JP2010146769A - Membrane-electrode assembly and fuel cell stack - Google Patents

Membrane-electrode assembly and fuel cell stack Download PDF

Info

Publication number
JP2010146769A
JP2010146769A JP2008320102A JP2008320102A JP2010146769A JP 2010146769 A JP2010146769 A JP 2010146769A JP 2008320102 A JP2008320102 A JP 2008320102A JP 2008320102 A JP2008320102 A JP 2008320102A JP 2010146769 A JP2010146769 A JP 2010146769A
Authority
JP
Japan
Prior art keywords
membrane
electrode assembly
diffusion layer
catalyst layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008320102A
Other languages
Japanese (ja)
Inventor
Atsushi Nogi
淳志 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008320102A priority Critical patent/JP2010146769A/en
Publication of JP2010146769A publication Critical patent/JP2010146769A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-electrode assembly 1, which can effectively prevent short-circuit due to piercing of a fibrous material forming a diffusion layer 5 into an electrolyte film 2, and can be manufactured with high productivity. <P>SOLUTION: In the membrane-electrode assembly 1, two opposing sides 5a of a diffusion layer 5 are located outside beyond a catalyst layer 4, and other two opposing sides 5b are located in the inside of side peripheries 4b of the catalyst layer 4. Stiffening members 10 preventing a fibrous material contained in the diffusion layer 5 from penetrating is arranged in a side of the two opposing sides of a side where a region where the diffusion layer 5 is located outside beyond the catalyst layer 4 in the electrolyte film 2 is located. Since the stiffening members 10 exist only in the side of the two opposing sides of the electrolyte film 2, the membrane-electrode assembly 1 can be continuously manufactured by using an electrolyte film of a strip shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の発電部を形成する膜電極接合体、および該膜電極接合体を備える燃料電池スタックに関し、特に、拡散層を構成する繊維状物質が電解質膜を貫通して短絡を起こすのを防止する構成を備えた膜電極接合体および燃料電池スタックに関する。   The present invention relates to a membrane electrode assembly that forms a power generation unit of a fuel cell, and a fuel cell stack including the membrane electrode assembly, and in particular, a fibrous material constituting a diffusion layer causes a short circuit through an electrolyte membrane. The present invention relates to a membrane electrode assembly and a fuel cell stack having a configuration for preventing the above.

燃料電池の1つとして固体高分子形燃料電池が知られており、電解質膜と、その両面に触媒層と拡散層とをこの順で積層した電極層を備えた膜電極接合体を主要な構成要素とする。拡散層は、セパレータのガス流路から供給される酸化剤ガスあるいは燃料ガスを触媒層に向けて透過させ、かつ発生した電気を集電する機能を有するものであり、通常、カーボン繊維からなるカーボンクロスやカーボンペーパーなどで作られる。膜電極接合体はガス流路を備えたセパレータで挟持され燃料電池スタックとされる。   A polymer electrolyte fuel cell is known as one of the fuel cells, and a main component is a membrane electrode assembly including an electrolyte membrane and an electrode layer in which a catalyst layer and a diffusion layer are laminated in this order on both sides. Element. The diffusion layer has a function of permeating the oxidant gas or fuel gas supplied from the gas flow path of the separator toward the catalyst layer and collecting the generated electricity, and is usually a carbon made of carbon fiber. Made of cloth or carbon paper. The membrane electrode assembly is sandwiched between separators having gas flow paths to form a fuel cell stack.

膜電極接合体の製造に当たっては、電解質膜の表面に触媒層を塗布あるいは転写により形成し、その上に拡散層を積層する。発電性能を向上させる等の目的で、触媒層よりも大きい面積の拡散層を触媒層の上に積層する場合があり、その場合には、拡散層の周縁が直接電解質膜に接することとなる。電解質膜と拡散層とが直接に接する構造を持つ膜電極接合体の場合、スタッキング時の締結圧により、拡散層を構成するカーボン繊維が電解質膜に突き刺さることがある。突き刺さりの態様によっては、発電時に短絡を起こす可能性があり、短絡を回避する手段を講じることが求められる。   In manufacturing the membrane electrode assembly, a catalyst layer is formed on the surface of the electrolyte membrane by coating or transferring, and a diffusion layer is laminated thereon. For the purpose of improving the power generation performance, a diffusion layer having a larger area than the catalyst layer may be laminated on the catalyst layer, and in this case, the periphery of the diffusion layer is in direct contact with the electrolyte membrane. In the case of a membrane electrode assembly having a structure in which the electrolyte membrane and the diffusion layer are in direct contact, carbon fibers constituting the diffusion layer may pierce the electrolyte membrane due to the fastening pressure during stacking. Depending on the mode of piercing, there is a possibility of causing a short circuit during power generation, and it is required to take measures to avoid the short circuit.

