JP2010149168A - Method for producing copper alloy ingot, and method for adding active element - Google Patents

Method for producing copper alloy ingot, and method for adding active element Download PDF

Info

Publication number
JP2010149168A
JP2010149168A JP2008332193A JP2008332193A JP2010149168A JP 2010149168 A JP2010149168 A JP 2010149168A JP 2008332193 A JP2008332193 A JP 2008332193A JP 2008332193 A JP2008332193 A JP 2008332193A JP 2010149168 A JP2010149168 A JP 2010149168A
Authority
JP
Japan
Prior art keywords
active element
copper alloy
alloy ingot
additive
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332193A
Other languages
Japanese (ja)
Other versions
JP5157889B2 (en
Inventor
Takuya Nakata
卓哉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008332193A priority Critical patent/JP5157889B2/en
Publication of JP2010149168A publication Critical patent/JP2010149168A/en
Application granted granted Critical
Publication of JP5157889B2 publication Critical patent/JP5157889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a copper alloy ingot which can suitably add active elements to a copper alloy, and to provide a method for adding active elements. <P>SOLUTION: The method for producing the copper alloy ingot comprises: a first active element addition step where a first active element addition material containing an active element is added to a melting furnace containing the molten metal of the main raw material of a copper alloy ingot in the air to form a molten metal containing the active element; a tapping step where the molten metal containing the active element is tapped from the melting furnace to a tundish; and a second active element addition step where a second active element addition material containing an active element is added to the molten metal containing the active element tapped into the tundish in the air. The first active element addition material and the second active element addition material each contain melting point reduction elements making the melting points of the first active element addition material and the second active element addition material lower than the melting points of the single substances of the active elements, and oxidation inhibition elements inhibiting the oxidation of the active elements. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、銅合金鋳塊の製造方法、及び活性元素の添加方法に関する。特に、本発明は、活性元素を添加する銅合金鋳塊の製造方法、及び活性元素の添加方法に関する。   The present invention relates to a method for producing a copper alloy ingot and a method for adding an active element. In particular, the present invention relates to a method for producing a copper alloy ingot to which an active element is added and a method for adding the active element.

コネクター、リードフレーム等を構成する導電材料として、電気導電性、熱伝導性等に優れた銅合金が利用されている。近年、電子部品の小型化に伴い、銅合金の強度の向上、及び導電性の向上が更に求められている。例えば、銅合金の機能を向上させることを目的として、銅合金に活性元素を添加した銅合金の開発が進められている。   As a conductive material constituting a connector, a lead frame, etc., a copper alloy having excellent electrical conductivity, thermal conductivity, etc. is used. In recent years, with the miniaturization of electronic components, further improvements in the strength and electrical conductivity of copper alloys have been demanded. For example, for the purpose of improving the function of a copper alloy, development of a copper alloy in which an active element is added to the copper alloy is being developed.

従来、溶解炉で溶解した銅の溶湯を所定の温度に調整して、この溶湯を溶解炉の出湯口から鋳型の入り口までの溶湯経路に流すと共に、溶湯経路の所定の位置に、銅又は銅を除く非活性元素で被覆した活性元素からなるワイヤーを連続的に導入することにより活性元素が添加された銅合金を鋳造する鋳造方法が知られている(例えば、特許文献1参照)。   Conventionally, a molten copper melted in a melting furnace is adjusted to a predetermined temperature, and this molten metal is passed through the molten metal path from the outlet of the melting furnace to the inlet of the mold, and at a predetermined position in the molten metal path, copper or copper There is known a casting method for casting a copper alloy to which an active element is added by continuously introducing a wire made of an active element coated with an inactive element except for (see, for example, Patent Document 1).

特許文献1に記載の銅合金の鋳造方法によれば、活性元素を溶解炉内に直接には添加しないので、大気中において活性元素を溶湯に添加して溶解しても活性元素の酸化を抑制できる。   According to the copper alloy casting method described in Patent Document 1, the active element is not added directly into the melting furnace, so that the oxidation of the active element is suppressed even if the active element is added to the molten metal and dissolved in the atmosphere. it can.

特開2000−317580号公報JP 2000-317580 A

しかし、特許文献1に記載の銅合金の鋳造方法は、溶解炉から出湯した溶湯の温度は溶解炉中の溶湯の温度より低下しているので、添加した活性元素の溶け残りが発生して、溶け残りが出湯ノズルに詰まること等に起因して、鋳造停止等の不具合が発生する場合がある。   However, in the copper alloy casting method described in Patent Document 1, the temperature of the molten metal discharged from the melting furnace is lower than the temperature of the molten metal in the melting furnace. Due to clogging of unmelted residue in the hot water nozzle, problems such as casting stoppage may occur.

したがって、本発明の目的は、活性元素を銅合金に適切に添加できる銅合金鋳塊の製造方法、及び活性元素の添加方法を提供することにある。   Therefore, the objective of this invention is providing the manufacturing method of the copper alloy ingot which can add an active element appropriately to a copper alloy, and the addition method of an active element.

本発明は、上記目的を達成するため、銅合金鋳塊の主原料の溶湯を大気中において有する溶解炉に、活性元素を含む第1の活性元素添加材を添加して、活性元素を含有する溶湯を形成する第1の活性元素添加工程と、活性元素を含有する溶湯を溶解炉からタンディッシュへ出湯する出湯工程と、タンディッシュに出湯された活性元素を含有する溶湯に、活性元素を含む第2の活性元素添加材を大気中で添加する第2の活性元素添加工程とを備え、第1の活性元素添加材、及び第2の活性元素添加材はそれぞれ、活性元素単体の融点より第1の活性元素添加材及び第2の活性元素添加材の融点を低くする融点降下元素と、活性元素の酸化を抑制する酸化抑制元素とを含む銅合金鋳塊の製造方法が提供される。   In order to achieve the above object, the present invention adds a first active element additive containing an active element to a melting furnace having a molten metal as a main raw material of a copper alloy ingot in the atmosphere, and contains the active element. The first active element adding step for forming the molten metal, the hot water discharging step for discharging the molten metal containing the active element from the melting furnace to the tundish, and the molten metal containing the active element discharged in the tundish include the active element. A second active element addition step of adding the second active element additive in the atmosphere, and each of the first active element additive and the second active element additive is higher than the melting point of the active element alone. There is provided a method for producing a copper alloy ingot including a melting point lowering element that lowers the melting point of one active element additive and a second active element additive, and an oxidation inhibiting element that suppresses oxidation of the active element.

また、上記銅合金鋳塊の製造方法は、活性元素は、Mgであり、融点降下元素は、Cuであり、酸化抑制元素は、Caであってもよい。   In the method for producing a copper alloy ingot, the active element may be Mg, the melting point lowering element may be Cu, and the oxidation inhibiting element may be Ca.

また、上記銅合金鋳塊の製造方法は、第1の活性元素添加材、及び第2の活性元素添加材はそれぞれMg合金であり、Mg合金は、15質量%以上50質量%以下のCuと、1質量%以上5質量%以下のCaと、残部がMg及び不可避的不純物とからなっていてもよい。   Further, in the method for producing a copper alloy ingot, the first active element additive and the second active element additive are each Mg alloys, and the Mg alloy is composed of 15 mass% or more and 50 mass% or less of Cu. 1 mass% or more and 5 mass% or less of Ca, and the remainder may consist of Mg and inevitable impurities.

また、上記銅合金鋳塊の製造方法は、製造する銅合金鋳塊に含まれる活性元素の量を目標量とした場合に、第1の活性元素添加工程は、目標量のa%となる量の活性元素を含む第1の活性元素添加材を添加し、第2の活性元素添加工程は、目標量のb%以下となる量の活性元素を含む第2の活性元素添加材を添加し、aとbとは、b=100−a(但し、20≦a≦40)を満たしてもよい。   Moreover, the manufacturing method of the said copper alloy ingot WHEREIN: When the quantity of the active element contained in the copper alloy ingot to manufacture is made into a target quantity, the 1st active element addition process is the quantity used as a% of a target quantity The first active element additive containing the active element is added, and the second active element adding step adds the second active element additive containing the active element in an amount of b% or less of the target amount, a and b may satisfy b = 100−a (20 ≦ a ≦ 40).

また、上記銅合金鋳塊の製造方法は、第1の活性元素添加材は、合金塊であり、第2の活性元素添加材は、線材であってもよい。   In the method for producing a copper alloy ingot, the first active element additive may be an alloy ingot, and the second active element additive may be a wire.

また、上記銅合金鋳塊の製造方法は、線材は、直径3.0mm以下の線径を有していてもよい。   Moreover, as for the manufacturing method of the said copper alloy ingot, the wire may have a wire diameter of 3.0 mm or less in diameter.

