JP2010145478A - Method for manufacturing electrophotographic photoreceptor - Google Patents

Method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2010145478A
JP2010145478A JP2008319567A JP2008319567A JP2010145478A JP 2010145478 A JP2010145478 A JP 2010145478A JP 2008319567 A JP2008319567 A JP 2008319567A JP 2008319567 A JP2008319567 A JP 2008319567A JP 2010145478 A JP2010145478 A JP 2010145478A
Authority
JP
Japan
Prior art keywords
cooling
electrophotographic photosensitive
photosensitive member
cooling gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008319567A
Other languages
Japanese (ja)
Other versions
JP5441399B2 (en
JP2010145478A5 (en
Inventor
Jun Ohira
純 大平
Hironori Owaki
弘憲 大脇
Tatsuji Okamura
竜次 岡村
Makoto Aoki
誠 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008319567A priority Critical patent/JP5441399B2/en
Publication of JP2010145478A publication Critical patent/JP2010145478A/en
Publication of JP2010145478A5 publication Critical patent/JP2010145478A5/ja
Application granted granted Critical
Publication of JP5441399B2 publication Critical patent/JP5441399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrophotographic photoreceptor that does not have peel off of films in a cooling step, by which an electrophotographic photoreceptor can be inexpensively manufactured with stable qualities, by reducing the tact time and raise the capacity utilization rate, as well as, to suppress the amount of capital investment. <P>SOLUTION: The method for manufacturing an electrophotographic photoreceptor includes the steps, wherein the photoreceptor having at least a photoconductive layer formed of an amorphous material containing silicon on the surface of a cylindrical substrate having conductivity. The steps include: a film forming step of depositing at least a photoconductive layer formed of an amorphous material containing silicon on the surface of a cylindrical substrate which is held by a substrate holding member and heated, in a process container; a discharge step of removing the electrophotographic photoreceptor into air, after the film forming step; an outer surface cooling step of cooling the electrophotographic photoreceptor through the outer surface with a cooling gas after the discharge step; and an inner surface cooling step of cooling the electrophotographic photoreceptor through the inner surface with a cooling gas, after the outer surface cooling step. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はアモルファスシリコン(以下「a−Si」とも記す)電子写真感光体の製造方法に関し、特に、電子写真感光体の冷却工程に関する。   The present invention relates to a method for producing an amorphous silicon (hereinafter also referred to as “a-Si”) electrophotographic photosensitive member, and more particularly to a cooling step of the electrophotographic photosensitive member.

従来、電子写真感光体、半導体デバイス、画像入力ラインセンサー、撮影デバイス、光起電力デバイスを形成するための方法として、プラズマCVD(Chemical Vapor Deposition)法、イオンプレーティング法が知られている。これらの方法は、高周波電力により生成されるプラズマを用いた成膜方法である。そして、そのための装置も数多く実用化されている。   Conventionally, a plasma CVD (Chemical Vapor Deposition) method and an ion plating method are known as methods for forming an electrophotographic photosensitive member, a semiconductor device, an image input line sensor, a photographing device, and a photovoltaic device. These methods are film forming methods using plasma generated by high frequency power. Many devices for this purpose have been put into practical use.

例えば、プラズマCVD法を用いた成膜方法、つまり、高周波電力のグロー放電により原料ガスのプラズマを生成し、その分解種を基体の上に堆積させることによって堆積膜を形成する方法がある。この方法を用いた場合、例えば、原料ガスにシランガスを用いることで、a−Si薄膜の形成が容易であることが知られており、その製造装置も各種提案されている。   For example, there is a film forming method using a plasma CVD method, that is, a method of forming a deposited film by generating plasma of a source gas by glow discharge with high frequency power and depositing the decomposition species on a substrate. When this method is used, for example, it is known that an a-Si thin film can be easily formed by using a silane gas as a raw material gas, and various production apparatuses have been proposed.