特許文献1には、矩形状である電解質膜の一方の面には対向する2辺に沿うようにして第1膜補強部材を配置し、他方の面には他の対向する2辺に沿うようにして第2膜補強部材を配置し、第1膜補強部材間に一方の触媒層を、第2膜補強部材間に他方の触媒層を配置するとともに、第1膜補強部材の上に乗る大きさの拡散層と、第2膜補強部材の上に乗る大きさの拡散層とを両面に積層するようにした膜電極接合体が記載されている。この形態の膜電極接合体では、触媒層よりも大きい面積の拡散層を触媒層の上に積層する場合であっても、スタッキング時に、拡散層を構成するカーボン繊維が電解質膜を貫通するのを第1膜補強部材および第2膜補強部材で阻止することができ、短絡が生じるのを回避することができる。   In Patent Document 1, a first membrane reinforcing member is disposed along two opposing sides on one surface of a rectangular electrolyte membrane, and along the other two opposing sides on the other surface. The second membrane reinforcing member is arranged, one catalyst layer is arranged between the first membrane reinforcing members, the other catalyst layer is arranged between the second membrane reinforcing members, and the second membrane reinforcing member is placed on the first membrane reinforcing member. A membrane electrode assembly is described in which a diffusion layer having a thickness and a diffusion layer having a size on a second membrane reinforcing member are laminated on both sides. In this form of membrane electrode assembly, even when a diffusion layer having a larger area than the catalyst layer is laminated on the catalyst layer, the carbon fibers constituting the diffusion layer pass through the electrolyte membrane during stacking. The first film reinforcing member and the second film reinforcing member can be used to prevent the occurrence of a short circuit.

特開2007−242637号公報Japanese Patent Laid-Open No. 2007-242637

特許文献1に記載される形態の膜電極接合体では、電解質膜上における直交する2方向に第1膜補強部材と第2膜補強部材とを配置する構成であり、帯状の電解質膜上に所定の距離をおいて触媒層と拡散層とからなる電極層を連続的に配置し、その後繋ぎ目の電解質膜部分を切断して膜電極接合体ごとに分離するようにした膜電極接合体の製造方法に適用するためには、特許文献1にも記載されるように、帯状の電解質膜上に第1膜補強部材を配置していく処理工程と、第1膜補強部材に直交する方向に第2膜補強部材を配置していく処理工程とを、分離した工程として行う必要があり、生産性の観点から充分なものとはいえない。   In the membrane electrode assembly described in Patent Document 1, the first membrane reinforcing member and the second membrane reinforcing member are arranged in two orthogonal directions on the electrolyte membrane, and a predetermined shape is provided on the belt-shaped electrolyte membrane. Of a membrane electrode assembly in which an electrode layer composed of a catalyst layer and a diffusion layer is continuously arranged at a distance of, and then the electrolyte membrane portion of the joint is cut and separated for each membrane electrode assembly In order to apply to the method, as described in Patent Document 1, the treatment step of arranging the first membrane reinforcing member on the belt-shaped electrolyte membrane and the first step in a direction orthogonal to the first membrane reinforcing member are performed. The treatment process for arranging the two-membrane reinforcing member needs to be performed as a separate process, which is not sufficient from the viewpoint of productivity.

本発明は、上記の問題点を解決した膜電極接合体を提供することを課題とし、より具体的には、拡散層を形成する繊維状物質が電解質膜に突き刺さって短絡が生じるのを効果的に阻止することのできる膜電極接合体であって、高い生産性のもとで製造することのできる膜電極接合体を提供することを課題とする。   It is an object of the present invention to provide a membrane electrode assembly that solves the above-mentioned problems, and more specifically, it is effective to cause a fibrous material forming a diffusion layer to pierce an electrolyte membrane and cause a short circuit. It is an object of the present invention to provide a membrane / electrode assembly that can be manufactured with high productivity.

