JP2010150097A - Method of producing synthetic quartz glass member for optics, and synthetic quartz glass member for optics - Google Patents

Method of producing synthetic quartz glass member for optics, and synthetic quartz glass member for optics Download PDF

Info

Publication number
JP2010150097A
JP2010150097A JP2008331787A JP2008331787A JP2010150097A JP 2010150097 A JP2010150097 A JP 2010150097A JP 2008331787 A JP2008331787 A JP 2008331787A JP 2008331787 A JP2008331787 A JP 2008331787A JP 2010150097 A JP2010150097 A JP 2010150097A
Authority
JP
Japan
Prior art keywords
quartz glass
glass member
glass body
synthetic quartz
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008331787A
Other languages
Japanese (ja)
Other versions
JP5199862B2 (en
Inventor
Nobuo Ohashi
宣夫 大橋
Hiroyuki Nishimura
裕幸 西村
Akira Fujinoki
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2008331787A priority Critical patent/JP5199862B2/en
Publication of JP2010150097A publication Critical patent/JP2010150097A/en
Application granted granted Critical
Publication of JP5199862B2 publication Critical patent/JP5199862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic quartz glass member for optics having high laser resistance, which can be favorably used as a material for a variety of parts for a semiconductor aligner, and a method of producing the same. <P>SOLUTION: The method of producing a synthetic glass member for optics comprises: a process (a) of making a porous base material by hydrolyzing a volatile silicon compound with oxyhydrogen flame, and depositing fine particles of silica on a heat resistant base substance; a process (b) of dehydration heating treatment step in a vacuum or in an inactive gas containing atmosphere; a process (c) of obtaining a transparent quartz glass by heating; a process (d) of removing striae by carrying out a zone melting rotation stirring treatment by flame heating; a process (e) of forming in a cylindrical column; a process (f) of removing an external layer by grinding top and bottom surfaces and a periphery surface of the quartz glass; a process (g) of once keeping the quartz glass at a temperature of not lower than a slow cooling point, and thereafter slowly cooling; and a process (h) of carrying out heat treatment in an atmosphere containing a hydrogen gas at a pressure range of 0.0098-0.98 MPa at a temperature of not higher than 723 K to permeate with hydrogen molecules. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に半導体チップ製造用のエキシマレーザーを用いたリソグラフィーの露光装置のレンズやその他の光学部品として好適に使用される合成石英ガラスの製造方法及び合成石英ガラス部材に関する。より具体的には、KrF、ArF等のエキシマレーザー光の照射に対して長期間、優れた光透過性と均質性に優れた、リソグラフィーの露光装置のレンズやその他の光学部品として好適な特性を備えた光学用合成石英ガラスの製造方法並びに光学用合成石英ガラス部材に関する。 The present invention relates to a method for producing synthetic quartz glass and a synthetic quartz glass member that are suitably used particularly as lenses and other optical components of lithography exposure apparatuses using excimer lasers for producing semiconductor chips. More specifically, it has excellent light transmission and homogeneity for a long period of time with excimer laser light such as KrF and ArF, and has characteristics suitable as a lens and other optical components of a lithography exposure apparatus. The present invention relates to an optical synthetic quartz glass manufacturing method and an optical synthetic quartz glass member.

超LSIの高集積化に伴う露光パターンの微細化が進み、回路パターンを半導体ウエハー上に描画する露光装置においても露光光源はより短波長化が求められてきている。この結果、露光装置の光源として、従来のI線(波長365nm)、KrFエキシマレーザー(波長248nm)から、現在ではArFエキシマレーザー(波長193nm)が主流となり、近年では更なる高NA化をめざした液浸リソグラフィー装置も実用化されている。 With the progress of miniaturization of the exposure pattern accompanying the high integration of VLSI, an exposure light source is required to have a shorter wavelength even in an exposure apparatus that draws a circuit pattern on a semiconductor wafer. As a result, the ArF excimer laser (wavelength 193 nm) has now become the mainstream as a light source for the exposure apparatus, from the conventional I-line (wavelength 365 nm) and KrF excimer laser (wavelength 248 nm), and in recent years we have aimed for higher NA. An immersion lithography apparatus has also been put into practical use.

このような光源の短波長化と液浸技術による高NA化に伴い、露光装置の光学系に使用されるレンズ、ウインドウ、プリズム等の光学部品についても、より高精度なものが求められてきている。 With the shortening of the wavelength of the light source and the increase in NA due to the immersion technique, higher precision is required for optical components such as lenses, windows, and prisms used in the optical system of the exposure apparatus. Yes.

レーザー耐性に関しては、ArFエキシマレーザーの照射に対して、これらの光学特性が長期にわたって安定していることが求められる。露光コスト低減のため、最新の露光装置においては露光光源であるArFエキシマレーザーの高周波数化が進んでおり、最近では6kHzという非常に高い周波数のエキシマレーザーも開発されていることから、露光装置に使用される光学部材に要求されるエキシマレーザー照射パルス数に対する安定性は、3〜1×1012ショット以上という膨大な照射に対して諸光学特性が変化しないこと、という極めて厳しい要求がなされている。 Regarding laser resistance, these optical characteristics are required to be stable over a long period of time with respect to ArF excimer laser irradiation. In order to reduce exposure cost, ArF excimer laser, which is an exposure light source, has been increased in frequency in the latest exposure apparatus, and an excimer laser with a very high frequency of 6 kHz has recently been developed. The stability with respect to the number of excimer laser irradiation pulses required for the optical member to be used is extremely demanding that various optical characteristics do not change with an enormous irradiation of 3 to 1 × 10 12 shots or more. .

石英ガラスのArFエキシマレーザー照射に対する光学特性の変化についてはいくつかの種類があり、常磁性欠陥の生成に伴う紫外線透過率の低下、レーザーコンパクション・レーザーレアファクションと呼ばれる石英ガラスの体積変化に伴う屈折率の上昇と低下、および複屈折の変化などである。 There are several types of changes in optical properties of quartz glass due to ArF excimer laser irradiation, such as a decrease in ultraviolet transmittance due to the formation of paramagnetic defects, and a change in volume of quartz glass called laser compaction and laser rarefaction. The increase and decrease of the refractive index and the change of birefringence.

エキシマレーザー照射による石英ガラスの常磁性欠陥の生成とは、例えば波長193.4nmのArFエキシマレーザー照射の場合、紫外線としてのエネルギーが非常に高いために、長時間レーザー照射を続けると、石英ガラスの結合が破壊されてE’センターと呼ばれる常磁性欠陥が生成する現象である。ここでE’センターは波長215nmに吸収センターを持っているために、この波長領域の紫外線の透過率が低下する。 The generation of paramagnetic defects in quartz glass by excimer laser irradiation means that, for example, in the case of ArF excimer laser irradiation with a wavelength of 193.4 nm, the energy as ultraviolet rays is very high. This is a phenomenon in which a bond is broken and a paramagnetic defect called an E ′ center is generated. Here, since the E ′ center has an absorption center at a wavelength of 215 nm, the transmittance of ultraviolet rays in this wavelength region is lowered.

光学部品にこのような紫外線の透過率低下が生じると、光学部品が本来透過するべきエキシマレーザー光のエネルギーの一部を吸収してしまうが、吸収エネルギーは熱に変換されるために、吸収した部分が加熱されて屈折率変化を生じ、結果的に高精度な露光が出来なくなってしまう。このような理由から、エキシマレーザー露光装置に使用される光学部品を形成する合成石英ガラス材料に関しては長期間にわたるエキシマレーザー照射によってもE’センター等の常磁性欠陥が生じ難い材料が必要とされている。 When such a decrease in the transmittance of ultraviolet rays occurs in an optical component, the optical component absorbs a part of the energy of the excimer laser light that should be transmitted originally, but the absorbed energy is absorbed because it is converted into heat. The portion is heated to cause a change in refractive index, and as a result, highly accurate exposure cannot be performed. For these reasons, a synthetic quartz glass material that forms an optical component used in an excimer laser exposure apparatus is required to have a material that is unlikely to cause paramagnetic defects such as E 'center even after long-term excimer laser irradiation. Yes.

また、レーザーコンパクションとは、エキシマレーザー光の照射に伴い石英ガラスが緻密化する現象である。石英ガラスが緻密化するとは文字通りエキシマレーザーが透過した部分の石英ガラスの密度が高くなることで、その部分では、石英ガラスの網目状構造が切断され、より緻密な構造に再配列されている。 Laser compaction is a phenomenon in which quartz glass becomes dense with the excimer laser light irradiation. The fact that the quartz glass is densified literally means that the density of the quartz glass through which the excimer laser is transmitted increases, and the network structure of the quartz glass is cut and rearranged into a more dense structure at that portion.

この石英ガラスの緻密化に伴って、石英ガラスの屈折率は上昇する。また、レーザーコンパクションにおいては、石英ガラスの緻密化はレーザーの照射部分にしか生じないためにレーザーの未照射部分との境界に応力が発生し、これが複屈折として観察される。このようにレーザーコンパクションは屈折率変化と複屈折量変化という二重の光学特性の変化をもたらす。 As the quartz glass is densified, the refractive index of the quartz glass increases. Further, in the laser compaction, the densification of the quartz glass occurs only in the laser irradiated portion, so that stress is generated at the boundary with the unirradiated portion of the laser, and this is observed as birefringence. As described above, laser compaction causes a double change in optical characteristics, that is, a change in refractive index and a change in birefringence.

また、レーザーレアファクションとは、石英ガラスの照射試験方法を、従来の短時間でみるための加速試験ではなく、実際の露光において光学部品を透過するエネルギー密度とほぼ同程度の低エネルギー密度で長時間照射した場合に見られる現象で、レーザーコンパクションとは正反対に石英ガラス照射部の屈折率が低下する現象である。レアファクションもコンパクション特性と同様にArF露光装置の光学的安定性を考える場合に重要な問題となっている。低エネルギー密度で長時間照射した場合の屈折率変化挙動は、その石英ガラスの物性、レーザー照射条件に影響され、コンパクションか又はレアファクションのどちらかの現象が観測される。すなわち、コンパクションとレアファクションは相反するレーザー特性であり、互いに打ち消しあって、その寄与が大きい方が見かけ上観測されるわけである。 Laser rare faction is not a conventional accelerated test for quartz glass irradiation testing, but a low energy density that is almost the same as the energy density transmitted through optical components in actual exposure. This phenomenon is observed when irradiation is performed for a long time, and is a phenomenon in which the refractive index of the quartz glass irradiation portion is decreased in the opposite direction to laser compaction. Rare faction is an important problem when considering the optical stability of the ArF exposure apparatus, as is the compaction characteristic. The refractive index change behavior when irradiated for a long time at a low energy density is affected by the physical properties of the quartz glass and the laser irradiation conditions, and either a compaction or rare fact phenomenon is observed. In other words, compaction and rare faction are contradictory laser characteristics, and they cancel each other out, and the one with the larger contribution is apparently observed.

透過波面の変化は照射部分の石英ガラスの屈折率が変化することを意味している。すなわち透過波面が遅れる場合、その部分の屈折率は大きくなっており、逆に透過波面が進む場合は屈折率が小さくなっている。レーザー照射によるダメージでレンズの一部分(照射部分)のみ屈折率変化が生じた場合、結像性能に大きな影響を及ぼし、正確なパターンを結像できなくなってしまう。したがって、高い結像性能を維持するためには、高い屈折率均質性を有する石英ガラス材料を用いることが必要なだけでなく、レーザー照射によって屈折率が変化しない、言い換えると透過波面が変化しない材料を選択することが重要である。そのためにも、屈折率変化を抑えた、コンパクション及びレアファクションのどちらの特性も小さな材料が要求される。 The change in the transmitted wavefront means that the refractive index of the quartz glass at the irradiated part changes. That is, when the transmitted wavefront is delayed, the refractive index of that portion is increased, and conversely, when the transmitted wavefront is advanced, the refractive index is decreased. When a refractive index change occurs only in a part of the lens (irradiation part) due to damage by laser irradiation, the imaging performance is greatly affected, and an accurate pattern cannot be formed. Therefore, in order to maintain high imaging performance, it is not only necessary to use a quartz glass material having a high refractive index homogeneity, but also a material in which the refractive index does not change by laser irradiation, in other words, the transmitted wavefront does not change. It is important to choose. For this purpose, a material with small characteristics of both compaction and rare faction with suppressed refractive index change is required.

また、近年ではより高解像度化を目指して、レーザー光源に従来の円偏光から直線偏光の照明光を用いるようになっている。この場合、さらに特異的な現象として、屈折率の低下に加えて照射部分の全面に極めて強い複屈折を生じることがわかってきた。この偏光照明を用いた場合の複屈折の特徴として、複屈折方向(例えば遅相軸の方向)がレーザーの偏光方向に対して平行レーザー照射部分の中央部(実際のレンズにおいてはレンズの中央部に相当する)において最大値を与えるような強度分布であるという特徴がある。そのために、複屈折量が例え小さな値であっても、投影光学系の長い光路長全体にわたっては膨大なリタデーション(進相軸と遅相軸の間の光路差)を生じることになり、露光時のコントラスト低下等の障害が発生し、露光特性を著しく阻害することになる。この特性のことを一般には偏光誘起複屈折と呼ばれる。 In recent years, illumination light from conventional circularly polarized light to linearly polarized light has been used as a laser light source for higher resolution. In this case, as a more specific phenomenon, it has been found that extremely strong birefringence is generated over the entire irradiated portion in addition to a decrease in refractive index. A characteristic of birefringence when using this polarized illumination is that the birefringence direction (for example, the direction of the slow axis) is parallel to the laser polarization direction at the center of the laser irradiation part (in the actual lens, the center of the lens). In the intensity distribution that gives the maximum value. Therefore, even if the amount of birefringence is small, an enormous retardation (optical path difference between the fast axis and the slow axis) is generated over the entire long optical path length of the projection optical system. Thus, a failure such as a decrease in contrast occurs, and the exposure characteristics are significantly impaired. This characteristic is generally called polarization induced birefringence.