また、加熱された基体の上にa−Si薄膜を形成した場合は、a−Si薄膜形成後の製品を冷却しなければならないが、冷却する際にa−Si薄膜が剥離してしまう、膜ハガレという現象が起きる場合がある。このため、時間をかけ徐々に冷却させる方法が一般に取られている。このようなa−Si薄膜形成後の製品の冷却に関する方法や装置に関する各種提案もされている。   Further, when an a-Si thin film is formed on a heated substrate, the product after the formation of the a-Si thin film must be cooled, but the a-Si thin film is peeled off during cooling. There is a case where a phenomenon called peeling occurs. For this reason, a method of gradually cooling over time is generally taken. Various proposals have also been made regarding methods and apparatuses relating to cooling of products after formation of such an a-Si thin film.

減圧可能な投入室、加熱室、反応室、および冷却室を備えた製造装置において、加熱室や冷却室を常に一定の温度状態に保ち、基体の加熱、冷却を効率よく行うことで、設備稼働率を高める光電変換部材の製造装置が開示されている(特許文献1)。   In a manufacturing device equipped with a depressurized charging chamber, heating chamber, reaction chamber, and cooling chamber, the heating and cooling chambers are always kept at a constant temperature, and the base is heated and cooled efficiently, thereby operating the equipment. An apparatus for manufacturing a photoelectric conversion member that increases the rate is disclosed (Patent Document 1).

また、成膜終了後に、反応容器の中に冷却ガスを100〜100,000Paの圧力で充填し、成膜処理が終了した基体の冷却処理を行うことで設備稼働率を高めるプラズマ処理方法及び装置が開示されている(特許文献2)。
特開昭60−010681 特開2002−080972
In addition, after the film formation is completed, a cooling gas is filled in the reaction vessel at a pressure of 100 to 100,000 Pa, and a plasma processing method and apparatus for increasing the facility operation rate by performing the cooling process on the substrate after the film formation process is completed. Is disclosed (Patent Document 2).
JP 60-010681 A JP 2002-080972 A

前述したようなプラズマ処理方法または装置を用いることにより、膜ハガレを起こさずにタクトタイムの短縮が可能にはなる。しかしながら、さらなる設備投資額の抑制や設備稼働率の向上により、より低いコストで製品を製造するためには、まだまだ改善すべき余地がある。
例えば、減圧可能な容器を用いて電子写真感光体の冷却工程を行う場合には、減圧環境に耐えられるだけの強度を持った容器にする必要があり、また、減圧にするためのポンプや配管の如きガス排気設備も備えなければならず、設備投資額が高額になってしまう。
このため、前述した製造装置によりタクトタイムの改善はなされるものの、電子写真感光体の冷却工程を減圧可能な容器の中で行うため、設備投資額は高額である。故に、さらなるコストダウンを実現するためには、必要とされる減圧可能な容器の数を極力少なくすることが望まれる。
By using the plasma processing method or apparatus as described above, the tact time can be shortened without causing film peeling. However, there is still room for improvement in order to manufacture products at a lower cost by further reducing the amount of capital investment and improving the equipment utilization rate.
For example, when the electrophotographic photosensitive member cooling process is performed using a container that can be decompressed, it is necessary to make the container strong enough to withstand the decompression environment, and a pump or piping for reducing the pressure. Such a gas exhaust facility must also be provided, and the amount of capital investment becomes high.
For this reason, although the tact time is improved by the manufacturing apparatus described above, the capital investment is high because the cooling process of the electrophotographic photosensitive member is performed in a container that can be depressurized. Therefore, in order to realize further cost reduction, it is desirable to reduce the number of containers that can be decompressed as much as possible.

また、反応容器の中で電子写真感光体の冷却工程を行う場合には、冷却工程が終了するまでの間はその反応容器の中では成膜処理を行うことができず、タクトタイムが長くなってしまう。このため、前述したプラズマ処理方法によりタクトタイムの改善はなされるものの、さらなるタクトタイムの短縮を実現するためには、冷却工程を反応容器外で行うことが望まれる。
つまり、反応容器の如き減圧可能な容器を用いることなく実施可能で、かつ膜ハガレの発生しない冷却方法が望まれる。
In addition, when the electrophotographic photosensitive member is cooled in the reaction vessel, the film formation process cannot be performed in the reaction vessel until the cooling step is completed, and the tact time becomes longer. End up. For this reason, although the takt time is improved by the above-described plasma processing method, it is desired to perform the cooling step outside the reaction vessel in order to further reduce the takt time.
That is, a cooling method that can be carried out without using a depressurizable container such as a reaction container and does not cause film peeling is desired.

