JP2010149152A - Metallic mold mechanism, manufacturing method, and component with multi-directional axis - Google Patents

Metallic mold mechanism, manufacturing method, and component with multi-directional axis Download PDF

Info

Publication number
JP2010149152A
JP2010149152A JP2008330204A JP2008330204A JP2010149152A JP 2010149152 A JP2010149152 A JP 2010149152A JP 2008330204 A JP2008330204 A JP 2008330204A JP 2008330204 A JP2008330204 A JP 2008330204A JP 2010149152 A JP2010149152 A JP 2010149152A
Authority
JP
Japan
Prior art keywords
mold
shaft
manufacturing
molds
mold clamping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008330204A
Other languages
Japanese (ja)
Other versions
JP5451059B2 (en
Inventor
Yoshihiro Ishihara
義弘 石原
Atsushi Ogura
篤 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIDAI KK
Original Assignee
NICHIDAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIDAI KK filed Critical NICHIDAI KK
Priority to JP2008330204A priority Critical patent/JP5451059B2/en
Publication of JP2010149152A publication Critical patent/JP2010149152A/en
Application granted granted Critical
Publication of JP5451059B2 publication Critical patent/JP5451059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in which simplification of manufacturing process can not be attained without degrading accuracy of complete roundness of axes, in manufacturing a metallic component with a multi-directional axis having radially extended axes. <P>SOLUTION: The metallic mold mechanism for manufacturing a metallic component with a multi-directional axis having radially extended axes includes a plurality of metallic molds 2 for forming axes and a mold clamping means for simultaneously moving the molds 2 in the mold clamping direction. Each mold 2 is provided with a divided tapered part 2A at both ends in the front view with the mold clamping direction in the front and an axis forming hole part 2C forming the axis part in the center in the front view, with a tapered part 2D for demonstrating a blocking force in the molds 2 installed in the lower part in the back view with the mold releasing direction in the back. According to the invention, the axis forming hole is free from flashes since it is blocked in the part other than the flow-in part of a material, with out-of-roundness of the axial cross section made higher as the molds are blocked simultaneously; therefore, post processing after forging can be eliminated. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、放射状に軸部が延びた金属製の多方軸部品を、製品精度を低下させることなく、工程の簡略化を図ることのできる金型機構及び製造方法並びにこれらによって製造された多方軸部品に関する。   The present invention relates to a metal mold and a manufacturing method capable of simplifying the process of a metal multi-directional shaft component having radially extending shaft portions without reducing product accuracy, and a multi-directional shaft manufactured by these. Regarding parts.

従来、例えば自在継手など放射状に軸部が延びた部品の製造方法として、以下の特許文献1,2が知られている。
特許第2527747号公報 特開2007−10028号公報
Conventionally, for example, the following Patent Documents 1 and 2 are known as a method of manufacturing a component such as a universal joint in which a shaft portion extends radially.
Japanese Patent No. 2527747 JP 2007-10028 A

特許文献1には、それまでのスパイダ部品を製造する工程、すなわち、丸棒の熱間鍛造、ばりの除去のための切削加工、焼きなまし又は焼ならし、切削加工、浸体焼入及び焼戻し、成型のための研削加工、のうち、切削加工を省略すべく、素材を閉塞鍛造により自在継手のほぼ軸の形状に形成し、軸部分にサイジングを施した後、熱処理を行うようにすることが記載されている。   Patent Document 1 discloses a process for manufacturing spider parts so far, that is, hot forging of a round bar, cutting for removing a flash, annealing or normalizing, cutting, immersion quenching and tempering, Of the grinding process for molding, in order to omit the cutting process, the material is formed into the shape of the shaft of the universal joint by closed forging, and the shaft part is sized and then heat-treated. Are listed.

特許文献2には、ジャーナル部の軸と平行な分割線を有する平面金型で作成した際に、該ジャーナル部の該金型の開閉部位に生じる、ジャーナル部の付根に存在するばりを問題として、それまで当該ばりを除去していたことに代え、ジャーナル部を含むボスの円周方向三等分の一を成型単位とする3つの鍛造金型で形成してパーティングラインを互いに隣接するジャーナル部間のボスの外周面における継手軸方向部位に形成することが記載されている。   In Patent Document 2, when a flat mold having a parting line parallel to the axis of the journal part is created, there is a problem of a flash existing at the root of the journal part that occurs at the opening and closing part of the journal part of the journal part. Instead of removing the burr until then, the journals adjacent to each other are formed by three forging dies whose molding unit is one third of the circumferential direction of the boss including the journal part. It describes that it forms in the joint axial direction site | part in the outer peripheral surface of the boss | hub between parts.

