JP2010150933A - Resonator - Google Patents

Resonator Download PDF

Info

Publication number
JP2010150933A
JP2010150933A JP2008326969A JP2008326969A JP2010150933A JP 2010150933 A JP2010150933 A JP 2010150933A JP 2008326969 A JP2008326969 A JP 2008326969A JP 2008326969 A JP2008326969 A JP 2008326969A JP 2010150933 A JP2010150933 A JP 2010150933A
Authority
JP
Japan
Prior art keywords
resonance
frequency
resonator
resonance chamber
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008326969A
Other languages
Japanese (ja)
Inventor
Makoto Sugita
誠 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKISO KK
Sekiso Co Ltd
Original Assignee
SEKISO KK
Sekiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKISO KK, Sekiso Co Ltd filed Critical SEKISO KK
Priority to JP2008326969A priority Critical patent/JP2010150933A/en
Publication of JP2010150933A publication Critical patent/JP2010150933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Exhaust Silencers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resonator having a noise reducing characteristic in a wide frequency range and easily changing the noise reducing characteristic. <P>SOLUTION: This resonator 20 includes a first resonant chamber 21a, a second resonant chamber 21b and a third resonant chamber 21c which are partitioned inside of a body case 21 by partitioning plates 23 formed with communication holes 23a. The resonant chambers 21a, 21b, 21c are connected to an air intake duct 11 through communication pipes 22. The resonant frequencies of the resonant chambers 21a, 21b, 21c are set to have a frequency interval of 50-200 Hz by changing at least one of the length and inner diameters of the communication pipes 22 and the inner volumes of the resonant chambers 21a, 21b, 21c. Thereby, it is possible to reduce noise propagating through the duct 11 over the wide frequency range and to easily change the noise reducing characteristic reducing noise. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、管体中を伝播する伝播音を低減するレゾネータに関し、特に、車両に搭載されるダクト内を伝播する騒音を低減するレゾネータに関する。   The present invention relates to a resonator that reduces the propagation sound that propagates through a tubular body, and more particularly to a resonator that reduces the noise that propagates through a duct mounted on a vehicle.

一般的に、作動により音を発する装置に接続された管体(ダクト)においては、装置から発生した音を吸気流路を介して伝播し、この伝播音を開口端から放射することがよく知られている。このような管体(ダクト)は、種々の分野で広く用いられており、特に、車両においては、エンジンに空気を導入するための管体(吸気ダクト)や車室内を空調するための管体(空調ダクト)などが設けられている。そして、車両においては、これら管体(ダクト)が乗員に近い位置に設けられているため、乗員がこれらの管体(ダクト)から発せられる伝播音を騒音として知覚しやすい。このため、管体(ダクト)には、伝播する伝播音(騒音)を低減するために、レゾネータを設けることが広く実施されている。   In general, in a pipe (duct) connected to a device that emits sound when activated, it is well known that sound generated from the device propagates through the intake passage and radiates from the open end. It has been. Such pipes (ducts) are widely used in various fields. In particular, in a vehicle, a pipe (air intake duct) for introducing air into an engine and a pipe for air conditioning a vehicle interior. (Air conditioning duct) etc. are provided. And in a vehicle, since these pipe bodies (ducts) are provided at a position close to the occupant, it is easy for the occupant to perceive a propagation sound emitted from these pipe bodies (ducts) as noise. For this reason, in order to reduce the propagation sound (noise) which propagates to a pipe body (duct), providing a resonator is implemented widely.

このレゾネータに関し、従来から、例えば、下記特許文献1に示すように、本体ケース内部を複数の共鳴室に区画する仕切り部材を備えており、この仕切り部材に対して複数の共鳴室を連通する連通孔を設けたレゾネータは知られている。この従来のレゾネータは、ヘルムホルツ型のレゾネータであり、本体ケース内部に形成されたそれぞれの共鳴室に対応した周波数の騒音を消音(低減)するようになっている。また、共鳴室を区画する仕切り部材に連通孔を設けることによってそれぞれの共鳴室を連通させることができ、一つの大きな共鳴室をも形成することができるようになっている。これにより、この従来のレゾネータによれば、それぞれの共鳴室によって騒音を低減することができることに加えて、一つの大きな共鳴室によっても騒音を低減することができるため、より広い周波数域の騒音を低減することができる。
特開2005−155502号公報
With respect to this resonator, conventionally, for example, as shown in Patent Document 1 below, a partition member that divides the inside of the main body case into a plurality of resonance chambers has been provided, and a communication that communicates the plurality of resonance chambers with the partition member. Resonators with holes are known. This conventional resonator is a Helmholtz type resonator and silences (reduces) noise having a frequency corresponding to each resonance chamber formed in the main body case. Further, by providing communication holes in the partition member that divides the resonance chambers, the respective resonance chambers can be communicated with each other so that one large resonance chamber can be formed. Thereby, according to this conventional resonator, in addition to being able to reduce noise by each resonance chamber, noise can also be reduced by one large resonance chamber, so noise in a wider frequency range can be reduced. Can be reduced.
Japanese Patent Laid-Open No. 2005-155502

上記従来のレゾネータにおいては、1つのレゾネータによって広い周波数域の騒音を低減できるという優れた騒音低減特性を有する。しかし、このようなレゾネータを実際に用いて管体を伝播する騒音を低減させる場合には、この優れた騒音低減特性を維持しつつ、要求される騒音の低減レベルに対応して騒音低減特性を変更できることが望ましい。そして、この騒音低減特性の変更は、レゾネータの限られた設置環境下で容易に行えることが望ましい。   The conventional resonator has an excellent noise reduction characteristic that noise in a wide frequency range can be reduced by one resonator. However, when actually reducing the noise propagating through a pipe using such a resonator, the noise reduction characteristic is maintained in accordance with the required noise reduction level while maintaining this excellent noise reduction characteristic. It is desirable that it can be changed. It is desirable that the noise reduction characteristic can be easily changed under a limited installation environment of the resonator.

本発明は、上記した課題を解決するためになされたものであり、その目的は、広い周波数域において騒音低減特性を有するとともに、この騒音低減特性を容易に変更することができるレゾネータを提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a resonator having noise reduction characteristics in a wide frequency range and capable of easily changing the noise reduction characteristics. It is in.

本発明の特徴は、気体が通過可能な管体の外側に配設されかつ所定内容積を区画する本体ケースと、前記管体と前記本体ケースとを連通状態で連結する連通管と、前記本体ケース内に配設されて同本体ケース内部を複数の共鳴室に区画するとともにこの複数の共鳴室を互いに連通させる連通孔を形成した仕切り部材とを備えたレゾネータにおいて、前記複数の共鳴室に対応する各共鳴周波数が所定の周波数間隔を有するように設定されたことにある。   A feature of the present invention is that a main body case that is disposed outside a tubular body through which gas can pass and divides a predetermined internal volume, a communication pipe that connects the tubular body and the main body case in a communicating state, and the main body A resonator having a partition member disposed in a case and partitioning the inside of the main body case into a plurality of resonance chambers and having a communication hole that communicates the plurality of resonance chambers with each other, and corresponds to the plurality of resonance chambers This is because each resonance frequency is set to have a predetermined frequency interval.

この場合、前記所定の周波数間隔が、例えば、50Hzよりも大きく、200Hzよりも小さい周波数間隔であるとよい。   In this case, the predetermined frequency interval may be a frequency interval larger than 50 Hz and smaller than 200 Hz, for example.

また、前記複数の共鳴室に対応する各共鳴周波数は、例えば、前記連通管の長さ、前記連通管の内径および前記複数の共鳴室の各内容積のうちの少なくとも一つを変更することにより、前記所定の周波数間隔を有するように設定されるとよい。   Further, each resonance frequency corresponding to the plurality of resonance chambers can be obtained, for example, by changing at least one of the length of the communication tube, the inner diameter of the communication tube, and the internal volumes of the plurality of resonance chambers. The predetermined frequency interval may be set.

これらによれば、本体ケース内部に仕切り部材によって複数の共鳴室が形成されているため、それぞれの共鳴室に対応した共鳴周波数と一致する周波数を有する騒音を良好に低減することができる。また、形成された各共鳴室が互いに連通することができるため、本体ケース内に一つの大きな共鳴室を形成することができ、この大きな共鳴室に対応した共鳴周波数と一致する周波数を有する騒音を良好に低減することができる。これにより、広い周波数域の騒音を良好に低減する騒音低減特性を発揮することができる。   According to these, since the plurality of resonance chambers are formed in the main body case by the partition member, noise having a frequency that matches the resonance frequency corresponding to each resonance chamber can be reduced satisfactorily. Further, since the formed resonance chambers can communicate with each other, one large resonance chamber can be formed in the main body case, and noise having a frequency that matches the resonance frequency corresponding to the large resonance chamber can be generated. It can be reduced satisfactorily. Thereby, the noise reduction characteristic which reduces the noise of a wide frequency range favorably can be exhibited.

そして、仕切り部材によって形成される各共鳴室における共鳴周波数を設定するにあたり、これらの共鳴周波数の周波数間隔を50Hz〜200Hzの範囲で設定することにより、騒音低減特性を適宜変更することができる。具体的には、共鳴周波数の周波数間隔を小さく設定するに伴い、広い周波数域の騒音を良好に低減する騒音低減特性を発揮しつつ、主に、低周波数域の騒音を効果的に低減する騒音低減特性に変更することができる。一方、共鳴周波数の周波数間隔を大きく設定するに伴い、広い周波数域の騒音を良好に低減する騒音低減特性を発揮しつつ、主に、高周波数域の騒音を効果的に低減する騒音低減特性に変更することができる。したがって、例えば、レゾネータの使用環境によって異なる騒音の要求低減レベルに対応して、騒音低減特性を適切に変更することができる。   And in setting the resonance frequency in each resonance chamber formed by the partition member, the noise reduction characteristic can be appropriately changed by setting the frequency interval of these resonance frequencies in the range of 50 Hz to 200 Hz. Specifically, as the frequency interval of the resonance frequency is set to be small, noise that effectively reduces noise in a low frequency range while exhibiting noise reduction characteristics that favorably reduce noise in a wide frequency range. The reduction characteristic can be changed. On the other hand, as the frequency interval of the resonance frequency is set larger, the noise reduction characteristic that effectively reduces the noise in the high frequency range while mainly exhibiting the noise reduction characteristic that reduces the noise in a wide frequency range well. Can be changed. Therefore, for example, it is possible to appropriately change the noise reduction characteristics in accordance with the required noise reduction level that varies depending on the usage environment of the resonator.