本発明による膜電極接合体は、電解質膜の両面に触媒層と拡散層とがこの順で積層されかつ前記拡散層は繊維状物質を含む膜電極接合体であって、前記拡散層の対向する2辺は前記触媒層を越えて外側に位置しており、他の対向する2辺は前記触媒層の側縁から内側に位置しており、さらに、前記電解質膜における前記拡散層が前記触媒層を越えて外側に位置する領域が位置する側の対向する2辺側には前記拡散層に含まれる繊維状物質が通過するのを阻止することのできる補強材料が配置されていることを特長とする。
本発明は、上記の膜電極接合体を備えた燃料電池スタックも開示する。
The membrane electrode assembly according to the present invention is a membrane electrode assembly in which a catalyst layer and a diffusion layer are laminated in this order on both surfaces of an electrolyte membrane, and the diffusion layer includes a fibrous substance, and the diffusion layer is opposed to the membrane electrode assembly. Two sides are located outside the catalyst layer, the other two opposite sides are located inward from the side edge of the catalyst layer, and the diffusion layer in the electrolyte membrane is the catalyst layer. A reinforcing material capable of preventing the fibrous substance contained in the diffusion layer from passing through is disposed on the two opposite sides on the side where the region located outside is located. To do.
The present invention also discloses a fuel cell stack including the membrane electrode assembly.

本発明による膜電極接合体では、電解質膜における、拡散層が触媒層を越えて外側に位置する領域が位置する側の対向する2辺側にのみ、拡散層に含まれる繊維状物質が通過するのを阻止することのできる補強材料が配置されており、電解質膜における他の対向する2辺側には、補強材料は配置されない。そして、電解質膜における他の対向する2辺側では、拡散層の側縁は触媒層の側縁から内側に位置している。   In the membrane electrode assembly according to the present invention, the fibrous material contained in the diffusion layer passes only on the two opposite sides of the electrolyte membrane on the side where the diffusion layer is located outside the catalyst layer. The reinforcing material which can prevent this is disposed, and the reinforcing material is not disposed on the other two opposite sides of the electrolyte membrane. Then, on the other two opposite sides of the electrolyte membrane, the side edge of the diffusion layer is located on the inner side from the side edge of the catalyst layer.

膜電極接合体における前記補強材料が配置されている側辺側では、該補強材料によって拡散層の繊維状物質が電解質膜を貫通するのを阻止することができる。また、膜電極接合体における他の側辺側では、拡散層の下に触媒層が位置することにより、触媒層によって拡散層の繊維状物質が電解質膜にまで達するのを阻止することができる。そのために、拡散層を形成する繊維状物質が電解質膜に突き刺さって短絡が生じるのを効果的に阻止することができる。それにより、本発明による膜電極接合体を備えた燃料電池スタックは、発電性能が高くかつ長寿命のものとなる。   On the side of the membrane electrode assembly where the reinforcing material is disposed, the reinforcing material can prevent the fibrous material of the diffusion layer from penetrating the electrolyte membrane. In addition, on the other side of the membrane electrode assembly, the catalyst layer is positioned under the diffusion layer, whereby the fibrous material in the diffusion layer can be prevented from reaching the electrolyte membrane by the catalyst layer. For this reason, it is possible to effectively prevent the fibrous material forming the diffusion layer from being stuck into the electrolyte membrane and causing a short circuit. Thereby, the fuel cell stack including the membrane electrode assembly according to the present invention has high power generation performance and a long life.

さらに、前記のように、電解質膜における対向する2辺側にのみ前記補強材料が配置されている構成であり、直交する方向に補強材料を配置する工程を要しないので、帯状の電解質膜を用いて膜電極接合体を連続して製造する場合であっても、製造工程を中断することなく膜電極接合体を製造することができ、高い生産性を確保することができる。   Further, as described above, the reinforcing material is disposed only on the two opposing sides of the electrolyte membrane, and a step of arranging the reinforcing material in the orthogonal direction is not required, so a strip-shaped electrolyte membrane is used. Even when the membrane electrode assembly is continuously manufactured, the membrane electrode assembly can be manufactured without interrupting the manufacturing process, and high productivity can be ensured.