低エネルギー密度でレーザー照射したときの、これら紫外線透過率の低下、コンパクション、レアファクション、偏光誘起複屈折が実質的に生じない光学用合成石英ガラス部材及びその製造方法を提供するために、特開2004−269287号公報では、OH基の量が10wtppmを超えて400wtppm以下の範囲であり、フッ素を30〜1000wtppm、水素分子を0.1×1017〜10×1017(分子数/cm)含有することによって、ArFエキシマレーザー照射による石英ガラス1cmの厚さあたりの632.8nmにおける透過波面の変化量を低く抑えることができることが明示されている。 In order to provide a synthetic quartz glass member for optical use and a method for producing the same, in which a decrease in ultraviolet transmittance, compaction, rare faction, and polarization-induced birefringence do not substantially occur when laser irradiation is performed at a low energy density. In Japanese Unexamined Patent Application Publication No. 2004-269287, the amount of OH groups is in the range of more than 10 wtppm to 400 wtppm, fluorine is 30 to 1000 wtppm, hydrogen molecules are 0.1 × 10 17 to 10 × 10 17 (number of molecules / cm 3 It is clearly shown that the amount of change in transmitted wavefront at 632.8 nm per 1 cm thickness of quartz glass due to ArF excimer laser irradiation can be kept low.

また、特開2003−221245号公報では、波長193.4nmの紫外光に対する内部透過率が99.7%以上であり、OH基の量が5wtppm以上300wtppm以下、及び水素分子濃度が1×1016分子/cm3以上2×1017分子/cm3未満とすることにより、多大な複屈折を誘起するレーザーレアファクションを生じず、かつレンズ特性に殆ど影響を及ぼさない範囲の微小なレーザーコンパクションを生じる合成石英ガラスを選択することにより、長期に渡って露光特性の安定した光学系を得ることが出来ることが明示されている。 In JP-A-2003-221245, the internal transmittance for ultraviolet light having a wavelength of 193.4 nm is 99.7% or more, the amount of OH groups is 5 wtppm or more and 300 wtppm or less, and the hydrogen molecule concentration is 1 × 10 16. By making the molecule / cm 3 or more and less than 2 × 10 17 molecules / cm 3 , the laser rare faction that induces a great amount of birefringence does not occur, and the minute laser compaction within the range that hardly affects the lens characteristics. It is clearly shown that an optical system with stable exposure characteristics can be obtained over a long period of time by selecting the resulting synthetic quartz glass.

本発明は、ArF、KrF等のエキシマレーザーを照射したときに、半導体露光装置用の各種光学材料として好適に使用できる耐レーザー性の高い光学用合成石英ガラス部材及びその製造方法を提供することが目的である。具体的には、エキシマレーザーを照射したときに、実質的に紫外線透過率の低下や、コンパクション、レアファクション、偏光誘起複屈折による透過波面の変化を生じない光学用合成石英ガラス部材及びその製造方法を提供するものである。 The present invention provides an optical synthetic quartz glass member with high laser resistance that can be suitably used as various optical materials for a semiconductor exposure apparatus when irradiated with an excimer laser such as ArF or KrF, and a method for producing the same. Is the purpose. Specifically, a synthetic quartz glass member for optical use that does not substantially cause a decrease in ultraviolet transmittance, a compaction, a rare faction, or a transmitted wavefront change due to polarization-induced birefringence when irradiated with an excimer laser, and its manufacture A method is provided.

上記の目的は、下記(1)〜(10)の構成の本発明による光学用合成石英ガラス部材の製造方法およびその方法により製造された光学用合成石英ガラス部材により達成される。
(1)下記a)からh)の各工程を含む光学用合成石英ガラス部材の製造方法。
a)揮発性珪素化合物を酸水素火炎により加水分解し、生成する微粒子シリカを耐熱性基体上に堆積させて多孔質母材を作成する工程、
b)該多孔質母材を真空、または不活性ガス含有雰囲気中にて脱水熱処理する工程、
c)該脱水熱処理した多孔質母材を加熱して透明な石英ガラス体を得る工程、(加熱温度規定を削除)
d)該透明石英ガラス体を火炎加熱により帯状熔融回転攪拌処理して、脈理を除去する工程、
e)該脈理が除去された石英ガラス体を、円柱状に成型する工程、
f)該円柱状に成型された石英ガラス体の上下面、及び外周面を研削除去することによって、前記d工程で石英ガラス体に導入された還元性欠陥の存在する外層を取り除く工程、
g)該外層研削除去された石英ガラス体を、徐冷点以上の温度に一旦保持した後徐冷することにより仮想温度を1373K以下に設定する工程、および
h)該仮想温度を設定された透明石英ガラス体を、水素ガス含有雰囲気中で、圧力を0.0098MPa〜0.98MPaの範囲で、かつ、723K以下の温度で熱処理を施し、水素分子を含有させる工程。
(2)前記f)工程において、円柱状石英ガラス体の上面と下面それぞれからその高さの8%以上、かつ円柱状石英ガラス体の外周部からその直径の5%以上の幅で均等に取り除く、請求項1に記載の光学用合成石英ガラス部材の製造方法
(3)上記(1)または(2)に記載の製造方法によって製造された、光学用合成石英ガラス部材。
(4)OH基の量が5wtppmを超えて100wtppm以下の範囲であり、石英ガラス中のOH基の最大値と最小値の差が10wtppm以内、水素分子を0.2×1017〜20×1017(分子数/cm)含有し、仮想温度が1373K以下である、上記(3)に記載の光学用合成石英ガラス部材。
(5)ArFエキシマレーザーを1パルスあたりのエネルギー密度20mJ/cm・pulse、周波数200Hzで100,000パルス照射したときの波長215nmでの吸光度低下量が0.003(/cm)以下である上記(3)または(4)に記載の光学用合成石英ガラス部材。
(6)ArFエキシマレーザーを1パルスあたりのエネルギー密度20mJ/cm・pulse、周波数200Hzで10,000,000パルス照射したときの波長215nmでの吸光度低下量が0.01(/cm)以下である上記(3)または(4)に記載の光学用合成石英ガラス部材。
(7)ArFエキシマレーザーを、1パルスあたりのエネルギー密度が10mJ/cm・pulse、周波数2000Hzで1×10パルス照射した時の632.8nmにおける透過波面の変化量が厚さ1cmあたり0〜+4nmの範囲内である上記(3)〜(6)のいずれかに記載の光学用合成石英ガラス部材。
(8)ArFエキシマレーザーを、1パルスあたりのエネルギー密度が0.05mJ/cm・pulse以下、周波数2000Hzで4×1010パルス照射した時の632.8nmにおける透過波面の変化量が厚さ1cmあたり−0.5〜+0.5nmの範囲内であることを特徴とする上記(3)〜(6)のいずれかに記載の光学用合成石英ガラス部材。
(9)ArFエキシマレーザーを、1パルスあたりのエネルギー密度が0.05mJ/cm・pulse、周波数2000Hzで4×1010パルス照射した時に生じる照射部分の中央における複屈折変化量が0.3nm/cm以下である上記(3)〜(8)のいずれかに記載の光学用合成石英ガラス部材。
(10)仮想温度が1323K以下である上記(4)〜(9)のいずれかに記載の光学用合成石英ガラス部材。
The above object is achieved by a method for producing an optical synthetic quartz glass member according to the present invention having the following constitutions (1) to (10) and an optical synthetic quartz glass member produced by the method.
(1) A method for producing an optical synthetic quartz glass member including the following steps a) to h):
a) a step of hydrolyzing a volatile silicon compound with an oxyhydrogen flame, and depositing fine particle silica to be produced on a heat-resistant substrate to form a porous base material;
b) a step of subjecting the porous base material to a dehydration heat treatment in a vacuum or an inert gas-containing atmosphere;
c) A step of heating the porous base material subjected to the dehydration heat treatment to obtain a transparent quartz glass body (the heating temperature regulation is deleted)
d) a step of removing the striae by subjecting the transparent quartz glass body to a band-like melt-rotation stirring process by flame heating;
e) a step of molding the quartz glass body from which the striae has been removed into a cylindrical shape;
f) A step of removing the outer layer where the reducing defects introduced into the quartz glass body in the step d are removed by grinding and removing the upper and lower surfaces and the outer peripheral surface of the quartz glass body molded into the columnar shape,
g) The step of setting the fictive temperature to 1373 K or less by temporarily cooling the quartz glass body that has been ground and removed to a temperature equal to or higher than the annealing point and then cooling it, and h) the transparent in which the fictive temperature is set A step of heat-treating the quartz glass body in a hydrogen gas-containing atmosphere at a pressure of 0.0098 MPa to 0.98 MPa and a temperature of 723 K or less to contain hydrogen molecules.
(2) In the step f), the cylindrical quartz glass body is uniformly removed from each of the upper surface and the lower surface with a width of 8% or more of the height and from the outer peripheral portion of the cylindrical quartz glass body with a width of 5% or more of the diameter. The manufacturing method of the optical synthetic quartz glass member of Claim 1 (3) The optical synthetic quartz glass member manufactured by the manufacturing method of said (1) or (2).
(4) The amount of OH groups is in the range of more than 5 wtppm and not more than 100 wtppm, the difference between the maximum value and the minimum value of OH groups in quartz glass is within 10 wtppm, and the hydrogen molecules are 0.2 × 10 17 to 20 × 10. 17 (number of molecules / cm 3 ) The synthetic quartz glass member for optics according to (3) above, which has a fictive temperature of 1373 K or less.
(5) The amount of decrease in absorbance at a wavelength of 215 nm when an ArF excimer laser is irradiated with an energy density of 20 mJ / cm 2 · pulse per pulse and a frequency of 200 Hz at a wavelength of 215 nm is 0.003 (/ cm) or less The synthetic quartz glass member for optics according to (3) or (4).
(6) When the ArF excimer laser is irradiated with 10,000,000 pulses at an energy density of 20 mJ / cm 2 · pulse and a frequency of 200 Hz, the decrease in absorbance at a wavelength of 215 nm is 0.01 (/ cm) or less. The optical synthetic quartz glass member according to the above (3) or (4).
(7) When the ArF excimer laser is irradiated with 1 × 10 7 pulses at an energy density of 10 mJ / cm 2 · pulse and a frequency of 2000 Hz, the amount of change in the transmitted wavefront at 632.8 nm is 0 to 1 cm per thickness. The synthetic quartz glass member for optics according to any one of the above (3) to (6), which is in the range of +4 nm.
(8) When an ArF excimer laser is irradiated with 4 × 10 10 pulses at an energy density of 0.05 mJ / cm 2 · pulse or less and a frequency of 2000 Hz, the amount of change in the transmitted wavefront at 632.8 nm is 1 cm thick. The optical synthetic quartz glass member according to any one of the above (3) to (6), which is in the range of -0.5 to +0.5 nm per unit.
(9) When the ArF excimer laser is irradiated with 4 × 10 10 pulses at an energy density of 0.05 mJ / cm 2 · pulse and a frequency of 2000 Hz, the birefringence change at the center of the irradiated portion is 0.3 nm / The optical synthetic quartz glass member according to any one of (3) to (8), which is not more than cm.
(10) The synthetic quartz glass member for optical use according to any one of (4) to (9), wherein the fictive temperature is 1323K or less.

以下に本発明の実施の形態を添付図面とともに説明するが、下記の説明は例示的に示されるもので、本発明の技術思想から逸脱しない限り様々の変形が可能なことはいうまでもない。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings, but the following description is given by way of example, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.

以下、本発明の実施の形態による光学用合成石英ガラス部材の製造方法について説明する。
本発明の実施の形態による光学用合成石英ガラス部材の製造方法は、
揮発性珪素化合物を酸水素火炎により加水分解し、生成する微粒子シリカを耐熱性基体上に堆積させて多孔質母材を作成する工程a)、
該多孔質母材を真空、または不活性ガス含有雰囲気中にて脱水熱処理する工程b)、
該脱水熱処理した多孔質母材を加熱して透明な石英ガラス体を得る工程c)、
該透明石英ガラス体を火炎加熱により帯状熔融回転攪拌処理して、脈理を除去する工程d)、
該脈理が除去された石英ガラス体を、円柱状に成型する工程e)、
該円柱状に成型された石英ガラス体の上下面、及び外周面を研削除去することによって、前記d工程で石英ガラス体に導入された還元性欠陥の存在する外層を取り除く工程f)、
該外層研削除去された石英ガラス体を、徐冷点以上の温度に一旦保持した後徐冷することにより仮想温度を1373K以下に設定する工程g)、および
該仮想温度を設定された透明石英ガラス体を、水素ガス含有雰囲気中で、圧力を0.0098MPa〜0.98MPaの範囲で、かつ、723K以下の温度で熱処理を施し、水素分子を含有させる工程h)
を備える。
Hereinafter, the manufacturing method of the synthetic quartz glass member for optics by embodiment of this invention is demonstrated.
The method for producing an optical synthetic quartz glass member according to an embodiment of the present invention is as follows.
A step of hydrolyzing a volatile silicon compound with an oxyhydrogen flame, and depositing the resulting fine particle silica on a heat-resistant substrate to form a porous base material a),
A step b) of subjecting the porous base material to a dehydration heat treatment in a vacuum or an inert gas-containing atmosphere;
C) a step of heating the porous base material subjected to the dehydration heat treatment to obtain a transparent quartz glass body;
A step d) of removing the striae by subjecting the transparent quartz glass body to a band-like melt-rotating stirring process by flame heating;
A step e) of forming the quartz glass body from which the striae has been removed into a cylindrical shape;
A step f) of removing the outer layer having the reducing defects introduced into the quartz glass body in the step d) by grinding and removing the upper and lower surfaces and the outer peripheral surface of the quartz glass body formed into the cylindrical shape.
Step g) of setting the fictive temperature to 1373 K or lower by temporarily cooling the quartz glass body that has been ground and removed to a temperature equal to or higher than the annealing point, and then cooling it, and transparent quartz glass having the fictive temperature set. The body is heat-treated in a hydrogen gas-containing atmosphere at a pressure of 0.0098 MPa to 0.98 MPa and at a temperature of 723 K or less to contain hydrogen molecules h)
Is provided.

上記、工程a)の揮発性珪素化合物とは、例えば、四塩化珪素[SiCl]やメチルトリクロロシラン[CHSiCl]などの塩素を含有する珪素化合物が一般的であるが、もちろんこれらに限定されるものではなく、その他に、テトラメトキシシラン[Si(OCH]、メチルトリメトキシシラン[(CH)Si(OCH]などのアルコキシシラン類、ヘキサメチルジシラザン[(CHSiNHSi(CH]などの有機シラン化合物等を用いることができる。また、多孔質母材の作成方法についてはVAD法やOVD法などがあるが、いずれの方法によるものであっても良い。 Examples of the volatile silicon compound in step a) are, for example, silicon compounds containing chlorine such as silicon tetrachloride [SiCl 4 ] and methyltrichlorosilane [CH 3 SiCl 3 ]. is not limited, to other, tetramethoxysilane [Si (OCH 3) 4] , alkoxysilanes such as methyl trimethoxysilane [(CH 3) Si (OCH 3) 3], hexamethyldisilazane [( An organic silane compound such as CH 3 ) 3 SiNHSi (CH 3 ) 3 ] can be used. Moreover, although there exist VAD method, OVD method, etc. about the preparation method of a porous preform | base_material, it may be based on any method.