また、本発明は、上記目的を達成するため、銅合金鋳塊の主原料が溶解した主原料の溶湯を大気中において保持する溶解炉に、活性元素を含む第1の活性元素添加材を添加して、活性元素を含有する溶湯を形成する第1の活性元素添加工程と、活性元素を含有する溶湯を溶解炉からタンディッシュへ出湯し、タンディッシュに出湯された活性元素を含有する溶湯に、活性元素を含む第2の活性元素添加材を大気中で添加する第2の活性元素添加工程とを備え、第1の活性元素添加材、及び第2の活性元素添加材はそれぞれ、活性元素単体の融点より第1の活性元素添加材及び第2の活性元素添加材の融点を低くする融点降下材と、活性元素の酸化を抑制する酸化抑制材とを含む活性元素の添加方法が提供される。   In order to achieve the above object, the present invention adds a first active element additive containing an active element to a melting furnace that holds in the atmosphere a melt of the main raw material in which the main raw material of the copper alloy ingot is melted. Then, the first active element addition step for forming the molten metal containing the active element, the molten metal containing the active element is discharged from the melting furnace to the tundish, and the molten metal containing the active element discharged from the tundish is obtained. A second active element addition step of adding a second active element additive containing an active element in the atmosphere, wherein the first active element additive and the second active element additive are respectively active elements An active element addition method is provided that includes a melting point lowering material that lowers the melting point of the first active element additive and the second active element additive than the melting point of the simple substance, and an oxidation inhibitor that suppresses oxidation of the active element. The

本発明に係る銅合金鋳塊の製造方法、及び活性元素の添加方法によれば、活性元素を銅合金に適切に添加できる銅合金鋳塊の製造方法、及び活性元素の添加方法を提供できる。   According to the method for producing a copper alloy ingot and the method for adding an active element according to the present invention, it is possible to provide a method for producing a copper alloy ingot capable of appropriately adding an active element to a copper alloy and a method for adding an active element.

[実施の形態]
図1は、本実施の形態に係る銅合金鋳塊の製造の流れの一例を示す。
[Embodiment]
FIG. 1 shows an example of the flow of manufacturing a copper alloy ingot according to the present embodiment.

まず、溶解炉に銅合金鋳塊を構成する主原料を投入して、主原料に熱を加えることにより大気中にて主原料を溶解する。これにより、主原料が溶解した主原料の溶湯が形成される(主原料溶解工程:ステップ10。以下、ステップを「S」と称する)。ここで、本実施の形態での主原料とは、銅合金鋳塊を構成する元素を含む金属材料であって、例えば、銅合金リサイクル材、電気銅、ニッケル原料、シリコン原料、鉄原料、亜鉛原料、リン原料等を含む金属材料であって、後述する活性元素を含有する材料を実質的に含まない金属材料(不可避的に極微量の活性元素が含まれることは排除しない)をいう。   First, the main raw material which comprises a copper alloy ingot is thrown into a melting furnace, and a main raw material is melt | dissolved in air | atmosphere by applying heat to a main raw material. As a result, a melt of the main raw material in which the main raw material is dissolved is formed (main raw material melting step: step 10; hereinafter, step is referred to as “S”). Here, the main raw material in the present embodiment is a metal material containing an element constituting the copper alloy ingot, for example, copper alloy recycled material, electrolytic copper, nickel raw material, silicon raw material, iron raw material, zinc It is a metal material containing a raw material, a phosphorus raw material, etc., and is a metal material that does not substantially contain a material containing an active element to be described later (it is not excluded that a trace amount of an active element is inevitably included).

続いて、大気中にて、主原料の溶湯を有する溶解炉に被覆材料を添加して、主原料の溶湯と大気とが直接に接触することを防止する被覆層を形成する(被覆工程:S20)。被覆材料としては、炭素を主成分とする材料を用いることができ、例えば、木炭、カーボン粉末、デサルコ(コークスの一種)等を用いることができる。   Subsequently, a coating material is added to the melting furnace having the main raw material melt in the atmosphere to form a coating layer that prevents the main raw material melt from directly contacting the air (coating step: S20). ). As the coating material, a material mainly composed of carbon can be used. For example, charcoal, carbon powder, desalco (a kind of coke), or the like can be used.

次に、被覆層で表面が被覆された主原料の溶湯中に、活性元素を含有する第1の活性元素添加材としての合金材料を大気中において添加する(第1の活性元素添加工程:S30)。これにより、溶解炉は、活性元素を含有する溶湯を有することになる。ここで、活性元素は、例えば、Mg、Ti、Zr、Cr、Al、Si、及びFeからなる群から選択される少なくとも1種類の活性元素である。本実施の形態においては、銅に添加した場合に銅合金の結晶組織を微細化すると共に、銅合金の熱間加工性を向上させ、活性元素の添加濃度に対する銅合金の導電率の低下が少ない元素であるMgを用いることが好ましい。   Next, an alloy material as a first active element additive containing an active element is added in the atmosphere to the molten main material whose surface is coated with a coating layer (first active element addition step: S30). ). Thereby, a melting furnace has a molten metal containing an active element. Here, the active element is at least one active element selected from the group consisting of Mg, Ti, Zr, Cr, Al, Si, and Fe, for example. In this embodiment, when added to copper, the crystal structure of the copper alloy is refined, the hot workability of the copper alloy is improved, and the conductivity of the copper alloy is less decreased with respect to the concentration of the active element added. It is preferable to use Mg which is an element.

また、第1の活性元素添加材としての合金材料は、活性元素単体の融点より第1の活性元素添加材の融点を低くする融点降下元素と、活性元素の酸化を抑制する酸化抑制元素とを含んで形成される。融点降下元素としては、例えば、Cu、Fe、Al等が挙げられる。本実施の形態では、銅合金鋳塊を製造するので、Cuを用いることが好ましい。また、酸化抑制元素としては、活性元素より酸化しやすい元素を用いることができ、例えば、Caを用いることができる。また、第1の活性元素添加材は、塊状に形成することができる。   The alloy material as the first active element additive includes a melting point lowering element that lowers the melting point of the first active element additive than the melting point of the active element alone, and an oxidation inhibitory element that suppresses the oxidation of the active element. It is formed including. Examples of the melting point lowering element include Cu, Fe, Al and the like. In the present embodiment, since a copper alloy ingot is manufactured, it is preferable to use Cu. In addition, as the oxidation inhibiting element, an element that is more easily oxidized than the active element can be used, and for example, Ca can be used. Further, the first active element additive can be formed in a lump shape.

一例として、第1の活性元素添加材は、塊状のMg−Cu−Ca合金塊であって、この合金塊は、15質量%以上50質量%以下のCuと、1質量%以上5質量%以下のCaと、残部がMg及び不可避的不純物とからなる。この合金塊は、Mgに対して15質量%以上50質量%以下の融点降下元素としてのCuを含んでいるので、Mg単体の融点(Mgの融点:650℃)よりも低い融点を有する。なお、Mg−Cu−Ca合金塊のCuの含有量が15質量%から50質量%の範囲で変化すると、Mg−Cu−Ca合金塊の融点は485℃(Cuの含有量が15質量%のときの融点)から650℃未満程度(Cuの含有量が50質量%のときの融点)までの間で変化する。すなわち、Mg−Cu−Ca合金塊のCuの含有量が50質量%から15質量%になると、Mg−Cu−Ca合金塊の融点は、Cuの含有量が50質量%の場合の融点(650℃未満程度)からCuの含有量が15質量%の場合の融点(485℃)まで低下する。   As an example, the first active element additive is a massive Mg—Cu—Ca alloy lump, which is 15% by mass to 50% by mass Cu and 1% by mass to 5% by mass. Ca and the balance are Mg and inevitable impurities. Since this alloy lump contains Cu as a melting point lowering element of 15 mass% or more and 50 mass% or less with respect to Mg, it has a melting point lower than the melting point of Mg alone (Mg melting point: 650 ° C.). Note that when the Cu content of the Mg—Cu—Ca alloy ingot changes within a range of 15% by mass to 50% by mass, the melting point of the Mg—Cu—Ca alloy ingot is 485 ° C. (the Cu content is 15% by mass). The melting point when the Cu content is 50% by mass). That is, when the Cu content of the Mg—Cu—Ca alloy lump is changed from 50% by mass to 15% by mass, the melting point of the Mg—Cu—Ca alloy lump is the melting point (650 when the Cu content is 50% by mass). Lower than the melting point (485 ° C.) when the Cu content is 15 mass%.

また、この合金塊は、酸化抑制元素としてのCaを含んでいる。したがって、溶湯にMg−Cu−Ca合金塊を添加した場合に、Caが犠牲的に酸化することによりMgが爆発的に酸化することが抑制される。これにより、Mgの爆発的な酸化に伴う火花の発生が抑制される。   Moreover, this alloy lump contains Ca as an oxidation inhibiting element. Therefore, when an Mg—Cu—Ca alloy lump is added to the molten metal, it is suppressed that Mg is explosively oxidized due to sacrificial oxidation of Ca. Thereby, generation | occurrence | production of the spark accompanying explosive oxidation of Mg is suppressed.

続いて、第1の活性元素添加材を含有する溶湯をタンディッシュに出湯する(出湯工程:S40)。そして、タンディッシュに出湯された第1の活性元素添加材を含有する溶湯の表面を被覆材料で被覆する。この状態で、第1の活性元素添加材を含有する溶湯を予め定められた時間、保持する(保持工程:S50)。保持工程での被覆材料は、例えば、木炭、カーボン粉末、デサルコ(コークスの一種)等を用いることができる。   Subsequently, the molten metal containing the first active element additive is poured out into the tundish (pour-out step: S40). Then, the surface of the molten metal containing the first active element additive discharged from the tundish is coated with a coating material. In this state, the molten metal containing the first active element additive is held for a predetermined time (holding step: S50). As the coating material in the holding step, for example, charcoal, carbon powder, desalco (a kind of coke) or the like can be used.