しかしながら、特許文献1では閉塞鍛造後にサイジングを施す必要があった。また、特許文献2では製品に現れるパーティングラインの位置を規定しているだけであり、製造工程上での効果としては、該パーティングラインを切削、ショットブラスト、バレル処理などコストを掛けて処理することを止めることで簡略化が図られる程度に止まっていた。   However, in Patent Document 1, it is necessary to perform sizing after closed forging. Patent Document 2 only defines the position of the parting line that appears in the product. As an effect on the manufacturing process, the parting line is processed at a high cost such as cutting, shot blasting, and barrel processing. It was stopped to the extent that simplification was achieved by stopping doing.

本発明が解決しようとする問題点は、特許文献1及び特許文献2は製品精度を低下させることなく製造工程の簡略化を図ることができない点である。   The problem to be solved by the present invention is that Patent Document 1 and Patent Document 2 cannot simplify the manufacturing process without reducing the product accuracy.

上記課題を解決するために、軸部が放射状に延びた金属製の多方軸部品を製造するための本発明の金型機構は、軸部を形成する複数の金型と、これら金型を型締方向に同時に移動させる型締手段とを有し、前記各金型には、型締方向を正面としたときの、正面視両端に該軸部間中央位置で等角度に分割した分割テーパ部と、正面視中央に該軸部を形成する軸形成孔部が設けられ、離型方向を背面としたときの背面視上部位又は下部位に、前記型締手段が型締方向と直交方向に相対移動することで金型に閉塞力を発揮させるためのテーパ部が設けられたものである。   In order to solve the above-mentioned problems, a mold mechanism of the present invention for manufacturing a metal multi-axis shaft part with a radially extending shaft part includes a plurality of molds that form the shaft part, and these molds as molds. A die-clamping means that is moved at the same angle at the center position between the shafts at both ends when viewed from the front when the die-clamping direction is the front surface. And a shaft forming hole portion that forms the shaft portion in the center when viewed from the front, and the mold clamping means is disposed in a direction perpendicular to the mold clamping direction at the upper or lower portion when viewed from the rear when the mold release direction is the rear surface. A taper portion is provided for causing the mold to exert a closing force by relative movement.

また、上記の金型機構を用いた本発明の金属製の多方軸部品の製造方法は、型締手段により、成形荷重の50〜150%の閉塞荷重で全金型を同時に閉塞することとした。   Further, in the method for manufacturing a metal multi-directional shaft component of the present invention using the above-described mold mechanism, all molds are simultaneously closed with a closing load of 50 to 150% of the molding load by the clamping means. .

さらに、上記の金型機構及び製造方法により製造された本発明の多方軸部品は、金型を離型した状態で真円度が±0.01mm以下とされたものである。   Furthermore, the multi-axial component of the present invention manufactured by the above-described mold mechanism and manufacturing method has a roundness of ± 0.01 mm or less with the mold released.

本発明に係る多方軸部品の金型機構は、型締方向を正面としたときの上下に分割された(以下、横割という)金型を用いず、型締方向の左右に分割された、つまり縦割の金型を用いている。金型は、例えば四方向に十字状に延びた多方軸部品であれば4個用いられる。これら金型は、個々に同一形状とされており、これらを閉塞して素材を塑性変形させることで多方軸部品が形成される。   The mold mechanism of the multi-axis component according to the present invention is divided into right and left in the mold clamping direction without using a mold divided in the upper and lower directions (hereinafter referred to as horizontal split) when the mold clamping direction is the front. A vertically divided mold is used. For example, four molds are used if they are multi-axis parts extending in a cross shape in four directions. These molds are individually formed in the same shape, and multi-axial parts are formed by closing them and plastically deforming the material.

さらに、金型は、同時に閉塞するための型締手段が相対移動すると、テーパ部を介して型締方向の閉塞力を発揮する。また、後述の分割テーパ部により、型締の最終に至るまでには各金型の閉塞力の均等化が図られる。これにより、例えば型締方向中央に対して同距離だけ離れた位置に設けた型締手段をテーパ部に対して例えば上方に移動させるだけで、金型や型締手段の動きの特段の同期を図る必要がなくなる。   Furthermore, when the mold clamping means for simultaneously closing the mold relatively moves, the mold exhibits a closing force in the mold clamping direction via the taper portion. In addition, the divided taper portion described later can equalize the closing force of each mold before the end of mold clamping. Thus, for example, by simply moving the mold clamping means provided at the same distance from the center of the mold clamping direction, for example, upward with respect to the tapered portion, special synchronization of the movement of the mold and the mold clamping means is achieved. There is no need to plan.