工程b)では、多孔質母材を真空、または不活性ガス含有雰囲気中にて脱水熱処理を行い、所望のOH基濃度になるように熱処理温度と処理時間をコントロールする。一般的には、高温かつ長時間で熱処理したほうが低OH濃度化しやすく、フッ素や塩素などの脱水剤を添加するとより低OH濃度化が可能となる。 In step b), the porous base material is subjected to dehydration heat treatment in a vacuum or an inert gas-containing atmosphere, and the heat treatment temperature and treatment time are controlled so as to obtain a desired OH group concentration. Generally, heat treatment at a high temperature for a long time makes it easier to lower the OH concentration, and the addition of a dehydrating agent such as fluorine or chlorine makes it possible to lower the OH concentration.

工程c)では、多孔質母材の透明ガラス化は、加熱炉中で行い、所望のOH基濃度になるように熱処理温度と処理時間をコントロールする。加熱雰囲気は、一般的にはHeやArなどの不活性ガス雰囲気、または真空雰囲気中で処理されるが、特に限定されるものではない。加熱温度は、特に制限しないが、低すぎると透明ガラス化が十分に進行しないし、高すぎるとガラス体が変形し形状維持が困難となる。実質的には1623Kから1873Kが好適な温度範囲となる。 In step c), transparent vitrification of the porous base material is performed in a heating furnace, and the heat treatment temperature and treatment time are controlled so as to obtain a desired OH group concentration. The heating atmosphere is generally treated in an inert gas atmosphere such as He or Ar, or in a vacuum atmosphere, but is not particularly limited. The heating temperature is not particularly limited, but if it is too low, transparent vitrification does not proceed sufficiently, and if it is too high, the glass body is deformed and it is difficult to maintain its shape. Substantially, the preferred temperature range is 1623K to 1873K.

OH基の含有量は、多孔質母材の熱処理条件や透明ガラス化条件で決定されるため、この時の処理条件を最適化することにより、光学用に好適な石英ガラス材料が得られる。例えば、OH基の含有量を低く設定する場合は。工程b)での脱水処理は長い時間をかけて十分に脱水を促進させ、かつ、工程c)での透明ガラス化工程でも時間をかけてゆっくりとガラス化させるなどの処理条件の最適化によって、OH基の含有量をコントロールすることが可能である。 Since the content of OH groups is determined by the heat treatment conditions and transparent vitrification conditions of the porous base material, a quartz glass material suitable for optics can be obtained by optimizing the treatment conditions at this time. For example, when setting the content of OH groups low. The dehydration process in step b) sufficiently promotes dehydration over a long period of time, and in the transparent vitrification process in step c), the optimization of the process conditions such as slow vitrification over time, It is possible to control the content of OH groups.

工程d)の脈理を除去する具体的な方法として、以下のような特開平7−267662号公報に記載の脈理除去方法を採用するのが好ましい。すなわち、合成石英ガラスインゴットの長手方向の両端を支持部材で支持し、その支持端を結ぶ軸を中心に回転させながら、合成石英ガラスインゴットにバーナーで溶融帯域を形成し、支持軸方向に加圧し溶融帯域で外方に突き出させ、次いでその側面を支持体に支持したのち、前と同様の処理を施す方法である。この方法では溶融帯域中では石英ガラスが物理的に良く混ざり合うために、脈理構造自体も全体に混ざり合い、一定時間以上の処理を施すことによって脈理は実質的に消滅する。また、元来不均一に分布していた石英ガラス中のOH基や塩素、その他の不純物も均一に混ざり合うことから、これらに起因する屈折率変化もより小さくなり、高均質な石英ガラス部材が得られる。 As a specific method for removing the striae in step d), it is preferable to employ the striae removal method described in JP-A-7-267661 as follows. That is, both ends of the synthetic silica glass ingot in the longitudinal direction are supported by the support member, and while rotating around the axis connecting the support ends, a melting zone is formed in the synthetic quartz glass ingot with a burner and the pressure is applied in the direction of the support axis. This is a method in which the same treatment as before is performed after protruding outward in the melting zone and then supporting the side surface on the support. In this method, quartz glass is physically mixed well in the melting zone, so that the striae structure itself is also mixed, and the striae substantially disappears by applying a treatment for a predetermined time or longer. In addition, since the OH groups, chlorine, and other impurities in the quartz glass that were originally distributed unevenly are also mixed uniformly, the refractive index change caused by these is also reduced, and a highly homogeneous quartz glass member is obtained. can get.

特に屈折率均質性に大きな影響を及ぼすガラス物性はOH基であり、この濃度分布をできるだけ均一にすることが望ましい。LSI製造用の露光装置のレンズ材に好適に用いられる石英材料の屈折率均質性は、屈折率の最大値と最小値の差として少なくとも2×10−6以下に設定する必要がある。この場合、OH基濃度の最大値と最小値の差(以下ΔOHと略す)を10wtppm以下に、より好ましくは更に5wtppm以下に抑えることが好ましい。 In particular, the glass physical property that greatly affects the refractive index homogeneity is an OH group, and it is desirable to make this concentration distribution as uniform as possible. The refractive index homogeneity of the quartz material suitably used for the lens material of the exposure apparatus for manufacturing LSI needs to be set to at least 2 × 10 −6 or less as the difference between the maximum value and the minimum value of the refractive index. In this case, the difference between the maximum value and the minimum value of the OH group concentration (hereinafter abbreviated as ΔOH) is preferably 10 wtppm or less, more preferably 5 wtppm or less.

前記、工程d)の脈理除去処理を行った石英ガラス部材は、一般に両端が支持棒につながった卵型の形状をしている。これを半導体露光装置に好適に用いられる光学用石英ガラス部材、特にレンズ材料にするためには、円柱状に成型することが好ましい。よって、工程e)の成型工程によって、円柱状型枠に脈理除去処理を行った石英ガラス部材を配置し、上から重しを載せるかまたは自重によって高温熱処理によって円柱状に変形させる。 The quartz glass member that has been subjected to the striae removal process of step d) generally has an oval shape with both ends connected to a support rod. In order to use this as an optical quartz glass member, particularly a lens material, which is suitably used in a semiconductor exposure apparatus, it is preferably molded into a cylindrical shape. Therefore, the quartz glass member that has undergone striae removal processing is placed in the cylindrical mold by the molding step of step e), and a weight is placed from above or deformed into a cylindrical shape by high-temperature heat treatment by its own weight.

ここで、今回初めて明らかになったこととして、前記工程d)の脈理除去処理によってその外周部に非常に強い還元性欠陥が形成されることがわかった。この還元性欠陥は、エキシマレーザー照射によって215nmに中心波長をもつ強い吸収体がレーザー照射のON/OFFによって可逆的に生じ、レーザー耐性に非常に悪影響を及ぼすものである。この還元性欠陥量は、エネルギー密度20mJ/cm・pulse、周波数200Hzで1×10パルスの条件でArFエキシマレーザーを照射したときの波長215nmにおける初期の急激な吸収増加(本特許ではArF初期吸収量と呼ぶ)として測定される。図1に、成型後、外周研削除去する前の石英ガラス体におけるArF初期吸収量の分布を示す。初期吸収量、即ち還元性欠陥の量は外周部ほど強い分布をしており、一方中心部ではほとんど観測されない。 Here, for the first time this time, it has been found that a very strong reducing defect is formed on the outer peripheral portion by the striae removing process in the step d). This reducing defect causes a strong absorber having a central wavelength at 215 nm by excimer laser irradiation, which is reversibly generated by ON / OFF of laser irradiation, and has a very bad influence on laser resistance. The amount of this reducing defect is an initial sharp increase in absorption at a wavelength of 215 nm when irradiated with an ArF excimer laser under the conditions of an energy density of 20 mJ / cm 2 · pulse and a frequency of 200 Hz and 1 × 10 5 pulses (in this patent, the initial increase in ArF) Measured as absorption). FIG. 1 shows the distribution of the ArF initial absorption amount in the quartz glass body after molding and before the peripheral grinding removal. The initial absorption amount, that is, the amount of reducing defects, has a stronger distribution toward the outer peripheral portion, but is hardly observed in the central portion.

この還元性欠陥は、OH濃度が200wtppmを超えるような石英ガラス部材でも形成されるものの、その欠陥量はさほど強くはなく、かつ、その後の工程g)の仮想温度を設定するための高温熱処理によって容易に外部拡散によって除去される性質がある。したがって、OH濃度が200wtppmを超えるような石英ガラス部材を製造する場合は、何か特定の対策をとらなくても実質上は問題とはならなかった。つまり、還元性欠陥の生成のし易さと熱処理による拡散除去のされ易さはその石英ガラス体のOH濃度に依存しており、本特許で規定している5から100wtppmといった低OH濃度の石英ガラス部材では、還元性欠陥がより生成され易くかつ熱処理による拡散除去もされ難いことが判明した。これは、低OH濃度の石英ガラス部材ほど、外周部に還元性欠陥の存在する部位が多く残留し、還元性欠陥の影響を受けやすくなることを示している。 Although this reducing defect is formed even in a quartz glass member having an OH concentration exceeding 200 wtppm, the amount of the defect is not so strong, and the high temperature heat treatment for setting the virtual temperature in the subsequent step g) is performed. It has the property of being easily removed by external diffusion. Therefore, when a quartz glass member having an OH concentration exceeding 200 wtppm is manufactured, there is no practical problem even if no specific measures are taken. That is, the ease of generation of reducing defects and the ease of diffusion removal by heat treatment depend on the OH concentration of the quartz glass body, and quartz glass having a low OH concentration of 5 to 100 wtppm as defined in this patent. It has been found that in the member, reducing defects are more easily generated and are not easily diffused and removed by heat treatment. This indicates that the lower the OH concentration of the quartz glass member, the more sites where the reducing defects exist in the outer peripheral portion, and the more easily affected by the reducing defects.

この還元性欠陥生成の原因はまだ明確ではないものの、工程d)の脈理除去工程において、バーナーで外部から強熱されることによりバーナーガスの燃焼によって生成したHOが高温バーナー火炎によって石英ガラスと反応を起こし、SiHや2配位シリコンなどのHに関連する欠陥を形成したものと推測している。 Although the cause of this reductive defect generation is not yet clear, H 2 O produced by combustion of the burner gas by igniting from the outside with a burner in the striae removal step of step d) is produced by quartz glass by a high-temperature burner flame. It is presumed that a defect related to H such as SiH or two-coordinate silicon was formed.

この還元性欠陥の対策として、欠陥の生成部位を研削除去してしまう方法が考えられる。欠陥の生成は脈理除去工程に生じており、その脈理除去後に外周部研削除去してもかまわないが、一般に脈理除去後の石英ガラス部材は卵型形状をしており、その外周部を均一に研削除去することは困難かつ手間がかかる。そこで、本特許では、工程d)の脈理除去工程の後ではなく工程e)の成型工程の後に、円柱状に成型された石英ガラス体の上下面、及び外周面を研削除去することによって還元性欠陥の存在する外層を取り除く工程f)を新たに設けた。研削量としては、その外周部のArF初期吸収量が0.02/cmを超えるような部位を除去すれば、その後の最終石英ガラス部材ではほとんど還元性欠陥の影響は受けないこと判明した。これは、本特許での石英ガラス部材のArF初期吸収の分布から勘案すると、その石英ガラス部材の大きさにもよるが、円柱状石英ガラス体の上面と下面それぞれからその高さの8%以上、かつ円柱状石英ガラス体の外周部から均等にその直径の5%以上の幅で取り除けば、還元性欠陥の対策としては十分であることがわかった。
なお、従来においても、成型時の石英ガラス部材の表面近傍の不純物汚染対策のために、成型後に上下及び外周部分の全ての面から10mm研削して表面を研削除去の対策を施すことがあった。ただし、それよりも重大な還元性欠陥の残留問題には着目しておらず、かつ、実際の研削除去量としても不十分であった。
As a countermeasure against this reducing defect, a method of grinding and removing a defect generation site is conceivable. Defect generation occurs in the striae removal process, and it may be removed by grinding the outer periphery after removing the striae, but generally the quartz glass member after striae removal has an oval shape, and its outer periphery It is difficult and time-consuming to uniformly remove the material. Therefore, in this patent, reduction is performed by grinding and removing the upper and lower surfaces and the outer peripheral surface of the quartz glass body formed into a cylindrical shape after the molding step of step e), not after the striae removal step of step d). A step f) for removing the outer layer in which sexual defects exist is newly provided. As the amount of grinding, it was found that if the portion where the ArF initial absorption amount of the outer peripheral portion exceeds 0.02 / cm is removed, the final quartz glass member thereafter is hardly affected by reducing defects. Considering the distribution of the ArF initial absorption of the quartz glass member in this patent, this depends on the size of the quartz glass member, but it is 8% or more of the height from the upper and lower surfaces of the cylindrical quartz glass body. In addition, it was found that removal from the outer peripheral portion of the cylindrical quartz glass body uniformly with a width of 5% or more of the diameter is sufficient as a countermeasure for reducing defects.
In addition, in the past, in order to prevent impurity contamination in the vicinity of the surface of the quartz glass member at the time of molding, the surface was sometimes ground and removed by grinding 10 mm from all surfaces of the upper and lower and outer peripheral portions. . However, it did not pay attention to the remaining problem of reducing defects more serious than that, and the actual grinding removal amount was insufficient.

工程g)の指定加熱処理は主として、得られた石英ガラス部材の屈折率均質性や複屈折を向上させることが主目的であるが、一方、仮想温度を1373K以下、更に好ましくは1323K以下に設定することによって、最終的な石英ガラス体のガラス構造を安定化させ、レーザー耐性を向上させる効果を与えることも目的の1つである。この詳細は後述する。 The designated heat treatment in step g) is mainly intended to improve the refractive index homogeneity and birefringence of the obtained quartz glass member, but the fictive temperature is set to 1373K or lower, more preferably 1323K or lower. By doing so, it is one of the purposes to stabilize the glass structure of the final quartz glass body and to give the effect of improving the laser resistance. Details of this will be described later.