次に、第1の活性元素添加材を含有する溶湯に、第2の活性元素添加材を大気中で連続的に添加する(第2の活性元素添加工程:S60)。第2の活性元素添加材は、第1の活性元素添加材と同一の材料から形成される。また、第2の活性元素添加材は、第1の活性元素添加材とは異なる形態を有して形成され、例えば、線材として形成される。本実施の形態においては、第2の活性元素添加材は、線状のMg−Cu−Ca合金線材であって、この合金線材は、15質量%以上50質量%以下のCuと、1質量%以上5質量%以下のCaと、残部がMg及び不可避的不純物とからなる。この線材は、例えば、直径が3.0mm以下に形成される。   Next, the second active element additive is continuously added in the atmosphere to the molten metal containing the first active element additive (second active element addition step: S60). The second active element additive is formed from the same material as the first active element additive. Further, the second active element additive is formed to have a form different from that of the first active element additive, for example, a wire. In the present embodiment, the second active element additive is a linear Mg—Cu—Ca alloy wire, and the alloy wire contains 15% by mass to 50% by mass of Cu and 1% by mass. The amount of Ca is 5% by mass or less and the balance is Mg and inevitable impurities. For example, the wire is formed with a diameter of 3.0 mm or less.

ここで、第1の活性元素添加材及び第2の活性元素添加材それぞれの添加量は、以下の添加量にすることが好ましい。すなわち、製造する銅合金鋳塊に含まれる活性元素の量を目標量とした場合に、第1の活性元素添加材は、目標量のa%となる量の活性元素を含むと共に、第2の活性元素添加材は、目標量のb%以下となる量の活性元素を含むことが好ましく、少なくとも、第1の活性元素添加材に含まれる活性元素の量の方が、第2の活性元素添加材に含まれる活性元素の量よりも少ない量となるa及びbの値であることが好ましい。例えば、b=100−a(但し、20≦a≦40)の関係式を満たすことが好ましい。   Here, it is preferable that the addition amount of each of the first active element additive and the second active element additive is as follows. That is, when the amount of active element contained in the copper alloy ingot to be manufactured is set as a target amount, the first active element additive contains an amount of active element that is a% of the target amount and the second amount. The active element additive preferably contains an active element in an amount that is not more than b% of the target amount, and at least the amount of the active element contained in the first active element additive is the second active element added. The values of a and b are preferably smaller than the amount of active elements contained in the material. For example, it is preferable to satisfy the relational expression b = 100−a (where 20 ≦ a ≦ 40).

続いて、第2の活性元素添加材が添加され、第2の活性元素添加材が溶解した鋳造用の溶湯を鋳型に流して銅合金鋳塊を鋳造する(鋳造工程:S70)。これにより、本実施の形態に係る銅合金鋳塊の製造方法によって製造された銅合金鋳塊を得ることができる。本実施の形態に係る銅合金鋳塊の製造方法によれば、例えば、活性元素の組成がいかなる組成の第1の活性元素添加材及び第2の活性元素添加材であっても、80%以上の活性元素の添加歩留り(添加歩留りとは、添加した活性元素の量に対する、銅合金鋳塊中に活性元素として含まれる活性元素の量の割合をいう)を維持しつつ、銅合金鋳塊の鋳造方向に沿った方向の活性元素の濃度を略一定に保たれた銅合金鋳塊が製造される。   Subsequently, the second active element additive is added, and a cast alloy melted with the second active element additive is poured into the mold to cast a copper alloy ingot (casting step: S70). Thereby, the copper alloy ingot manufactured by the manufacturing method of the copper alloy ingot which concerns on this Embodiment can be obtained. According to the method for producing a copper alloy ingot according to the present embodiment, for example, the active element composition is 80% or more regardless of the composition of the first active element additive and the second active element additive. The active element addition yield (addition yield refers to the ratio of the amount of active element contained as an active element in the copper alloy ingot to the amount of added active element) while maintaining the copper alloy ingot A copper alloy ingot is produced in which the concentration of the active element in the direction along the casting direction is kept substantially constant.

(実施の形態の効果)
本実施の形態に係る銅合金鋳塊の製造方法によれば、活性元素の添加を第1の活性元素添加工程と第2の活性元素添加工程との2段階方式にすると共に、第1の活性元素添加工程で投入する活性元素の量を第2の活性元素添加工程で投入する活性元素の量よりも少なくしたので、製造すべき銅合金鋳塊が含む活性元素の全量を溶解炉に投入する場合に比べて溶解炉から鋳型にまで溶湯が流れる間に酸化する活性元素の量を低減させることができる。したがって、活性元素の酸化物の生成を低減できることにより、溶湯の湯流れ性を向上させることができ、鋳塊中に酸化物が巻き込まれることに起因する鋳造欠陥を低減することができる。結果として、溶解炉に活性元素の全量を添加する場合に比べて、鋳塊の品質、及び鋳造性を維持できる。更に、活性元素を段階的に添加するので、例えば、タンディッシュで溶湯に活性元素を初めて投入する場合に比べて、鋳塊の鋳造初期の部分に活性元素の濃度の立ち上がりが生じることを抑制でき、製品歩留りを向上させることができる。
(Effect of embodiment)
According to the method for producing a copper alloy ingot according to the present embodiment, the addition of the active element is made into a two-stage method of the first active element addition step and the second active element addition step, and the first activity is added. Since the amount of the active element input in the element addition step is smaller than the amount of the active element input in the second active element addition step, the entire amount of the active element contained in the copper alloy ingot to be manufactured is input to the melting furnace. Compared to the case, the amount of the active element that is oxidized while the molten metal flows from the melting furnace to the mold can be reduced. Therefore, the generation of oxides of active elements can be reduced, so that the flowability of the molten metal can be improved, and casting defects caused by the oxide being caught in the ingot can be reduced. As a result, the quality of the ingot and the castability can be maintained as compared with the case where the entire amount of the active element is added to the melting furnace. Furthermore, since the active element is added stepwise, for example, compared to the case where the active element is first added to the molten metal in a tundish, it is possible to suppress the rise of the concentration of the active element in the initial casting portion of the ingot. , Can improve product yield.

また、本実施の形態に係る銅合金鋳塊の製造方法によれば、上記のとおり活性元素の酸化物の生成を低減できるので、活性元素を含む溶湯が移送樋、鋳造樋、タンディッシュ、鋳型へと移動するにつれて活性元素が酸化することにより生成する酸化スラグを低減できる。これにより、鋳塊の鋳造方向に沿った方向における活性元素の量が減少することを抑制できる。すなわち、本実施の形態に係る銅合金鋳塊の製造方法によれば、活性元素を溶湯に段階的に投入するので、溶解炉から鋳型に溶湯が進むにつれて活性元素が酸化して徐々に減少する製法である「溶解炉に活性元素の全量を投入する場合」に比べて、溶解炉から鋳型に溶湯が進んだとしても溶湯の進行方向に沿った方向での活性元素の量の減少を抑制できる。   Further, according to the method for producing a copper alloy ingot according to the present embodiment, since the generation of oxides of active elements can be reduced as described above, the molten metal containing the active elements is transferred to the transfer tub, casting tub, tundish, mold Oxidation slag produced by the active element oxidizing as it moves to can be reduced. Thereby, it can suppress that the quantity of the active element in the direction along the casting direction of an ingot reduces. That is, according to the method for producing a copper alloy ingot according to the present embodiment, since the active element is gradually added to the molten metal, the active element is oxidized and gradually decreases as the molten metal advances from the melting furnace to the mold. Compared to the case where the entire amount of active element is introduced into the melting furnace, which is a manufacturing method, even if the molten metal advances from the melting furnace to the mold, the decrease in the amount of active element in the direction of the molten metal can be suppressed. .

また、本実施の形態に係る銅合金鋳塊の製造方法によれば、酸化スラグの生成を低減できることにより、酸化スラグの凝集体の発生を抑制できるので、溶解炉等の出湯ノズルに凝集体が詰まることを抑制でき、製造工程の停止、すなわち、鋳造停止等の不具合を抑制することができる。なお、本実施の形態に係る銅合金鋳塊の製造方法では溶湯の表面の被覆に木炭、カーボン粉末、デサルコ(コークスの一種)等を用いるので、木炭、カーボン粉末、デサルコ(コークスの一種)等ではなくフラックスを用いた場合に発生する不具合、例えば、フラックスが鋳塊中に含まれること、鋳造作業の複雑化等を防止できる。   In addition, according to the method for producing a copper alloy ingot according to the present embodiment, the generation of oxidized slag can be reduced, thereby suppressing the generation of oxidized slag aggregates. Clogging can be suppressed, and problems such as stop of the manufacturing process, that is, stop of casting can be suppressed. In the method for producing a copper alloy ingot according to the present embodiment, charcoal, carbon powder, desalco (a type of coke) or the like is used for covering the surface of the molten metal, so that charcoal, carbon powder, desalco (a type of coke), or the like. However, it is possible to prevent problems that occur when the flux is used, for example, the flux is included in the ingot, the casting operation is complicated, and the like.

