の更に他の具体例を示した概略図である。It is the schematic which showed the other specific example of the separation means of this invention. 図8の離間手段の変形例を示した概略図である。It is the schematic which showed the modification of the separation means of FIG. 本発明の離間手段の更に他の具体例を示した概略図である。It is the schematic which showed the other specific example of the separation means of this invention. 本発明の一実施態様に係る塩分測定装置に水準器を備えた時の様子を示した概略図である。It is the schematic which showed a mode when the salinity measuring apparatus which concerns on one embodiment of this invention was equipped with the level.

符号の説明Explanation of symbols

1、11 検出部
2、12 液保持室
3、13 液供給流路
4、14 撹拌子
5、15 塩分測定用センサー
6、7、17 エア抜き流路
8、18 シール部材
19 永久磁石
20 離間手段
30 装置本体
S 鋼構造物表面
A 残留空気
W 純水供給源
DESCRIPTION OF SYMBOLS 1, 11 Detection part 2, 12 Liquid holding chamber 3, 13 Liquid supply flow path 4, 14 Stirrer 5, 15 Sensor for salt content measurement 6, 7, 17 Air vent flow path 8, 18 Seal member 19 Permanent magnet 20 Separation means 30 Equipment body S Steel structure surface A Residual air W Pure water supply source

Claims (6)

演算処理装置と共に操作パネル及び表示部を備えた装置本体と、該装置本体に接続され構造物表面に当接させて検出を行う検出部とからなる構造物表面の塩分測定装置であって、該検出部は、一端に開口部を有し且つ塩分測定の際に塩分抽出用の純水を受入れて保持する液保持室と、純水を液保持室に供給する液供給流路と、液保持室内の液を撹拌する撹拌子と、液保持室内に検出端を露出させた塩分測定用センサーと、構造物表面に密着して液保持室の液密状態を保つシール部材と、検出部を構造物表面に吸着させる磁石と、シール部材の一部分を磁石の磁力に抗して構造物表面から離間させる離間手段とを備えていることを特徴とする構造物表面の塩分測定装置。   A salinity measuring device for a surface of a structure comprising an apparatus main body provided with an operation panel and a display unit together with an arithmetic processing unit, and a detection unit connected to the apparatus main body for detecting by contact with the surface of the structure, The detection unit has an opening at one end, receives a liquid for salt extraction and holds the pure water for salt measurement, a liquid supply channel for supplying pure water to the liquid holding chamber, and a liquid holding A stirrer that stirs the liquid in the chamber, a salinity measurement sensor with the detection end exposed in the liquid holding chamber, a seal member that is in close contact with the surface of the structure and maintains the liquid-tight state of the liquid holding chamber, and a detection unit A salinity measuring apparatus for a surface of a structure, comprising: a magnet that is attracted to the surface of the object; and a separation unit that separates a part of the seal member from the surface of the structure against the magnetic force of the magnet. 前記離間手段は、前記構造物表面とこれに当接する検出部の当接面との間に挟み込まれる介在部材であることを特徴とする、請求項1に記載の構造物表面の塩分測定装置。   2. The salinity measuring apparatus for a structure surface according to claim 1, wherein the separation means is an interposition member sandwiched between the surface of the structure and a contact surface of a detection unit that contacts the structure surface. 前記離間手段は、前記構造物表面に当接する検出部の当接面から出没する可動部材であることを特徴とする、請求項1に記載の構造物表面の塩分測定装置。   2. The salinity measuring apparatus for a structure surface according to claim 1, wherein the separation means is a movable member that protrudes and protrudes from a contact surface of a detection unit that contacts the structure surface. 前記可動部材は、前記当接面から突出した位置と退避した位置との間で回転自在又は出入自在であることを特徴とする、請求項3に記載の構造物表面の塩分測定装置。   4. The salinity measuring apparatus for a surface of a structure according to claim 3, wherein the movable member is rotatable or retractable between a position protruding from the contact surface and a retracted position. 前記可動部材は、前記構造物表面に当接する部分に当接具を有しており、構造物表面とこれに当接した当接具との位置関係を変化させることなく前記可動部材は前記当接面から出没可能であることを特徴とする、請求項3又は4に記載の構造物表面の塩分測定装置。   The movable member has an abutting tool at a portion that abuts on the surface of the structure, and the movable member does not change the positional relationship between the surface of the structure and the abutting tool abutted on the structure. The salinity measuring device for a surface of a structure according to claim 3 or 4, wherein the salinity measuring device can be projected and retracted from a contact surface. 前記可動部材は、前記検出部に穿設された貫通孔に貫入された棒状部材であり、前記磁石の磁力に抗して突出した状態を維持する係止機構を備えていることを特徴とする、請求項3又は4に記載の構造物表面の塩分測定装置。   The movable member is a rod-like member that is inserted into a through hole formed in the detection unit, and includes a locking mechanism that maintains a protruding state against the magnetic force of the magnet. The apparatus for measuring salinity on the surface of a structure according to claim 3 or 4.
JP2008327227A 2008-12-24 2008-12-24 Method for measuring salinity on the surface of structures Active JP5476714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327227A JP5476714B2 (en) 2008-12-24 2008-12-24 Method for measuring salinity on the surface of structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327227A JP5476714B2 (en) 2008-12-24 2008-12-24 Method for measuring salinity on the surface of structures