具体的な処理としては、加熱炉中に石英ガラス部材を入れて、徐冷点以上の温度まで加熱し、一旦徐冷点以上の温度で一定時間保持し、その後、1373K以下の温度まで徐冷することによって、仮想温度を1373K以下、好ましくは1323K以下に設定することが可能である。徐冷点以上で保持するときの温度及び時間は、処理する石英ガラス部材の大きさによって最適化する。 Specifically, a quartz glass member is placed in a heating furnace, heated to a temperature above the annealing point, once held at a temperature above the annealing point for a certain period of time, and then gradually cooled to a temperature of 1373K or less. By doing so, it is possible to set the fictive temperature to 1373K or lower, preferably 1323K or lower. The temperature and time for holding above the annealing point are optimized depending on the size of the quartz glass member to be treated.

一般的に重量が大きな石英ガラス体の場合、徐冷点以上で保持する時間を長く設定する。また、徐冷速度も0.1℃/時間〜5℃/時間の範囲で設定することにより、仮想温度を1423K以下に設定することができる。徐冷速度についても、重量の大きな石英ガラス体は低く設定することが好ましい。 In general, in the case of a quartz glass body having a large weight, the time for holding it at an annealing point or higher is set longer. Moreover, the fictive temperature can be set to 1423K or less by setting also the slow cooling rate in the range of 0.1 degreeC / hour-5 degreeC / hour. Also for the slow cooling rate, it is preferable to set the quartz glass body having a large weight low.

工程h)はエキシマレーザー照射によるダメージ耐性を向上させるために行う水素分子を含有させる処理で、具体的には、圧力が0.0098MPa〜0.98MPaの範囲の水素含有雰囲気中で、723K以下の温度で熱処理を施すことによって達成される。ここで、圧力が0.0098MPa未満では十分量の水素を含有させることが難しいためレーザー耐性が不足し、一方、0.98MPaを越える圧力で処理した場合、多量の水素分子を含有させることができるものの、均質性や複屈折を悪化させやすくなるため、上記の圧力範囲で水素分子含有処理を行うことが望ましい。 Step h) is a treatment for containing hydrogen molecules to improve damage resistance due to excimer laser irradiation. Specifically, the pressure is 723 K or less in a hydrogen-containing atmosphere having a pressure in the range of 0.0098 MPa to 0.98 MPa. This is achieved by applying a heat treatment at a temperature. Here, when the pressure is less than 0.0098 MPa, it is difficult to contain a sufficient amount of hydrogen, so that the laser resistance is insufficient. On the other hand, when the treatment is performed at a pressure exceeding 0.98 MPa, a large amount of hydrogen molecules can be contained. However, in order to easily deteriorate the homogeneity and birefringence, it is desirable to perform the hydrogen molecule-containing treatment in the above pressure range.

工程h)の処理温度に関しては、処理温度が高すぎる場合、後述する還元性欠陥の生成によりレーザー耐性が悪化する。特にOH基濃度が100wtppm未満と低い場合はより還元性欠陥が生じやすくなるため、処理温度を723K以下にすることが望ましい。下限温度については処理するサンプルの大きさと製造時間を考慮して最適値を決定すればよいが、温度が低すぎる場合、石英ガラス中への水素の拡散が極端に遅くなるため、生産性が非常に悪化する。実質的には下限を523Kに設定することが妥当である。 Regarding the processing temperature in step h), if the processing temperature is too high, the laser resistance deteriorates due to the generation of reducing defects described later. In particular, when the OH group concentration is as low as less than 100 wtppm, reducing defects are more likely to occur. Therefore, the treatment temperature is desirably 723 K or less. The lower limit temperature should be determined in consideration of the size of the sample to be processed and the production time, but if the temperature is too low, the diffusion of hydrogen into the quartz glass will be extremely slow, resulting in very high productivity. Worse. In practice, it is reasonable to set the lower limit to 523K.

このような本特許の製造方法による石英ガラス部材で、OH基の量が5wtppmを超えて100wtppm以下の範囲、石英ガラス中のOH基の最大値と最小値の差が10wtppm以内、水素分子を0.2×1017〜20×1017(分子数/cm)含有し、仮想温度が1373K以下あることを充足する光学用合成石英ガラス部材は、露光装置の石英ガラス部材として特に好適なものであることが判明した。 In the quartz glass member according to the manufacturing method of this patent, the amount of OH groups is in the range of more than 5 wtppm to 100 wtppm, the difference between the maximum value and the minimum value of OH groups in the quartz glass is within 10 wtppm, and hydrogen molecules are 0 .2 × 10 17 to 20 × 10 17 (number of molecules / cm 3 ) and the optical synthetic quartz glass member satisfying that the fictive temperature is 1373 K or less is particularly suitable as a quartz glass member for an exposure apparatus. It turned out to be.

本発明者らは、低エネルギー密度でArFレーザーを照射したときの透過波面の挙動について幾つかの異なる製造パラメータで作成した石英ガラスについて調べたところ、レアファクション耐性、偏光誘起複屈折の双方を良くするためにはOHの濃度が特に重要な物性であることを見出した。もちろんOH濃度だけではなく、その他に水素濃度、仮想温度などによって、低エネルギー密度照射時に、ソラリゼーション、コンパクション、レアファクションなどのダメージが生じにくい、総合的に最適化された石英部材が得られることを見出した。 The present inventors investigated the behavior of the transmitted wavefront when irradiated with ArF laser at a low energy density, and investigated quartz glass prepared with several different manufacturing parameters. It has been found that the concentration of OH is a particularly important physical property in order to improve. Of course, not only the OH concentration, but also the hydrogen concentration, fictive temperature, etc., it is possible to obtain a comprehensively optimized quartz member that is resistant to damage such as solarization, compaction, and rarefaction during low energy density irradiation. I found.

すなわち、OHの量が5wtppmを超えて100wtppm以下の範囲とより限定することにより、レーザー耐性の優れた石英ガラス部材が得られることがわかった。更により好ましい範囲として、OHの量が10wtppmを超えて50wtppm以下、水素分子を0.2×1017〜20×1017(分子/cm)、仮想温度を1373K以下に設定することにより、実際のArFエキシマレーザー露光機の光学部材に好適に使用できる光学用合成石英ガラス部材が得られることが判明した。 That is, it was found that a quartz glass member having excellent laser resistance can be obtained by limiting the amount of OH to more than 5 wtppm and not more than 100 wtppm. As an even more preferable range, by setting the amount of OH to more than 10 wtppm and not more than 50 wtppm, hydrogen molecules to 0.2 × 10 17 to 20 × 10 17 (molecules / cm 3 ), and virtual temperature to 1373 K or less, It has been found that an optical synthetic quartz glass member that can be suitably used as an optical member of an ArF excimer laser exposure machine is obtained.

このような石英ガラス部材では、透過率変化のエキシマレーザー耐性に関しては、ArF初期吸収については、ArFエキシマレーザーを1パルスあたりのエネルギー密度20mJ/cm・pulse、周波数200Hzで100,000パルス照射したときの215nmでの吸光度低下量が0.003(/cm)以下、ArF長期耐性についてはArFエキシマレーザーを1パルスあたりのエネルギー密度20mJ/cm・pulse、周波数200Hzで10,000,000パルス照射したときの215nmでの吸光度低下量が0.01(/cm)以下となり、ArFエキシマレーザー露光装置の光学材料に好適に用いることができるレベルであることがわかった。 In such a quartz glass member, with respect to excimer laser resistance of transmittance change, for ArF initial absorption, an ArF excimer laser was irradiated with 100,000 pulses at an energy density of 20 mJ / cm 2 · pulse at a frequency of 200 Hz. When the decrease in absorbance at 215 nm is 0.003 (/ cm) or less, ArF excimer laser is irradiated with 10,000,000 pulses at an energy density of 20 mJ / cm 2 · pulse and a frequency of 200 Hz for ArF long-term resistance. As a result, the decrease in absorbance at 215 nm was 0.01 (/ cm) or less, which was found to be a level that can be suitably used as an optical material for an ArF excimer laser exposure apparatus.

石英ガラス中の水素分子は紫外線透過率の低下やコンパクションに対する耐性を高めるのに効果的である。一般的に紫外線透過率の低下はエキシマレーザー照射によって生じる常磁性欠陥の生成がその原因である。193.4nmに特に影響を及ぼす常磁性欠陥はE’センター(Si・)と呼ばれる構造体で、中心波長が210〜215nmのブロードな吸収バンドを有している。 Hydrogen molecules in quartz glass are effective in reducing the ultraviolet transmittance and increasing the resistance to compaction. In general, the decrease in ultraviolet transmittance is caused by the formation of paramagnetic defects caused by excimer laser irradiation. A paramagnetic defect that particularly affects 193.4 nm is a structure called an E ′ center (Si ·), and has a broad absorption band with a center wavelength of 210 to 215 nm.

水素分子はSiOネットワーク中に分散されていると考えられているが、レーザー照射とともに生じるSi・やSiO・の欠陥種をSiHやSiOHに変化させることで、吸収バンドの生成を抑制すると考えている。このように、レーザー照射によって生じた欠陥種を消滅させるためには、一定量以上の水素分子を含有させておく必要がある。水素分子量が少なすぎると、生成した欠陥に対して結合すべく水素が不足するため効果が不充分なものとなり、一方、水素分子が多すぎるとレアファクションに対する耐性を悪化させること、また、紫外線領域の初期透過率を低下させることも分かっている(例えば、特許文献5参照。)。したがって、水素分子の適正量は、2×1016〜2×1018(分子/cm)の範囲に設定することが好ましい。 Although hydrogen molecules are thought to be dispersed in the SiO 2 network, it is thought that the generation of absorption bands is suppressed by changing the defect type of Si · and SiO · that occurs with laser irradiation to SiH and SiOH. Yes. Thus, in order to eliminate the defect species generated by the laser irradiation, it is necessary to contain a certain amount or more of hydrogen molecules. If the molecular weight of the hydrogen is too small, the effect will be insufficient due to insufficient hydrogen to bond to the generated defects. On the other hand, if the amount of hydrogen molecules is too large, the resistance to the rare faction will be deteriorated. It has also been found that the initial transmittance of the region is reduced (see, for example, Patent Document 5). Therefore, the appropriate amount of hydrogen molecules is preferably set in the range of 2 × 10 16 to 2 × 10 18 (molecules / cm 3 ).

また、石英ガラス中の不安定なO−Si−O結合(結合距離や結合角度などが正常値からずれて歪んだ構造体)はエキシマレーザー照射に対して結合が切れやすく、レーザー耐性を悪化させる原因となる。そこで、エキシマレーザー耐性を向上させる手段として、不安定なO−Si−O結合を排除し、なるべく安定したO−Si−O構造にすることが挙げられる。O−Si−O結合はガラスの仮想温度に関連しており、仮想温度を低減させたほうが安定な構造となりレーザー耐性を高める作用がある。本特許では、前述(段落[0031],[0032])のような石英ガラス部材の高温加熱処理とその後の除冷温度を最適化することにより、石英ガラス部材の仮想温度を1373K以下、更に好ましくは1323K以下に設定することにする。これより仮想温度が高いとレーザー耐性、特に長期耐性に悪影響を及ぼし、一方下限値は特に限定はしないが石英ガラスの冷却過程から実質的には1173K程度に制限される。 In addition, unstable O—Si—O bonds in quartz glass (structures in which the bond distance, bond angle, and the like are distorted from normal values) are easily broken by excimer laser irradiation, and laser resistance is deteriorated. Cause. Therefore, as a means for improving excimer laser resistance, it is possible to eliminate unstable O—Si—O bonds and to make the O—Si—O structure as stable as possible. The O—Si—O bond is related to the fictive temperature of the glass, and reducing the fictive temperature has a more stable structure and increases the laser resistance. In this patent, by optimizing the high-temperature heat treatment of the quartz glass member as described above (paragraphs [0031] and [0032]) and the subsequent cooling temperature, the fictive temperature of the quartz glass member is more preferably 1373 K or less. Is set to 1323K or less. If the fictive temperature is higher than this, laser resistance, particularly long-term resistance, is adversely affected. On the other hand, the lower limit value is not particularly limited, but is substantially limited to about 1173 K from the cooling process of quartz glass.

また、本特許における石英ガラス部材では、1パルスあたりのエネルギー密度が0.05mJ/cm・pulse以下のArFエキシマレーザーを周波数2000Hzで4×1010パルス照射しても、石英ガラス1cmの厚さあたりの632.8nmにおける透過波面の変化量は−0.5〜+0.5nmの範囲内であり、かつ同条件で照射したときの照射部分の中央に生じる複屈折量変化が0.3nm/cm以下となり、ArFエキシマレーザー露光装置の光学材料に好適に用いることができるレベルであることがわかった。 Further, in the quartz glass member in this patent, even if ArF excimer laser with an energy density per pulse of 0.05 mJ / cm 2 · pulse or less is irradiated with 4 × 10 10 pulses at a frequency of 2000 Hz, the thickness of the quartz glass is 1 cm. The amount of change in the transmitted wavefront at 632.8 nm is within the range of −0.5 to +0.5 nm, and the change in birefringence occurring at the center of the irradiated portion when irradiated under the same condition is 0.3 nm / cm. It became the following, and it turned out that it is a level which can be used suitably for the optical material of an ArF excimer laser exposure apparatus.

また、比較的高いエネルギー密度に使用する場合、屈折率変化のダメージはコンパクションが支配的となるが、本発明の光学用合成石英ガラス部材においては、エネルギー密度10mJ/cm・pulse、周波数2000Hzで1×10パルス照射したときの石英ガラス1cmの厚さあたりの透過波面の変化量が0〜+4nmの範囲内であり、このレベルはArFエキシマ露光装置の照明系部分に好適に用いることができるレベルであった。 Further, when used for a relatively high energy density, the damage due to the change in the refractive index is dominated by compaction. However, in the optical synthetic quartz glass member of the present invention, the energy density is 10 mJ / cm 2 · pulse and the frequency is 2000 Hz. The amount of change in transmitted wavefront per 1 cm thickness of quartz glass when irradiated with 1 × 10 7 pulses is in the range of 0 to +4 nm, and this level can be suitably used for the illumination system portion of the ArF excimer exposure apparatus. It was a level.