また、連通管の長さ、連通管の内径および複数の共鳴室の各内容積のうちの少なくとも一つを変更することにより、仕切り部材によって形成される各共鳴室の共鳴周波数を設定する、言い換えれば、上記のように騒音低減特性を変更することができる。これにより、例えば、車両への搭載要件によってレゾネータの形状が制限される場合であっても、容易に共鳴周波数を変更して設定することができる。したがって、騒音の要求低減レベルに対応して、騒音低減特性を適切に変更することができる。   Further, the resonance frequency of each resonance chamber formed by the partition member is set by changing at least one of the length of the communication tube, the inner diameter of the communication tube, and the internal volumes of the plurality of resonance chambers. Thus, the noise reduction characteristic can be changed as described above. Thereby, for example, even when the shape of the resonator is limited due to mounting requirements on the vehicle, the resonance frequency can be easily changed and set. Therefore, it is possible to appropriately change the noise reduction characteristic in accordance with the required noise reduction level.

以下、本発明に係る実施形態を図面を用いて詳細に説明する。図1は、本発明の実施形態に係るレゾネータ20が車両の吸気系Kに組み付けられた状態を概略的に示している。吸気系Kは、吸気ダクト11、エアクリーナ12およびエアクリーナホース13を備えて構成されている。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a state in which a resonator 20 according to an embodiment of the present invention is assembled to an intake system K of a vehicle. The intake system K includes an intake duct 11, an air cleaner 12, and an air cleaner hose 13.

吸気ダクト11は、エンジン14によって吸入される外気(空気)を導通するものであり、一端部側に車両前方に開口する吸入口11aが形成され、他端部側がエアクリーナ12に接続されている。そして、この吸気ダクト11に対してレゾネータ20が接続されている。エアクリーナ12は、内部にエアクリーナエレメント12aを内包していて、吸気ダクト11によって導入された空気をろ過する。エアクリーナホース13は、エアクリーナ12とエンジン14との間に設けられている。そして、エアクリーナホース13は、エアクリーナ12のエアクリーナエレメント12aによってろ過された空気を、スロットルボデー15を介してエンジン14に供給する。   The intake duct 11 conducts outside air (air) sucked by the engine 14, has an inlet 11 a that opens to the front of the vehicle on one end side, and is connected to the air cleaner 12 on the other end side. A resonator 20 is connected to the intake duct 11. The air cleaner 12 includes an air cleaner element 12a inside and filters the air introduced by the intake duct 11. The air cleaner hose 13 is provided between the air cleaner 12 and the engine 14. The air cleaner hose 13 supplies the air filtered by the air cleaner element 12 a of the air cleaner 12 to the engine 14 via the throttle body 15.

レゾネータ20は、ヘルムホルツ型のレゾネータであり、エンジン14が吸気ダクト11を介して外気(空気)を吸入する際に発生して同ダクト11内を伝播する騒音を共鳴作用によって低減するものである。このため、レゾネータ20は、中空状の本体ケース21と、吸気ダクト11と本体ケース21とを連通状態で連結する連通管22と、本体ケース21内を複数の共鳴室に区画する仕切り板23とを備えている。   The resonator 20 is a Helmholtz type resonator, and reduces noise generated when the engine 14 sucks outside air (air) through the intake duct 11 and propagates through the duct 11 by resonance. For this reason, the resonator 20 includes a hollow main body case 21, a communication pipe 22 that connects the intake duct 11 and the main body case 21 in communication, and a partition plate 23 that divides the main body case 21 into a plurality of resonance chambers. It has.

本体ケース21は、中空箱状に形成されており、その内部空間が所定の内容積を有するように成形されている。連通管22は、後述するように、仕切り版23によって区画されることによって本体ケース21内に形成される複数の共鳴室(本実施形態においては3つ)のそれぞれと吸気ダクト11とを連通状態で連結するものである。仕切り板23は、薄板状に形成されており、本体ケース21内に第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cを形成するものである。なお、仕切り板23は、第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cの内容積が互いに異なるように、本体ケース21内に配設されている。また、仕切り板23には、形成した第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21c間を連通可能とする連通口23aが形成されている。なお、連通口23aは、本体ケース21内に存在する空気が第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21c間で導通することができる程度に開口していればよい。   The main body case 21 is formed in a hollow box shape, and is shaped so that its internal space has a predetermined internal volume. As will be described later, the communication pipe 22 communicates with each of the plurality of resonance chambers (three in the present embodiment) formed in the main body case 21 by being partitioned by the partition plate 23 and the intake duct 11. It connects with. The partition plate 23 is formed in a thin plate shape, and forms a first resonance chamber 21 a, a second resonance chamber 21 b, and a third resonance chamber 21 c in the main body case 21. In addition, the partition plate 23 is arrange | positioned in the main body case 21 so that the internal volume of the 1st resonance chamber 21a, the 2nd resonance chamber 21b, and the 3rd resonance chamber 21c may mutually differ. The partition plate 23 is formed with a communication port 23a that allows communication between the formed first resonance chamber 21a, second resonance chamber 21b, and third resonance chamber 21c. The communication port 23a only needs to be opened to such an extent that air existing in the main body case 21 can be conducted between the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c.

ここで、一般的に、ヘルムホルツ型レゾネータにおいては、管体(吸気ダクト)内を伝播する伝播音(騒音)の所定周波数成分、すなわち、共鳴室における共鳴周波数と共鳴する伝播音(騒音)の音圧レベルを低減する。このため、レゾネータ20においては、仕切り板23が本体ケース21内を区画して3つの共鳴室21a,21b,21cを形成することにより、3つの共鳴室21a,21b,21cのそれぞれに対応した共鳴周波数の騒音を低減する騒音低減特性を発揮する。また、レゾネータ20においては、連通口23aが仕切り板23に形成されることにより、3つの共鳴室21a,21b,21cが互いに連通されて1つの大きな共鳴室としても機能し、この大きな共鳴室に対応した共鳴周波数の騒音を低減する騒音低減特性を発揮する。   Here, in general, in a Helmholtz resonator, a predetermined frequency component of a propagation sound (noise) propagating in a pipe body (intake duct), that is, a sound of a propagation sound (noise) resonating with a resonance frequency in a resonance chamber. Reduce pressure level. For this reason, in the resonator 20, the partition plate 23 divides the inside of the main body case 21 to form the three resonance chambers 21a, 21b, and 21c, whereby the resonance corresponding to each of the three resonance chambers 21a, 21b, and 21c. Demonstrates noise reduction characteristics to reduce frequency noise. In the resonator 20, the communication port 23 a is formed in the partition plate 23, so that the three resonance chambers 21 a, 21 b, and 21 c communicate with each other and function as one large resonance chamber. It exhibits noise reduction characteristics that reduce the noise at the corresponding resonance frequency.

そして、このようなヘルムホルツ型のレゾネータ20において、第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cを互いに連通させて本体ケース21の内部空間全体が共鳴室とした場合の共鳴周波数f0は、下記式1〜4によって求めることができる。

Figure 2010150933
Figure 2010150933
Figure 2010150933
Figure 2010150933
ただし、前記式1,2中のCは音速を表し、前記式1,3中のSは連通管22の断面積を表し、前記式1中のVは共鳴室としての本体ケース21の内容積を表し、前記式2中のtは温度を表し、前記式3,4中のDは連通管22の内径を表し、前記式4中のLpは開口端補正した連通管22の長さを表し、前記式4中のL1は開口端補正前の連通管22の長さを表す。 In such a Helmholtz type resonator 20, the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c communicate with each other so that the entire internal space of the main body case 21 serves as a resonance chamber. f0 can be calculated | required by following formula 1-4.
Figure 2010150933
Figure 2010150933
Figure 2010150933
Figure 2010150933
However, C in the formulas 1 and 2 represents the speed of sound, S in the formulas 1 and 3 represents a cross-sectional area of the communication pipe 22, and V in the formula 1 represents the internal volume of the main body case 21 as a resonance chamber. T in the formula 2 represents the temperature, D in the formulas 3 and 4 represents the inner diameter of the communication pipe 22, and Lp in the formula 4 represents the length of the communication pipe 22 corrected for the opening end. , L1 in the equation 4 represents the length of the communication pipe 22 before opening end correction.

一方、仕切り板23によって第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cが形成されたレゾネータ20の場合には、各共鳴室21a,21b,21cと吸気ダクト11とを連通する連通管22の長さL1および内径Dや、第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cの各内容積V(以下、これらの値をパラメータともいう)をそれぞれ異ならせて設定することができる。したがって、前記式1〜4の関係に基づけば、パラメータを適宜設定することによって、それぞれの共鳴室21a,21b,21cは異なる共鳴周波数f1〜f3を有することができる。   On the other hand, in the case of the resonator 20 in which the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c are formed by the partition plate 23, the resonance chambers 21a, 21b, and 21c communicate with the intake duct 11. The length L1 and the inner diameter D of the communication tube 22 and the internal volumes V of the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c (hereinafter, these values are also referred to as parameters) are varied. Can be set. Therefore, based on the relations of the equations 1 to 4, the resonance chambers 21a, 21b, and 21c can have different resonance frequencies f1 to f3 by appropriately setting parameters.

したがって、レゾネータ20によれば、本体ケース21の内部空間全体を共鳴室としたときの共鳴周波数f0と、各共鳴室21a,21b,21cごとに異なる共鳴周波数f1〜f3とを適切に設定することにより、吸気ダクト11内を伝播する騒音のうち所望の周波数域(例えば、100Hz近傍〜400Hz近傍)の騒音を好適に低減することができる。なお、共鳴周波数f0は、車両への搭載要件によって変更できない場合があるため、実際には、共鳴周波数f1〜f3を適切に設定する必要がある。   Therefore, according to the resonator 20, the resonance frequency f0 when the entire internal space of the main body case 21 is used as the resonance chamber and the resonance frequencies f1 to f3 that are different for the resonance chambers 21a, 21b, and 21c are appropriately set. Thus, it is possible to suitably reduce noise in a desired frequency range (for example, near 100 Hz to 400 Hz) among the noise propagating in the intake duct 11. Since the resonance frequency f0 may not be changed depending on the requirements for mounting on the vehicle, in practice, the resonance frequencies f1 to f3 need to be set appropriately.