金型における正面視上下左右の中央に設けられた軸形成孔部により形成された軸部は、該軸部の周面に、金型の分割線が形成されない。したがって、金型離型後に、軸部に形成された金型分割線(ばり)を除去する必要がなく、よってこの点でまず製造工程の省略化が図られる。   As for the shaft part formed by the shaft forming hole provided at the center of the mold in the vertical and horizontal directions when viewed from the front, the dividing line of the mold is not formed on the peripheral surface of the shaft part. Therefore, it is not necessary to remove the mold parting line (flash) formed on the shaft portion after the mold release, and therefore the manufacturing process can be omitted first in this respect.

また、分割テーパ部は、金型を同時に型締する際の閉塞荷重を分散させ、各金型に均等にこの閉塞荷重(閉塞力)がかかるから、軸形成孔部で形成される軸部の中心がぶれることがなく、また、この閉塞力に対する素材の応力で復元する際に、素材の流入口以外の開口が存在しない断面真円状の軸形成孔部の内周に沿って復元するから、金型を開いた状態における軸部の真円度が高くなり、後の仕上げ工程などを省略できる。   In addition, the divided taper portion disperses the closing load when the molds are simultaneously clamped, and this closing load (closing force) is uniformly applied to each mold. The center does not move, and when restoring by the stress of the material against this blocking force, it is restored along the inner periphery of the shaft-forming hole having a perfectly circular cross section where there is no opening other than the material inlet. The roundness of the shaft portion in the state where the mold is opened is increased, and the subsequent finishing step and the like can be omitted.

また、上記金型機構を用いた同士にかかる多方軸部品の製造方法は、型締手段により、閉塞荷重を成形荷重の50〜150%で全金型を同時に閉塞することにより、誤差が±0.01mm以下の真円の軸部を形成することができる。   Moreover, the manufacturing method of the multi-axis | shaft components concerning each other using the said metal mold | die mechanism WHEREIN: An error is +/- 0 by simultaneously closing | closing all the metal mold | die with the closing load 50 to 150% of a shaping | molding load by a mold clamping means. It is possible to form a perfect circle shaft portion of .01 mm or less.

閉塞荷重が成形荷重の50%より低いと金型離型時に、軸部が左右に扁平した状態となり真円度が低くなる。一方、閉塞荷重が成形荷重の150%より高いと金型離型時に、軸部が上下に扁平した状態となり真円度が低くなる。   When the closing load is lower than 50% of the molding load, the shaft portion is flattened left and right when the mold is released, and the roundness is lowered. On the other hand, when the closing load is higher than 150% of the molding load, the shaft portion is flattened up and down when the mold is released, and the roundness is lowered.

そして、上記金型機構と上記製造方法により製造された多方軸部品は、金型離型時で真円度が±0.01mm以下とされているから、後の工程において、形状的な仕上げ加工を施す必要がほとんどなく、よって大幅な製造工程の簡略化を図ることとなり、低コストで量産化が可能となる。   And since the multi-axis parts manufactured by the mold mechanism and the manufacturing method have a roundness of ± 0.01 mm or less at the time of mold release, the shape finishing process is performed in the subsequent process. Therefore, the manufacturing process is greatly simplified, and mass production is possible at low cost.

本発明は以下の図1〜図6に示す形態にて実施可能である。図1は、本発明の金型機構に用いられる金型を示す。図2及び図3は、本発明の金型機構を用いた多方軸部品の製造方法を説明するための図である。図4は、軸部成型状態を説明するための図である。図5及び図6は、金型離型直後の本発明の多方軸部品の状態を説明するための図である。   The present invention can be implemented in the forms shown in FIGS. FIG. 1 shows a mold used in the mold mechanism of the present invention. 2 and 3 are views for explaining a method of manufacturing a multi-directional component using the mold mechanism of the present invention. FIG. 4 is a diagram for explaining a shaft part molding state. 5 and 6 are views for explaining the state of the multi-axial component of the present invention immediately after mold release.

本例では、金属、例えば、円柱状の、SCr415、SCr420、SCM415、SCM420などのクロム鋼、クロムモリブデン鋼の素材Pを四方向で放射状に軸部分が延びた十字の多方軸部品10とする場合について説明する。多方軸部品10は、例えば、ボス部11の側周面において同一平面上に該ボス部11の中心から放射状に本例では4個の断面中実円形の軸部12が形成され、後述金型2から離型した状態で、該軸部12の断面真円度が±0.01mm以下とされたことを特徴としたものである。   In this example, a metal, for example, a columnar chrome steel such as SCr415, SCr420, SCM415, or SCM420, or a material P of chrome molybdenum steel is used as a cross-shaped multi-axis shaft component 10 in which shaft portions extend radially in four directions. Will be described. For example, the multi-axis shaft part 10 is formed with four solid circular shaft parts 12 in the present example in a radial pattern from the center of the boss part 11 on the same plane on the side peripheral surface of the boss part 11. In this state, the roundness of the cross section of the shaft portion 12 is set to be ± 0.01 mm or less in a state where it is released from 2.