以下、図面を参照して、本発明を実施の形態に基づき説明する。図1は本発明による膜電極接合体の一実施形態の模式図であり、図2は他の実施形態の模式図である。図3〜図5は、本発明による膜電極接合体を製造するときの一形態を作業工程順に説明する模式図である。   Hereinafter, the present invention will be described based on embodiments with reference to the drawings. FIG. 1 is a schematic view of an embodiment of a membrane electrode assembly according to the present invention, and FIG. 2 is a schematic view of another embodiment. 3-5 is a schematic diagram explaining one form when manufacturing the membrane electrode assembly by this invention in order of a work process.

図1において、膜電極接合体1は全体として矩形状であり、プロトン交換基として例えばスルホン酸基を持つプロトン伝導性を備えた電解質膜2と、その両面に積層した電極層3(図1ではその一方のみが示されている)とで構成される。電極層3は、電解質膜2に面する触媒層4とその外側に積層する拡散層5とからなる。拡散層5における触媒層4に面する領域には撥水層が形成される場合もある。   In FIG. 1, a membrane electrode assembly 1 has a rectangular shape as a whole, and has an electrolyte membrane 2 having proton conductivity having, for example, a sulfonic acid group as a proton exchange group, and an electrode layer 3 laminated on both surfaces (in FIG. 1). Only one of them is shown). The electrode layer 3 includes a catalyst layer 4 facing the electrolyte membrane 2 and a diffusion layer 5 laminated on the outside thereof. A water repellent layer may be formed in a region of the diffusion layer 5 facing the catalyst layer 4.

電極層3は全体として電解質膜2内に入り込む大きさであり、電解質膜2の電極層3の周囲から延出する部分には、図1には示されないが、燃料電池セルとするに際して、この張り出した部分とセパレータ(不図示)との間に樹脂材料がガスケット(シール部材)として充填されて、一体化とシール処理が施される。   The electrode layer 3 is sized to enter the electrolyte membrane 2 as a whole, and a portion extending from the periphery of the electrode layer 3 of the electrolyte membrane 2 is not shown in FIG. A resin material is filled as a gasket (seal member) between the overhanging portion and a separator (not shown), and integration and a sealing process are performed.

図示のように、電極層3における前記拡散層5は、その対向する2つの側辺5a,5aを前記触媒層4の対向する2つの側縁4a,4aを越えて触媒層4の外側に位置させている。一方、拡散層5の他の対向する2つの側辺5b,5bは前記触媒層4の他方の対向する2つの側縁4b,4bよりも内側に位置させている。   As shown in the figure, the diffusion layer 5 in the electrode layer 3 is positioned outside the catalyst layer 4 with its two opposing sides 5a and 5a passing over the two opposing side edges 4a and 4a of the catalyst layer 4. I am letting. On the other hand, the other two opposite side edges 5b, 5b of the diffusion layer 5 are positioned inside the other two opposite side edges 4b, 4b of the catalyst layer 4.

電解質膜2は、2枚の電解質膜2a,2bを積層して形成されており、2枚の電解質膜2a,2bの間であって、前記拡散層5が触媒層4の一方の側縁4a,4aを越えて外側に位置する領域に対向する側辺領域には、補強材料10,10が配置されている。   The electrolyte membrane 2 is formed by laminating two electrolyte membranes 2 a and 2 b, between the two electrolyte membranes 2 a and 2 b, and the diffusion layer 5 is one side edge 4 a of the catalyst layer 4. , 4a, reinforcing materials 10 and 10 are arranged in the side region opposite to the region located outside.

触媒層4は、電解質樹脂と触媒担持導電体とを含む触媒混合物で形成される。触媒には主に白金系の金属が用いられ、該触媒を担持する導電体にはカーボン粉末が主に用いられる。拡散層5は、例えば繊維状物質としてのカーボン繊維を含むカーボンクロスやカーボンペーパーなどで作られる。   The catalyst layer 4 is formed of a catalyst mixture including an electrolyte resin and a catalyst-carrying conductor. Platinum-based metals are mainly used for the catalyst, and carbon powder is mainly used for the conductor supporting the catalyst. The diffusion layer 5 is made of, for example, carbon cloth or carbon paper containing carbon fibers as a fibrous material.