ところで、共鳴周波数f1〜f3を設定して所望の周波数域の騒音を低減する場合においては、共鳴周波数f1〜f3に一致する周波数を有する騒音は共鳴によって大幅に低減されるものの、共鳴周波数f1〜f3以外の周波数を有する騒音は低減されにくい。すなわち、共鳴周波数f1〜f3に一致する騒音の周波数においては、共鳴による騒音低減効果が大きいために騒音の周波数軸方向にて「谷」が形成され、それ以外の部分は「谷」の形成のあおりを受けて、所謂、反共鳴が生じるために騒音低減効果が悪化し、騒音の周波数軸方向にて「山」が形成される。したがって、反共鳴が生じることによって、所望の周波数域全体で騒音を適切に低減できない場合がある。   By the way, when the resonance frequencies f1 to f3 are set to reduce noise in a desired frequency range, noise having a frequency matching the resonance frequencies f1 to f3 is greatly reduced by resonance, but the resonance frequencies f1 to f3 are reduced. Noise with frequencies other than f3 is difficult to reduce. That is, at the frequency of the noise that matches the resonance frequency f1 to f3, since the noise reduction effect by resonance is large, a “valley” is formed in the frequency axis direction of the noise, and the other portions are formed as “valleys”. In response to the tilt, the so-called anti-resonance is generated, so that the noise reduction effect is deteriorated, and a “mountain” is formed in the frequency axis direction of the noise. Therefore, anti-resonance may occur, and noise may not be appropriately reduced over the entire desired frequency range.

ここで、反共鳴の発生は、後述するように、連通口23aの形成されていない仕切り板23によって本体ケース21に複数の共鳴室21a,21b,21cを形成した場合に顕著になるため、仕切り板23に連通口23aを形成して各共鳴室21a,21b,21cを互いに連通させることによって反共鳴の発生を抑制することができる。そして、反共鳴の発生を抑制することにより、所望の周波数域にて良好に騒音を低減する騒音低減特性を得ることができる。しかし、このように、単に連通口23aを形成して各共鳴室21a,21b,21cを互いに連通させるだけでは、反共鳴の発生を抑制できるものの、騒音低減特性については要求されるレベルに対応して適宜変更することができない。   Here, the occurrence of anti-resonance becomes significant when a plurality of resonance chambers 21a, 21b, and 21c are formed in the main body case 21 by the partition plate 23 in which the communication port 23a is not formed, as will be described later. By forming the communication port 23a in the plate 23 and connecting the resonance chambers 21a, 21b, 21c to each other, the occurrence of anti-resonance can be suppressed. And by suppressing generation | occurrence | production of antiresonance, the noise reduction characteristic which reduces a noise favorably in a desired frequency range can be acquired. However, by simply forming the communication port 23a and allowing the resonance chambers 21a, 21b, and 21c to communicate with each other as described above, the occurrence of anti-resonance can be suppressed, but the noise reduction characteristic corresponds to the required level. Cannot be changed as appropriate.

この点に関し、本願発明者は種々の実験を繰り返し実施した結果、各共鳴室21a,21b,21cを互いに連通可能としたレゾネータ20においては、各共鳴周波数f1,f2,f3の周波数間隔に依存してその騒音低減特性が変化し、周波数間隔を適切に設定することによって、所望の周波数域での騒音低減特性を要求レベルに応じて適切に変更できることを見出した。すなわち、本願発明者は、上記各パラメータのうち、連通管22の長さL1、連通管の内径D、および、第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cの各内容積Vのうちの少なくとも一つを変更して各共鳴周波数f1,f2,f3間の周波数間隔を設定することによって、騒音を低減すべき周波数域での騒音低減特性を変更して設定できることを見出した。以下、この周波数間隔の設定変更に伴う騒音低減特性の変化について詳細に説明する。   In this regard, the inventor of the present application has repeatedly performed various experiments, and as a result, the resonator 20 that allows the resonance chambers 21a, 21b, and 21c to communicate with each other depends on the frequency intervals of the resonance frequencies f1, f2, and f3. As a result, it was found that the noise reduction characteristic in the desired frequency range can be appropriately changed according to the required level by appropriately setting the frequency interval. That is, the inventor of the present application, among the above parameters, the length L1 of the communication tube 22, the inner diameter D of the communication tube, and the internal volumes of the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c. It was found that by changing the frequency interval between the resonance frequencies f1, f2, and f3 by changing at least one of V, the noise reduction characteristics in the frequency range where noise should be reduced can be changed and set. . Hereinafter, the change in noise reduction characteristics accompanying the change in the frequency interval setting will be described in detail.

各共鳴周波数f1,f2,f3間の周波数間隔を適切に設定するにあたり、本願発明者は、周波数間隔が50Hz,100Hz,150Hz,200Hzおよび250Hzとなる評価用のレゾネータ20Sを作製し、この作製したレゾネータ20Sを吸気ダクト11に組み付けた評価品を作製した。そして、この評価品の騒音低減特性を評価することによって各共鳴周波数f1,f2,f3間の周波数間隔の設定可能範囲を決定した。以下、まず、周波数間隔を100Hzとしたレゾネータ20Sを組み付けた評価品の騒音低減特性から説明する。   In order to appropriately set the frequency interval between the resonance frequencies f1, f2, and f3, the inventor of the present application manufactured and manufactured a resonator 20S for evaluation having frequency intervals of 50 Hz, 100 Hz, 150 Hz, 200 Hz, and 250 Hz. An evaluation product in which the resonator 20S was assembled to the intake duct 11 was produced. Then, the settable range of the frequency interval between the resonance frequencies f1, f2, and f3 was determined by evaluating the noise reduction characteristics of the evaluated product. Hereinafter, the noise reduction characteristics of the evaluation product assembled with the resonator 20S having a frequency interval of 100 Hz will be described first.

なお、騒音低減特性の評価は、図2に概略的に示す測定装置を用いて行った。具体的に説明すると、評価品を構成する吸気ダクト11に対して、その先端側である吸入口11a側にレゾネータ20Sを通過した後に放射される放射音を集音する集音マイクを配置するとともに、吸気ダクト11の基端側に周波数を連続的に変更して基準音(ホワイトノイズ)を発生するスピーカを配置する。そして、スピーカから周波数を連続的に変更した基準音を発生させるとともにレゾネータ20Sを介して吸気ダクト11の吸入口11aから放射される放射音を集音マイクによって集音し、基準音の音圧レベルP1に対する集音した音の音圧レベルP2の比P2/P1(以下、この比P2/P1を音響伝達特性P2/P1という)を測定した。そして、この音響伝達特性P2/P1が騒音低減特性であるものとし、音響伝達特性P2/P1の値が小さいほど騒音低減効果が大きいと判断し、音響伝達特性P2/P1の値が大きいほど騒音低減効果が小さいと判断した。   The noise reduction characteristics were evaluated using a measuring apparatus schematically shown in FIG. More specifically, with respect to the intake duct 11 constituting the evaluation product, a sound collection microphone for collecting radiated sound emitted after passing through the resonator 20S is arranged on the suction port 11a side which is the front end side. A speaker that generates a reference sound (white noise) by continuously changing the frequency is disposed on the proximal end side of the intake duct 11. Then, a reference sound whose frequency is continuously changed is generated from the speaker, and radiated sound radiated from the suction port 11a of the intake duct 11 through the resonator 20S is collected by the sound collecting microphone, and the sound pressure level of the reference sound is collected. The ratio P2 / P1 of the sound pressure level P2 of the collected sound with respect to P1 (hereinafter, this ratio P2 / P1 is referred to as acoustic transfer characteristic P2 / P1) was measured. The sound transfer characteristic P2 / P1 is assumed to be a noise reduction characteristic. The smaller the value of the sound transfer characteristic P2 / P1, the greater the noise reduction effect, and the larger the value of the sound transfer characteristic P2 / P1, the noise. It was judged that the reduction effect was small.

a.周波数間隔が100Hzの場合
各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなるように、パラメータを下記表1に示すように設定してレゾネータ20Sを作製した。

Figure 2010150933
このようにパラメータを設定したレゾネータ20Sにおいては、前記式1〜4を用いた計算により、第2共鳴室21bの共鳴周波数f2は第1共鳴室21aの共鳴周波数f1に対してほぼ100Hz大きな周波数となり、第3共鳴室21cの共鳴周波数f3は第2共鳴室21bの共鳴周波数f2に対してほぼ100Hz大きな周波数となることを確認した。 a. When the frequency interval is 100 Hz: The resonator 20S was manufactured with the parameters set as shown in Table 1 below so that the frequency interval between the resonance frequencies f1, f2, and f3 was approximately 100 Hz.
Figure 2010150933
In the resonator 20S in which the parameters are set as described above, the resonance frequency f2 of the second resonance chamber 21b is approximately 100 Hz larger than the resonance frequency f1 of the first resonance chamber 21a by the calculation using the equations 1 to 4. It was confirmed that the resonance frequency f3 of the third resonance chamber 21c was approximately 100 Hz larger than the resonance frequency f2 of the second resonance chamber 21b.

そして、図2の測定装置を用いて、このレゾネータ20Sを吸気ダクト11に対して組み付けた評価品の音響伝達特性P2/P1(すなわち、騒音低減特性)を測定した。また、評価品の音響伝達特性P2/P1を評価するために、参考として、吸気ダクト11のみの音響伝達特性P2/P1(以下、吸気ダクトの音響伝達特性P2/P1という)と、連通口23aの形成されていない仕切り板23によって本体ケース21内が仕切られたレゾネータ20Bを吸気ダクト11に組み付けた比較品の音響伝達特性P2/P1(以下、比較品の音響伝達特性P2/P1という)も測定した。これらの測定結果を図3に示す。   2 was used to measure the acoustic transfer characteristic P2 / P1 (that is, noise reduction characteristic) of an evaluation product in which the resonator 20S was assembled to the intake duct 11. In addition, in order to evaluate the acoustic transmission characteristic P2 / P1 of the evaluation product, for reference, the acoustic transmission characteristic P2 / P1 of the intake duct 11 only (hereinafter referred to as the acoustic transmission characteristic P2 / P1 of the intake duct) and the communication port 23a A comparative product acoustic transmission characteristic P2 / P1 (hereinafter referred to as a comparative product acoustic transmission characteristic P2 / P1) in which the resonator 20B in which the main body case 21 is partitioned by the partition plate 23 not formed with the suction duct 11 is also assembled. It was measured. The measurement results are shown in FIG.