本発明の金型機構1は、次のように構成されている。2は、多方軸部品10の軸部12の個数だけ用意(本例では4個)される金型である。この金型2は、図1(a)に示す平面視で、軸部12の軸間中央においてボス部11の中心から等分割されており、型締時に互いが当接する本例では45°の分割テーパ部2Aが図1(b)に示す正面視の両端に設けられている。   The mold mechanism 1 of the present invention is configured as follows. Reference numeral 2 denotes a mold prepared for the number of shaft portions 12 of the multi-directional shaft component 10 (four in this example). In the plan view shown in FIG. 1A, the mold 2 is equally divided from the center of the boss portion 11 at the center between the shaft portions 12, and is 45 ° in this example where the butt portions abut each other during mold clamping. Divided taper portions 2A are provided at both ends of the front view shown in FIG.

また、金型2は、図1(b)に示す正面視において分割テーパ部2A,2A間に、ボス部11の側周面を形成するボス形成部2Bが設けられており、このボス形成部2Bの上下左右の中央位置、すなわち正面視中央に、軸部12を形成するための軸形成孔部2Cが設けられている。   Further, the mold 2 is provided with a boss forming portion 2B that forms a side peripheral surface of the boss portion 11 between the divided taper portions 2A and 2A in the front view shown in FIG. A shaft forming hole portion 2C for forming the shaft portion 12 is provided at the center position of 2B in the vertical and horizontal directions, that is, in the center in the front view.

さらに、金型2は、図1(c)に示す背面、すなわち離型方向の面における本例では下部位に、後述する型締機構3のカム3A(型締手段)が型締方向と直交方向に相対的に移動することで該金型2に閉塞力を発揮させるためのテーパ部2Dが設けられている。なお、図1(d)には、金型2を側面視した状態が示されている。   Furthermore, the mold 2 has a cam 3A (clamping means) of a mold clamping mechanism 3 (to be described later) orthogonal to the mold clamping direction on the back surface shown in FIG. A taper portion 2D is provided for allowing the mold 2 to exert a closing force by moving relatively in the direction. FIG. 1D shows a state in which the mold 2 is viewed from the side.

3は、本発明の金型機構1における、上記金型2を型締する際に用いる型締機構である。この型締機構3には、通常のプレス装置におけるメインラム3aに対応するベッド3b、成型する素材Pを保持すると共に金型2を所定位置に配置し、この状態で素材Pに対する所定位置へ移動させるべく上下動するスリーブ3cを備えている。そして、本発明の金型機構1は、本例では、型締手段としてのカム3Aをベッド3b上に固定配置している点を特徴とする。   3 is a mold clamping mechanism used when the mold 2 is clamped in the mold mechanism 1 of the present invention. The mold clamping mechanism 3 holds a bed 3b corresponding to a main ram 3a in a normal press machine, a material P to be molded, and a mold 2 at a predetermined position. In this state, the mold 2 is moved to a predetermined position with respect to the material P. A sleeve 3c that moves up and down as much as possible is provided. In this embodiment, the mold mechanism 1 of the present invention is characterized in that a cam 3A as mold clamping means is fixedly arranged on the bed 3b.

カム3Aは、本例では、ベッド3b上において、型締時に金型2のテーパ部2Dが当接して、このカム3Aに対する金型2の相対的な垂直方向の移動により、該金型2に水平方向の閉塞力を発揮させるべく、上部に、型締方向の下方に傾斜した斜面部3Aaが形成されている。   In this example, the cam 3A is brought into contact with the mold 2 by the relative vertical movement of the mold 2 with respect to the cam 3A when the taper portion 2D of the mold 2 abuts on the bed 3b during mold clamping. In order to exert a horizontal closing force, a slope portion 3Aa inclined downward in the mold clamping direction is formed at the top.