補強材料10は、前記拡散層5に含まれる繊維状物質が通過するのを阻止することのできる材料であればよく、例として、ポリエチレンナフタレート、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、フルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフィド、ポリイミド、及び、ポリイミドアミドからなる群より選択される少なくとも1種の合成樹脂であることが好ましい。   The reinforcing material 10 may be any material that can prevent the fibrous substance contained in the diffusion layer 5 from passing through. Examples thereof include polyethylene naphthalate, polytetrafluoroethylene, polyethylene terephthalate, and fluoroethylene-propylene. Copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, polyethylene, polypropylene, polyether amide, polyether imide, polyether ether ketone, polyether sulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, and polyimide It is preferably at least one synthetic resin selected from the group consisting of amides.

図1に示す膜電極接合体1は図示しないセパレータとともにスタッキングされて燃料電池スタックとされる。スタッキング時に、前記拡散層5が触媒層4の一方の側縁4a,4aを越えて外側に位置する領域は、電解質膜2に直接に接する。そして、スタッキング時の締結圧により、両者は圧接状態となり、拡散層5を構成するカーボン繊維が電解質膜2に突き刺さる場合がある。しかし、突き刺さったカーボン繊維は前記した補強材料10によってそれ以上の浸入を妨げられるので、カーボン繊維が電解質膜2を貫通することはなく、また、両面から浸入するカーボン繊維同士が接触することもない。それにより、アノードおよびカソードの両電極層3,3が短絡するは回避される。   The membrane electrode assembly 1 shown in FIG. 1 is stacked with a separator (not shown) to form a fuel cell stack. At the time of stacking, the region where the diffusion layer 5 is located outside the side edges 4a, 4a of the catalyst layer 4 is in direct contact with the electrolyte membrane 2. Then, due to the fastening pressure at the time of stacking, the two are brought into a pressure contact state, and the carbon fibers constituting the diffusion layer 5 may pierce the electrolyte membrane 2. However, since the pierced carbon fiber is prevented from further intrusion by the reinforcing material 10, the carbon fiber does not penetrate the electrolyte membrane 2, and the carbon fibers entering from both sides do not contact each other. . Thereby, short-circuiting of both the anode and cathode electrode layers 3 and 3 is avoided.

一方、拡散層5の他の対向する2辺5b,5b側は、その下に触媒層4が2辺5b,5bから延出するようにして位置しており、それにより、拡散層5を形成するカーボン繊維が電解質膜1に突き刺さるのは阻止される。結果として、本発明による膜電極接合体1では、スタッキング時の締結圧等によって、拡散層5を形成する繊維状物質が電解質膜2に突き刺さることによって生じやすい短絡現象を確実に回避することができる。   On the other hand, the other two opposite sides 5b and 5b side of the diffusion layer 5 are positioned so that the catalyst layer 4 extends from the two sides 5b and 5b below, thereby forming the diffusion layer 5. The carbon fiber to be pierced into the electrolyte membrane 1 is prevented. As a result, in the membrane / electrode assembly 1 according to the present invention, it is possible to reliably avoid the short-circuit phenomenon that is likely to occur when the fibrous material forming the diffusion layer 5 pierces the electrolyte membrane 2 due to the fastening pressure or the like during stacking. .

図2に示す膜電極接合体1aは、前記補強材料10が、2枚の電解質膜2a,2bの間ではなく、1枚の電解質膜2の両面に配置されており、触媒層4は補強材料10、10の間に形成されている点で、図1に示した膜電極接合体1と相違する。他の部材は図1に示した膜電極接合体1と同じであり、同じ符号を付して説明は省略する。図2に示す形態の膜電極接合体1aの場合も、スタッキング時の締結圧等によって、拡散層5を形成する繊維状物質が電解質膜2に突き刺さるのを確実に阻止できることは、説明を要しない。   In the membrane / electrode assembly 1a shown in FIG. 2, the reinforcing material 10 is arranged not on the two electrolyte membranes 2a and 2b but on both surfaces of the single electrolyte membrane 2, and the catalyst layer 4 is made of the reinforcing material. The membrane electrode assembly 1 is different from the membrane electrode assembly 1 shown in FIG. The other members are the same as those of the membrane electrode assembly 1 shown in FIG. Also in the case of the membrane electrode assembly 1a having the form shown in FIG. 2, it is not necessary to explain that the fibrous material forming the diffusion layer 5 can be reliably prevented from being stuck into the electrolyte membrane 2 by the fastening pressure at the time of stacking. .