そこで本発明は、上記課題を解決し、タクトタイムを短縮することで設備稼働率を高め、また設備投資額をも抑制させることにより、より低いコストで電子写真感光体を安定した品質で製造することできる電子写真感光体の製造方法を提供することを目的とする。また、冷却工程において膜ハガレの発生がない電子写真感光体の製造方法を提供することを目的とする。
本発明の電子写真感光体の製造方法は、次のような構成から成る。すなわち、導電性を有する円筒状基体の表面に、ケイ素を含む非晶質材料で形成された光導電層を少なくとも有する電子写真感光体の製造方法であって、基体保持部材によって保持されかつ加熱された円筒状基体の表面に、処理容器の中においてケイ素を含む非晶質材料で形成された光導電層を少なくとも堆積させる成膜工程と、成膜工程の後に電子写真感光体を大気中に取り出す排出工程と、排出工程の後に電子写真感光体を、冷却ガスにより電子写真感光体の外面から冷却する外面冷却工程と、外面冷却工程の後に電子写真感光体を、冷却ガスにより電子写真感光体の内面から冷却する内面冷却工程を有することを特徴とする。
また、外面冷却工程を電子写真感光体の温度が50℃以上150℃以下の範囲になるまで行い、次いで、内面冷却工程を行うことが好ましい。
また、外面冷却工程および内面冷却工程のいずれか一方または双方が、周囲が囲われた空間の中で行われることが好ましい。
また、外面冷却工程および内面冷却工程のいずれか一方または双方が、冷却ガスを吸引しながら行われることが好ましい。
また、内面冷却工程を、電子写真感光体を基体保持部材から外した状態で、電子写真感光体の内面に冷却ガスを吹き付けることにより行うことが好ましい。
また、冷却ガスが、窒素ガスもしくは空気であることが好ましい。
Accordingly, the present invention solves the above-mentioned problems, increases the equipment operation rate by shortening the tact time, and suppresses the capital investment, thereby producing an electrophotographic photosensitive member with stable quality at a lower cost. An object of the present invention is to provide a method for producing an electrophotographic photosensitive member. Another object of the present invention is to provide a method for producing an electrophotographic photosensitive member that does not cause film peeling in the cooling step.
The method for producing an electrophotographic photosensitive member of the present invention has the following configuration. That is, a method for producing an electrophotographic photosensitive member having at least a photoconductive layer formed of an amorphous material containing silicon on the surface of a cylindrical substrate having conductivity, which is held by a substrate holding member and heated. A film forming step of depositing at least a photoconductive layer formed of an amorphous material containing silicon in a processing container on the surface of the cylindrical substrate, and taking out the electrophotographic photoreceptor into the atmosphere after the film forming step A discharge step, an outer surface cooling step for cooling the electrophotographic photosensitive member from the outer surface of the electrophotographic photosensitive member with a cooling gas after the discharging step, an electrophotographic photosensitive member after the outer surface cooling step, and an electrophotographic photosensitive member with a cooling gas. It has the internal surface cooling process cooled from an internal surface, It is characterized by the above-mentioned.
Moreover, it is preferable to perform an outer surface cooling process until the temperature of an electrophotographic photoreceptor becomes the range of 50 degreeC or more and 150 degrees C or less, and then performs an inner surface cooling process.
Moreover, it is preferable that either one or both of an outer surface cooling process and an inner surface cooling process is performed in the space enclosed.
Moreover, it is preferable that either one or both of the outer surface cooling step and the inner surface cooling step is performed while sucking the cooling gas.
The inner surface cooling step is preferably performed by spraying a cooling gas on the inner surface of the electrophotographic photosensitive member with the electrophotographic photosensitive member removed from the substrate holding member.
The cooling gas is preferably nitrogen gas or air.