また、図2及び図3に示される型締機構3において、3Bはボス部11の平面形成部位に設けられた上パンチ、3Cは上パンチに対応してボス部11の底面形成部位に設けられた下パンチである。上パンチ3B、下パンチ3Cは、ボス部11の平面、底面、の形成部位において中央から外周部に向けて拡径状に傾斜した斜面3Ba,3Caが形成されると共に、この斜面3Ba,3Caの所定拡径部位に平坦状の段部3Bb,3Cbが各々形成されている。   Further, in the mold clamping mechanism 3 shown in FIG. 2 and FIG. 3, 3B is an upper punch provided at a plane forming portion of the boss portion 11, and 3C is provided at a bottom forming portion of the boss portion 11 corresponding to the upper punch. It is a lower punch. The upper punch 3B and the lower punch 3C are formed with slopes 3Ba and 3Ca which are inclined in a diameter increasing manner from the center toward the outer peripheral part at the formation portion of the flat surface and bottom surface of the boss part 11, and the slopes 3Ba and 3Ca Flat step portions 3Bb and 3Cb are respectively formed at predetermined diameter-expanded portions.

上パンチ3B,下パンチ3Cの、斜面3Ba,3Ca、段部3Bb,3Cbにより、ボス部11の成型時に、本来、金型2との間にばりとして生じる余肉部を補強リブとしての形状とすることができると共に、速やかに成型する素材Pを金型2の軸形成孔部2Cへ流入させることができる。   Due to the slopes 3Ba and 3Ca and the stepped portions 3Bb and 3Cb of the upper punch 3B and the lower punch 3C, when the boss portion 11 is molded, the surplus portion that originally occurs as a flash between the mold 2 and the shape as a reinforcing rib In addition, the material P to be quickly molded can flow into the shaft forming hole 2C of the mold 2.

次に、上記の金型機構1を用いた多方軸部品10を製造する工程について説明する。図2(a)に示すように、ベッド3b上に、カム3Aを、下パンチ3Cの中心から(本例では四方に)等距離だけ離間させて固定配置する。そして、下パンチ3C上とスリーブ3cに囲まれた部位に、円柱状の素材Pを配置する。   Next, a process for manufacturing the multi-axis component 10 using the mold mechanism 1 will be described. As shown in FIG. 2A, the cam 3A is fixedly disposed on the bed 3b so as to be separated from the center of the lower punch 3C by an equal distance (in this example, in four directions). Then, a columnar material P is disposed on the portion surrounded by the lower punch 3C and the sleeve 3c.

上記の後、図2(b)に示すように、メインラム3a下面とスリーブ3cの上端面に金型2を配置し、メインラム3aを、上パンチ3Bと共に、ベッド3bに向けて接近移動させて型締を開始する。このとき、スリーブ3cは図示下方、未だ移動していない下パンチ3Cの段部3Cbと同高さにまで下降させる。   After the above, as shown in FIG. 2B, the mold 2 is disposed on the lower surface of the main ram 3a and the upper end surface of the sleeve 3c, and the main ram 3a is moved toward the bed 3b together with the upper punch 3B. Start clamping. At this time, the sleeve 3c is lowered to the same height as the step 3Cb of the lower punch 3C that has not yet moved in the lower part of the drawing.

なお、本例では図3(a)に示すように、下パンチ3Cを上パンチ3Bに向けて移動させて型締を行うようにしており、これにより、成型の偏りが生じない均質な多方軸部品10を速やかに製造できる。   In this example, as shown in FIG. 3 (a), the lower punch 3C is moved toward the upper punch 3B to perform the mold clamping, so that a homogeneous multi-axis with no molding bias is generated. The component 10 can be manufactured quickly.

図3(a)に示すように、型締を開始し、金型2のテーパ部2Dがカム3Aの斜面部3Aaに当接すると、金型2は、それまでの垂直下方向の移動から、水平中心方向への閉塞力を発揮するようになり、このとき、隣接する互い金型2の分割テーパ部2Aが各々当接して該閉塞力が全体として均一となる。   As shown in FIG. 3A, when mold clamping is started and the taper portion 2D of the mold 2 comes into contact with the inclined surface portion 3Aa of the cam 3A, the mold 2 is moved from the vertical downward movement so far. The closing force in the horizontal center direction is exhibited. At this time, the divided taper portions 2A of the adjacent molds 2 come into contact with each other and the closing force becomes uniform as a whole.

また、図3(b)に示すように、金型2を同時に、閉塞荷重が成形荷重の50〜150%の範囲内である例えば78.75%(=本例においては閉塞力630KN相当)で閉塞し、後に上パンチ3B、下パンチ3Cを互いに接近可動させることで、素材Pを塑性変形させる。これにより、金型離型時で真円度が±0.01mm以下の多方軸部品10が完成する。   Further, as shown in FIG. 3 (b), the mold 2 is simultaneously closed with a closing load in the range of 50 to 150% of the molding load, for example, 78.75% (= in this example, the closing force is equivalent to 630KN). The material P is plastically deformed by closing and later moving the upper punch 3B and the lower punch 3C closer to each other. As a result, the multi-axial component 10 having a roundness of ± 0.01 mm or less when the mold is released is completed.