上記した膜電極接合体1,1aは、任意の方法で作ることができる。例えば、図1に示した膜電極接合体1aは、図3〜図5に示すような方法により、連続的に製造することができる。図3において、20は帯状の電解質膜2の原反ロールであり、そこから巻き出される帯状の電解質膜2は巻き取りロール21に巻き取られる。その過程において、従来知られた方法により、帯状の電解質膜2の上には、槽22から触媒インクが間欠的に塗布され、適宜の乾燥処理が施されることにより、触媒層4・・が連続的に形成される。この処理は、アノード側触媒層とカソード側の触媒層の双方において行われる。   The above-described membrane electrode assembly 1, 1a can be made by any method. For example, the membrane electrode assembly 1a shown in FIG. 1 can be continuously manufactured by the method shown in FIGS. In FIG. 3, reference numeral 20 denotes a raw roll of the strip-shaped electrolyte membrane 2, and the strip-shaped electrolyte membrane 2 unwound from the roll is wound on a winding roll 21. In that process, the catalyst ink is intermittently applied from the tank 22 onto the strip-shaped electrolyte membrane 2 by a conventionally known method, and an appropriate drying process is performed, so that the catalyst layer 4. It is formed continuously. This treatment is performed in both the anode side catalyst layer and the cathode side catalyst layer.

アノード側触媒層を形成した帯状の電解質膜2aとアノード側触媒層を形成した帯状の電解質膜2bは、図4に示すように、それぞれの原反ロール23、24から、触媒層4を外側にした姿勢で対向するようにして巻き出される。2つの原反ロール23、24の間には、前記した補強材料10をロール状に巻き込んだ補強材料ロール25が位置しており、該補強材料ロール25から、帯状の電解質膜の両側辺に沿うようにして、電解質膜2a,2bの側縁から触媒層4の側縁にいたる幅を持つ2枚の帯状の補強材料10、10が巻き出される。   As shown in FIG. 4, the strip-shaped electrolyte membrane 2a formed with the anode-side catalyst layer and the strip-shaped electrolyte membrane 2b formed with the anode-side catalyst layer are separated from the raw rolls 23 and 24 with the catalyst layer 4 outward. It is unwound so as to face each other in the posture. A reinforcing material roll 25 in which the above-described reinforcing material 10 is wound in a roll shape is located between the two raw rolls 23 and 24, and extends from the reinforcing material roll 25 along both sides of the belt-shaped electrolyte membrane. In this manner, the two strip-shaped reinforcing materials 10 and 10 having a width from the side edges of the electrolyte membranes 2a and 2b to the side edges of the catalyst layer 4 are unwound.

補強材料ロール25の下流には、一対の熱圧ロール26,26が位置しており、2枚の帯状の電解質膜2a、2bは、その両側縁に沿った位置に帯状の補強材料10、10を位置させた姿勢で、前記一対の熱圧ロール26,26により一体に圧接される。圧接されて一体化した両面に触媒層4,4を備えた電解質膜2a,2bと補強材料10,10からなる積層体30は、ロール27に巻き取られる。   A pair of hot-pressing rolls 26, 26 are positioned downstream of the reinforcing material roll 25, and the two strip-shaped electrolyte membranes 2 a, 2 b are strip-shaped reinforcing materials 10, 10 at positions along both side edges. In a posture in which is positioned, the pressure is integrally pressed by the pair of hot-pressing rolls 26 and 26. The laminate 30 composed of the electrolyte membranes 2 a and 2 b provided with the catalyst layers 4 and 4 on both surfaces which are pressed and integrated and the reinforcing materials 10 and 10 is wound around a roll 27.