図3からも明らかなように、破線で示す吸気ダクトの音響伝達特性P2/P1は、周波数がほぼ320Hzのときにピークを有するものとなる。また、一点鎖線で示す比較品の音響伝達特性P2/P1は、ほぼ100Hz〜400Hzに渡り、吸気ダクトの音響伝達特性P2/P1に比して小さくなり、レゾネータ20Bによる共鳴によって放射音が低減されていることが理解できる。ところが、比較品のレゾネータ20Bは、本体ケース21の内空間が連通口23aの形成されていない仕切り板23によって区画されているため、各共鳴室に設定された共鳴周波数f1,f2,f3に一致する周波数では共鳴によって騒音低減効果が大きく「谷」状となるものの、共鳴周波数f1,f2,f3前後では、大きな反共鳴が発生して「山」状となり騒音低減効果が悪化している。   As apparent from FIG. 3, the acoustic transfer characteristic P2 / P1 of the intake duct indicated by the broken line has a peak when the frequency is approximately 320 Hz. In addition, the acoustic transfer characteristic P2 / P1 of the comparative product indicated by the alternate long and short dash line is substantially smaller than the acoustic transfer characteristic P2 / P1 of the intake duct over the range of 100 Hz to 400 Hz, and the radiated sound is reduced by resonance by the resonator 20B. I can understand that. However, in the comparative resonator 20B, since the inner space of the main body case 21 is partitioned by the partition plate 23 in which the communication port 23a is not formed, it matches the resonance frequencies f1, f2, and f3 set in the respective resonance chambers. However, the resonance frequency f1, f2, and f3 are around the resonance frequencies f1, f2, and f3, and a large anti-resonance is generated, resulting in a “mountain” shape, and the noise reduction effect is deteriorated.

これに対して、各共鳴周波数f1,f2,f3の周波数間隔をほぼ100Hzとしたレゾネータ20Sを有する評価品においては、図3にて実線で示すように、吸気ダクト11から放射される放射音の周波数100Hz〜400Hzに渡り、音響伝達特性P2/P1が小さく、言い換えれば、基準音を共鳴により良好に低減していることが理解できる。一方、比較品に見られた反共鳴による騒音低減効果の悪化は見られない。したがって、各共鳴周波数f1,f2,f3の周波数間隔をほぼ100Hzとしたレゾネータ20Sは、車両の吸気系Kにおいて低減が望まれる周波数域100Hz〜400Hzの騒音を良好に低減する騒音低減特性を有しているといえる。なお、以下の説明においては、各共鳴周波数f1,f2,f3の周波数間隔をほぼ100Hzとしたレゾネータ20Sを基準とし、特にこのレゾネータ20Sを基準レゾネータ20Sともいう。   On the other hand, in the evaluation product having the resonator 20S in which the frequency intervals of the resonance frequencies f1, f2, and f3 are approximately 100 Hz, as shown by the solid line in FIG. It can be understood that the acoustic transfer characteristic P2 / P1 is small over the frequency range of 100 Hz to 400 Hz, in other words, the reference sound is satisfactorily reduced by resonance. On the other hand, the deterioration of the noise reduction effect due to the anti-resonance seen in the comparative product is not seen. Therefore, the resonator 20S in which the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 100 Hz has a noise reduction characteristic that satisfactorily reduces noise in a frequency range of 100 Hz to 400 Hz that is desired to be reduced in the vehicle intake system K. It can be said that. In the following description, the resonator 20S in which the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 100 Hz is used as a reference, and in particular, this resonator 20S is also referred to as a reference resonator 20S.

b.周波数間隔が50Hzの場合
各共鳴周波数f1,f2,f3間の周波数間隔がほぼ50Hzとなるように、パラメータを設定してレゾネータ20Sを作製した。なお、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ50Hzとなるパラメータを設定するにあたり、本実施形態においては、下記表2〜4に示すように、基準レゾネータ20Sのパラメータを基準とし、連通管22の長さL1、内径Dおよび各共鳴室21b,21cの内容積Vの3つのパラメータうちの一つのパラメータを変更してレゾネータ20Sを作製した。具体的には、下記表2は連通管22の長さL1を基準レゾネータ20Sにおける連通管22の長さL1よりも長くなるように変更した場合を示し、下記表3は連通管22の内径Dを基準レゾネータ20Sにおける連通管22の内径Dよりも小さくなるように変更した場合を示し、下記表4は第2共鳴室21bおよび第3共鳴室21cの内容積Vを基準レゾネータ20Sにおける第2共鳴室21bおよび第3共鳴室21cの内容積Vよりも大きくなるように変更した場合を示している。

Figure 2010150933
Figure 2010150933
Figure 2010150933
b. In the case where the frequency interval is 50 Hz: The resonator 20S was manufactured by setting parameters so that the frequency interval between the resonance frequencies f1, f2, and f3 was approximately 50 Hz. In setting the parameters at which the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 50 Hz, in this embodiment, as shown in Tables 2 to 4 below, the parameters of the reference resonator 20S are used as references. A resonator 20S was manufactured by changing one of the three parameters of the length L1, the inner diameter D of the communication tube 22, and the internal volume V of each resonance chamber 21b, 21c. Specifically, Table 2 below shows a case where the length L1 of the communication pipe 22 is changed to be longer than the length L1 of the communication pipe 22 in the reference resonator 20S, and Table 3 below shows the inner diameter D of the communication pipe 22. Is changed to be smaller than the inner diameter D of the communication pipe 22 in the reference resonator 20S. Table 4 below shows the internal volume V of the second resonance chamber 21b and the third resonance chamber 21c as the second resonance in the reference resonator 20S. The case where it changes so that it may become larger than the internal volume V of the chamber 21b and the 3rd resonance chamber 21c is shown.
Figure 2010150933
Figure 2010150933
Figure 2010150933

このように、基準レゾネータ20Sのパラメータのうちの一つのパラメータを変更し、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ50Hzとなる3つのレゾネータ20Sにおいては、前記式1〜4を用いた計算により、第2共鳴室21bの共鳴周波数f2は第1共鳴室21aの共鳴周波数f1に対してほぼ50Hz大きな周波数となることを確認した。また、前記式1〜4を用いた計算により、第3共鳴室21cの共鳴周波数f3は第2共鳴室21bの共鳴周波数f2に対してほぼ50Hz大きな周波数となることを確認した。   Thus, in the three resonators 20S in which one of the parameters of the reference resonator 20S is changed and the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 50 Hz, the above equations 1 to 4 are used. From the calculation, it was confirmed that the resonance frequency f2 of the second resonance chamber 21b was approximately 50 Hz larger than the resonance frequency f1 of the first resonance chamber 21a. Moreover, it was confirmed by the calculation using the above formulas 1 to 4 that the resonance frequency f3 of the third resonance chamber 21c is approximately 50 Hz larger than the resonance frequency f2 of the second resonance chamber 21b.

そして、図2の測定装置を用いて、前記表2〜4に示したパラメータに設定された3つのレゾネータ20Sを吸気ダクト11に対してそれぞれ組み付けた3つの評価品の音響伝達特性P2/P1(すなわち、騒音低減特性)を測定した。これらの測定結果として、連通管22の長さL1を変更して設定したときの評価品の音響伝達特性P2/P1を図4に示し、連通管22の内径Dを変更して設定したときの評価品の音響伝達特性P2/P1を図5に示し、第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vを変更して設定したときの評価品の音響伝達特性P2/P1を図6に示す。なお、これら3つの評価品の音響伝達特性P2/P1を評価するために、参考として、図4〜6には、破線により示す吸気ダクトの音響伝達特性P2/P1、一点鎖線により示す比較品の音響伝達特性P2/P1および二点鎖線により示す上述した各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなる評価品の音響伝達特性P2/P1を付記した。   Then, using the measuring apparatus of FIG. 2, the acoustic transfer characteristics P2 / P1 (three evaluation products in which the three resonators 20S set to the parameters shown in Tables 2 to 4 are assembled to the intake duct 11 respectively. That is, noise reduction characteristics were measured. As these measurement results, the acoustic transfer characteristics P2 / P1 of the evaluation product when the length L1 of the communication pipe 22 is changed and set are shown in FIG. 4, and when the inner diameter D of the communication pipe 22 is changed and set. FIG. 5 shows the acoustic transfer characteristics P2 / P1 of the evaluation product, and the acoustic transfer characteristics P2 // of the evaluation product when the internal volume V of the second resonance chamber 21b and the internal volume V of the third resonance chamber 21c are changed and set. P1 is shown in FIG. In addition, in order to evaluate the acoustic transfer characteristics P2 / P1 of these three evaluation products, for reference, FIGS. 4 to 6 show the acoustic transfer characteristics P2 / P1 of the intake duct indicated by a broken line, and a comparative product indicated by a one-dot chain line. The acoustic transfer characteristic P2 / P1 and the acoustic transfer characteristic P2 / P1 of the evaluation product in which the frequency interval between the resonance frequencies f1, f2, and f3 indicated by the two-dot chain line is approximately 100 Hz are added.

図4〜6からも明らかなように、各共鳴周波数f1,f2,f3の周波数間隔をほぼ50Hzとしたレゾネータ20Sを有する3つの評価品においては、実線で示すように、放射音の周波数変化に対してほぼ同様に変化しており、放射音の周波数100Hz〜400Hz間でおおむね音響伝達特性P2/P1が小さく、言い換えれば、基準音を共鳴により低減していることが理解できる。しかしながら、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなる評価品の音響伝達特性P2/P1と比較すると、特に、400Hz近傍の高周波数域において、吸気ダクト11の音響伝達特性P2/P1よりも騒音低減効果が悪化している。   As is apparent from FIGS. 4 to 6, in the three evaluation products having the resonator 20S in which the frequency intervals of the resonance frequencies f1, f2, and f3 are approximately 50 Hz, as shown by the solid line, the frequency change of the radiated sound is caused. In contrast, it can be understood that the sound transfer characteristic P2 / P1 is generally small between the radiated sound frequencies of 100 Hz to 400 Hz, in other words, that the reference sound is reduced by resonance. However, when compared with the acoustic transfer characteristic P2 / P1 of the evaluation product in which the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 100 Hz, the acoustic transfer characteristic P2 of the intake duct 11 is particularly high in the high frequency range near 400 Hz. / Noise reduction effect is worse than P1.