また、本実施の形態に係る銅合金鋳塊の製造方法では、第2の活性元素添加材は、融点降下元素を含んで形成される。したがって、溶湯の温度が溶解炉中の溶湯の温度より低いタンディッシュ中の溶湯に第2の活性元素添加材を連続的に高速で添加した場合であっても、第2の活性元素添加材をタンディッシュ中の溶湯に溶解させることができ、溶け残りの発生を抑制できる。これにより、製造される鋳塊中に添加材の溶け残りが残存することを抑制でき、鋳塊欠陥の発生を抑制できる。   Further, in the method for producing a copper alloy ingot according to the present embodiment, the second active element additive is formed including a melting point lowering element. Therefore, even when the second active element additive is continuously added to the molten metal in the tundish where the temperature of the molten metal is lower than the temperature of the molten metal in the melting furnace, the second active element additive is used. It can be dissolved in the molten metal in the tundish, and generation of undissolved residue can be suppressed. Thereby, it can suppress that the undissolved residue of an additive remains in the ingot manufactured, and can suppress generation | occurrence | production of an ingot defect.

また、本実施の形態における第1の活性元素添加材、及び第2の活性元素添加材はそれぞれ、酸化抑制元素を含んで形成される。したがって、第1の活性元素添加材、及び第2の活性元素添加材を溶湯に投入したとき、及び溶湯からの引き抜き時に活性元素が爆発的に酸化することを抑制でき、激しい火花等の発生を抑制できる。これにより、製造工程における作業性が向上すると共に、安全性も向上させることができ、火花等の発生による添加元素の損失を抑制できる。そして、酸化抑制元素を含むことにより、結果的に、銅合金鋳塊の活性元素添加歩留りを向上させることができ、製造すべき銅合金鋳塊が含むべき活性元素の量が少量(すなわち、添加する活性元素の量が少量)であっても、鋳塊鋳造方向に沿った活性元素の濃度を安定させることができる。   In addition, the first active element additive and the second active element additive in the present embodiment are each formed including an oxidation inhibiting element. Therefore, when the first active element additive and the second active element additive are put into the molten metal, and when the active element is extracted from the molten metal, it is possible to suppress the active element from being oxidized explosively, and the occurrence of intense sparks, etc. Can be suppressed. Thereby, workability in the manufacturing process can be improved, safety can be improved, and loss of the additive element due to generation of a spark or the like can be suppressed. And by including an oxidation inhibitory element, the active element addition yield of the copper alloy ingot can be improved as a result, and the amount of the active element to be contained in the copper alloy ingot to be manufactured is small (that is, added) Even if the amount of the active element to be performed is small), the concentration of the active element along the ingot casting direction can be stabilized.

なお、本実施の形態においては銅合金鋳塊は大気中で製造できるので、真空中又は不活性ガス中で銅合金鋳塊を製造する場合に比べて、大型の真空チャンバー、密閉室等の設備が不要であることにより、生産コストを低減でき、生産性を向上させることができる。   In this embodiment, since the copper alloy ingot can be manufactured in the atmosphere, the equipment such as a large vacuum chamber, sealed chamber, etc., compared to the case where the copper alloy ingot is manufactured in vacuum or in an inert gas. By eliminating the need for production, production costs can be reduced and productivity can be improved.

以下、実施例により本発明の実施の形態を更に詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail by way of examples.

実施例1に係る銅合金鋳塊は、Ni、Si、Mg、及びFeを含有すると共に、残部がCu及び不可避的不純物からなる銅合金鋳塊ケーク(サイズ:180mm×490mm×6000mm)である。実施例1に係る銅合金鋳塊ケークの目標組成は、Ni:2.3質量%、Si:0.5質量%、Mg:0.1質量%、Fe:0.02質量%にした。また、製造すべき銅合金鋳塊ケークの重量は、約18tとした。具体的には、実施例1に係る銅合金鋳塊を製造することを目的として、まず、銅合金リサイクル材、電気銅、ニッケル原料、シリコン原料、及び鉄原料を主原料として準備した。   The copper alloy ingot according to Example 1 is a copper alloy ingot cake (size: 180 mm × 490 mm × 6000 mm) containing Ni, Si, Mg, and Fe, and the balance being Cu and inevitable impurities. The target composition of the copper alloy ingot cake according to Example 1 was set to Ni: 2.3 mass%, Si: 0.5 mass%, Mg: 0.1 mass%, and Fe: 0.02 mass%. The weight of the copper alloy ingot cake to be manufactured was about 18 t. Specifically, for the purpose of producing the copper alloy ingot according to Example 1, first, a copper alloy recycled material, electrolytic copper, nickel raw material, silicon raw material, and iron raw material were prepared as main raw materials.

準備した銅合金リサイクル材は、Ni:2.3質量%、Si:0.45質量%、Mg:0.1質量%、Fe:0.02質量%を含み、残部がCu及び不可避的不純物からなる第1の銅合金リサイクル材と、Ni:2.3質量%、Si:0.4質量%、Zn:1.7質量%、P:0.02質量%を含み、残部がCu及び不可避的不純物からなる第2の銅合金リサイクル材とである。第1の銅合金リサイクル材と第2の銅合金リサイクル材との合計量は約11t(製造すべき銅合金鋳塊ケークの重量の約60%)である。また、準備した電気銅はタフピッチ故銅(TPC故銅)であり、約7.2t(製造すべき銅合金鋳塊ケークの重量の約40%)準備した。更に、ニッケル原料、シリコン原料、及び鉄原料はそれぞれ、純Ni、純Si、及び純Feを準備した。純Ni、純Si、及び純Feはいずれも99.9%程度の純度である。   The prepared copper alloy recycled material contains Ni: 2.3% by mass, Si: 0.45% by mass, Mg: 0.1% by mass, Fe: 0.02% by mass, and the remainder from Cu and inevitable impurities. The first copper alloy recycled material comprising: Ni: 2.3 mass%, Si: 0.4 mass%, Zn: 1.7 mass%, P: 0.02 mass%, with the balance being Cu and inevitable It is the 2nd copper alloy recycling material which consists of impurities. The total amount of the first copper alloy recycled material and the second copper alloy recycled material is about 11 t (about 60% of the weight of the copper alloy ingot cake to be manufactured). The prepared electrolytic copper was tough pitch late copper (TPC late copper), and about 7.2 t (about 40% of the weight of the copper alloy ingot cake to be manufactured) was prepared. Further, pure Ni, pure Si, and pure Fe were prepared as nickel raw material, silicon raw material, and iron raw material, respectively. Pure Ni, pure Si, and pure Fe are all about 99.9% pure.

また、活性元素としてMgを選択して、第1の活性元素添加材としてMg−Cu−Ca合金塊、及び第2の活性元素添加材としてMg−Cu−Ca合金線(直径:φ1mm)を準備した。Mg−Cu−Ca合金塊及びMg−Cu−Ca合金線の組成は、Mg−30質量%Cu−2質量%Caとした。   Also, Mg is selected as the active element, and an Mg—Cu—Ca alloy lump is prepared as the first active element additive, and an Mg—Cu—Ca alloy wire (diameter: φ1 mm) is prepared as the second active element additive. did. The composition of the Mg—Cu—Ca alloy lump and the Mg—Cu—Ca alloy wire was Mg-30 mass% Cu-2 mass% Ca.

まず、大気中において主原料を溶解して、主原料を溶解して得た溶湯(約18t)を木炭で被覆した。なお、TPC故銅の投入により銅合金リサイクル材単独の場合に比べてNi等の濃度が希釈されるが、希釈された分は、純Ni、純Si、純Feを所定の量、溶湯に投入することにより濃度を調整した。そして、木炭で被覆した主原料の溶湯に、大気中、溶解炉においてMg−Cu−Ca合金塊を投入した。投入したMg−Cu−Ca合金塊の量は、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、30%のMgが含まれる量とした。次に、Mg−Cu−Ca合金塊を溶解させた溶湯をタンディッシュに出湯した。続いて、この溶湯を有するタンディッシュに木炭を投入して所定の時間保持した。なお、鋳造中は常時、タンディッシュから鋳型に流し込む溶湯の量を一定に保ちつつ、タンディッシュに溶湯を保持させた。したがって、タンディッシュに溶湯が保持されていた時間は、鋳造開始から鋳造終了に至るまでの1時間程度であった。   First, the main raw material was melted in the atmosphere, and the molten metal (about 18 t) obtained by melting the main raw material was coated with charcoal. In addition, the concentration of Ni and the like is diluted by the addition of TPC spent copper compared to the case of a copper alloy recycled material alone, but for the diluted amount, pure Ni, pure Si, and pure Fe are added to the molten metal in a predetermined amount. To adjust the concentration. And the Mg-Cu-Ca alloy lump was thrown into the main raw material melt coated with charcoal in the melting furnace in the atmosphere. The amount of the Mg—Cu—Ca alloy ingot introduced was 30% of the amount of Mg contained in the copper alloy ingot cake to be produced. Next, the molten metal in which the Mg—Cu—Ca alloy ingot was dissolved was discharged into a tundish. Subsequently, charcoal was put into the tundish having the molten metal and held for a predetermined time. During the casting, the molten metal was always held in the tundish while keeping the amount of molten metal flowing from the tundish into the mold constant. Therefore, the time during which the molten metal was held in the tundish was about one hour from the start of casting to the end of casting.