前記積層体30は、図5に示すようにロール27から巻き出され、触媒層4の上に前記した拡散層5が積層されて電極層3が形成され、膜電極接合体1とされる。本発明において、積層する拡散層5は、その大きさが、積層体30の送り方向Pでは、触媒層4の前記積層体30の送り方向Pの幅内に入り込む大きさであり、送り方向Pに直交する方向では、触媒層4の前記積層体30の送り方向Pに直交する方向の幅よりは大きく、かつ前記電解質膜2a,2bの送り方向Pに直交する方向の幅よりは小さくされている。   As shown in FIG. 5, the laminate 30 is unwound from a roll 27, and the diffusion layer 5 is laminated on the catalyst layer 4 to form the electrode layer 3, thereby forming the membrane electrode assembly 1. In the present invention, the size of the diffusion layer 5 to be stacked is such that the size of the diffusion layer 5 enters the width of the stack 30 in the feed direction P of the stack 30 in the feed direction P of the stack 30. The width of the catalyst layer 4 is larger than the width of the catalyst layer 4 in the direction perpendicular to the feeding direction P of the laminate 30, and smaller than the width of the electrolyte membranes 2a and 2b in the direction perpendicular to the feeding direction P. Yes.

そのようにして、電解質膜2を繋ぎ材として多数の膜電極接合体1が連続的に形成されるとともに、送りの過程で、カッター40により、電解質膜2の前記繋ぎ部が切断され、枚様としての膜電極接合体1とされる。   In this way, a large number of membrane electrode assemblies 1 are continuously formed using the electrolyte membrane 2 as a connecting material, and the connecting portion of the electrolyte membrane 2 is cut by the cutter 40 in the course of feeding, As a membrane electrode assembly 1.

上記のようにして、本発明による図1に示した形態の膜電極接合体1は、帯状の電解質膜を用いて連続して製造することができる。また、図1に示す形態の膜電極接合体1および図2に示す形態の膜電極接合体1aは、ともに、一方の対向する2辺のみに沿って補強材料10を配置する構成であり、4辺に沿って補強材料を配置する形態と比較して、製造コストも低減することができる。   As described above, the membrane electrode assembly 1 having the configuration shown in FIG. 1 according to the present invention can be continuously manufactured using the strip-shaped electrolyte membrane. Moreover, both the membrane electrode assembly 1 of the form shown in FIG. 1 and the membrane electrode assembly 1a of the form shown in FIG. 2 are the structures which arrange | position the reinforcement material 10 along only one opposing two sides, 4 Compared with the embodiment in which the reinforcing material is arranged along the side, the manufacturing cost can be reduced.

図示しないが、従来知られた手法により前記膜電極接合体をガス流路を備えたセパレータで挟持することにより、高い発電性能を備えた燃料電池スタックが得られる。   Although not shown, a fuel cell stack having high power generation performance can be obtained by sandwiching the membrane electrode assembly with a separator having a gas flow path by a conventionally known technique.

本発明による膜電極接合体の一実施の形態の模式図。The schematic diagram of one Embodiment of the membrane electrode assembly by this invention. 本発明による膜電極接合体の他の実施の形態の模式図。The schematic diagram of other embodiment of the membrane electrode assembly by this invention. 本発明による膜電極接合体を製造する一態様を説明する第1の図。The 1st figure explaining the one aspect | mode which manufactures the membrane electrode assembly by this invention. 本発明による膜電極接合体を製造する一態様を説明する第2の図。The 2nd figure explaining the one aspect | mode which manufactures the membrane electrode assembly by this invention. 本発明による膜電極接合体を製造する一態様を説明する第3の図。The 3rd figure explaining the one aspect | mode which manufactures the membrane electrode assembly by this invention.

符号の説明Explanation of symbols

1…膜電極接合体、
2、2a、2b…電解質膜、
3…電極層、
4…触媒層、
4a…触媒層の対向する2つの側縁、
4b…触媒層の他の対向する2つの側縁、
5…拡散層、
5a…拡散層の対向する2つの側辺、
5b…拡散層の他の対向する2つの側辺
10…補強材料。
1 ... Membrane electrode assembly,
2, 2a, 2b ... electrolyte membrane,
3 ... electrode layer,
4 ... Catalyst layer,
4a ... Two opposite side edges of the catalyst layer,
4b ... the other two opposite side edges of the catalyst layer,
5 ... diffusion layer,
5a ... two opposite sides of the diffusion layer,
5b ... the other two opposite sides 10 of the diffusion layer ... a reinforcing material.