レアファクション及び偏光誘起複屈折のダメージメカニズムについてはまだ不明な点が多いが、実験的には、OH濃度及び水素分子量が支配的な原因であり、これらの構造体の多い石英ガラスで顕著に発生することがわかっている。 There are still many unclear points about the damage mechanism of rare-faction and polarization-induced birefringence, but experimentally, OH concentration and hydrogen molecular weight are the dominant causes. I know it will happen.

OHの最適範囲は5wtppmを超えて100wtppm以下であるが、より好ましくは下限値を10wtppm、上限値を50wtppm程度までに設定することが好ましい。OH濃度が低くなりすぎると、Si−Siなどの酸素欠陥が生成しやすくなり、低エネルギー密度のArFレーザー照射時にコンパクションのダメージが発生し易くなるため、少なくとも5wtppmを超えてOH基を含有させることが好ましい。一方、OH濃度が高くなりすぎると、レアファクションによる透過波面の変化量が厚さ1cmあたり−0.5nmを越えて悪化し、かつ偏光誘起複屈折が0.3nm/cmを超えて悪化するため、多くとも100wtppm、より好ましくは50wtppm程度に設定するのがよい。
The optimum range of OH is more than 5 wtppm and not more than 100 wtppm, but it is more preferable to set the lower limit value to 10 wtppm and the upper limit value to about 50 wtppm. If the OH concentration becomes too low, oxygen defects such as Si-Si are likely to be generated, and compaction damage is likely to occur when irradiated with a low energy density ArF laser. Is preferred. On the other hand, if the OH concentration becomes too high, the amount of change of the transmitted wavefront due to rarefaction deteriorates beyond −0.5 nm per 1 cm thickness, and the polarization-induced birefringence deteriorates beyond 0.3 nm / cm. For this reason, it is preferable to set at most 100 wtppm, more preferably about 50 wtppm.

本発明の実施例について、以下、例を挙げて説明するが、本発明は、以下の説明及び例示によって、何等制限されるものではない。
本明細書の実施例及び比較例中に示された物性の測定値は以下の測定法による。
Examples of the present invention will be described below with reference to examples. However, the present invention is not limited to the following descriptions and examples.
The measured values of physical properties shown in the examples and comparative examples of the present specification are based on the following measuring methods.

ii)脈理の評価;
直交ニコルの偏光板にて目視観察。
ii) assessment of striae;
Visual observation with crossed Nicols polarizing plate.

iii)均質性の評価;
He−Neレーザー波長(632.8nm)での屈折率差の測定による評価。フィゾー型干渉計(Zygo社製 Mark IV)にて測定。
iii) assessment of homogeneity;
Evaluation by measurement of refractive index difference at He-Ne laser wavelength (632.8 nm). Measured with a Fizeau interferometer (Mark IV, manufactured by Zygo).

iv)水素分子濃度の測定;
レーザーラマン散乱スペクトロスコピーによる測定(非特許文献2参照)。この方法は、SiOに関する波数800cm−1のラマンバンドの強度と合成石英ガラス中に含有される水素分子に関する4135cm−1の強度との比により、合成石英ガラス中の水素分子濃度を求めるものであり、水素分子濃度Cは、次の式(1)により算出される。
iv) measurement of hydrogen molecule concentration;
Measurement by laser Raman scattering spectroscopy (see Non-Patent Document 2). This method obtains the concentration of hydrogen molecules in the synthetic quartz glass from the ratio of the intensity of the Raman band with a wave number of 800 cm −1 relating to SiO 2 and the intensity of 4135 cm −1 relating to the hydrogen molecules contained in the synthetic quartz glass. Yes, the hydrogen molecule concentration C is calculated by the following equation (1).

V. S. Khotimchenko et al., J. Appl. Spectroscopy, 4,632−635(1987) V. S. Khotimchenko et al. , J. et al. Appl. Spectroscopy, 4,632-635 (1987)

C=k × I(4135)/I(800)・・・・(1)
(式(1)中、I(4135)は、4135cm−1のラマンバンドの面積強度、I(800)は、800cm−1のラマンバンドの面積強度である。kは、定数で、1.22×1021である。)
C = k × I (4135) / I (800) (1)
(In formula (1), I (4135) is the area intensity of the Raman band of 4135 cm −1 , I (800) is the area intensity of the Raman band of 800 cm −1 , k is a constant, 1.22 × 10 21 )

この式により算出される水素分子濃度は、1cmの容積当たりの水素分子の個数で示される。下記実施例において、ラマン散乱法による水素分子濃度の測定に使用した測定機器は、日本分光株式会社製のラマン散乱分光器NR−1100ダブルモノクロタイプであり、検出器は浜松ホトニクス株式会社製の光電子増倍管R943−02であり、測定に使用したレーザー光はArイオンレーザー(488nm)である。 The hydrogen molecule concentration calculated by this equation is indicated by the number of hydrogen molecules per volume of 1 cm 3 . In the following examples, the measuring instrument used for measuring the hydrogen molecule concentration by the Raman scattering method is a Raman scattering spectrometer NR-1100 double monochrome type manufactured by JASCO Corporation, and the detector is a photoelectron manufactured by Hamamatsu Photonics Corporation. It is a multiplier tube R94-03-02, and the laser beam used for the measurement is an Ar ion laser (488 nm).

v)複屈折量の測定;
HINDS社製 Exicor350AT複屈折量自動測定装置による測定。
v) measurement of the amount of birefringence;
Measurement with Exicor 350AT birefringence automatic measuring device manufactured by HINDS.

vi)193.4nmでの初期透過率測定;
Varian社製 Cary4E可視・紫外分光光度計による測定。厚さ10mmで両面光学研磨した試料で測定。193.4nmにおける石英ガラスの理論透過率90.86%(表面の多重反射によるロスを100%から差し引いた値)を用い、厚さ10mmにおける見掛け透過率T%に対し、(T/90.86)×100より求める。
vi) Initial transmission measurements at 193.4 nm;
Measurement by Cary4E visible / ultraviolet spectrophotometer manufactured by Varian. Measured with a sample that was optically polished on both sides at a thickness of 10 mm. Using the theoretical transmittance of 90.86% of quartz glass at 193.4 nm (a value obtained by subtracting the loss due to multiple reflection on the surface from 100%), the apparent transmittance T% at a thickness of 10 mm is (T / 90.86). ) X100.

vii)OH基の測定;
赤外線吸収スペクトル分光光度計(日本分光製IR−700型)にて2.7ミクロンのO−H伸縮振動バンドの強度から算出。
vii) measurement of OH groups;
Calculated from the intensity of the 2.7 micron OH stretching vibration band using an infrared absorption spectrum spectrophotometer (IR-700, manufactured by JASCO Corporation).

ix)仮想温度の測定;
レーザーラマン散乱分光法にて測定。石英ガラスのD1及びD2ラマン散乱バンドの強度から定量。クエンチングにより強制的に仮想温度を設定した石英ガラスサンプルから検量線を作成し、実試料の測定値から仮想温度を算出する。
ix) measurement of virtual temperature;
Measured by laser Raman scattering spectroscopy. Quantified from the intensity of the D1 and D2 Raman scattering bands of quartz glass. A calibration curve is created from a quartz glass sample in which the virtual temperature is forcibly set by quenching, and the virtual temperature is calculated from the measured value of the actual sample.

(実施例1)
四塩化珪素を酸素・水素火炎中で火炎加水分解し微細なスス状シリカを形成し、生成する微粒子シリカを耐熱性基体上に堆積させて外径300mm,長さ1200mmの円柱状の多孔質母材を作成した。得られた多孔質母材をNガス雰囲気中にて1373Kの温度で24時間の脱水熱処理を行ったのち、真空中、1773Kの温度に加熱して透明ガラス化を行った。得られた石英ガラス体を特開平7−267662号に開示された方法にて帯状熔融回転攪拌処理して脈理除去を行った後、高純度グラファイト型内に設置し、電気炉を用いて2070Kの温度で自重変形させて直径380mm、厚さ120mmの円柱状に成型した。上記円柱状石英ガラス体は、その外周部に存在する還元性欠陥の生成部位を除去するため、上面と下面のそれぞれ10mm、かつ外周部から均等に25mm幅で研削除去を行った。この外層研削除去されたれ石英ガラス体を石英ガラス容器内に収納した後、電気炉にて1423Kで45時間保持後、1273Kまで1K/時間の降温速度で徐冷した後、炉の通電を停止し自然冷却した。さらに、この石英ガラス体を、水素ガス含有雰囲気中で、圧力を0.5MPaで673Kの温度で1500時間の熱処理を施し、水素分子を含有させた。なお、ガラス体中の水素濃度分布を均一にするため、途中でガス圧力と水素ガス割合を適時変更させた。これら一連の石英ガラス体の製造工程における製造条件を表1にまとめる。
Example 1
Silicon tetrachloride is flame-hydrolyzed in an oxygen / hydrogen flame to form fine soot-like silica, and the resulting fine-particle silica is deposited on a heat-resistant substrate to form a cylindrical porous mother having an outer diameter of 300 mm and a length of 1200 mm Made the material. The obtained porous base material was subjected to a dehydration heat treatment in a N 2 gas atmosphere at a temperature of 1373 K for 24 hours, and then heated to a temperature of 1773 K in vacuum to effect transparent vitrification. The obtained quartz glass body was subjected to strip melting and rotating stirring treatment by the method disclosed in Japanese Patent Application Laid-Open No. Hei 7-267661, and after removing the striae, it was placed in a high purity graphite mold and 2070 K using an electric furnace. Was deformed by its own weight at a temperature of 380 mm and formed into a cylindrical shape having a diameter of 380 mm and a thickness of 120 mm. The cylindrical quartz glass body was ground and removed by 10 mm on each of the upper surface and the lower surface and an even 25 mm width from the outer peripheral portion in order to remove the generation site of the reducing defects present on the outer peripheral portion. The quartz glass body that has been ground and removed is stored in a quartz glass container, held in an electric furnace at 1423K for 45 hours, slowly cooled to 1273K at a temperature drop rate of 1 K / hour, and then the furnace is deenergized. Naturally cooled. Further, this quartz glass body was subjected to a heat treatment for 1500 hours at a pressure of 0.5 MPa and a temperature of 673 K in an atmosphere containing hydrogen gas to contain hydrogen molecules. In addition, in order to make the hydrogen concentration distribution in the glass body uniform, the gas pressure and the hydrogen gas ratio were changed as needed. Table 1 summarizes the manufacturing conditions in the manufacturing process of these series of quartz glass bodies.

得られた円柱状石英ガラス体(直径330mm、厚さ100mm)を、偏光版を通して目視観察を行ったところ、脈理は観測されなかった。 When the obtained cylindrical quartz glass body (diameter 330 mm, thickness 100 mm) was visually observed through a polarizing plate, no striae was observed.

さらに、得られた合成石英ガラス体から、各種物性評価用に10mm×10mm×50mmの四角柱形状のサンプル、初期透過率評価用に直径60mm×厚さ10mmの円柱形状のサンプル切り出しを行い、鏡面研磨を施し、各種特性の測定を行った。その測定結果を表2に示す。実施例1において作成した合成石英ガラス体は、OH基の量が90wtppm、石英ガラス中のOH基の最大値と最小値の差が8wtppm、水素分子が2×1017(分子数/cm)、仮想温度が1293Kで、かつ、193.4nmにおける1cmあたりの内部透過率が99.80%であった。これらは、本発明の石英ガラス体の構成成分をいずれも充足したものであった。 Furthermore, from the obtained synthetic quartz glass body, a 10 mm × 10 mm × 50 mm square column-shaped sample was used for various physical property evaluations, and a 60 mm diameter × 10 mm-thick cylindrical sample was used for initial transmittance evaluation. Polishing was performed, and various characteristics were measured. The measurement results are shown in Table 2. In the synthetic quartz glass body prepared in Example 1, the amount of OH groups is 90 wtppm, the difference between the maximum value and the minimum value of OH groups in the quartz glass is 8 wtppm, and hydrogen molecules are 2 × 10 17 (number of molecules / cm 3 ). The fictive temperature was 1293 K, and the internal transmittance per cm at 193.4 nm was 99.80%. These satisfy | filled all the structural components of the quartz glass body of this invention.

さらに、実施例1で得られた円柱状石英ガラス部材から、ArF長期耐性と初期吸収の評価用に10mm×10mm×50mmの四角柱形状のサンプルの切り出しを行い、その側面(10mm×50mmの面)の4面全てを光が透過できるように光学研磨を施した。ラムダフィジック社製エキシマレーザーを用い、繰り返し周波数200Hzで、用意したサンプルのレーザー照射試験を行った。 Further, from the columnar quartz glass member obtained in Example 1, a 10 mm × 10 mm × 50 mm square column-shaped sample was cut out for evaluation of ArF long-term durability and initial absorption, and its side surface (10 mm × 50 mm surface) ) Was polished so that light could pass through all four surfaces. A laser irradiation test of the prepared sample was performed using an excimer laser manufactured by Lambda Physic Co., Ltd. at a repetition frequency of 200 Hz.

長期耐性と初期吸収の評価については、エキシマレーザー光を4面研磨面の1方向から入射し、その直交面にD2ランプを光源とする波長215nmの紫外線ビームを照射し、ArFレーザー照射しながらサンプル前後のランプ光強度比から透過率測定を行った。ここで光強度比の計測はエキシマレーザーの発振パルスと同期しているために、レーザー照射を行いながら同時に透過率の測定を行うことができる。長期耐久性の評価ではエネルギー密度20mJ/cm・pulse、周波数200Hzで1×10パルス、初期吸収の測定はエネルギー密度20mJ/cm・pulse、周波数200Hzで1×10パルスの照射条件でArFエキシマレーザーを照射しつつ、215nmの透過率変化を測定した。測定値はいずれも波長215nmにおける吸光度変化量として、その結果を表2に示した。実施例1の石英ガラス部材におけるArF長期耐性は0.0055/cm、ArF初期吸収量は0.0008/cmと、いずれも本発明の石英ガラス体の構成要件を充足したものであった。 For the evaluation of long-term durability and initial absorption, an excimer laser beam is incident from one direction of the four-side polished surface, an ultraviolet beam with a wavelength of 215 nm using a D2 lamp as a light source is irradiated on the orthogonal surface, and the sample is irradiated with an ArF laser. The transmittance was measured from the lamp light intensity ratio before and after. Here, since the measurement of the light intensity ratio is synchronized with the oscillation pulse of the excimer laser, the transmittance can be measured simultaneously with the laser irradiation. In the evaluation of long-term durability, an energy density of 20 mJ / cm 2 · pulse and a frequency of 200 Hz is 1 × 10 7 pulses, and the initial absorption is measured at an energy density of 20 mJ / cm 2 · pulse and a frequency of 200 Hz under 1 × 10 5 pulses. While irradiating with an ArF excimer laser, a change in transmittance at 215 nm was measured. The measured values are the changes in absorbance at a wavelength of 215 nm, and the results are shown in Table 2. The ArF long-term resistance in the quartz glass member of Example 1 was 0.0055 / cm, and the ArF initial absorption amount was 0.0008 / cm, both satisfying the constituent requirements of the quartz glass body of the present invention.