次に、タンディッシュにMg−Cu−Ca合金線(直径:φ1mm)を連続的に添加した。添加したMg−Cu−Ca合金線の量は、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、70%のMgが含まれる量とした。そして、Mg−Cu−Ca合金線が溶解した溶湯を鋳型に供給して、銅合金鋳塊を得た。   Next, an Mg—Cu—Ca alloy wire (diameter: φ1 mm) was continuously added to the tundish. The amount of added Mg—Cu—Ca alloy wire was 70% of the amount of Mg contained in the copper alloy ingot cake to be produced. And the molten metal which the Mg-Cu-Ca alloy wire melt | dissolved was supplied to the casting_mold | template, and the copper alloy ingot was obtained.

得られた実施例1に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   The change in the Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Example 1 at intervals of 0.5 m in the casting direction.

実施例2に係る銅合金鋳塊ケークは、用いるMg−Cu−Ca合金線の直径を2mmにした点を除き、実施例1と同様にして製造したので、詳細な説明は省略する。なお、得られた実施例2に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   Since the copper alloy ingot cake according to Example 2 was manufactured in the same manner as Example 1 except that the diameter of the Mg—Cu—Ca alloy wire used was 2 mm, detailed description thereof was omitted. In addition, the change of Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Example 2 at intervals of 0.5 m in the casting direction.

実施例3に係る銅合金鋳塊ケークは、用いるMg−Cu−Ca合金線の直径を3mmにした点を除き、実施例1と同様にして製造したので、詳細な説明は省略する。なお、得られた実施例3に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   Since the copper alloy ingot cake according to Example 3 was manufactured in the same manner as in Example 1 except that the diameter of the Mg—Cu—Ca alloy wire used was 3 mm, detailed description thereof was omitted. In addition, the change of Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Example 3 at intervals of 0.5 m in the casting direction.

実施例4に係る銅合金鋳塊は、Ni、Si、Zn、P、及びMgを含有すると共に、残部がCu及び不可避的不純物からなる銅合金鋳塊ケーク(サイズ:180mm×490mm×6000mm)である。実施例4に係る銅合金鋳塊ケークの目標組成は、Ni:2.3質量%、Si:0.4質量%、Zn:2.0質量%、P:0.017質量%、Mg:0.1質量%とした。具体的には、実施例4に係る銅合金鋳塊を製造することを目的として、まず、銅合金リサイクル材、電気銅、ニッケル原料、シリコン原料、亜鉛原料、及びリン原料を主原料として準備した。   The copper alloy ingot according to Example 4 is a copper alloy ingot cake (size: 180 mm × 490 mm × 6000 mm) containing Ni, Si, Zn, P, and Mg and the balance being Cu and inevitable impurities. is there. The target composition of the copper alloy ingot cake according to Example 4 is as follows: Ni: 2.3 mass%, Si: 0.4 mass%, Zn: 2.0 mass%, P: 0.017 mass%, Mg: 0 .1% by mass. Specifically, for the purpose of producing a copper alloy ingot according to Example 4, first, a copper alloy recycled material, electrolytic copper, nickel raw material, silicon raw material, zinc raw material, and phosphorus raw material were prepared as main raw materials. .

また、活性元素としてMgを選択して、第1の活性元素添加材としてMg−Cu−Ca合金塊、及び第2の活性元素添加材としてMg−Cu−Ca合金線(直径:φ2mm)を準備した。Mg−Cu−Ca合金塊及びMg−Cu−Ca合金線の組成は、Mg−30質量%Cu−2質量%Caとした。   Also, Mg is selected as the active element, and an Mg—Cu—Ca alloy lump as the first active element additive and an Mg—Cu—Ca alloy wire (diameter: φ2 mm) as the second active element additive are prepared. did. The composition of the Mg—Cu—Ca alloy lump and the Mg—Cu—Ca alloy wire was Mg-30 mass% Cu-2 mass% Ca.

まず、大気中において主原料を溶解して、主原料を溶解して得た溶湯を木炭で被覆した。そして、木炭で被覆した主原料の溶湯に、大気中、溶解炉においてMg−Cu−Ca合金塊を投入した。投入したMg−Cu−Ca合金塊の量は、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、30%のMgが含まれる量とした。次に、Mg−Cu−Ca合金塊を溶解させた溶湯をタンディッシュに出湯した。続いて、この溶湯を有するタンディッシュに木炭を投入して所定の時間保持した。   First, the main raw material was dissolved in the atmosphere, and the molten metal obtained by dissolving the main raw material was coated with charcoal. And the Mg-Cu-Ca alloy lump was thrown into the main raw material melt coated with charcoal in the melting furnace in the atmosphere. The amount of the Mg—Cu—Ca alloy ingot introduced was 30% of the amount of Mg contained in the copper alloy ingot cake to be produced. Next, the molten metal in which the Mg—Cu—Ca alloy ingot was dissolved was discharged into a tundish. Subsequently, charcoal was put into the tundish having the molten metal and held for a predetermined time.

次に、タンディッシュにMg−Cu−Ca合金線(直径:φ2mm)を連続的に添加した。添加したMg−Cu−Ca合金線の量は、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、70%のMgが含まれる量とした。そして、Mg−Cu−Ca合金線が溶解した溶湯を鋳型に供給して、銅合金鋳塊を得た。   Next, an Mg—Cu—Ca alloy wire (diameter: φ2 mm) was continuously added to the tundish. The amount of added Mg—Cu—Ca alloy wire was 70% of the amount of Mg contained in the copper alloy ingot cake to be produced. And the molten metal which the Mg-Cu-Ca alloy wire melt | dissolved was supplied to the casting_mold | template, and the copper alloy ingot was obtained.

得られた実施例4に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   The change in Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Example 4 at intervals of 0.5 m in the casting direction.

実施例5に係る銅合金鋳塊ケークは、用いるMg−Cu−Ca合金線の直径を3mmにすると共に、溶解炉において投入するMg−Cu−Ca合金塊の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、20%のMgが含まれる量とし、添加したMg−Cu−Ca合金線の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、80%のMgが含まれる量とした点を除き、実施例1と同様にして製造した。よって、詳細な説明は省略する。なお、得られた実施例5に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   In the copper alloy ingot cake according to Example 5, the diameter of the Mg—Cu—Ca alloy wire to be used is set to 3 mm, and the amount of the Mg—Cu—Ca alloy ingot to be charged in the melting furnace is set to the copper alloy cast to be manufactured. Of the amount of Mg contained in the lump cake, the amount of 20% Mg is included, and the amount of added Mg—Cu—Ca alloy wire is the amount of Mg contained in the copper alloy ingot cake to be manufactured. This was manufactured in the same manner as in Example 1 except that the amount contained 80% Mg. Therefore, detailed description is omitted. In addition, the change of Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Example 5 at intervals of 0.5 m in the casting direction.

実施例6に係る銅合金鋳塊ケークは、用いるMg−Cu−Ca合金線の直径を3mmにすると共に、溶解炉において投入するMg−Cu−Ca合金塊の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、40%のMgが含まれる量とし、添加したMg−Cu−Ca合金線の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、60%のMgが含まれる量とした点を除き、実施例1と同様にして製造した。よって、詳細な説明は省略する。なお、得られた実施例6に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   In the copper alloy ingot cake according to Example 6, the diameter of the Mg—Cu—Ca alloy wire to be used is set to 3 mm, and the amount of the Mg—Cu—Ca alloy ingot to be charged in the melting furnace is set to the copper alloy cast to be manufactured. Of the amount of Mg contained in the lump cake, the amount of 40% Mg is included, and the amount of added Mg-Cu-Ca alloy wire is the amount of Mg contained in the copper alloy ingot cake to be manufactured. This was manufactured in the same manner as in Example 1 except that 60% Mg was contained. Therefore, detailed description is omitted. In addition, the change of Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Example 6 at intervals of 0.5 m in the casting direction.

(比較例1)
比較例1に係る銅合金鋳塊は、Ni、Si、Mg、及びFeを含有すると共に、残部がCu及び不可避的不純物からなる銅合金鋳塊ケーク(サイズ:180mm×490mm×6000mm)である。比較例1に係る銅合金鋳塊ケークの目標組成は、Ni:2.3質量%、Si:0.5質量%、Mg:0.1質量%、Fe:0.02質量%とした。具体的には、比較例1に係る銅合金鋳塊を製造することを目的として、まず、銅合金リサイクル材、電気銅、ニッケル原料、シリコン原料、及び鉄原料を主原料として準備した。
(Comparative Example 1)
The copper alloy ingot according to Comparative Example 1 is a copper alloy ingot cake (size: 180 mm × 490 mm × 6000 mm) containing Ni, Si, Mg, and Fe and the balance being Cu and inevitable impurities. The target composition of the copper alloy ingot cake according to Comparative Example 1 was set to Ni: 2.3 mass%, Si: 0.5 mass%, Mg: 0.1 mass%, and Fe: 0.02 mass%. Specifically, for the purpose of producing a copper alloy ingot according to Comparative Example 1, first, a copper alloy recycled material, electrolytic copper, nickel raw material, silicon raw material, and iron raw material were prepared as main raw materials.