このように、各共鳴周波数f1,f2,f3の周波数間隔が100Hzよりも小さくなると、周波数100Hz〜400Hzにおいて騒音低減効果を発揮できるものの、特に、高周波域での騒音低減効果が悪化する。このため、本実施形態においては、各共鳴周波数f1,f2,f3の周波数間隔は50Hzよりも大きく設定する。   As described above, when the frequency interval between the resonance frequencies f1, f2, and f3 is smaller than 100 Hz, the noise reduction effect can be exhibited at a frequency of 100 Hz to 400 Hz, but the noise reduction effect particularly in a high frequency range is deteriorated. For this reason, in this embodiment, the frequency interval of each resonance frequency f1, f2, and f3 is set larger than 50 Hz.

c.周波数間隔が150Hzの場合
各共鳴周波数f1,f2,f3間の周波数間隔がほぼ150Hzとなるように、パラメータを設定してレゾネータ20Sを作製した。なお、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ150Hzとなるパラメータを設定するにあたり、本実施形態においては、上記周波数間隔が50Hzの場合と同様に、下記表5〜7に示すように、基準レゾネータ20Sのパラメータを基準とし、連通管22の長さL1、内径Dおよび各共鳴室21b,21cの内容積Vの3つのパラメータのうちの一つのパラメータを変更してレゾネータ20Sを作製した。具体的には、下記表5は連通管22の長さL1を基準レゾネータ20Sにおける連通管22の長さL1よりも短くなるように変更した場合を示し、下記表6は連通管22の内径Dを基準レゾネータ20Sにおける連通管22の内径Dよりも大きくなるように変更した場合を示し、下記表7は第2共鳴室21bおよび第3共鳴室21cの内容積Vを基準レゾネータ20Sにおける第2共鳴室21bおよび第3共鳴室21cの内容積Vよりも小さくなるように変更した場合を示している。

Figure 2010150933
Figure 2010150933
Figure 2010150933
c. When the frequency interval is 150 Hz: Resonator 20S was manufactured by setting parameters so that the frequency interval between the resonance frequencies f1, f2, and f3 was approximately 150 Hz. In setting parameters for the frequency interval between the resonance frequencies f1, f2, and f3 to be approximately 150 Hz, in the present embodiment, as shown in Tables 5 to 7 below, as in the case where the frequency interval is 50 Hz. Further, based on the parameters of the reference resonator 20S as a reference, the resonator 20S is manufactured by changing one of the three parameters of the length L1, the inner diameter D of the communication tube 22 and the internal volume V of each resonance chamber 21b, 21c. did. Specifically, Table 5 below shows a case where the length L1 of the communication pipe 22 is changed to be shorter than the length L1 of the communication pipe 22 in the reference resonator 20S, and Table 6 below shows the inner diameter D of the communication pipe 22. Is changed to be larger than the inner diameter D of the communication tube 22 in the reference resonator 20S, and Table 7 below shows the internal volume V of the second resonance chamber 21b and the third resonance chamber 21c as the second resonance in the reference resonator 20S. The case where it changes so that it may become smaller than the internal volume V of the chamber 21b and the 3rd resonance chamber 21c is shown.
Figure 2010150933
Figure 2010150933
Figure 2010150933

このように、基準レゾネータ20Sのパラメータのうちの一つのパラメータを変更し、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ150Hzとなる3つのレゾネータ20Sにおいては、前記式1〜4を用いた計算により、第2共鳴室21bの共鳴周波数f2は第1共鳴室21aの共鳴周波数f1に対してほぼ150Hz大きな周波数となることを確認した。また、前記式1〜4を用いた計算により、第3共鳴室21cの共鳴周波数f3は第2共鳴室21bの共鳴周波数f2に対してほぼ150Hz大きな周波数となることを確認した。   Thus, in the three resonators 20S in which one of the parameters of the reference resonator 20S is changed and the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 150 Hz, the above equations 1 to 4 are used. According to the calculation, it was confirmed that the resonance frequency f2 of the second resonance chamber 21b was approximately 150 Hz larger than the resonance frequency f1 of the first resonance chamber 21a. Moreover, it was confirmed by the calculation using the formulas 1 to 4 that the resonance frequency f3 of the third resonance chamber 21c is approximately 150 Hz larger than the resonance frequency f2 of the second resonance chamber 21b.

そして、図2の測定装置を用いて、前記表5〜7に示したパラメータに設定された3つのレゾネータ20Sを吸気ダクト11に対してそれぞれ組み付けた3つの評価品の音響伝達特性P2/P1(すなわち、騒音低減特性)を測定した。これらの測定結果として、連通管22の長さL1を変更して設定したときの評価品の音響伝達特性P2/P1を図7に示し、連通管22の内径Dを変更して設定したときの評価品の音響伝達特性P2/P1を図8に示し、第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vを変更して設定したときの評価品の音響伝達特性P2/P1を図9に示す。なお、この場合も、これら3つの評価品の音響伝達特性P2/P1を評価するために、参考として、図7〜9には、破線により示す吸気ダクトの音響伝達特性P2/P1、一点鎖線により示す比較品の音響伝達特性P2/P1および二点鎖線により示す上述した各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなる評価品の音響伝達特性P2/P1を付記した。   Then, using the measurement apparatus of FIG. 2, the acoustic transfer characteristics P2 / P1 (three evaluation products in which the three resonators 20S set to the parameters shown in Tables 5 to 7 are assembled to the intake duct 11 respectively. That is, noise reduction characteristics were measured. As these measurement results, the acoustic transfer characteristics P2 / P1 of the evaluation product when the length L1 of the communication pipe 22 is changed and set are shown in FIG. 7, and when the inner diameter D of the communication pipe 22 is changed and set. FIG. 8 shows the acoustic transfer characteristics P2 / P1 of the evaluation product, and the acoustic transfer characteristics P2 // of the evaluation product when the internal volume V of the second resonance chamber 21b and the internal volume V of the third resonance chamber 21c are changed and set. P1 is shown in FIG. Also in this case, in order to evaluate the sound transfer characteristics P2 / P1 of these three evaluation products, for reference, in FIGS. 7 to 9, the sound transfer characteristics P2 / P1 of the intake duct indicated by a broken line are indicated by a one-dot chain line. The acoustic transfer characteristics P2 / P1 of the comparative product shown and the acoustic transfer characteristics P2 / P1 of the evaluation product in which the frequency interval between the resonance frequencies f1, f2, and f3 indicated by the two-dot chain line is approximately 100 Hz are added.

図7〜9からも明らかなように、各共鳴周波数f1,f2,f3の周波数間隔をほぼ150Hzとしたレゾネータ20Sを有する3つの評価品においては、実線で示すように、200Hz近傍から高周波数側に向けて、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなる評価品の音響伝達特性P2/P1よりも小さな音響伝達特性P2/P1となる、言い換えれば、より基準音を共鳴により低減していることが理解できる。しかしながら、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなる評価品では見られない反共鳴による騒音低減効果の悪化が200Hz以下の周波数域に見られる。これらのことから、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzよりも大きくなるに伴って、高周波域における騒音低減効果は良好になる傾向にあるものの、低周波数域では反共鳴の発生により騒音低減効果が悪化する傾向にあるといえる。   As is apparent from FIGS. 7 to 9, in the three evaluation products having the resonator 20S in which the frequency intervals of the resonance frequencies f1, f2, and f3 are approximately 150 Hz, as shown by the solid line, the vicinity of 200 Hz is increased from the high frequency side. Towards the sound transfer characteristic P2 / P1, which is smaller than the sound transfer characteristic P2 / P1 of the evaluation product in which the frequency interval between the resonance frequencies f1, f2, f3 is approximately 100 Hz, in other words, the reference sound is more resonant. It can be understood that this is reduced. However, the deterioration of the noise reduction effect due to anti-resonance, which is not seen in the evaluation product in which the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 100 Hz, is seen in the frequency range of 200 Hz or less. From these facts, as the frequency interval between the resonance frequencies f1, f2, and f3 becomes larger than about 100 Hz, the noise reduction effect in the high frequency range tends to be good, but the anti-resonance in the low frequency range. It can be said that the noise reduction effect tends to deteriorate due to the occurrence.

また、図9からも明らかなように、第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vが小さくなるように変更して設定した場合には、放射音の周波数変化に対して全体的に音響伝達特性P2/P1が大きくなる傾向にある。これは、ヘルムホルツ型レゾネータが共鳴室内での共鳴によって騒音を低減するものであることから、共鳴室の内容積の大きさは重要な要素であり、第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vとを小さくした場合には共鳴作用が低減することに起因していると考える。したがって、各共鳴周波数f1,f2,f3間の周波数間隔を大きくするために第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vが小さくなるように変更した場合には、騒音低減効果が損なわれやすい傾向にあるといえる。   Further, as is apparent from FIG. 9, when the internal volume V of the second resonance chamber 21b and the internal volume V of the third resonance chamber 21c are set so as to be small, the frequency change of the radiated sound is caused. On the other hand, the overall sound transfer characteristic P2 / P1 tends to increase. This is because the Helmholtz resonator reduces noise by resonance in the resonance chamber, so the size of the internal volume of the resonance chamber is an important factor, and the internal volume V of the second resonance chamber 21b and the third volume When the internal volume V of the resonance chamber 21c is reduced, it is considered that the resonance action is reduced. Therefore, when the internal volume V of the second resonance chamber 21b and the internal volume V of the third resonance chamber 21c are changed so as to increase the frequency interval between the resonance frequencies f1, f2, and f3, noise is reduced. It can be said that the reduction effect tends to be impaired.

d.周波数間隔が200Hzの場合
各共鳴周波数f1,f2,f3間の周波数間隔がほぼ200Hzとなるように、パラメータを設定してレゾネータ20Sを作製した。なお、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ200Hzとなるパラメータを設定するにあたり、本実施形態においては、上記周波数間隔が50Hz,150Hzの場合と同様に、下記表8〜10に示すように、基準レゾネータ20Sのパラメータを基準とし、連通管22の長さL1、内径Dおよび各共鳴室21b,21cの内容積Vの3つのパラメータのうちの一つのパラメータを変更してレゾネータ20Sを作製した。具体的には、上記周波数間隔が150Hzの場合と同様に、下記表8は連通管22の長さL1を基準レゾネータ20Sにおける連通管22の長さL1よりも短くなるように変更した場合を示し、下記表9は連通管22の内径Dを基準レゾネータ20Sにおける連通管22の内径Dよりも大きくなるように変更した場合を示し、下記表10は第2共鳴室21bおよび第3共鳴室21cの内容積Vを基準レゾネータ20Sにおける第2共鳴室21bおよび第3共鳴室21cの内容積Vよりも小さくなるように変更した場合を示している。