レーザーコンパクション、レーザーレアファクション、偏光誘起複屈折の評価については、実施例1で得られた円柱状石英ガラス部材から、30×30×L80mmの四角柱状サンプルの切り出しを行い、長尺方向に2面の光学研磨を施した。ラムダフィジック社製エキシマレーザーを用い、エネルギー密度を適当に調節したArFエキシマレーザーを繰り返し周波数2000Hzで、用意したサンプルのレーザー照射試験を行った。
コンパクション評価のために、高エネルギー密度でのレーザー照射条件として1パルスあたりのエネルギー密度が10mJ/cm・pulse、周波数2000Hzで1×10パルスにて、レアファクション及び偏光誘起複屈折の評価のために、低エネルギー密度でのレーザー照射条件として1パルスあたりのエネルギー密度が0.05mJ/cm・pulse、周波数2000Hzで4×1010パルスにて照射したのち、屈折率変化の評価には、ArFエキシマレーザー照射後の632.8nmにおける透過波面の変化量を干渉計(Zygo
Mark IV)にて、偏光誘起複屈折の評価には、ArFエキシマレーザー照射後の照射部分の中央における複屈折量変化をHINDS社製 Exicor350AT複屈折量自動測定装置によって評価を行った。評価データはレーザー照射部の透過波面の変化量として表し、その結果を表2に示した。コンパクションは3nm/cm、レアファクションは観測されず、偏光誘起複屈折は0.2nm/cmといずれも良好で、これらは、本発明の石英ガラス体の構成成分をいずれも充足したものであった。
このように、実施例1による石英ガラス部材は、本発明のすべての構成要件を充足するものであり、露光装置用石英ガラス部材として好適であることがわかった。
For the evaluation of laser compaction, laser rarefaction, and polarization-induced birefringence, a 30 × 30 × L80 mm square columnar sample was cut out from the cylindrical quartz glass member obtained in Example 1, and 2 in the longitudinal direction. The surface was optically polished. Using an excimer laser manufactured by Lambda Physic, an ArF excimer laser whose energy density was appropriately adjusted was repeated at a frequency of 2000 Hz, and a laser irradiation test of the prepared sample was performed.
For compaction evaluation, evaluation of rare-faction and polarization-induced birefringence at a high energy density laser irradiation condition with an energy density per pulse of 10 mJ / cm 2 · pulse, 1 × 10 7 pulses at a frequency of 2000 Hz Therefore, as a laser irradiation condition at a low energy density, the energy density per pulse is 0.05 mJ / cm 2 · pulse and the frequency 2000 Hz is irradiated with 4 × 10 10 pulses. , The amount of change in the transmitted wavefront at 632.8 nm after ArF excimer laser irradiation was measured using an interferometer (Zygo
In Mark IV), for the evaluation of polarization-induced birefringence, the birefringence change at the center of the irradiated portion after ArF excimer laser irradiation was evaluated by an Exicor 350AT birefringence automatic measuring device manufactured by HINDS. The evaluation data is expressed as the amount of change in the transmitted wavefront of the laser irradiation part, and the results are shown in Table 2. Compaction is 3 nm / cm, rare facts are not observed, and polarization-induced birefringence is 0.2 nm / cm, both of which are satisfactory. These are all the constituents of the quartz glass body of the present invention. It was.
Thus, it was found that the quartz glass member according to Example 1 satisfies all the structural requirements of the present invention and is suitable as a quartz glass member for an exposure apparatus.

(実施例2)
実施例1と同様にして作成した多孔質母材を、Nガス雰囲気中にて1473Kの温度で120時間の脱水熱処理を行ったのち、真空中、1823Kの温度にと加熱して透明ガラス体を作成した。さらに、実施例1と同様にしてこの石英ガラス体に水素分子を含有させた
得られた透明石英ガラスのOH基濃度は、実施例1よりも低いよりもれい0欠陥がより生成され易く、る拡散除去のされ易さには、う20wtppmであり、本発明の石英ガラス体の構成要件を充足したものであった。
得られた石英ガラス体を実施例1と全く同様に脈理除去処理、成型処理、外周研削を行ったのち、仮想温度設定処理では炉冷温度を1333Kと実施例1よりも60K上げて熱処理し、あとは実施例1と同様に徐冷を行って、直径330mm、厚さ100mmの円柱状石英ガラス体を得た。得られた円柱状石英ガラス体から実施例1と同様にサンプル切り出しを行い、かつ同様の物性評価、及びレーザー耐性評価を行った。それらの結果を表2に示す。
実施例2において作成した合成石英ガラス体は、実施例1と同様に本発明のすべての構成要件を充足するものであり、露光装置用石英ガラス部材として好適であることがわかった。
(Example 2)
A porous base material prepared in the same manner as in Example 1 was subjected to a dehydration heat treatment at a temperature of 1473 K for 120 hours in an N 2 gas atmosphere, and then heated to a temperature of 1823 K in a vacuum to form a transparent glass body. It was created. Further, in the same manner as in Example 1, the OH group concentration of the transparent quartz glass obtained by adding hydrogen molecules to this quartz glass body is lower than that in Example 1, and thus zero defects are more easily generated. The ease of diffusion removal was 20 wtppm, which satisfied the constituent requirements of the quartz glass body of the present invention.
The obtained quartz glass body was subjected to striae removal processing, molding processing, and outer periphery grinding in exactly the same manner as in Example 1, and in the virtual temperature setting processing, the furnace cooling temperature was increased to 1333 K, 60 K higher than that in Example 1, and heat-treated. Thereafter, annealing was performed in the same manner as in Example 1 to obtain a cylindrical quartz glass body having a diameter of 330 mm and a thickness of 100 mm. A sample was cut out from the obtained cylindrical quartz glass body in the same manner as in Example 1, and the same physical property evaluation and laser resistance evaluation were performed. The results are shown in Table 2.
The synthetic quartz glass body prepared in Example 2 satisfies all the structural requirements of the present invention as in Example 1, and was found to be suitable as a quartz glass member for an exposure apparatus.

(実施例3)
実施例1と全く同様にして透明ガラス体を作成した。得られた透明石英ガラスのOH基濃度は、実施例1と同じ90wtよりもれい0欠陥がより生成され易く、る拡散除去のされ易さには、うppmであり、本発明の石英ガラス体の構成要件を充足したものであった。
得られた石英ガラス体を、実施例1と全く同様に脈理除去処理、成型処理、外周研削を行ったのち、仮想温度設定処理では炉冷温度を1423Kで45時間保持したのち実施例1よりも高い1333Kまで1K/時間の降温速度で徐冷した後、炉の通電を停止し自然冷却した。直径330mm、厚さ100mmの円柱状石英ガラス体を得た。得られた円柱状石英ガラス体から実施例1と同様にサンプル切り出しを行い、かつ同様の物性評価、及びレーザー耐性評価を行った。それらの結果を表2に示す。
実施例3において作成した合成石英ガラス体は、実施例1と同様に本発明のすべての構成要件を充足するものであり、露光装置用石英ガラス部材として好適であることがわかった。
(Example 3)
A transparent glass body was prepared in exactly the same manner as in Example 1. The obtained transparent quartz glass has an OH group concentration of 90 ppm which is more easily generated than the same 90 wt as in Example 1, and is easily diffused and removed. It fulfilled the requirements of.
The obtained quartz glass body was subjected to striae removal processing, molding processing, and outer periphery grinding in exactly the same manner as in Example 1, and in the virtual temperature setting process, the furnace cooling temperature was held at 1423 K for 45 hours, and then from Example 1 After gradually cooling to 1333 K, which is a higher temperature, at a rate of 1 K / hour, the furnace was turned off and naturally cooled. A cylindrical quartz glass body having a diameter of 330 mm and a thickness of 100 mm was obtained. A sample was cut out from the obtained cylindrical quartz glass body in the same manner as in Example 1, and the same physical property evaluation and laser resistance evaluation were performed. The results are shown in Table 2.
The synthetic quartz glass body prepared in Example 3 satisfies all the structural requirements of the present invention as in Example 1, and was found to be suitable as a quartz glass member for an exposure apparatus.

比較例Comparative example

(比較例1)
実施例2と全く同様にして、多孔質母材を作成し、脱水熱処理を行ったのち透明ガラス体を作成した。
得られた透明石英ガラスのOH基濃度は、実施例2と同様のよりもれい0欠陥がより生成され易く、る拡散除去のされ易さには、う20wtppmであり、本発明の石英ガラス体の構成要件を充足したものであった。
(Comparative Example 1)
In the same manner as in Example 2, a porous base material was prepared, and after dehydrating heat treatment, a transparent glass body was prepared.
The obtained transparent quartz glass has an OH group concentration of 20 wtppm, which is more likely to generate defects than those in Example 2, and is easily diffused and removed, and the quartz glass body of the present invention. It fulfilled the requirements of.

得られた石英ガラス体を実施例1と全く同様に脈理除去処理、成型処理を行ったのち、成型後の外周部研削は円柱状石英ガラス体の上面と下面のそれぞれから5mm、かつ外周部から均等に10mm幅と、実施例1、2よりも外周部研削除去量を減らした。その後、実施例1と同様に、仮想温度設定処理と徐冷を行って、直径360mm、厚さ110mmの円柱状石英ガラス体を得、さらに、この石英ガラス体に水素分子を含有させた。
得られた円柱状石英ガラス体から実施例1と同様にサンプル切り出しを行い、かつ同様の物性評価、及びレーザー耐性評価を行った。その結果を表2に示す。
比較例1において作成した合成石英ガラス体は、成型後外周部の研削除去量が不十分であったため還元性欠陥が残留し、ArF初期吸収量が0.0008〜0.005/cmと場所によって強く観測された。石英ガラス体中の初期吸収の分布は、図3に示すように最外周部と中心部はほとんどなくその中間部に強い部位が存在するといった特徴的な分布形状をしていた。これは、不十分な外周部研削によって外周部に残留した還元性欠陥がその後の仮想温度設定工程における熱処理によって熱拡散し、最外層は外部に拡散除去されるものの、石英ガラス体の内部方向にも拡散した結果だと思われる。一旦、石英ガラス体内部にまで入った還元性欠陥はどれだけ熱処理を加えても除去されず、水素分子含有工程を経たあとでもこれは残留する。
また、この石英ガラス部材は、低エネルギー密度でのレーザー照射による屈折率変化についても、632.8nmにおける透過波面の変化量が0.6nm/cmと大きく検出された。これは還元性欠陥による初期吸収がコンパクションの寄与を強める作用があることが原因だと考えられる。
このように、この比較例2における石英ガラス部材のArF初期吸収量と屈折率変動ダメージは、本発明の構成要件を充足せず、高いレーザー耐性が要求される半導体露光装置用の石英ガラス部材として不適であることがわかった。
After the obtained quartz glass body was subjected to striae removal processing and molding processing in exactly the same manner as in Example 1, the outer peripheral grinding after molding was 5 mm from each of the upper and lower surfaces of the cylindrical quartz glass body and the outer peripheral portion. Therefore, the outer peripheral grinding removal amount was reduced more than that of Examples 1 and 2. Thereafter, in the same manner as in Example 1, a virtual temperature setting process and gradual cooling were performed to obtain a cylindrical quartz glass body having a diameter of 360 mm and a thickness of 110 mm. Further, hydrogen molecules were contained in the quartz glass body.
A sample was cut out from the obtained cylindrical quartz glass body in the same manner as in Example 1, and the same physical property evaluation and laser resistance evaluation were performed. The results are shown in Table 2.
The synthetic quartz glass body produced in Comparative Example 1 had a reducing defect remaining because the grinding removal amount of the outer peripheral portion after molding was insufficient, and the ArF initial absorption amount was 0.0008 to 0.005 / cm depending on the location. Strongly observed. As shown in FIG. 3, the distribution of initial absorption in the quartz glass body has a characteristic distribution shape in which there is almost no outermost peripheral portion and a central portion and a strong portion exists in the middle portion. This is because the reducing defects remaining on the outer peripheral portion due to insufficient outer peripheral grinding are thermally diffused by the heat treatment in the subsequent virtual temperature setting step, and the outermost layer is diffused and removed to the outside, but in the internal direction of the quartz glass body. It seems to be the result of spreading. Once the reductive defects that have entered the quartz glass body are not removed no matter how much heat treatment is applied, they remain even after the hydrogen molecule containing step.
Further, this quartz glass member was also detected to have a large change in transmitted wavefront at 632.8 nm of 0.6 nm / cm with respect to refractive index change due to laser irradiation at a low energy density. This is thought to be due to the fact that the initial absorption due to reducing defects has the effect of increasing the contribution of compaction.
As described above, the ArF initial absorption amount and the refractive index fluctuation damage of the quartz glass member in Comparative Example 2 do not satisfy the constituent requirements of the present invention, and as a quartz glass member for a semiconductor exposure apparatus that requires high laser resistance. It turned out to be inappropriate.

(比較例2)
実施例1と同様に、多孔質母材を作成したのち、脱水熱処理を行わず、1773Kで透明ガラスを行い、ガラス体を作成した。
得られた透明石英ガラスのOH基濃度は、実施例1よりも高い150wtよりもれい0欠陥がより生成され易く、る拡散除去のされ易さには、うppmであり、本発明の石英ガラス体の構成要件を充足しないものであった。
(Comparative Example 2)
In the same manner as in Example 1, after preparing a porous base material, a transparent glass was formed at 1773 K without performing a dehydration heat treatment to prepare a glass body.
The obtained transparent quartz glass has an OH group concentration of more than 150 wt% higher than that of Example 1 and is more likely to generate zero defects, and is easily diffused and removed. It did not meet the body requirements.