また、活性元素としてMgを選択して、Cu−50%Mg合金塊を準備した。   Moreover, Mg was selected as an active element, and a Cu-50% Mg alloy lump was prepared.

まず、大気中において主原料を溶解して、主原料を溶解して得た溶湯を木炭で被覆した。そして、木炭で被覆した主原料の溶湯に、大気中、溶解炉においてMg−50%Cu合金塊を投入した。次に、Mg−50%Cu合金塊を溶解させた溶湯をタンディッシュに出湯した。続いて、溶湯をタンディッシュから鋳型に供給して、比較例1に係る銅合金鋳塊を得た。   First, the main raw material was dissolved in the atmosphere, and the molten metal obtained by dissolving the main raw material was coated with charcoal. And the Mg-50% Cu alloy lump was thrown into the molten metal of the main raw material coated with charcoal in the melting furnace in the atmosphere. Next, the molten metal in which the Mg-50% Cu alloy lump was dissolved was poured out into a tundish. Subsequently, the molten metal was supplied from the tundish to the mold to obtain a copper alloy ingot according to Comparative Example 1.

得られた比較例1に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   The change in the Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Comparative Example 1 at intervals of 0.5 m in the casting direction.

(比較例2)
比較例2に係る銅合金鋳塊は、Ni、Si、Mg、及びFeを含有すると共に、残部がCu及び不可避的不純物からなる銅合金鋳塊ケーク(サイズ:180mm×490mm×6000mm)である。比較例1に係る銅合金鋳塊ケークの目標組成は、比較例1と同一である。具体的には、比較例1に係る銅合金鋳塊を製造することを目的として、まず、銅合金リサイクル材、電気銅、ニッケル原料、シリコン原料、及び鉄原料を主原料として準備した。
(Comparative Example 2)
The copper alloy ingot according to Comparative Example 2 is a copper alloy ingot cake (size: 180 mm × 490 mm × 6000 mm) containing Ni, Si, Mg, and Fe and the balance being Cu and inevitable impurities. The target composition of the copper alloy ingot cake according to Comparative Example 1 is the same as that of Comparative Example 1. Specifically, for the purpose of producing a copper alloy ingot according to Comparative Example 1, first, a copper alloy recycled material, electrolytic copper, nickel raw material, silicon raw material, and iron raw material were prepared as main raw materials.

また、活性元素としてMgを選択して、Cu−25%Mgクラッドワイヤ(直径:φ6mm)を準備した。   Further, Mg was selected as the active element, and a Cu-25% Mg clad wire (diameter: φ6 mm) was prepared.

まず、大気中において主原料を溶解して、主原料を溶解して得た溶湯を木炭で被覆した。そして、主原料の溶湯をタンディッシュに出湯した。次に、タンディッシュにCu−25%Mgクラッドワイヤを連続的に添加した。続いて、添加したクラッドワイヤが溶解した溶湯をタンディッシュから鋳型に供給して、比較例2に係る銅合金鋳塊を得た。   First, the main raw material was dissolved in the atmosphere, and the molten metal obtained by dissolving the main raw material was coated with charcoal. And the molten metal of the main raw material was poured out into the tundish. Next, Cu-25% Mg clad wire was continuously added to the tundish. Subsequently, the molten metal in which the added clad wire was melted was supplied from the tundish to the mold to obtain a copper alloy ingot according to Comparative Example 2.

得られた比較例2に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   By measuring the Mg component of the obtained copper alloy ingot according to Comparative Example 2 at intervals of 0.5 m in the casting direction, the change in the Mg component along the ingot casting direction was measured.

(比較例3)
比較例3に係る銅合金鋳塊は、Ni、Si、Mg、及びFeを含有すると共に、残部がCu及び不可避的不純物からなる銅合金鋳塊ケーク(サイズ:180mm×490mm×6000mm)である。比較例3に係る銅合金鋳塊ケークの目標組成は、比較例1と同一である。具体的には、比較例3に係る銅合金鋳塊を製造することを目的として、まず、銅合金リサイクル材、電気銅、ニッケル原料、シリコン原料、及び鉄原料を主原料として準備した。
(Comparative Example 3)
The copper alloy ingot according to Comparative Example 3 is a copper alloy ingot cake (size: 180 mm × 490 mm × 6000 mm) containing Ni, Si, Mg, and Fe, and the balance being Cu and inevitable impurities. The target composition of the copper alloy ingot cake according to Comparative Example 3 is the same as that of Comparative Example 1. Specifically, for the purpose of producing a copper alloy ingot according to Comparative Example 3, first, a copper alloy recycled material, electrolytic copper, nickel raw material, silicon raw material, and iron raw material were prepared as main raw materials.

また、活性元素としてMgを選択して、Cu−50%Mg合金塊とCu−25%Mgクラッドワイヤ(直径:φ6mm)とを準備した。   Further, Mg was selected as an active element, and a Cu-50% Mg alloy lump and a Cu-25% Mg clad wire (diameter: φ6 mm) were prepared.

まず、大気中において主原料を溶解して、主原料を溶解して得た溶湯を木炭で被覆した。そして、木炭で被覆した主原料の溶湯に、大気中、溶解炉においてMg−50%Cu合金塊を投入した。次に、Mg−50%Cu合金塊を溶解させた溶湯をタンディッシュに出湯した。そして、タンディッシュにCu−25%Mgクラッドワイヤを連続的に添加した。続いて、添加したクラッドワイヤが溶解した溶湯をタンディッシュから鋳型に供給して、比較例3に係る銅合金鋳塊を得た。   First, the main raw material was dissolved in the atmosphere, and the molten metal obtained by dissolving the main raw material was coated with charcoal. And the Mg-50% Cu alloy lump was thrown into the molten metal of the main raw material coated with charcoal in the melting furnace in the atmosphere. Next, the molten metal in which the Mg-50% Cu alloy lump was dissolved was poured out into a tundish. Then, Cu-25% Mg clad wire was continuously added to the tundish. Subsequently, the molten metal in which the added clad wire was melted was supplied from the tundish to the mold to obtain a copper alloy ingot according to Comparative Example 3.

得られた比較例3に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   The change in the Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Comparative Example 3 at 0.5 m intervals in the casting direction.

(比較例4)
比較例4に係る銅合金鋳塊は、Ni、Si、Zn、P、及びMgを含有すると共に、残部がCu及び不可避的不純物からなる銅合金鋳塊ケーク(サイズ:180mm×490mm×6000mm)である。比較例4に係る銅合金鋳塊ケークの目標組成は、Ni:2.3質量%、Si:0.4質量%、Zn:2.0質量%、P:0.017質量%、Mg:0.01質量%とした。具体的には、比較例4に係る銅合金鋳塊を製造することを目的として、まず、銅合金リサイクル材、電気銅、ニッケル原料、シリコン原料、亜鉛原料、及びリン原料を主原料として準備した。
(Comparative Example 4)
The copper alloy ingot according to Comparative Example 4 is a copper alloy ingot cake (size: 180 mm × 490 mm × 6000 mm) containing Ni, Si, Zn, P, and Mg, and the balance being Cu and inevitable impurities. is there. The target composition of the copper alloy ingot cake according to Comparative Example 4 is as follows: Ni: 2.3 mass%, Si: 0.4 mass%, Zn: 2.0 mass%, P: 0.017 mass%, Mg: 0 0.01 mass%. Specifically, for the purpose of producing a copper alloy ingot according to Comparative Example 4, first, a copper alloy recycled material, electrolytic copper, nickel raw material, silicon raw material, zinc raw material, and phosphorus raw material were prepared as main raw materials. .

また、活性元素としてMgを選択して、Cu−50%Mg合金塊とCu−25%Mgクラッドワイヤ(直径:φ6mm)とを準備した。   Further, Mg was selected as an active element, and a Cu-50% Mg alloy lump and a Cu-25% Mg clad wire (diameter: φ6 mm) were prepared.

まず、大気中において主原料を溶解して、主原料を溶解して得た溶湯を木炭で被覆した。そして、木炭で被覆した主原料の溶湯に、大気中、溶解炉においてMg−50%Cu合金塊を投入した。次に、Mg−50%Cu合金塊を溶解させた溶湯をタンディッシュに出湯した。そして、タンディッシュにCu−25%Mgクラッドワイヤを連続的に添加した。続いて、添加したクラッドワイヤが溶解した溶湯をタンディッシュから鋳型に供給して、比較例4に係る銅合金鋳塊を得た。   First, the main raw material was dissolved in the atmosphere, and the molten metal obtained by dissolving the main raw material was coated with charcoal. And the Mg-50% Cu alloy lump was thrown into the molten metal of the main raw material coated with charcoal in the melting furnace in the atmosphere. Next, the molten metal in which the Mg-50% Cu alloy lump was dissolved was poured out into a tundish. Then, Cu-25% Mg clad wire was continuously added to the tundish. Subsequently, the molten metal in which the added clad wire was melted was supplied from the tundish to the mold to obtain a copper alloy ingot according to Comparative Example 4.

得られた比較例4に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。   The change in the Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Comparative Example 4 at intervals of 0.5 m in the casting direction.