Figure 2010150933
Figure 2010150933
Figure 2010150933
d. In the case where the frequency interval is 200 Hz: The resonator 20S is manufactured by setting parameters so that the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 200 Hz. In setting parameters for which the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 200 Hz, in the present embodiment, as in the case where the frequency interval is 50 Hz and 150 Hz, the following Tables 8 to 10 are used. As shown, based on the parameters of the reference resonator 20S, the resonator 20S is changed by changing one of the three parameters of the length L1, the inner diameter D of the communication tube 22 and the internal volume V of each resonance chamber 21b, 21c. Was made. Specifically, as in the case where the frequency interval is 150 Hz, Table 8 below shows a case where the length L1 of the communication pipe 22 is changed to be shorter than the length L1 of the communication pipe 22 in the reference resonator 20S. Table 9 below shows a case where the inner diameter D of the communication pipe 22 is changed to be larger than the inner diameter D of the communication pipe 22 in the reference resonator 20S, and Table 10 below shows the second resonance chamber 21b and the third resonance chamber 21c. The case where the internal volume V is changed to be smaller than the internal volumes V of the second resonance chamber 21b and the third resonance chamber 21c in the reference resonator 20S is shown.
Figure 2010150933
Figure 2010150933
Figure 2010150933

このように、基準レゾネータ20Sのパラメータのうちの一つのパラメータを変更し、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ200Hzとなる3つのレゾネータ20Sにおいては、前記式1〜4を用いた計算により、第2共鳴室21bの共鳴周波数f2は第1共鳴室21aの共鳴周波数f1に対してほぼ200Hz大きな周波数となることを確認した。また、前記式1〜4を用いた計算により、第3共鳴室21cの共鳴周波数f3は第2共鳴室21bの共鳴周波数f2に対してほぼ200Hz大きな周波数となることを確認した。   Thus, in the three resonators 20S in which one of the parameters of the reference resonator 20S is changed and the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 200 Hz, the above equations 1 to 4 are used. According to the calculation, it was confirmed that the resonance frequency f2 of the second resonance chamber 21b was approximately 200 Hz larger than the resonance frequency f1 of the first resonance chamber 21a. Moreover, it was confirmed by the calculation using the formulas 1 to 4 that the resonance frequency f3 of the third resonance chamber 21c is approximately 200 Hz larger than the resonance frequency f2 of the second resonance chamber 21b.

そして、図2の測定装置を用いて、前記表8〜10に示したパラメータに設定された3つのレゾネータ20Sを吸気ダクト11に対してそれぞれ組み付けた3つの評価品の音響伝達特性P2/P1(すなわち、騒音低減特性)を測定した。これらの測定結果として、連通管22の長さL1を変更して設定したときの評価品の音響伝達特性P2/P1を図10に示し、連通管22の内径Dを変更して設定したときの評価品の音響伝達特性P2/P1を図11に示し、第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vを変更して設定したときの評価品の音響伝達特性P2/P1を図12に示す。なお、この場合も、これら3つの評価品の音響伝達特性P2/P1を評価するために、参考として、図10〜12には、破線により示す吸気ダクトの音響伝達特性P2/P1、一点鎖線により示す比較品の音響伝達特性P2/P1および二点鎖線により示す上述した各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなる評価品の音響伝達特性P2/P1を付記した。   Then, using the measuring apparatus of FIG. 2, the acoustic transfer characteristics P2 / P1 (three evaluation products in which the three resonators 20S set to the parameters shown in Tables 8 to 10 are assembled to the intake duct 11 respectively. That is, noise reduction characteristics were measured. As these measurement results, the acoustic transmission characteristics P2 / P1 of the evaluation product when the length L1 of the communication pipe 22 is changed and set are shown in FIG. 10, and when the inner diameter D of the communication pipe 22 is changed and set. The acoustic transfer characteristic P2 / P1 of the evaluation product is shown in FIG. 11, and the acoustic transfer characteristic P2 // of the evaluation product when the internal volume V of the second resonance chamber 21b and the internal volume V of the third resonance chamber 21c are changed and set. P1 is shown in FIG. Also in this case, in order to evaluate the acoustic transmission characteristics P2 / P1 of these three evaluation products, for reference, in FIGS. 10 to 12, the acoustic transmission characteristics P2 / P1 of the intake duct indicated by a broken line are indicated by a one-dot chain line. The acoustic transfer characteristics P2 / P1 of the comparative product shown and the acoustic transfer characteristics P2 / P1 of the evaluation product in which the frequency interval between the resonance frequencies f1, f2, and f3 indicated by the two-dot chain line is approximately 100 Hz are added.

図10〜12からも明らかなように、各共鳴周波数f1,f2,f3の周波数間隔をほぼ200Hzとしたレゾネータ20Sを有する3つの評価品においては、実線で示すように、各共鳴周波数f1,f2,f3の周波数間隔をほぼ100Hzとした評価品の場合に比して、放射音の周波数として200Hz近傍から高周波数側に向けてより小さな音響伝達特性P2/P1となる、言い換えれば、より基準音を共鳴により低減していることが理解できる。しかしながら、放射音の周波数として200Hz以下の周波数域において、各共鳴周波数f1,f2,f3の周波数間隔をほぼ100Hzとした評価品よりも顕著に反共鳴による騒音低減効果の悪化が見られる。   As is apparent from FIGS. 10 to 12, in the three evaluation products having the resonator 20S in which the frequency intervals of the resonance frequencies f1, f2, and f3 are approximately 200 Hz, as shown by the solid lines, the resonance frequencies f1, f2 , F3 has a smaller acoustic transfer characteristic P2 / P1 from the vicinity of 200 Hz toward the high frequency side as compared with the evaluation product in which the frequency interval of f3 is approximately 100 Hz. Can be understood to be reduced by resonance. However, in the frequency range of 200 Hz or less as the frequency of radiated sound, the noise reduction effect due to anti-resonance is significantly worse than the evaluation product in which the frequency intervals of the resonance frequencies f1, f2, and f3 are approximately 100 Hz.

また、図12からも明らかなように、第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vをより小さくなるように変更した場合には、各共鳴周波数f1,f2,f3の周波数間隔をほぼ100Hzとした評価品に比して、特に、放射音の周波数として200Hz以下の周波数域において音響伝達特性P2/P1が大きくなっている。したがって、パラメータとして第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vを小さくして各共鳴周波数f1,f2,f3の周波数間隔をほぼ200Hzとする場合には、騒音低減効果が損なわれる傾向にある。   As is apparent from FIG. 12, when the internal volume V of the second resonance chamber 21b and the internal volume V of the third resonance chamber 21c are changed to be smaller, the resonance frequencies f1, f2, and f3 are changed. Compared with the evaluation product in which the frequency interval is approximately 100 Hz, the acoustic transfer characteristic P2 / P1 is particularly large in the frequency range of 200 Hz or less as the frequency of the radiated sound. Accordingly, when the internal volume V of the second resonance chamber 21b and the internal volume V of the third resonance chamber 21c are reduced as parameters and the frequency intervals of the resonance frequencies f1, f2, and f3 are set to approximately 200 Hz, the noise reduction effect is achieved. Tend to be damaged.

e.周波数間隔が250Hzの場合
各共鳴周波数f1,f2,f3間の周波数間隔がほぼ250Hzとなるように、パラメータを設定してレゾネータ20Sを作製した。なお、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ250Hzとなるパラメータを設定するにあたっては、もはや、現実的な範囲で連通管22の長さL1を小さくなるように変更することができない。したがって、この場合には、下記表11,12に示すように、基準レゾネータ20Sのパラメータを基準とし、連通管22の内径Dおよび各共鳴室21b,21cの内容積Vの2つのパラメータのうちの一つのパラメータを変更してレゾネータ20Sを作製した。具体的には、下記表11は連通管22の内径Dを基準レゾネータ20Sにおける連通管22の内径Dよりも大きくなるように変更した場合を示し、下記表12は第2共鳴室21bおよび第3共鳴室21cの内容積Vを基準レゾネータ20Sにおける第2共鳴室21bおよび第3共鳴室21cの内容積Vよりも小さくなるように変更した場合を示している。

Figure 2010150933
Figure 2010150933
e. In the case where the frequency interval is 250 Hz: The resonator 20S was manufactured by setting parameters so that the frequency interval between the resonance frequencies f1, f2, and f3 was approximately 250 Hz. It should be noted that in setting the parameter that the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 250 Hz, it is no longer possible to change the length L1 of the communication pipe 22 to be small within a practical range. . Therefore, in this case, as shown in Tables 11 and 12 below, the parameter of the reference resonator 20S is used as a reference, and the inner diameter D of the communication tube 22 and the internal volume V of each resonance chamber 21b, 21c are selected from the two parameters. A resonator 20S was manufactured by changing one parameter. Specifically, Table 11 below shows a case where the inner diameter D of the communication pipe 22 is changed to be larger than the inner diameter D of the communication pipe 22 in the reference resonator 20S, and Table 12 below shows the second resonance chamber 21b and the third resonance chamber 21b. The case where the internal volume V of the resonance chamber 21c is changed to be smaller than the internal volumes V of the second resonance chamber 21b and the third resonance chamber 21c in the reference resonator 20S is shown.
Figure 2010150933
Figure 2010150933

このように、基準レゾネータ20Sのパラメータのうちの一つのパラメータを変更し、各共鳴周波数f1,f2,f3間の周波数間隔がほぼ250Hzとなる2つのレゾネータ20Sにおいては、前記式1〜4を用いた計算により、第2共鳴室21bの共鳴周波数f2は第1共鳴室21aの共鳴周波数f1に対してほぼ250Hz大きな周波数となることを確認した。また、前記式1〜4を用いた計算により、第3共鳴室21cの共鳴周波数f3は第2共鳴室21bの共鳴周波数f2に対してほぼ250Hz大きな周波数となることを確認した。   As described above, in the two resonators 20S in which one of the parameters of the reference resonator 20S is changed and the frequency interval between the resonance frequencies f1, f2, and f3 is approximately 250 Hz, the above equations 1 to 4 are used. According to the calculation, it was confirmed that the resonance frequency f2 of the second resonance chamber 21b was approximately 250 Hz larger than the resonance frequency f1 of the first resonance chamber 21a. Moreover, it was confirmed by the calculation using the formulas 1 to 4 that the resonance frequency f3 of the third resonance chamber 21c is approximately 250 Hz larger than the resonance frequency f2 of the second resonance chamber 21b.