得られた石英ガラス体を実施例1,2と全く同様に脈理除去処理、成型処理、成型後の外周研削、仮想温度設定処理と徐冷を行って、直径330mm、厚さ100mmの円柱状石英ガラス体を得た。さらに、この石英ガラス体に実施例1と同様の条件で水素分子を含有させた。得られた円柱状石英ガラス体から実施例1と同様にサンプル切り出しを行い、かつ同様の物性評価、及びレーザー耐性評価を行った。それらの結果を表2に示す。
比較例2において作成した合成石英ガラス体は、OH濃度の絶対値が150wtppmと高いためにガラス体中のOH濃度分布は15wtppmと分布が強くなっていた。ガラス体中のOH濃度は屈折率、仮想温度、レーザー耐性などさまざまなガラス物性に影響することが知られており、OH濃度の分布はそれら特性のバラツキの原因となる。
また、この石英ガラス部材は、低エネルギー密度でのレーザー照射による屈折率変化において、632.8nmにおける透過波面の変化量が−1.0nm/cmと大きく観測された。これは、OH濃度とレーザーレアファクションには強い相関があることが知られており、OH濃度が高いことによってレーザーレアファクションの寄与が強まったためだと考えられる。
さらに、この石英ガラス部材の偏光誘起複屈折は0.6nm/cmと大きく観測された。これは、OH濃度と偏光誘起複屈折には強い正の相関があることが知られており、OH濃度が150ppmと本特許の規定範囲よりも高いことによって偏光誘起複屈折が0.3nm/cmを超えて悪化したためだと考えられる。
このように、この比較例2における石英ガラス部材は、OH濃度、OH濃度分布、屈折率変動ダメージ、偏光誘起複屈折において本発明の構成要件を充足せず、半導体露光装置用の石英ガラス部材として不適であることがわかった。
The obtained quartz glass body was subjected to striae removal processing, molding processing, peripheral grinding after molding, virtual temperature setting processing and slow cooling in exactly the same manner as in Examples 1 and 2, and a cylindrical shape having a diameter of 330 mm and a thickness of 100 mm. A quartz glass body was obtained. Furthermore, hydrogen molecules were contained in this quartz glass body under the same conditions as in Example 1. A sample was cut out from the obtained cylindrical quartz glass body in the same manner as in Example 1, and the same physical property evaluation and laser resistance evaluation were performed. The results are shown in Table 2.
The synthetic quartz glass body prepared in Comparative Example 2 had a strong OH concentration distribution of 15 wtppm because the absolute value of OH concentration was as high as 150 wtppm. It is known that the OH concentration in the glass body affects various glass properties such as refractive index, fictive temperature, and laser resistance, and the distribution of the OH concentration causes variations in these characteristics.
In addition, the quartz glass member was observed to have a large change in transmitted wavefront at 632.8 nm of -1.0 nm / cm when the refractive index was changed by laser irradiation at a low energy density. It is known that there is a strong correlation between the OH concentration and the laser rare faction, and it is considered that the contribution of the laser rare faction is strengthened by the high OH concentration.
Further, the polarization-induced birefringence of this quartz glass member was observed as large as 0.6 nm / cm. This is known to have a strong positive correlation between the OH concentration and the polarization-induced birefringence, and the polarization-induced birefringence is 0.3 nm / cm when the OH concentration is 150 ppm, which is higher than the specified range of this patent. It is thought that it was because it deteriorated beyond this.
Thus, the quartz glass member in Comparative Example 2 does not satisfy the constituent requirements of the present invention in terms of OH concentration, OH concentration distribution, refractive index fluctuation damage, and polarization-induced birefringence, and is used as a quartz glass member for a semiconductor exposure apparatus. It turned out to be inappropriate.

(比較例3)
脱水熱処理工程と透明ガラス化工程における処理条件を変更したこと以外は、実施例1とまったく同様の方法で合成石英ガラス部材を作成した。脱水熱処理工程では、多孔質石英ガラス母材をSiFを1.0容量%含有するHeガス中で、温度773Kで8時間熱処理その後、温度を保持したまま、10容量%の酸素を含有するHeガスで8時間熱処理を行った。冷却後、該多孔質石英ガラス母材を、真空中、1723Kで加熱し、透明ガラス化を行った。
得られた透明石英ガラスのOH基濃度は、実施例1よりもかなり低い3wtよりもれい0欠陥がより生成され易く、る拡散除去のされ易さには、うppmであり、本発明の石英ガラス体の構成要件を充足しないものであった。
(Comparative Example 3)
A synthetic quartz glass member was prepared in the same manner as in Example 1 except that the treatment conditions in the dehydration heat treatment step and the transparent vitrification step were changed. In the dehydration heat treatment step, the porous quartz glass base material is heat-treated at a temperature of 773 K for 8 hours in He gas containing 1.0% by volume of SiF 4, and then helium containing 10% by volume of oxygen while maintaining the temperature. Heat treatment was performed with gas for 8 hours. After cooling, the porous quartz glass base material was heated at 1723 K in vacuum to effect transparent vitrification.
The obtained transparent quartz glass has an OH group concentration of 3 ppm, which is considerably lower than that of Example 1 and is more likely to generate zero defects, and is easily diffused and removed. The constituent requirements of the glass body were not satisfied.

得られた石英ガラス体を実施例1と全く同様に脈理除去処理、成型処理、成型後の外周研削、仮想温度設定処理と徐冷を行って、直径330mm、厚さ100mmの円柱状石英ガラス体を得た。さらに、この石英ガラス体に実施例1と同様の条件で水素分子を含有させた。得られた円柱状石英ガラス体から実施例1と同様にサンプル切り出しを行い、かつ同様の物性評価、及びレーザー耐性評価を行った。それらの結果を表2に示す。
比較例3において作成した合成石英ガラス部材は、低エネルギー密度でのレーザー照射による屈折率変化において、632.8nmにおける透過波面の変化量が+0.6nm/cmと大きく観測された。これは、前述しているようにOH濃度とレーザーレアファクションには強い相関があることが知られており、OH濃度が3wtppmと低すぎるためにレーザーレアファクションの寄与が小さくなり、それに相反する特性であるコンパクションの寄与が相対的に強まったものと考えられる。このように比較例3における石英ガラス部材は、屈折率変動ダメージにおいて本発明の構成要件を充足せず、半導体露光装置用の石英ガラス部材として不適であることがわかった。
比較例1と比較例2から明らかなように、実際の露光装置での照射条件に近い、低エネルギー密度でのレーザー照射による屈折率変化という観点からは、OH濃度には多過ぎても少なすぎても適さず、本特許の構成要件である、5から100wtppmというOH濃度範囲がそれに好適な範囲となる。
The obtained quartz glass body was subjected to striae removal processing, molding processing, peripheral grinding after molding, virtual temperature setting processing and slow cooling in exactly the same manner as in Example 1, and cylindrical quartz glass having a diameter of 330 mm and a thickness of 100 mm. Got the body. Furthermore, hydrogen molecules were contained in this quartz glass body under the same conditions as in Example 1. A sample was cut out from the obtained cylindrical quartz glass body in the same manner as in Example 1, and the same physical property evaluation and laser resistance evaluation were performed. The results are shown in Table 2.
In the synthetic quartz glass member prepared in Comparative Example 3, the amount of change in the transmitted wavefront at 632.8 nm was observed as large as +0.6 nm / cm in the refractive index change due to laser irradiation at a low energy density. As described above, it is known that there is a strong correlation between the OH concentration and the laser rare faction. Since the OH concentration is too low, 3 wtppm, the contribution of the laser rare faction is small, and it is contrary to this. It is thought that the contribution of compaction, which is a characteristic to be achieved, is relatively strengthened. Thus, the quartz glass member in Comparative Example 3 did not satisfy the constituent requirements of the present invention in terms of refractive index fluctuation damage, and was found to be unsuitable as a quartz glass member for a semiconductor exposure apparatus.
As is clear from Comparative Example 1 and Comparative Example 2, from the viewpoint of refractive index change due to laser irradiation at a low energy density, which is close to the irradiation conditions in an actual exposure apparatus, the OH concentration is too much or too little. However, the OH concentration range of 5 to 100 wtppm, which is a constituent requirement of this patent, is a suitable range.

(比較例4)
実施例1と全く同様に、多孔質母材を作成し、脱水熱処理して透明ガラス体を作成した
得られた透明石英ガラスのOH基濃度は、実施例と同じ9よりもれい0欠陥がより生成され易く、る拡散除去のされ易さには、う0wtppmであった。これは本発明の石英ガラス体の構成要件を充足したものであった。
得られた石英ガラス体を実施例1と全く同様に脈理除去処理、成型処理、外周部研削除去、仮想温度設定処理を行い、直径330mm、厚さ100mmの円柱状石英ガラス体を得た。ただし、この比較例4ではその後の水素分子含有の処理は行わなかった。得られた円柱状石英ガラス体から実施例1と同様にサンプル切り出しを行い、かつ同様の物性評価、及びレーザー耐性評価を行った。それらの結果を表2に示す。
比較例4において作成した合成石英ガラス体は、ArF長期耐性が吸収量で0.075/cmとかなり悪い結果であった。石英ガラス中のH分子はエキシマレーザー耐性に極めて重要な役割を果たしている。すなわち、[0039]と[0040]で前述したように、エキシマレーザー照射による透過率低下は、石英ガラスのSi−O−Si構造が破壊されてSi・構造を持つE’センター呼ばれる常磁性欠陥が生成する。これは215nm近傍に強い吸収帯を有するため、これが透過率低下の原因となるわけだが、水素分子を含有させることにより生成したE’センターがSiHの構造に変化するため、結果として透過率低下を抑制する効果がある。この比較例4における石英ガラス部材では、水素含有処理を行っていないため、ArF長期耐性が悪化したものと考えられる。
また、この比較例4における石英ガラス部材は、低エネルギー密度でのレーザー照射による屈折率変化において、632.8nmにおける透過波面の変化量が+1.0nm/cmと大きく観測された。また、高エネルギー密度でのレーザー照射による屈折率変化特性においても、632.8nmにおける透過波面の変化量が5nm/cmと大きく観測された。石英ガラス中の水素濃度は、レーザーコンパクションとレーザーレアファクションにともに強く影響しており、コンパクションの生成を低減し、かつレアファクションは水素含有石英ガラスのみでみられる現象である。この比較例4における石英ガラス部材では、水素含有処理を行っていないため、コンパクションが大きく、かつレアファクションが発生しないため、さらに強いコンパクションが観測されたものと考えられる。
このように、この比較例4における石英ガラス部材は、ArF長期耐性、低エネルギー密度および高エネルギー密度でのレーザー照射による屈折率変化特性において本発明の構成要件を充足せず、半導体露光装置用の石英ガラス部材として不適であることがわかった。
(Comparative Example 4)
Exactly the same as in Example 1, the OH group concentration of the transparent quartz glass obtained by creating a porous base material and producing a transparent glass body by dehydration heat treatment is more than 0 defects as in Example 9. It was 0 wtppm in terms of ease of formation and diffusion removal. This satisfied the constituent requirements of the quartz glass body of the present invention.
The obtained quartz glass body was subjected to striae removal processing, molding processing, outer peripheral grinding removal, and virtual temperature setting processing in exactly the same manner as in Example 1 to obtain a cylindrical quartz glass body having a diameter of 330 mm and a thickness of 100 mm. However, in this comparative example 4, the subsequent treatment of containing hydrogen molecules was not performed. A sample was cut out from the obtained cylindrical quartz glass body in the same manner as in Example 1, and the same physical property evaluation and laser resistance evaluation were performed. The results are shown in Table 2.
The synthetic quartz glass body produced in Comparative Example 4 had a considerably poor ArF long-term resistance of 0.075 / cm in absorption. H 2 molecules in quartz glass play an extremely important role in excimer laser resistance. That is, as described above in [0039] and [0040], the decrease in transmittance due to the excimer laser irradiation is caused by the paramagnetic defect called E ′ center having Si · structure due to destruction of the Si—O—Si structure of quartz glass. Generate. This has a strong absorption band in the vicinity of 215 nm, and this causes a decrease in transmittance. However, since the E ′ center generated by containing hydrogen molecules changes to a SiH structure, the transmittance decreases as a result. There is an inhibitory effect. The quartz glass member in Comparative Example 4 is considered to have deteriorated ArF long-term resistance because no hydrogen-containing treatment was performed.
Further, in the quartz glass member in Comparative Example 4, the change in the transmitted wavefront at 632.8 nm was observed to be as large as +1.0 nm / cm when the refractive index was changed by laser irradiation at a low energy density. Also, in the refractive index change characteristic by laser irradiation at a high energy density, the amount of change of the transmitted wavefront at 632.8 nm was observed as large as 5 nm / cm. The hydrogen concentration in quartz glass has a strong influence on both laser compaction and laser rarefaction, reducing the generation of compaction, and rarefaction is a phenomenon seen only in hydrogen-containing quartz glass. In the quartz glass member in Comparative Example 4, since the hydrogen-containing treatment was not performed, compaction was large, and no rare faction was generated. Therefore, it is considered that stronger compaction was observed.
As described above, the quartz glass member in Comparative Example 4 does not satisfy the constituent requirements of the present invention in terms of ArF long-term durability, low energy density, and refractive index change characteristics due to laser irradiation at high energy density. It was found to be unsuitable as a quartz glass member.