本発明の電子写真感光体の製造方法によれば、減圧可能な容器以外においても膜ハガレを発生させずに、a−Si薄膜を形成した後の製品を冷却することができる。このため、これまで必要であった冷却用の減圧可能な容器が不要となり、設備投資額を抑制することができる。また、反応容器の中で冷却する必要がないため、製造設備のタクトタイムを短縮でき、設備稼働率を高めることができる。
また、本発明の電子写真感光体の製造方法における外面冷却工程では、冷却前の温度が200℃以上ある電子写真感光体が、50℃以上150℃以下の温度範囲になるまで冷却を行うことが好ましい。このようにすることで、冷却ガスコストの抑制や作業性の向上を図ることができる。
According to the method for producing an electrophotographic photosensitive member of the present invention, the product after the a-Si thin film is formed can be cooled without causing film peeling even in a container other than a depressurizable container. For this reason, the container which can be pressure-reduced for cooling required until now becomes unnecessary, and the amount of capital investment can be suppressed. Moreover, since it is not necessary to cool in the reaction vessel, the tact time of the production equipment can be shortened and the equipment operation rate can be increased.
In the outer surface cooling step in the method for producing an electrophotographic photosensitive member of the present invention, cooling is performed until an electrophotographic photosensitive member having a temperature before cooling of 200 ° C. or higher is in a temperature range of 50 ° C. or higher and 150 ° C. or lower. preferable. By doing in this way, the cooling gas cost can be suppressed and workability can be improved.

また、本発明の電子写真感光体の製造方法における冷却工程では、冷却工程を行う場所を囲っても良い。囲われた場所で冷却工程を行うことで、電子写真感光体や支持部材に付着した副生成物やダストが飛散するのを防止することができる。
また、電子写真感光体に吹き付けられた後の冷却ガスを吸引しながら、冷却工程を行っても良い。このようにすることで、電子写真感光体や支持部材に付着した副生成物やダストが飛散するのをさらに防止することができる。
In the cooling step in the method for producing an electrophotographic photosensitive member of the present invention, a place where the cooling step is performed may be enclosed. By performing the cooling step in the enclosed place, it is possible to prevent the by-products and dust attached to the electrophotographic photosensitive member and the support member from scattering.
Further, the cooling step may be performed while sucking the cooling gas after being sprayed on the electrophotographic photosensitive member. By doing so, it is possible to further prevent the by-products and dust attached to the electrophotographic photosensitive member and the support member from being scattered.

また、本発明の電子写真感光体の製造方法における内面冷却工程では、電子写真感光体を基体保持部材から外し、電子写真感光体の内面に冷却ガスを吹き付けることにより行うことが好ましい。このようにすることで、冷却効率が向上し、タクトタイムをさらに短縮することができる。
また、本発明の電子写真感光体の製造方法における冷却ガスは、窒素ガスもしくは空気(約8割が窒素、約2割が酸素)であることが好ましい。これらを用いることで、冷却ガスのコストをさらに抑制することができる。
In the inner surface cooling step in the method for producing an electrophotographic photosensitive member of the present invention, it is preferable to remove the electrophotographic photosensitive member from the substrate holding member and blow a cooling gas on the inner surface of the electrophotographic photosensitive member. By doing in this way, a cooling efficiency improves and a tact time can further be shortened.
The cooling gas in the method for producing an electrophotographic photosensitive member of the present invention is preferably nitrogen gas or air (about 80% is nitrogen and about 20% is oxygen). By using these, the cost of the cooling gas can be further suppressed.