そして、図2の測定装置を用いて、前記表11,12に示したパラメータに設定された2つのレゾネータ20Sを吸気ダクト11に対してそれぞれ組み付けた2つの評価品の音響伝達特性P2/P1(すなわち、騒音低減特性)を測定した。これらの測定結果として連通管22の内径Dを変更して設定したときの評価品の音響伝達特性P2/P1を図13に示し、第2共鳴室21bの内容積Vと第3共鳴室21cの内容積Vを変更して設定したときの評価品の音響伝達特性P2/P1を図14に示す。なお、この場合も、これら2つの評価品の音響伝達特性P2/P1を評価するために、参考として、図13,14には、破線により示す吸気ダクトの音響伝達特性P2/P1、一点鎖線により示す比較品の音響伝達特性P2/P1および二点鎖線により示す上述した各共鳴周波数f1,f2,f3間の周波数間隔がほぼ100Hzとなる評価品の音響伝達特性P2/P1を付記した。   Then, by using the measuring apparatus of FIG. 2, the acoustic transfer characteristics P2 / P1 of two evaluation products in which the two resonators 20S set to the parameters shown in Tables 11 and 12 are assembled to the intake duct 11 respectively. That is, noise reduction characteristics were measured. As these measurement results, the acoustic transfer characteristic P2 / P1 of the evaluation product when the inner diameter D of the communication pipe 22 is changed and set is shown in FIG. 13, and the internal volume V of the second resonance chamber 21b and the third resonance chamber 21c. FIG. 14 shows the acoustic transfer characteristics P2 / P1 of the evaluation product when the internal volume V is changed and set. Also in this case, in order to evaluate the acoustic transfer characteristics P2 / P1 of these two evaluation products, for reference, FIGS. 13 and 14 show the acoustic transfer characteristics P2 / P1 of the intake duct indicated by a broken line by a one-dot chain line. The acoustic transfer characteristics P2 / P1 of the comparative product shown and the acoustic transfer characteristics P2 / P1 of the evaluation product in which the frequency interval between the resonance frequencies f1, f2, and f3 indicated by the two-dot chain line is approximately 100 Hz are added.

図13,14からも明らかなように、各共鳴周波数f1,f2,f3の周波数間隔をほぼ250Hzとしたレゾネータ20Sを有する評価品においては、上述した各共鳴周波数f1,f2,f3の周波数間隔を大きくする場合の傾向がより顕著に表れる。すなわち、図13に示すように、連通管22の内径Dを大きくなるように変更した場合には、放射音の周波数として400Hz近傍の高周波数側での騒音低減効果が十分であるものの、放射音の周波数として100Hz近傍の低周波数側で反共鳴による騒音低減効果の悪化が顕著となる。また、図14に示すように、第2共鳴室21bおよび第3共鳴室21cの内容積Vを小さくなるように変更した場合には、放射音の周波数として150Hz近傍で反共鳴による騒音低減効果の悪化が見られる。   As is apparent from FIGS. 13 and 14, in the evaluation product having the resonator 20S in which the frequency intervals of the resonance frequencies f1, f2, and f3 are approximately 250 Hz, the frequency intervals of the resonance frequencies f1, f2, and f3 described above are set. The tendency to increase the size appears more prominently. That is, as shown in FIG. 13, when the inner diameter D of the communication pipe 22 is changed to be large, the noise reduction effect on the high frequency side near 400 Hz is sufficient as the frequency of the radiated sound, but the radiated sound As the frequency of, the noise reduction effect due to anti-resonance becomes prominent on the low frequency side near 100 Hz. As shown in FIG. 14, when the internal volume V of the second resonance chamber 21b and the third resonance chamber 21c is changed to be small, the noise reduction effect of anti-resonance is around 150 Hz as the frequency of the radiated sound. Deterioration is seen.

このように、各共鳴周波数f1,f2,f3の周波数間隔が200Hzよりも大きくなると、放射音の周波数200Hz以下の周波数域における騒音低減効果が悪化する傾向が顕著に表れる。また、本実施形態においては、各共鳴周波数f1,f2,f3の周波数間隔が200Hzよりも大きくなると、3つのパラメータを変更することが難しくなる。このため、各共鳴周波数f1,f2,f3の周波数間隔は200Hzよりも小さく設定する。したがって、吸気系Kに設けられるレゾネータ20においては、第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cの各共鳴周波数f1,f2,f3の周波数間隔として、50Hzよりも大きく200Hzよりも小さい範囲内で設定する。これにより、騒音を低減すべき周波数域100Hz〜400Hzにおいて、要求低減レベルに応じて騒音低減特性を適宜変更することができる。   As described above, when the frequency interval between the resonance frequencies f1, f2, and f3 is larger than 200 Hz, the tendency to deteriorate the noise reduction effect in the frequency range of the radiated sound having a frequency of 200 Hz or less appears significantly. In the present embodiment, it is difficult to change the three parameters when the frequency interval between the resonance frequencies f1, f2, and f3 is greater than 200 Hz. Therefore, the frequency interval between the resonance frequencies f1, f2, and f3 is set to be smaller than 200 Hz. Therefore, in the resonator 20 provided in the intake system K, the frequency interval between the resonance frequencies f1, f2, and f3 of the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c is greater than 50 Hz and greater than 200 Hz. Also set within a small range. As a result, the noise reduction characteristics can be appropriately changed according to the required reduction level in the frequency range of 100 Hz to 400 Hz where noise should be reduced.

以上の説明からも理解できるように、この実施形態によれば、本体ケース21内部に仕切り板23によって第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cが形成されているため、それぞれの共鳴室21a,21b,21cに対応した共鳴周波数f1,f2,f3と一致する周波数を有する騒音を良好に低減することができる。また、形成された各共鳴室21a,21b,21cが仕切り板23に形成された連通孔23aを介して互いに連通することができるため、本体ケース21内に一つの大きな共鳴室を形成することができ、この大きな共鳴室に対応した共鳴周波数f0と一致する周波数を有する騒音を良好に低減することができる。これにより、広い周波数域(100Hz〜400Hz)の騒音を良好に低減する騒音低減特性を発揮することができる。   As can be understood from the above description, according to this embodiment, the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c are formed in the main body case 21 by the partition plate 23. Noise having frequencies that coincide with the resonance frequencies f1, f2, and f3 corresponding to the respective resonance chambers 21a, 21b, and 21c can be satisfactorily reduced. Further, since the formed resonance chambers 21 a, 21 b, 21 c can communicate with each other through the communication holes 23 a formed in the partition plate 23, one large resonance chamber can be formed in the main body case 21. In addition, noise having a frequency that matches the resonance frequency f0 corresponding to the large resonance chamber can be satisfactorily reduced. Thereby, the noise reduction characteristic which reduces the noise of a wide frequency range (100 Hz-400 Hz) favorably can be exhibited.

そして、仕切り板23によって形成される各共鳴室21a,21b,21cにおける共鳴周波数f1,f2,f3を設定するにあたり、これらの共鳴周波数f1,f2,f3の周波数間隔を50Hz〜200Hzの範囲で設定することにより、騒音低減特性を適宜変更することができる。具体的には、共鳴周波数f1,f2,f3の周波数間隔を小さく設定するに伴い、100Hz〜400Hzの騒音を良好に低減する騒音低減特性を発揮しつつ、主に、200Hz以下の騒音を効果的に低減する騒音低減特性に変更することができる。一方、共鳴周波数の周波数間隔を大きく設定するに伴い、100Hz〜400Hzの騒音を良好に低減する騒音低減特性を発揮しつつ、主に、400Hz近傍の騒音を効果的に低減する騒音低減特性に変更することができる。したがって、例えば、レゾネータ20の使用環境によって異なる騒音の要求低減レベルに対応して、騒音低減特性を適切に変更することができる。   Then, when setting the resonance frequencies f1, f2, and f3 in the resonance chambers 21a, 21b, and 21c formed by the partition plate 23, the frequency intervals of these resonance frequencies f1, f2, and f3 are set in the range of 50 Hz to 200 Hz. By doing so, the noise reduction characteristics can be changed as appropriate. Specifically, as the frequency intervals of the resonance frequencies f1, f2, and f3 are set to be small, noise of 200 Hz or less is mainly effective while exhibiting noise reduction characteristics that favorably reduce noise of 100 Hz to 400 Hz. It is possible to change to noise reduction characteristics that are reduced to a low level. On the other hand, as the frequency interval of the resonance frequency is set to be large, the noise reduction characteristic that effectively reduces the noise of 100 Hz to 400 Hz is exhibited, and the noise reduction characteristic that effectively reduces the noise near 400 Hz is mainly changed. can do. Therefore, for example, the noise reduction characteristics can be appropriately changed in accordance with the required noise reduction level that varies depending on the usage environment of the resonator 20.

また、連通管22の長さL1、連通管22の内径D、および、第2共鳴室21bおよび第3共鳴室21cの各内容積Vのうちの一つを変更することにより、仕切り板23によって形成される各共鳴室21a,21b,21cの共鳴周波数f1,f2,f3を設定する、言い換えれば、騒音低減特性を変更することができる。これにより、例えば、車両への搭載要件によってレゾネータ20の形状が制限される場合であっても、比較的容易に共鳴周波数f1,f2,f3を設定することができる。したがって、騒音の要求低減レベルに対応して、騒音低減特性を適切に変更することができる。   Further, by changing one of the length L1 of the communication pipe 22, the inner diameter D of the communication pipe 22, and the internal volumes V of the second resonance chamber 21b and the third resonance chamber 21c, the partition plate 23 The resonance frequencies f1, f2, and f3 of the formed resonance chambers 21a, 21b, and 21c are set, in other words, the noise reduction characteristics can be changed. Thereby, for example, even when the shape of the resonator 20 is limited due to mounting requirements on the vehicle, the resonance frequencies f1, f2, and f3 can be set relatively easily. Therefore, it is possible to appropriately change the noise reduction characteristic in accordance with the required noise reduction level.

本発明の実施にあたっては、上記実施形態に限定されるものではなく、その目的を逸脱しない限りにおいて種々の変更が可能である。   In carrying out the present invention, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the object.

例えば、上記実施形態においては、第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cの各共鳴周波数f1,f2,f3の周波数間隔を変更するにあたり、パラメータとしての連通管22の長さL1、連通管の内径D、および、第2共鳴室21bおよび第3共鳴室21cの各内容積Vのうちの一つを変更するするようにした。この場合、連通管22の長さL1、連通管の内径D、および、第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cの各内容積Vのうちの複数を変更することによって、各共鳴周波数f1,f2,f3間の周波数間隔を設定するように実施するようにしてもよい。これにより、より細やかに周波数間隔を変更することができる。   For example, in the above-described embodiment, the length of the communication tube 22 as a parameter when changing the frequency intervals of the resonance frequencies f1, f2, and f3 of the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c. The length L1, the inner diameter D of the communication pipe, and one of the internal volumes V of the second resonance chamber 21b and the third resonance chamber 21c are changed. In this case, by changing the length L1 of the communication tube 22, the inner diameter D of the communication tube, and the inner volumes V of the first resonance chamber 21a, the second resonance chamber 21b, and the third resonance chamber 21c. The frequency intervals between the resonance frequencies f1, f2, and f3 may be set. Thereby, the frequency interval can be changed more finely.