(比較例5)
実施例1と全く同様に、多孔質母材を作成し、脱水熱処理して透明ガラス体を作成した。
得られた透明石英ガラスのOH基濃度は、実施例と同じ9よりもれい0欠陥がより生成され易く、る拡散除去のされ易さには、う0wtppmであった。これは本発明の石英ガラス体の構成要件を充足したものであった。
得られた石英ガラス体を、仮想温度設定の熱処理を行わなかった以外は、実施例1と全く同様の処理を行って円柱状石英ガラス体を得た。得られた円柱状石英ガラス体から実施例1と同様にサンプル切り出しを行い、かつ同様の物性評価、及びレーザー耐性評価を行った。それらの結果を表2に示す。
比較例5において作成した合成石英ガラス体は、熱処理を行わなかったために、その仮想温度が1443Kと高くなっていた。また、仮想温度はガラスの構造安定性に関連しこれがレーザー耐性にも影響するために、ArF長期耐性が吸収量で0.012/cm、ArF初期吸収が0.0045/cmと悪い結果となった。
このように、この比較例5における石英ガラス部材は、仮想温度、ArF長期耐性、ArF初期吸収において本発明の構成要件を充足せず、半導体露光装置用の石英ガラス部材として不適であることがわかった。


表1
表2
(Comparative Example 5)
In the same manner as in Example 1, a porous base material was prepared and subjected to dehydration heat treatment to prepare a transparent glass body.
The transparent quartz glass obtained had an OH group concentration of 0 wtppm, which is more likely to generate zero defects than the same 9 as in the Examples, and to be easily removed by diffusion. This satisfied the constituent requirements of the quartz glass body of the present invention.
The obtained quartz glass body was treated in exactly the same way as in Example 1 except that the fictive temperature setting heat treatment was not performed to obtain a cylindrical quartz glass body. A sample was cut out from the obtained cylindrical quartz glass body in the same manner as in Example 1, and the same physical property evaluation and laser resistance evaluation were performed. The results are shown in Table 2.
Since the synthetic quartz glass body produced in Comparative Example 5 was not heat-treated, its fictive temperature was as high as 1443K. In addition, the fictive temperature is related to the structural stability of the glass and this also affects the laser resistance. Therefore, the ArF long-term resistance is 0.012 / cm in terms of absorption, and the ArF initial absorption is 0.0045 / cm. It was.
Thus, it turns out that the quartz glass member in this comparative example 5 does not satisfy the constituent requirements of the present invention in the fictive temperature, ArF long-term durability, and ArF initial absorption, and is unsuitable as a quartz glass member for a semiconductor exposure apparatus. It was.


Table 1
Table 2

本発明は、ArF、KrF等のエキシマレーザーを照射したときに、半導体露光装置用の各種光学材料として好適に使用できる耐レーザー性の高い光学用合成石英ガラス部材及びその製造方法を提供することが目的である。具体的には、エキシマレーザーを照射したときに、実質的に紫外線透過率の低下や、コンパクション、レアファクション、偏光誘起複屈折による透過波面の変化を生じない光学用合成石英ガラス部材及びその製造方法を提供するものである。特に、露光装置用レンズ材料として用いられるような円柱状石英ガラス体の製造工程において、還元性欠陥の残留を効果的に抑制することができるようになった。 The present invention provides an optical synthetic quartz glass member with high laser resistance that can be suitably used as various optical materials for a semiconductor exposure apparatus when irradiated with an excimer laser such as ArF or KrF, and a method for producing the same. Is the purpose. Specifically, a synthetic quartz glass member for optical use that does not substantially cause a decrease in ultraviolet transmittance, a compaction, a rare faction, or a transmitted wavefront change due to polarization-induced birefringence when irradiated with an excimer laser, and its manufacture A method is provided. In particular, in the manufacturing process of a cylindrical quartz glass body used as a lens material for an exposure apparatus, it has become possible to effectively suppress the reduction defects.

円柱状に成型後の石英ガラス体における、還元性欠陥の分布を表す模式図を示す。成型後の石英ガラス体を径方向中心で縦割りしたときの断面図であり、濃色部ほど還元性欠陥が多いことを表す。The schematic diagram showing the distribution of the reducing defect in the quartz glass body molded into a columnar shape is shown. It is sectional drawing when the quartz glass body after shaping | molding is vertically divided by the radial direction center, and it represents that there are many reducing defects, so that a dark color part. 比較例1の石英ガラス体における、還元性欠陥の分布を表す模式図を示す。アニール後の石英ガラス体を径方向中心で縦割りしたときの断面図であり、濃色部ほど還元性欠陥が多いことを表す。The schematic diagram showing the distribution of a reducing defect in the quartz glass body of the comparative example 1 is shown. It is sectional drawing when the quartz glass body after annealing is divided vertically by the center in the radial direction, and the darker colored portion indicates that there are more reducing defects.

Claims (10)

下記a)からh)の各工程を含む光学用合成石英ガラス部材の製造方法。
a)揮発性珪素化合物を酸水素火炎により加水分解し、生成する微粒子シリカを耐熱性基体上に堆積させて多孔質母材を作成する工程、
b)該多孔質母材を真空、または不活性ガス含有雰囲気中にて脱水熱処理する工程、
c)該脱水熱処理した多孔質母材を加熱して透明な石英ガラス体を得る工程、
d)該透明石英ガラス体を火炎加熱により帯状熔融回転攪拌処理して、脈理を除去する工程、
e)該脈理が除去された石英ガラス体を、円柱状に成型する工程、
f)該円柱状に成型された石英ガラス体の上下面、及び外周面を研削除去することによって、前記d工程で石英ガラス体に導入された還元性欠陥の存在する外層を取り除く工程、
g)該外層研削除去された石英ガラス体を、徐冷点以上の温度に一旦保持した後徐冷することにより仮想温度を1373K以下に設定する工程、および
h)該仮想温度を設定された透明石英ガラス体を、水素ガス含有雰囲気中で、圧力を0.0098MPa〜0.98MPaの範囲で、かつ、723K以下の温度で熱処理を施し、水素分子を含有させる工程。
The manufacturing method of the synthetic quartz glass member for optics including each process of following a) to h).
a) a step of hydrolyzing a volatile silicon compound with an oxyhydrogen flame, and depositing fine particle silica to be produced on a heat-resistant substrate to form a porous base material;
b) a step of subjecting the porous base material to a dehydration heat treatment in a vacuum or an inert gas-containing atmosphere;
c) a step of heating the porous base material subjected to the dehydration heat treatment to obtain a transparent quartz glass body;
d) a step of removing the striae by subjecting the transparent quartz glass body to a band-like melt-rotation stirring process by flame heating;
e) a step of molding the quartz glass body from which the striae has been removed into a cylindrical shape;
f) A step of removing the outer layer where the reducing defects introduced into the quartz glass body in the step d are removed by grinding and removing the upper and lower surfaces and the outer peripheral surface of the quartz glass body molded into the columnar shape,
g) The step of setting the fictive temperature to 1373 K or less by temporarily cooling the quartz glass body that has been ground and removed to a temperature equal to or higher than the annealing point and then cooling it, and h) the transparent in which the fictive temperature is set A step of heat-treating the quartz glass body in a hydrogen gas-containing atmosphere at a pressure of 0.0098 MPa to 0.98 MPa and a temperature of 723 K or less to contain hydrogen molecules.
前記f工程において、円柱状石英ガラス体の上面と下面それぞれからその高さの8%以上、かつ円柱状石英ガラス体の外周部からその直径の5%以上の幅で均等に取り除く、請求項1に記載の光学用合成石英ガラス部材の製造方法。 2. In the step f, the cylindrical quartz glass body is uniformly removed with a width of 8% or more of its height from each of the upper and lower surfaces of the cylindrical quartz glass body and a width of 5% or more of its diameter from the outer peripheral portion of the cylindrical quartz glass body. The manufacturing method of the synthetic quartz glass member for optics as described in 2. 請求項1または2に記載の製造方法によって製造された、光学用合成石英ガラス部材。 An optical synthetic quartz glass member produced by the production method according to claim 1. OH基の量が5wtppmを超えて100wtppm以下の範囲であり、石英ガラス中のOH基の最大値と最小値の差が10wtppm以内、水素分子を0.2×1017〜20×1017(分子数/cm)含有し、仮想温度が1373K以下である、請求項3に記載の光学用合成石英ガラス部材。 The amount of OH groups is in the range of more than 5 wtppm and not more than 100 wtppm, the difference between the maximum value and the minimum value of OH groups in quartz glass is within 10 wtppm, and hydrogen molecules are 0.2 × 10 17 to 20 × 10 17 (molecules The optical synthetic quartz glass member according to claim 3, which contains a few / cm 3 ) and has a fictive temperature of 1373 K or less. ArFエキシマレーザーを1パルスあたりのエネルギー密度20mJ/cm・pulse、周波数200Hzで100,000パルス照射したときの波長215nmでの吸光度低下量が0.003(/cm)以下である請求項3または4に記載の光学用合成石英ガラス部材。 The amount of decrease in absorbance at a wavelength of 215 nm when an ArF excimer laser is irradiated with an energy density of 20 mJ / cm 2 · pulse per pulse at a frequency of 200 Hz at a wavelength of 215 nm is 0.003 (/ cm) or less. 5. A synthetic quartz glass member for optical use according to 4. ArFエキシマレーザーを1パルスあたりのエネルギー密度20mJ/cm・pulse、周波数200Hzで10,000,000パルス照射したときの波長215nmでの吸光度低下量が0.01(/cm)以下である請求項3または4に記載の光学用合成石英ガラス部材。 The amount of decrease in absorbance at a wavelength of 215 nm when an ArF excimer laser is irradiated with 10,000,000 pulses at an energy density of 20 mJ / cm 2 · pulse and a frequency of 200 Hz per pulse is 0.01 (/ cm) or less. 5. A synthetic quartz glass member for optical use according to 3 or 4. ArFエキシマレーザーを、1パルスあたりのエネルギー密度が10mJ/cm・pulse、周波数2000Hzで1×10パルス照射した時の632.8nmにおける透過波面の変化量が厚さ1cmあたり0〜+4nmの範囲内である請求項3〜6のいずれかに記載の光学用合成石英ガラス部材。 When the ArF excimer laser is irradiated with 1 × 10 7 pulses at an energy density of 10 mJ / cm 2 · pulse and a frequency of 2000 Hz, the amount of change in transmitted wavefront at 632.8 nm is in the range of 0 to +4 nm per 1 cm thickness. The optical synthetic quartz glass member according to any one of claims 3 to 6. ArFエキシマレーザーを、1パルスあたりのエネルギー密度が0.05mJ/cm・pulse以下、周波数2000Hzで4×1010パルス照射した時の632.8nmにおける透過波面の変化量が厚さ1cmあたり−0.5〜+0.5nmの範囲内である請求項3〜6のいずれかに記載の光学用合成石英ガラス部材。 When an ArF excimer laser is irradiated with 4 × 10 10 pulses at an energy density of 0.05 mJ / cm 2 · pulse or less at a frequency of 2000 Hz, the amount of change in transmitted wavefront at 632.8 nm is −0 per 1 cm thickness. The optical synthetic quartz glass member according to any one of claims 3 to 6, which is in a range of 0.5 to +0.5 nm. ArFエキシマレーザーを、1パルスあたりのエネルギー密度が0.05mJ/cm・pulse、周波数2000Hzで4×1010パルス照射した時に生じる照射部分の中央における複屈折変化量が0.3nm/cm以下である請求項3〜8のいずれかに記載の光学用合成石英ガラス部材。 When the ArF excimer laser is irradiated with 4 × 10 10 pulses at an energy density of 0.05 mJ / cm 2 · pulse and a frequency of 2000 Hz, the birefringence change amount at the center of the irradiated portion is 0.3 nm / cm or less. The optical synthetic quartz glass member according to any one of claims 3 to 8. 仮想温度が1323K以下である請求項4〜9のいずれかに記載の光学用合成石英ガラス部材。 The fictive temperature is 1323K or less, The optical synthetic quartz glass member according to any one of claims 4 to 9.
JP2008331787A 2008-12-26 2008-12-26 Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member Active JP5199862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331787A JP5199862B2 (en) 2008-12-26 2008-12-26 Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331787A JP5199862B2 (en) 2008-12-26 2008-12-26 Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member

Publications (2)

Publication Number Publication Date
JP2010150097A true JP2010150097A (en) 2010-07-08
JP5199862B2 JP5199862B2 (en) 2013-05-15

Family

ID=42569614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331787A Active JP5199862B2 (en) 2008-12-26 2008-12-26 Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member

Country Status (1)

Country Link
JP (1) JP5199862B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088815A (en) * 2009-10-21 2011-05-06 Corning Inc Synthetic silica glass with uniform fictive temperature
US9769913B2 (en) 2013-02-01 2017-09-19 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Burst-laser generator using an optical resonator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324538A (en) * 1997-05-20 1998-12-08 Shinetsu Quartz Prod Co Ltd Synthetic silica glass optical material for high output vacuum ultraviolet ray and its production
JP2003221245A (en) * 2002-01-31 2003-08-05 Shinetsu Quartz Prod Co Ltd SYNTHETIC QUARTZ GLASS MATERIAL FOR ArF PHOTOLITHOGRAPHY DEVICE
JP2004123420A (en) * 2002-09-30 2004-04-22 Shinetsu Quartz Prod Co Ltd Synthetic silica glass member for optical use and its manufacturing process
JP2005098812A (en) * 2003-09-24 2005-04-14 Shinetsu Quartz Prod Co Ltd Method for selecting silica glass, and optical silica glass member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324538A (en) * 1997-05-20 1998-12-08 Shinetsu Quartz Prod Co Ltd Synthetic silica glass optical material for high output vacuum ultraviolet ray and its production
JP2003221245A (en) * 2002-01-31 2003-08-05 Shinetsu Quartz Prod Co Ltd SYNTHETIC QUARTZ GLASS MATERIAL FOR ArF PHOTOLITHOGRAPHY DEVICE
JP2004123420A (en) * 2002-09-30 2004-04-22 Shinetsu Quartz Prod Co Ltd Synthetic silica glass member for optical use and its manufacturing process
JP2005098812A (en) * 2003-09-24 2005-04-14 Shinetsu Quartz Prod Co Ltd Method for selecting silica glass, and optical silica glass member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088815A (en) * 2009-10-21 2011-05-06 Corning Inc Synthetic silica glass with uniform fictive temperature
US9769913B2 (en) 2013-02-01 2017-09-19 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Burst-laser generator using an optical resonator

Also Published As

Publication number Publication date
JP5199862B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP4874700B2 (en) Quartz glass optical member, method for producing the optical member and use thereof
JP4889230B2 (en) Quartz glass optical element, method for producing this optical element and use thereof
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
US8541326B2 (en) Optical member for deep ultraviolet and process for producing same
WO2006071936A2 (en) High refractive index homogeneity fused silica glass and method of making same
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
US7312170B2 (en) Optical synthetic quartz glass and method for producing the same
JP4104338B2 (en) Synthetic quartz glass material for ArF exposure equipment
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
WO2005105685A1 (en) Optical member made of synthetic quartz glass, and process for its production
JP4437886B2 (en) Quartz glass blank for optical members and use thereof
JP5199862B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
EP1219571B1 (en) process for producing a synthetic quartz glass article
JP2003238195A (en) Synthetic quartz glass member
JP2003176143A (en) Synthetic quartz glass
JP4177078B2 (en) Synthetic quartz glass material for optical components
JP4159852B2 (en) Synthetic quartz glass material for optical components
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2002255577A (en) Synthetic quartz glass member and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250