本発明の金型機構1を用いた本発明の製造方法により真円度が±0.01mm以下の多方軸部品10が製造可能な原理について図4を参照して説明する。型締された状態の時に、軸部12が成型される部位は、金型2及び上パンチ3Bと下パンチ3Cにより軸形成孔部2Cに流入する素材Pにより構成される。   The principle by which the multi-axial component 10 having a roundness of ± 0.01 mm or less can be manufactured by the manufacturing method of the present invention using the mold mechanism 1 of the present invention will be described with reference to FIG. The portion where the shaft portion 12 is molded when the mold is clamped is constituted by the material P that flows into the shaft forming hole portion 2C by the mold 2, the upper punch 3B, and the lower punch 3C.

素材Pは、流入する開口以外は閉じた軸形成孔部2C内においてしだいに充満し、充満後、つまり、型締された状態のときに、該軸形成孔部2Cに沿った成型が行われることとなる。   The material P gradually fills in the closed shaft forming hole 2C except for the inflow opening, and after filling, that is, when the mold is clamped, the material P is molded along the shaft forming hole 2C. It will be.

このとき、軸部12となる素材P(以下、軸部12とのみ記す)の断面においては、金型2同士で不均等にかかる閉塞力は、分割テーパ部2Aにより互いに均等に分散され、また、軸形成孔部2Cは素材Pの流入部位以外に開いた部位がないので、軸部12にはその外周から軸中心に向けた均等な閉塞力がかかる。   At this time, in the cross section of the material P to be the shaft portion 12 (hereinafter referred to as only the shaft portion 12), the blocking force applied non-uniformly between the molds 2 is evenly distributed to each other by the divided taper portion 2A. Since the shaft forming hole portion 2C has no open portion other than the inflow portion of the material P, the shaft portion 12 is applied with a uniform closing force from the outer periphery toward the shaft center.

一方、この閉塞力の応力、すなわち素材Pの復元力によって軸部12には、中心から外周へ均等な内部圧力がかかる。このときも軸形成孔部2Cは素材Pの流入部位以外に開いた部位がないと共に、金型2同士が分割テーパ部2Aにより互いに力が均等分散されるから、結果的に、周面均等に閉塞力と復元力が働き、軸形成孔部2Cの断面真円状に沿って成形されるのである。   On the other hand, a uniform internal pressure is applied to the shaft portion 12 from the center to the outer periphery due to the stress of the closing force, that is, the restoring force of the material P. At this time, the shaft forming hole portion 2C has no open portion other than the inflow portion of the material P, and the molds 2 are equally distributed to each other by the divided taper portion 2A. The closing force and the restoring force act, and the shaft forming hole portion 2C is molded along the perfect circular shape.

そして、上記、閉塞力は、図5(a)に示すように、成形荷重の50〜150%とすれば、図5(b)に示すように、真円度が±0.01mm以下の軸部12が形成される。成形荷重の50%より低いと図5(c)に示すように水平方向に扁平した状態となり、150%より高いと図5(d)に示すように垂直方向に扁平した状態となる。   As shown in FIG. 5 (a), when the closing force is 50 to 150% of the molding load, as shown in FIG. 5 (b), the roundness is ± 0.01 mm or less. Part 12 is formed. When it is lower than 50% of the molding load, it is flattened in the horizontal direction as shown in FIG. 5C, and when it is higher than 150%, it is flattened in the vertical direction as shown in FIG. 5D.

ちなみに、図6(a)に示すように、従来の横割の金型を用いた際には、本発明条件範囲内の成形荷重の78.75%(=閉塞力:630KN相当)とした状態であっても、金型離型時の軸部は真円度が図6(b)に示すように最大で約0.04mmで大きく歪んだ断面形状となった。ゆえに、従来の金型機構及び製造方法では、軸部を真円状に仕上げたり、上型と下型の分割部位に生じるばりを除去する後処理が必要となる。   Incidentally, as shown in FIG. 6 (a), when a conventional horizontal mold is used, 78.75% of the molding load within the condition range of the present invention (= blocking force: equivalent to 630KN) is used. Even in this case, the shaft portion at the time of mold release had a cross-sectional shape in which the roundness was greatly distorted at a maximum of about 0.04 mm as shown in FIG. Therefore, the conventional mold mechanism and manufacturing method require post-processing that finishes the shaft part into a perfect circle or removes the flash generated in the divided part of the upper mold and the lower mold.