また、上記実施形態においては、エンジン14に外気を導入する吸気ダクト11に対してレゾネータ20を組み付けて実施した。そして、エンジン14による外気の導入に際して吸気ダクト11内を伝播する騒音をレゾネータ20が低減するように実施した。しかしながら、このように、エンジン14に対して外気を導入する吸気ダクト11にレゾネータ20を組み付けて実施することに限定されるものではない。例えば、車室内を空調する空調装置においては、同空調装置の作動に伴って騒音が空調ダクト内を伝播して放射される場合がある。このため、このような空調装置に組み付けられる空調ダクトに対してレゾネータ20を組み付けて実施することも可能である。この場合であっても、レゾネータ20は、所望の周波数域における騒音を効果的に低減することができる。   In the above embodiment, the resonator 20 is assembled to the intake duct 11 for introducing outside air into the engine 14. And it implemented so that the resonator 20 might reduce the noise which propagates the inside of the intake duct 11 in the case of the introduction of the outside air by the engine 14. However, the present invention is not limited to being implemented by assembling the resonator 20 to the intake duct 11 for introducing outside air to the engine 14 as described above. For example, in an air conditioner that air-conditions a passenger compartment, noise may propagate through the air-conditioning duct and radiate in accordance with the operation of the air-conditioner. For this reason, it is also possible to assemble and implement the resonator 20 to the air conditioning duct assembled to such an air conditioner. Even in this case, the resonator 20 can effectively reduce noise in a desired frequency range.

さらに、上記実施形態においては、レゾネータ20が第1共鳴室21a、第2共鳴室21bおよび第3共鳴室21cの3つの共鳴室を有するように構成して実施した。しかし、レゾネータの共鳴室の数に関しては、複数であればよく、2つの共鳴室を有するように構成したり、4つ以上の共鳴室を有するように構成して実施可能であることはいうまでのない。   Furthermore, in the said embodiment, the resonator 20 was comprised and comprised so that it might have three resonance chambers, the 1st resonance chamber 21a, the 2nd resonance chamber 21b, and the 3rd resonance chamber 21c. However, the number of resonance chambers of the resonator is not limited as long as it is plural, and it can be configured to have two resonance chambers or to have four or more resonance chambers. There is no.

本発明の実施形態に係るレゾネータを車両の吸気系に適用した状態を示す概略図である。It is the schematic which shows the state which applied the resonator which concerns on embodiment of this invention to the intake system of a vehicle. 音響伝達特性を測定するための測定装置を説明するための図である。It is a figure for demonstrating the measuring apparatus for measuring an acoustic transfer characteristic. 周波数間隔を100Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transfer characteristic with respect to the change of the frequency of a radiated sound when a frequency interval is 100 Hz. 連通管の長さを変更して周波数間隔を50Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the length of a communicating tube and making a frequency interval into 50 Hz. 連通管の内径を変更して周波数間隔を50Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the internal diameter of a communicating pipe and making a frequency interval into 50 Hz. 第2共鳴室および第3共鳴室の内容積を変更して周波数間隔を50Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transfer characteristic with respect to the change of the frequency of a radiated sound when changing the internal volume of a 2nd resonance chamber and a 3rd resonance chamber, and making a frequency interval into 50 Hz. 連通管の長さを変更して周波数間隔を150Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the length of a communicating pipe | tube and making a frequency interval into 150 Hz. 連通管の内径を変更して周波数間隔を150Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the internal diameter of a communicating pipe and making a frequency interval into 150 Hz. 第2共鳴室および第3共鳴室の内容積を変更して周波数間隔を150Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transfer characteristic with respect to the change of the frequency of a radiated sound when the internal volume of a 2nd resonance chamber and a 3rd resonance chamber is changed, and a frequency interval is 150 Hz. 連通管の長さを変更して周波数間隔を200Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the length of a communicating pipe and making a frequency interval into 200 Hz. 連通管の内径を変更して周波数間隔を200Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the internal diameter of a communicating pipe and making a frequency interval 200Hz. 第2共鳴室および第3共鳴室の内容積を変更して周波数間隔を200Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transfer characteristic with respect to the change of the frequency of a radiated sound when the internal volume of a 2nd resonance chamber and a 3rd resonance chamber is changed, and a frequency interval is set to 200 Hz. 連通管の内径を変更して周波数間隔を250Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the internal diameter of a communicating pipe and making a frequency interval into 250 Hz. 第2共鳴室および第3共鳴室の内容積を変更して周波数間隔を250Hzとしたときの放射音の周波数の変化に対する音響伝達特性の変化を示すグラフである。It is a graph which shows the change of the acoustic transmission characteristic with respect to the change of the frequency of a radiated sound when changing the internal volume of a 2nd resonance chamber and a 3rd resonance chamber, and making a frequency interval into 250 Hz.

符号の説明Explanation of symbols

11…吸気ダクト、12…エアクリーナ、13…エアクリーナホース、14…エンジン、15…スロットルボデー、20…レゾネータ、21…本体ケース、21a…第1共鳴室、21b…第2共鳴室、21c…第3共鳴室、22…連通管、23…仕切り板、23a…連通孔   DESCRIPTION OF SYMBOLS 11 ... Intake duct, 12 ... Air cleaner, 13 ... Air cleaner hose, 14 ... Engine, 15 ... Throttle body, 20 ... Resonator, 21 ... Main body case, 21a ... First resonance chamber, 21b ... Second resonance chamber, 21c ... Third Resonance chamber, 22 ... communication pipe, 23 ... partition plate, 23a ... communication hole

Claims (3)

気体が通過可能な管体の外側に配設されかつ所定内容積を区画する本体ケースと、前記管体と前記本体ケースとを連通状態で連結する連通管と、前記本体ケース内に配設されて同本体ケース内部を複数の共鳴室に区画するとともにこの複数の共鳴室を互いに連通させる連通孔を形成した仕切り部材とを備えたレゾネータにおいて、
前記複数の共鳴室に対応する各共鳴周波数が所定の周波数間隔を有するように設定されたことを特徴とするレゾネータ。
A main body case that is disposed outside a tubular body through which gas can pass and divides a predetermined internal volume, a communication pipe that connects the tubular body and the main body case in a communication state, and a main body case disposed in the main body case. And a partition member that divides the inside of the main body case into a plurality of resonance chambers and has a partition member formed with a communication hole that allows the plurality of resonance chambers to communicate with each other.
A resonator, wherein each resonance frequency corresponding to the plurality of resonance chambers is set to have a predetermined frequency interval.
請求項1に記載したレゾネータにおいて、
前記所定の周波数間隔が、
50Hzよりも大きく、200Hzよりも小さい周波数間隔であることを特徴とするレゾネータ。
The resonator according to claim 1,
The predetermined frequency interval is
A resonator having a frequency interval larger than 50 Hz and smaller than 200 Hz.
請求項1に記載したレゾネータにおいて、
前記複数の共鳴室に対応する各共鳴周波数は、
前記連通管の長さ、前記連通管の内径および前記複数の共鳴室の各内容積のうちの少なくとも一つを変更することにより、前記所定の周波数間隔を有するように設定されることを特徴とするレゾネータ。
The resonator according to claim 1,
Each resonance frequency corresponding to the plurality of resonance chambers is:
By setting at least one of the length of the communication pipe, the inner diameter of the communication pipe, and the internal volumes of the plurality of resonance chambers, the predetermined frequency interval is set. Resonator to do.
JP2008326969A 2008-12-24 2008-12-24 Resonator Pending JP2010150933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326969A JP2010150933A (en) 2008-12-24 2008-12-24 Resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326969A JP2010150933A (en) 2008-12-24 2008-12-24 Resonator

Publications (1)

Publication Number Publication Date
JP2010150933A true JP2010150933A (en) 2010-07-08

Family

ID=42570303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326969A Pending JP2010150933A (en) 2008-12-24 2008-12-24 Resonator

Country Status (1)

Country Link
JP (1) JP2010150933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008783A (en) * 2015-06-19 2017-01-12 富士重工業株式会社 Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158529A (en) * 1993-12-06 1995-06-20 Toyoda Gosei Co Ltd Silencer device
JPH07243362A (en) * 1994-02-28 1995-09-19 Tsuchiya Mfg Co Ltd Composite type muffler
JP2005282514A (en) * 2004-03-30 2005-10-13 Toyoda Gosei Co Ltd Resonator
JP2006046327A (en) * 2004-08-05 2006-02-16 Mann & Hummel Gmbh Intake noise attenuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158529A (en) * 1993-12-06 1995-06-20 Toyoda Gosei Co Ltd Silencer device
JPH07243362A (en) * 1994-02-28 1995-09-19 Tsuchiya Mfg Co Ltd Composite type muffler
JP2005282514A (en) * 2004-03-30 2005-10-13 Toyoda Gosei Co Ltd Resonator
JP2006046327A (en) * 2004-08-05 2006-02-16 Mann & Hummel Gmbh Intake noise attenuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008783A (en) * 2015-06-19 2017-01-12 富士重工業株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
EP1736349B1 (en) Sound increase apparatus
US7556123B2 (en) Muffler duct
JP5639794B2 (en) Intake sound generator for internal combustion engine
JP2006125381A (en) Resonator
JP4328181B2 (en) Sound quality control device for internal combustion engine
KR100962791B1 (en) a muffler for a vehicle
JP2019143478A (en) Noise suppressor
CN104594977A (en) Silencer for mini-truck internal combustion engine
JP2010150933A (en) Resonator
JP4713326B2 (en) Sound quality transmission structure
JP6899278B2 (en) Silencer
JP4626471B2 (en) Sound increaser
JP2007332915A (en) Intake sound control structure
JP2018080685A (en) Silencer
CN110748506A (en) Noise elimination device for turbocharger
JP5389477B2 (en) Intake sound adjustment device
JP4476130B2 (en) Intake pipe for vehicle
JP2007270687A (en) Torque increase resonator
JP5859371B2 (en) Air intake duct with silencer
JP6823903B2 (en) Silencer
JP2001132567A (en) Intake device
JP5248184B2 (en) Gas conduit
JP2005155502A (en) Resonator
JP4595635B2 (en) Sound increaser
JP2006063839A (en) Intake system for vehicle engine and method for setting in-cabin sound of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521