以下、必要に応じて図面を参照しつつ、本発明を詳細に説明する。
図1は、本発明による電子写真感光体の製造方法に用いられる製造装置の一例を表す模式図、図2は、本発明による電子写真感光体の製造方法に用いられる冷却ステージの一例を表す模式図である。
Hereinafter, the present invention will be described in detail with reference to the drawings as necessary.
FIG. 1 is a schematic diagram illustrating an example of a manufacturing apparatus used in the method for manufacturing an electrophotographic photosensitive member according to the present invention. FIG. 2 is a schematic diagram illustrating an example of a cooling stage used in the method for manufacturing an electrophotographic photosensitive member according to the present invention. FIG.

図1において、クリーンルームの如き清浄な雰囲気中で、金属を母体とした基体保持部材152に導電性を有する円筒状基体151を装着し、基体保持部材152に保持された状態の円筒状基体151を投入ステージ101に設置する。
加熱用処理容器102は、円筒状基体151を所定の温度に加熱、保持する。成膜用処理容器103は、a−Si薄膜を円筒状基体151の上に形成する。a−Si薄膜形成後の電子写真感光体は冷却ステージ104に設置され、冷却される。各処理容器にはゲート弁111、112が設けられている。
In FIG. 1, in a clean atmosphere such as a clean room, a cylindrical base 151 having conductivity is mounted on a base holding member 152 made of metal, and the cylindrical base 151 held by the base holding member 152 is mounted. Install on the input stage 101.
The heating processing container 102 heats and holds the cylindrical substrate 151 at a predetermined temperature. The film formation processing container 103 forms an a-Si thin film on the cylindrical substrate 151. The electrophotographic photosensitive member after the formation of the a-Si thin film is placed on the cooling stage 104 and cooled. Gate valves 111 and 112 are provided in each processing container.

第1搬送容器105aは、投入ステージ101から加熱用処理容器102までと、加熱用処理容器102から成膜用処理容器103までの円筒状基体151の移動を担当する。第2搬送容器105bは、成膜用処理容器103から冷却ステージ104までの移動を担当する。
排気装置131は、加熱用処理容器102を減圧し、排気装置132は、成膜用処理容器103を減圧する。
排気装置141は、第1搬送容器105aが加熱用処理容器102に接続されたとき、搬送容器ゲート弁121とゲート弁111の空間を減圧する。排気装置142は、第1搬送容器105aまたは第2搬送容器105bが成膜用処理容器103に接続されたとき、搬送容器ゲート弁121または122と、ゲート弁112の空間を減圧する。
The first transfer container 105 a is in charge of moving the cylindrical substrate 151 from the input stage 101 to the heating processing container 102 and from the heating processing container 102 to the film forming processing container 103. The second transfer container 105b is in charge of movement from the film forming process container 103 to the cooling stage 104.
The exhaust device 131 depressurizes the heating processing container 102, and the exhaust device 132 depressurizes the film forming processing container 103.
The exhaust device 141 decompresses the space between the transfer container gate valve 121 and the gate valve 111 when the first transfer container 105 a is connected to the heating processing container 102. The exhaust device 142 depressurizes the space between the transfer container gate valve 121 or 122 and the gate valve 112 when the first transfer container 105 a or the second transfer container 105 b is connected to the film formation processing container 103.

次に、図1の冷却ステージ104をより詳細に説明する。
図2に冷却ステージの一例を示す。冷却ステージ201は、電子写真感光体の外面から冷却を行う外面冷却エリア202と、電子写真感光体の内面から冷却を行う内面冷却エリア203からなる。
外面冷却エリア202には、基体保持部材205を設置する受け台204と、冷却ガスが吹き出される冷却ガス吹き出し口206が設けられた冷却ガス吹き出し板207が設けられている。
冷却ガス吹き出し板207は、冷却ガスを電子写真感光体の外面に吹き付けることのできる形状であれば特に制限はなく、図2に示すように板状でも良いし、ガス管(図示せず)のような管状でもよい。
また、冷却ガス吹き出し口206は、冷却ガスを電子写真感光体の外面に吹き付けることのできる形状であれば特に制限はなく、図2に示すように穴状でも良いし、スリット形状(図示せず)でもよい。
Next, the cooling stage 104 of FIG. 1 will be described in more detail.
FIG. 2 shows an example of the cooling stage. The cooling stage 201 includes an outer surface cooling area 202 for cooling from the outer surface of the electrophotographic photosensitive member and an inner surface cooling area 203 for cooling from the inner surface of the electrophotographic photosensitive member.
The outer surface cooling area 202 is provided with a cradle 204 on which the substrate holding member 205 is installed, and a cooling gas blowing plate 207 provided with a cooling gas blowing port 206 through which cooling gas is blown out.
The cooling gas blowing plate 207 is not particularly limited as long as the cooling gas can be blown onto the outer surface of the electrophotographic photosensitive member. The cooling gas blowing plate 207 may have a plate shape as shown in FIG. 2 or a gas pipe (not shown). Such a tube may be used.
The cooling gas outlet 206 is not particularly limited as long as the cooling gas can be blown onto the outer surface of the electrophotographic photosensitive member, and may have a hole shape as shown in FIG. 2 or a slit shape (not shown). )