(比較例5)
比較例5に係る銅合金鋳塊ケークは、用いるMg−Cu−Ca合金線の直径を3mmにすると共に、溶解炉において投入するMg−Cu−Ca合金塊の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、10%のMgが含まれる量とし、添加したMg−Cu−Ca合金線の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、90%のMgが含まれる量とした点を除き、実施例1と同様にして製造した。よって、詳細な説明は省略する。なお、得られた比較例5に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。
(Comparative Example 5)
In the copper alloy ingot cake according to Comparative Example 5, the diameter of the Mg—Cu—Ca alloy wire to be used is set to 3 mm, and the amount of the Mg—Cu—Ca alloy ingot to be charged in the melting furnace is set to the copper alloy cast to be manufactured. Of the amount of Mg contained in the lump cake, it is assumed that 10% Mg is contained, and the amount of the added Mg—Cu—Ca alloy wire is the amount of Mg contained in the copper alloy ingot cake to be manufactured. This was manufactured in the same manner as in Example 1 except that the amount contained 90% Mg. Therefore, detailed description is omitted. In addition, the change of the Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Comparative Example 5 at intervals of 0.5 m in the casting direction.

(比較例6)
比較例6に係る銅合金鋳塊ケークは、用いるMg−Cu−Ca合金線の直径を3mmにすると共に、溶解炉において投入するMg−Cu−Ca合金塊の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、50%のMgが含まれる量とし、添加したMg−Cu−Ca合金線の量を、製造すべき銅合金鋳塊ケークに含まれるMgの量のうち、50%のMgが含まれる量とした点を除き、実施例1と同様にして製造した。よって、詳細な説明は省略する。なお、得られた比較例6に係る銅合金鋳塊のMg成分を、鋳造方向に0.5m間隔で測定することにより、鋳塊鋳造方向に沿ったMg成分の変化を計測した。
(Comparative Example 6)
In the copper alloy ingot cake according to Comparative Example 6, the diameter of the Mg—Cu—Ca alloy wire to be used is set to 3 mm, and the amount of the Mg—Cu—Ca alloy ingot to be charged in the melting furnace is set to the copper alloy cast to be manufactured. Of the amount of Mg contained in the lump cake, the amount of 50% Mg is included, and the amount of added Mg—Cu—Ca alloy wire is the amount of Mg contained in the copper alloy ingot cake to be manufactured. This was manufactured in the same manner as in Example 1, except that the amount contained 50% Mg. Therefore, detailed description is omitted. In addition, the change of the Mg component along the ingot casting direction was measured by measuring the Mg component of the obtained copper alloy ingot according to Comparative Example 6 at intervals of 0.5 m in the casting direction.

以上、実施例1〜6、及び比較例1〜6の結果を表1に示すと共に、各実施例、及び各比較例に係る銅合金鋳塊の鋳造方向におけるMg濃度を示したグラフを、図2〜図13にそれぞれ示す。図2〜図7は、実施例1〜6に係る銅合金鋳塊の鋳造方向におけるMg濃度を示したグラフであり、図8〜図13は、比較例1〜6に係る銅合金鋳塊の鋳造方向におけるMg濃度を示したグラフである。   As mentioned above, while showing the result of Examples 1-6 and Comparative Examples 1-6 in Table 1, the graph which showed the Mg density | concentration in the casting direction of the copper alloy ingot which concerns on each Example and each comparative example is a figure. 2 to 13 respectively. FIGS. 2-7 is the graph which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on Examples 1-6, FIGS. 8-13 is the copper alloy ingot which concerns on Comparative Examples 1-6. It is the graph which showed Mg density | concentration in a casting direction.

Figure 2010149168
Figure 2010149168

実施例1〜6と比較例1〜6とを比較した結果、以下の結果が得られた。すなわち、第1の活性元素添加材及び第2の活性元素添加材として、Mg−Cu−Ca合金を用いると、Cu−50%Mg合金、及び/又はCu−25%Mgクラッドワイヤを用いた場合に比べて、銅合金鋳塊のMg添加歩留り、鋳造方向のMg成分の濃度の安定性が向上したことが示された。   As a result of comparing Examples 1 to 6 with Comparative Examples 1 to 6, the following results were obtained. That is, when an Mg—Cu—Ca alloy is used as the first active element additive and the second active element additive, a Cu-50% Mg alloy and / or a Cu-25% Mg clad wire are used. As compared with the above, it was shown that the Mg addition yield of the copper alloy ingot and the stability of the concentration of the Mg component in the casting direction were improved.

また、各実施例において用いたMg−Cu−Ca合金線の直径は3mm以下とした。これは、直径が4mm以上のMg−Cu−Ca合金線を用いると、この合金線の機械的強度が大きいことに起因して、タンディッシュに連続添加する場合に作業性の向上に限界があるからである。また、実施例の中では、直径が2mmのMg−Cu−Ca合金線を用いた場合が、銅合金鋳塊のMg添加歩留り、鋳造方向のMg成分の濃度の安定性が最も高かった。これは、Mg−Cu−Ca合金線がタンディッシュに供給され、タンディッシュ中の溶湯に浸漬した後、Mg−Cu−Ca合金線が溶湯に溶解する深さが、線形2mmの場合には、湯面からの深さが十分な位置であったためと考えられる。   The diameter of the Mg—Cu—Ca alloy wire used in each example was 3 mm or less. This is because, when an Mg—Cu—Ca alloy wire having a diameter of 4 mm or more is used, there is a limit to improvement in workability when continuously added to the tundish due to the high mechanical strength of the alloy wire. Because. Further, in the examples, when the Mg—Cu—Ca alloy wire having a diameter of 2 mm was used, the Mg addition yield of the copper alloy ingot and the stability of the concentration of the Mg component in the casting direction were the highest. This is because, when the Mg-Cu-Ca alloy wire is supplied to the tundish and the immersion depth of the Mg-Cu-Ca alloy wire in the molten metal after being immersed in the molten metal in the tundish is linear 2 mm, This is probably because the depth from the hot water surface was sufficient.

また、溶解炉で添加するMgの量と、タンディッシュで添加するMgの量とを、製造する銅合金鋳塊に含まれるMgの量を目標量とした場合に、Mg−Cu−Ca合金塊中のMgの量を、目標量のa%となる量のMgを含む量にすると共に、Mg−Cu−Ca合金線中のMgの量を、目標量のb%以下となる量のMgを含む量にすることにより(但し、aとbとは、b=100−a(但し、20≦a≦40)を満たす)、銅合金鋳塊のMg添加歩留り、鋳造方向のMg成分の濃度の安定性、銅合金鋳塊の品質が最良であった。これは、溶解炉において添加するMgの量が少なすぎると、タンディッシュにおいてMg−Cu−Ca合金線を高速で添加したとしても、鋳造の初期部分においてMg濃度が低い領域が生成してしまうことにより、鋳造方向に沿ったMg成分の濃度が均一にならないためである。また、溶解炉において添加するMgの量が多すぎると、鋳型に鋳込む前の溶湯中のMg酸化物の量が増加することに伴い、銅合金鋳塊中の鋳造欠陥が増大するからである。   In addition, when the amount of Mg added in the melting furnace and the amount of Mg added in the tundish are set to the target amount of Mg contained in the copper alloy ingot to be manufactured, the Mg—Cu—Ca alloy ingot The amount of Mg in the Mg-Cu-Ca alloy wire is reduced to an amount of Mg that is less than b% of the target amount. By including the amount (however, a and b satisfy b = 100−a (where 20 ≦ a ≦ 40)), the Mg addition yield of the copper alloy ingot, the concentration of the Mg component in the casting direction The stability and the quality of the copper alloy ingot were the best. This is because if the amount of Mg added in the melting furnace is too small, even if the Mg—Cu—Ca alloy wire is added at high speed in the tundish, a region with a low Mg concentration is generated in the initial part of casting. This is because the concentration of the Mg component along the casting direction is not uniform. In addition, if the amount of Mg added in the melting furnace is too large, the amount of Mg oxide in the molten metal before casting into the mold increases, resulting in an increase in casting defects in the copper alloy ingot. .

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

本実施の形態に係る銅合金鋳塊の製造の流れの一例を示す図である。It is a figure which shows an example of the flow of manufacture of the copper alloy ingot which concerns on this Embodiment. 実施例1に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on Example 1. FIG. 実施例2に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on Example 2. FIG. 実施例3に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on Example 3. FIG. 実施例4に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on Example 4. FIG. 実施例5に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on Example 5. FIG. 実施例6に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on Example 6. FIG. 比較例1に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on the comparative example 1. FIG. 比較例2に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on the comparative example 2. FIG. 比較例3に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on the comparative example 3. FIG. 比較例4に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on the comparative example 4. 比較例5に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on the comparative example 5. FIG. 比較例6に係る銅合金鋳塊の鋳造方向におけるMg濃度を示した図である。It is the figure which showed Mg density | concentration in the casting direction of the copper alloy ingot which concerns on the comparative example 6. FIG.