一方、本発明の金型機構1を用いた本発明の製造方法による本発明の多方軸部品10は、同じ成形荷重の78.75%であれば、図6(c)に示すように、金型2離型時で真円度が±0.005mm程度であり、軸部12を真円状に仕上げる処理は必要なく、また、軸部12にばりが生じないので、これを除去する処理も不要である。   On the other hand, if the multi-axial component 10 of the present invention by the manufacturing method of the present invention using the mold mechanism 1 of the present invention is 78.75% of the same molding load, as shown in FIG. When the mold 2 is released, the roundness is about ± 0.005 mm, and it is not necessary to finish the shaft portion 12 into a perfect circle, and the shaft portion 12 is not burred. It is unnecessary.

本発明の金型機構における金型であり、(a)は全てを配置した状態の平面視、(b)はそのうちの1個の正面視、(c)は(b)の背面視、(d)は(b)の側面視、の状態を示す図である。FIG. 4 is a mold in the mold mechanism of the present invention, (a) is a plan view in a state where all are arranged, (b) is a front view of one of them, (c) is a rear view of (b), (d () Is a figure which shows the state of the side view of (b). (a)(b)は本発明の多方軸部品の製造方法を説明するための図である。(A) and (b) are the figures for demonstrating the manufacturing method of the multi-axial component of this invention. (a)(b)は本発明の多方軸部品の製造方法を説明するための図である。(A) and (b) are the figures for demonstrating the manufacturing method of the multi-axial component of this invention. 本発明の多方軸部品の製造方法における軸部成形原理を説明するために、(a)は金型を平面視した状態、(b)は金型を正面視した状態、を各々示す図である。In order to explain the shaft part forming principle in the manufacturing method of the multi-axis shaft component of the present invention, (a) shows a state in which the mold is viewed in plan, and (b) shows a state in which the mold is viewed in front. . 本発明の多方軸部品の製造方法における閉塞荷重を説明するために、(a)は閉塞力と真円度の関係を表し、(b)は(a)のb点の軸部断面を、(c)は(a)のc点の軸部断面を、(d)は(a)のd点の軸部断面を、各々示す図である。In order to explain the blocking load in the manufacturing method of the multi-axis shaft component of the present invention, (a) shows the relationship between the blocking force and the roundness, (b) shows the shaft section at point b in (a), ( (c) is a figure which shows the axial part cross section of the point c of (a), (d) is a figure which respectively shows the axial part cross section of the d point of (a). (a)は従来の金型及び製造方法及び本発明と真円度の関係を表し、(b)は(a)のbの従来例による軸部断面、(c)は(a)のcの本発明による軸部断面、を各々示す図である。(A) represents the conventional mold and manufacturing method and the relationship between the present invention and roundness, (b) is a shaft section according to the conventional example of (a) b, (c) is c of (a) c. It is a figure which each shows the axial part cross section by this invention.

符号の説明Explanation of symbols

1 金型機構
2 金型
2A 分割テーパ部
2C 軸形成孔部
2D テーパ部
3 型締機構
3A カム(型締手段)
3Aa 斜面部
3B 上パンチ
3C 下パンチ
10 多方軸部品
11 ボス部
12 軸部
P 素材
DESCRIPTION OF SYMBOLS 1 Mold mechanism 2 Mold 2A Divided taper part 2C Shaft formation hole part 2D Taper part 3 Mold clamping mechanism 3A Cam (mold clamping means)
3Aa Slope part 3B Upper punch 3C Lower punch 10 Multi-directional shaft part 11 Boss part 12 Shaft part P Material

Claims (3)