Claims (2)

電解質膜の両面に触媒層と拡散層とがこの順で積層されかつ前記拡散層は繊維状物質を含む膜電極接合体であって、
前記拡散層の対向する2辺は前記触媒層を越えて外側に位置しており、他の対向する2辺は前記触媒層の側縁から内側に位置しており、さらに、前記電解質膜における前記拡散層が前記触媒層を越えて外側に位置する領域が位置する側の対向する2辺側には前記拡散層に含まれる繊維状物質が通過するのを阻止することのできる補強材料が配置されていることを特長とする膜電極接合体。
A catalyst layer and a diffusion layer are laminated in this order on both surfaces of the electrolyte membrane, and the diffusion layer is a membrane electrode assembly including a fibrous substance,
Two opposite sides of the diffusion layer are located outside the catalyst layer, and the other two opposite sides are located on the inner side from the side edge of the catalyst layer. Reinforcing materials capable of preventing the passage of fibrous substances contained in the diffusion layer are disposed on the two opposite sides on the side where the region where the diffusion layer is located outside the catalyst layer is located. A membrane electrode assembly characterized by
請求項1に記載の膜電極接合体を備える燃料電池スタック。   A fuel cell stack comprising the membrane electrode assembly according to claim 1.
JP2008320102A 2008-12-16 2008-12-16 Membrane-electrode assembly and fuel cell stack Pending JP2010146769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320102A JP2010146769A (en) 2008-12-16 2008-12-16 Membrane-electrode assembly and fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320102A JP2010146769A (en) 2008-12-16 2008-12-16 Membrane-electrode assembly and fuel cell stack

Publications (1)

Publication Number Publication Date
JP2010146769A true JP2010146769A (en) 2010-07-01

Family

ID=42566977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320102A Pending JP2010146769A (en) 2008-12-16 2008-12-16 Membrane-electrode assembly and fuel cell stack

Country Status (1)

Country Link
JP (1) JP2010146769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570758B2 (en) 2010-07-05 2017-02-14 Nippon Soken, Inc. Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell
US10290877B2 (en) 2012-11-22 2019-05-14 Honda Motor Co., Ltd. Membrane electrode assembly
US10297850B2 (en) 2013-03-26 2019-05-21 Honda Motor Co., Ltd. Membrane electrode assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570758B2 (en) 2010-07-05 2017-02-14 Nippon Soken, Inc. Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell
US10290877B2 (en) 2012-11-22 2019-05-14 Honda Motor Co., Ltd. Membrane electrode assembly
US10297850B2 (en) 2013-03-26 2019-05-21 Honda Motor Co., Ltd. Membrane electrode assembly

Similar Documents

Publication Publication Date Title
JP5340738B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5214471B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP4965834B2 (en) Solid polymer electrolyte membrane electrode assembly and solid polymer fuel cell
CN110224154B (en) Frame-equipped membrane electrode assembly, method for producing same, and fuel cell
JP4843985B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH GASKET FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5874830B2 (en) Gasket for fuel cell, assembly for fuel cell, and method for joining sheet members
KR20140005125A (en) Membrane structure
US8895202B2 (en) Fuel cell membrane electrode assembly
EP2112705A1 (en) Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
US9660285B2 (en) Fuel cell and method for manufacturing the same
JP2008146915A (en) Membrane-electrode assembly, and polymer electrolyte fuel cell equipped with this
WO2007032442A1 (en) Membrane-membrane stiffening member union, membrane-catalyst layer union, membrane-electrode union, and polymer electrolyte type fuel cell
JP2010146769A (en) Membrane-electrode assembly and fuel cell stack
CN101203975B (en) Membrane-electrode assembly, its manufacturing method, and fuel cell
JP4015677B2 (en) Method for manufacturing membrane-membrane reinforcing member assembly, method for manufacturing membrane-catalyst layer assembly, method for manufacturing membrane-electrode assembly, and method for manufacturing polymer electrolyte fuel cell
JP5095190B2 (en) Membrane-electrode assembly and polymer electrolyte fuel cell having the same
WO2010010440A1 (en) Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
JP5884704B2 (en) Manufacturing method and manufacturing apparatus for membrane electrode assembly for fuel cell
WO2013191181A1 (en) Fuel cell
JP2007242637A (en) Membrane-membrane stiffening member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte type fuel cell
JP2010015939A (en) Fuel cell
JP6115414B2 (en) Membrane electrode structure and method for producing membrane electrode structure
JP2005005077A (en) Gas diffusion layer for fuel cell
JP2009238495A (en) Fuel cell and membrane-electrode-gas diffusion layer assembly used this
US20230411645A1 (en) Method for producing a membrane-electrode assembly