Claims (7)

銅合金鋳塊の主原料の溶湯を大気中において有する溶解炉に、活性元素を含む第1の活性元素添加材を添加して、活性元素を含有する溶湯を形成する第1の活性元素添加工程と、
前記活性元素を含有する溶湯を前記溶解炉からタンディッシュへ出湯する出湯工程と、
前記タンディッシュに出湯された前記活性元素を含有する溶湯に、前記活性元素を含む第2の活性元素添加材を大気中で添加する第2の活性元素添加工程と
を備え、
前記第1の活性元素添加材、及び前記第2の活性元素添加材はそれぞれ、
前記活性元素単体の融点より前記第1の活性元素添加材及び前記第2の活性元素添加材の融点を低くする融点降下元素と、
前記活性元素の酸化を抑制する酸化抑制元素とを含む銅合金鋳塊の製造方法。
First active element addition step of forming a molten metal containing an active element by adding a first active element additive containing an active element to a melting furnace having a molten metal as a main raw material of a copper alloy ingot in the atmosphere When,
A hot water discharge step of discharging the molten metal containing the active element from the melting furnace to the tundish;
A second active element addition step of adding, in the atmosphere, a second active element additive containing the active element to the molten metal containing the active element discharged from the tundish,
The first active element additive and the second active element additive are respectively
A melting point lowering element that lowers the melting point of the first active element additive and the second active element additive from the melting point of the active element alone;
The manufacturing method of the copper alloy ingot containing the oxidation inhibitory element which suppresses the oxidation of the said active element.
前記活性元素は、Mgであり、
前記融点降下元素は、Cuであり、
前記酸化抑制元素は、Caである請求項1に記載の銅合金鋳塊の製造方法。
The active element is Mg,
The melting point lowering element is Cu;
The method for producing a copper alloy ingot according to claim 1, wherein the oxidation inhibiting element is Ca.
前記第1の活性元素添加材、及び前記第2の活性元素添加材はそれぞれMg合金であり、
前記Mg合金は、15質量%以上50質量%以下のCuと、1質量%以上5質量%以下のCaと、残部がMg及び不可避的不純物とからなる請求項2に記載の銅合金鋳塊の製造方法。
The first active element additive and the second active element additive are each Mg alloys,
The said Mg alloy consists of 15 mass% or more and 50 mass% or less of Cu, 1 mass% or more and 5 mass% or less of Ca, and the remainder consists of Mg and an unavoidable impurity. Production method.
製造する銅合金鋳塊に含まれる前記活性元素の量を目標量とした場合に、
前記第1の活性元素添加工程は、前記目標量のa%となる量の前記活性元素を含む前記第1の活性元素添加材を添加し、
前記第2の活性元素添加工程は、前記目標量のb%以下となる量の前記活性元素を含む前記第2の活性元素添加材を添加し、
前記aと前記bとは、b=100−a(但し、20≦a≦40)を満たす請求項3に記載の銅合金鋳塊の製造方法。
When the amount of the active element contained in the copper alloy ingot to be manufactured is a target amount,
In the first active element addition step, the first active element additive containing the active element in an amount that is a% of the target amount is added,
In the second active element addition step, the second active element additive containing the active element in an amount that is not more than b% of the target amount is added,
The said a and the said b are the manufacturing methods of the copper alloy ingot of Claim 3 which satisfy | fills b = 100-a (however, 20 <= a <= 40).
前記第1の活性元素添加材は、合金塊であり、
前記第2の活性元素添加材は、線材である請求項3又は4に記載の銅合金鋳塊の製造方法。
The first active element additive is an alloy lump,
The method for producing a copper alloy ingot according to claim 3 or 4, wherein the second active element additive is a wire.
前記線材は、直径3.0mm以下の線径を有する請求項5に記載の銅合金鋳塊の製造方法。   6. The method for producing a copper alloy ingot according to claim 5, wherein the wire has a wire diameter of 3.0 mm or less. 銅合金鋳塊の主原料が溶解した主原料の溶湯を大気中において保持する溶解炉に、活性元素を含む第1の活性元素添加材を添加して、活性元素を含有する溶湯を形成する第1の活性元素添加工程と、
前記活性元素を含有する溶湯を前記溶解炉からタンディッシュへ出湯し、前記タンディッシュに出湯された前記活性元素を含有する溶湯に、前記活性元素を含む第2の活性元素添加材を大気中で添加する第2の活性元素添加工程と
を備え、
前記第1の活性元素添加材、及び前記第2の活性元素添加材はそれぞれ、
前記活性元素単体の融点より前記第1の活性元素添加材及び前記第2の活性元素添加材の融点を低くする融点降下材と、
前記活性元素の酸化を抑制する酸化抑制材とを含む活性元素の添加方法。
A first active element additive containing an active element is added to a melting furnace that holds in the atmosphere a main raw material melt in which the main raw material of the copper alloy ingot is melted to form a molten metal containing the active element. 1 active element addition step;
The molten metal containing the active element is discharged from the melting furnace to the tundish, and the second active element additive containing the active element is added to the molten metal containing the active element discharged from the tundish in the atmosphere. A second active element addition step of adding,
The first active element additive and the second active element additive are respectively
A melting point lowering material for lowering the melting points of the first active element additive and the second active element additive than the melting point of the active element alone;
A method for adding an active element comprising an oxidation inhibitor that suppresses oxidation of the active element.
JP2008332193A 2008-12-26 2008-12-26 Copper alloy ingot manufacturing method and active element addition method Expired - Fee Related JP5157889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332193A JP5157889B2 (en) 2008-12-26 2008-12-26 Copper alloy ingot manufacturing method and active element addition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332193A JP5157889B2 (en) 2008-12-26 2008-12-26 Copper alloy ingot manufacturing method and active element addition method

Publications (2)

Publication Number Publication Date
JP2010149168A true JP2010149168A (en) 2010-07-08
JP5157889B2 JP5157889B2 (en) 2013-03-06

Family

ID=42568850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332193A Expired - Fee Related JP5157889B2 (en) 2008-12-26 2008-12-26 Copper alloy ingot manufacturing method and active element addition method

Country Status (1)

Country Link
JP (1) JP5157889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179000A (en) * 2020-05-14 2021-11-18 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005848A (en) * 1998-06-23 2000-01-11 Kitz Corp Melting copper alloy supplying device
JP2000317580A (en) * 1999-05-11 2000-11-21 Dowa Mining Co Ltd Method for casting copper alloy
JP2001246447A (en) * 2000-03-03 2001-09-11 Hitachi Cable Ltd Method for continuously casting copper alloy containing active metal element
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
WO2008144617A1 (en) * 2007-05-17 2008-11-27 Affival, Inc. Enhanced alloy recovery in molten steel baths utilizing cored wires doped with deoxidants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005848A (en) * 1998-06-23 2000-01-11 Kitz Corp Melting copper alloy supplying device
JP2000317580A (en) * 1999-05-11 2000-11-21 Dowa Mining Co Ltd Method for casting copper alloy
JP2001246447A (en) * 2000-03-03 2001-09-11 Hitachi Cable Ltd Method for continuously casting copper alloy containing active metal element
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
WO2008144617A1 (en) * 2007-05-17 2008-11-27 Affival, Inc. Enhanced alloy recovery in molten steel baths utilizing cored wires doped with deoxidants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179000A (en) * 2020-05-14 2021-11-18 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot
JP7158434B2 (en) 2020-05-14 2022-10-21 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot

Also Published As

Publication number Publication date
JP5157889B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
JP5539055B2 (en) Copper alloy material for electric / electronic parts and method for producing the same
CN103146943B (en) Red impure copper refining agent and preparation method thereof
JP2010280944A (en) Cu-Ga ALLOY, SPUTTERING TARGET, METHOD FOR PRODUCING THE Cu-Ga ALLOY, AND METHOD FOR PRODUCING THE SPUTTERING TARGET
CN102912152B (en) Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb
US11773466B2 (en) Steel for wind power gear with improved purity and reliability, and smelting method therefor
JP4747689B2 (en) Continuous production method of copper alloy
CN104114303B (en) High-purity titanium ingot, its manufacture method and titanium sputtering target
CN110819817B (en) Basic slag system for aluminum-titanium-containing nickel-based high-temperature alloy and electroslag remelting method
KR102638496B1 (en) Die-casting aluminum alloy, its manufacturing method and its application
TWI518183B (en) Corrosion resistant high nickel alloy and its manufacturing method
JP2006312200A (en) Continuous casting powder and continuous casting method for al-containing ni-based alloy
JP5157889B2 (en) Copper alloy ingot manufacturing method and active element addition method
JP3946966B2 (en) Method for producing Sn-based alloy containing Sn-Ti compound
KR101516064B1 (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE SAME
JP2011012300A (en) Copper alloy and method for producing copper alloy
JP5785836B2 (en) Copper alloys and castings
JP2012001780A (en) Copper alloy material for electric/electronic component, and method of manufacturing the same
JP5793278B2 (en) Method for producing Cr-containing copper alloy wire
WO2007094265A1 (en) Raw material phosphor bronze alloy for casting of semi-molten alloy
CN114134356A (en) Zinc alloy production process
JP5607459B2 (en) Copper alloy ingot, method for producing the same, and copper alloy sheet obtained therefrom
JP2013071155A (en) Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot
JP4399572B2 (en) Method for producing nickel-zinc mother alloy
RU2781701C2 (en) Low alloy based on copper and its melting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

LAPS Cancellation because of no payment of annual fees