軸部が放射状に延びた金属製の多方軸部品を製造するための金型機構であって、軸部を形成する複数の金型と、これら金型を型締方向に同時に移動させる型締手段とを有し、前記各金型は、型締方向を正面としたときの、正面視両端に該軸部間中央位置で等角度に分割した分割テーパ部と、正面視中央に該軸部を形成する軸形成孔部とが設けられ、離型方向を背面としたときの背面視上部位又は下部位に、前記型締手段が型締方向と直交方向に相対移動することで金型に閉塞力を発揮させるためのテーパ部が設けられたことを特徴とする金型機構。   A mold mechanism for manufacturing a metal multi-directional shaft part having a radially extending shaft part, and a plurality of molds forming the shaft part, and a mold clamping means for simultaneously moving these molds in the mold clamping direction Each mold has a tapered section divided at equal angles at the center position between the shaft portions at both ends in front view when the mold clamping direction is the front, and the shaft portions at the center in the front view. A shaft forming hole portion to be formed is provided, and the mold clamping means is closed in the mold by moving relative to the mold clamping direction in a direction perpendicular to the mold clamping direction in the rear view or lower part when the mold release direction is the back side. A mold mechanism provided with a taper portion for exerting force. 請求項1の金型機構を用いた金属製の多方軸部品の製造方法であって、型締手段により、成形荷重の50〜150%の閉塞荷重で全金型を同時に閉塞することを特徴とする多方軸部品の製造方法。   A method for producing a metal multi-axial component using the mold mechanism according to claim 1, characterized in that all molds are simultaneously closed with a closing load of 50 to 150% of a forming load by a clamping means. To manufacture multi-axis shaft parts. 請求項1の金型機構及び請求項2の製造方法により製造された金属製の多方軸部品であって、金型を離型した状態で真円度が±0.01mm以下であることを特徴とする多方軸部品。   A metal multi-axis component manufactured by the mold mechanism of claim 1 and the manufacturing method of claim 2, wherein the roundness is ± 0.01 mm or less with the mold released. Multi-axis parts.
JP2008330204A 2008-12-25 2008-12-25 Mold mechanism, manufacturing method, and multi-axis component Active JP5451059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330204A JP5451059B2 (en) 2008-12-25 2008-12-25 Mold mechanism, manufacturing method, and multi-axis component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330204A JP5451059B2 (en) 2008-12-25 2008-12-25 Mold mechanism, manufacturing method, and multi-axis component

Publications (2)

Publication Number Publication Date
JP2010149152A true JP2010149152A (en) 2010-07-08
JP5451059B2 JP5451059B2 (en) 2014-03-26

Family

ID=42568836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330204A Active JP5451059B2 (en) 2008-12-25 2008-12-25 Mold mechanism, manufacturing method, and multi-axis component

Country Status (1)

Country Link
JP (1) JP5451059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100152A (en) * 2015-11-30 2017-06-08 マツダ株式会社 Closed forging device and closed forging method for cam element component
CN107150100A (en) * 2017-06-24 2017-09-12 芜湖德丰汽车零部件有限公司 A kind of double forges equipment automatically

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107520388A (en) * 2017-08-17 2017-12-29 河南航天精工制造有限公司 The upsetting molding jig of double-shaft shoulder form workpiece

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157251A (en) * 1973-04-17 1975-12-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157251A (en) * 1973-04-17 1975-12-19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100152A (en) * 2015-11-30 2017-06-08 マツダ株式会社 Closed forging device and closed forging method for cam element component
CN107150100A (en) * 2017-06-24 2017-09-12 芜湖德丰汽车零部件有限公司 A kind of double forges equipment automatically

Also Published As

Publication number Publication date
JP5451059B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
KR101512919B1 (en) Method for manufacturing hollow engine valve
JP6024832B2 (en) Manufacturing method of forged crankshaft
KR101782830B1 (en) Method of manufacturing a large- or medium-sized wheel disk and a product manufactured thereby
WO2018016488A1 (en) Method for manufacturing cylindrical ring member, bearing, clutch, vehicle, and machine
JP5922861B2 (en) Method for producing metal powder forged product and metal powder forged product produced by the method
JP5451059B2 (en) Mold mechanism, manufacturing method, and multi-axis component
JP2007203342A (en) Method for manufacturing cylindrical shaft
CN109702137B (en) Method for manufacturing pulley shaft for belt type stepless transmission
JP6287631B2 (en) Manufacturing method of forged crankshaft
JP2021130135A (en) Forging die and spline molding method
JP2009006338A (en) Method for manufacturing rod-like forged part with deformed flange
KR20180041128A (en) A method for manufacturing a tapered roller assembly, and a method for manufacturing a tapered roller assembly and a tapered roller bearing
JP5863270B2 (en) Method for manufacturing ring shaped material
KR101295006B1 (en) Method of Forming Drum Component of Automatic Transmission
JP2502117B2 (en) Crankshaft manufacturing method
JP2003019534A (en) Circular work forging method
JP2009148792A (en) Method for manufacturing connecting rod, and die for forging connecting rod
JP2018199146A (en) Cylinder manufacturing method
JP3746828B2 (en) Manufacturing method for cylindrical parts
JP2019089078A (en) Method for forging gear
JPWO2019049477A1 (en) Rack manufacturing method, steering device manufacturing method, and vehicle manufacturing method
JP2019084569A (en) Demolding method
JP6119659B2 (en) Manufacturing method of forged crankshaft
JP2009166133A (en) Method for manufacturing cylindrical shaft
JPH1190568A (en) Manufacture of ring gear, die for manufacturing ring gear, and manufacture of die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5451059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250