Publications (2)

Publication Number Publication Date
JP2010151464A true JP2010151464A (en) 2010-07-08
JP5476714B2 JP5476714B2 (en) 2014-04-23

Family

ID=42570755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327227A Active JP5476714B2 (en) 2008-12-24 2008-12-24 Method for measuring salinity on the surface of structures

Country Status (1)

Country Link
JP (1) JP5476714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155621A1 (en) * 2016-03-10 2017-09-14 Defelsko Corporation Method and system for testing surfaces for contaminants

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348151U (en) * 1986-09-16 1988-04-01
JPS6375861U (en) * 1986-11-06 1988-05-20
JPH08220076A (en) * 1995-02-17 1996-08-30 Toyo Electric Mfg Co Ltd Ae sensor device
JP2002333415A (en) * 2001-03-09 2002-11-22 Mitsubishi Electric Corp Measuring device and measuring method of pollutant
JP3912776B2 (en) * 2002-02-12 2007-05-09 東亜ディーケーケー株式会社 Structure surface salinity measurement device
JP3140760U (en) * 2008-01-28 2008-04-10 雅夫 嶋崎 Magnetic suspension
JP2008277588A (en) * 2007-04-27 2008-11-13 Tokyo Electric Power Co Inc:The Magnetic attractor and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348151U (en) * 1986-09-16 1988-04-01
JPS6375861U (en) * 1986-11-06 1988-05-20
JPH08220076A (en) * 1995-02-17 1996-08-30 Toyo Electric Mfg Co Ltd Ae sensor device
JP2002333415A (en) * 2001-03-09 2002-11-22 Mitsubishi Electric Corp Measuring device and measuring method of pollutant
JP3912776B2 (en) * 2002-02-12 2007-05-09 東亜ディーケーケー株式会社 Structure surface salinity measurement device
JP2008277588A (en) * 2007-04-27 2008-11-13 Tokyo Electric Power Co Inc:The Magnetic attractor and manufacturing method thereof
JP3140760U (en) * 2008-01-28 2008-04-10 雅夫 嶋崎 Magnetic suspension

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155621A1 (en) * 2016-03-10 2017-09-14 Defelsko Corporation Method and system for testing surfaces for contaminants

Also Published As

Publication number Publication date
JP5476714B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
EP2592494A8 (en) Cartridge
US11307118B2 (en) Dynamic environmental water sampling backpack
JP5323437B2 (en) Syringe pump
EP2400306A3 (en) Sample analyzer and liquid aspirating method
JP2009002839A5 (en)
JP5476714B2 (en) Method for measuring salinity on the surface of structures
US9316607B2 (en) Adjustable, retractable probe insertion assembly
US3888113A (en) Reagent Tube and Stopper Assembly
US8261622B2 (en) System for sampling sludge
GB2478435A (en) A tool for sampling material in a container
JP2007284961A (en) Device and method for gathering soil
EP2272675A3 (en) Liquid container
JP3912776B2 (en) Structure surface salinity measurement device
JP2010151465A (en) Salt measuring device of structure surface
US7850919B2 (en) Liquid sample collector interface
CN204389498U (en) Reagent card and reagent card box thereof
CN109250808A (en) A kind of sewage treatment machine people of environmental protection
JP2009276311A (en) Feces sampling tube
CN210604314U (en) High stability flow cytometer analytical equipment
WO2005044172A3 (en) Dialysis cartridge
US7444891B1 (en) In-water hull cleaning sampling method
US7437959B1 (en) In-water hull cleaning sampling device
JP2007252338A (en) Compression device of extraction cartridge
JP2007252336A (en) Compressing device of extraction cartridge
TWI768873B (en) Test tubes for loading biological samples

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5476714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250