内面冷却エリア203には、電子写真感光体210を設置する受け台204と、冷却ガスが吹き出される冷却ガス吹き出し口208が設けられた冷却ガス吹き出し管209が設けられている。
冷却ガス吹き出し管209は、電子写真感光体210が装着された基体保持部材205、もしくは電子写真感光体210の内面に冷却ガスを吹き付けることのできる形状であれば特に制限はなく、図2に示すように管状でも良いし、板状(図示せず)でもよい。
冷却ガス吹き出し口208は、電子写真感光体210が装着された基体保持部材205、もしくは電子写真感光体210の内面に冷却ガスを吹き付けることのできる形状であれば特に制限はなく、図2に示すように穴状でも良いし、スリット形状(図示せず)でもよい。
The inner surface cooling area 203 is provided with a cradle 204 for installing the electrophotographic photosensitive member 210 and a cooling gas blowing pipe 209 provided with a cooling gas blowing port 208 through which cooling gas is blown.
The cooling gas blowing pipe 209 is not particularly limited as long as the cooling gas blowing pipe 209 has a shape capable of blowing the cooling gas to the substrate holding member 205 on which the electrophotographic photosensitive member 210 is mounted or the inner surface of the electrophotographic photosensitive member 210, and is shown in FIG. It may be tubular or plate-shaped (not shown).
The cooling gas outlet 208 is not particularly limited as long as it has a shape capable of blowing the cooling gas to the substrate holding member 205 on which the electrophotographic photosensitive member 210 is mounted or the inner surface of the electrophotographic photosensitive member 210, and is shown in FIG. Thus, a hole shape or a slit shape (not shown) may be used.

本発明の電子写真感光体の製造方法は、まず、円筒状基体151が、クリーンルームの中で、基体保持部材152に装着され、投入ステージ101に設置され、第1搬送容器105aに収容される。そして、第1搬送容器105aの搬送容器ゲート弁121を閉じる。次いで第1搬送容器105aを加熱用処理容器102の上に移動させ、搬送容器ゲート弁121とゲート弁111の空間を排気装置141により減圧にする。
次いで搬送容器ゲート弁121を開き、第1搬送容器105aの中を排気装置141により減圧にする。次いで、ゲート弁111を開き、第1搬送容器105aの中に設けられた上下移動機構(図示せず)により、円筒状基体151を加熱用処理容器102に設置し、所定の温度に円筒状基体151を加熱する。
In the method of manufacturing the electrophotographic photosensitive member of the present invention, first, the cylindrical substrate 151 is mounted on the substrate holding member 152 in the clean room, installed on the input stage 101, and accommodated in the first transfer container 105a. Then, the transfer container gate valve 121 of the first transfer container 105a is closed. Next, the first transfer container 105 a is moved onto the heating processing container 102, and the space between the transfer container gate valve 121 and the gate valve 111 is reduced by the exhaust device 141.
Next, the transfer container gate valve 121 is opened, and the inside of the first transfer container 105 a is decompressed by the exhaust device 141. Next, the gate valve 111 is opened, and the cylindrical substrate 151 is placed in the heating processing container 102 by a vertical movement mechanism (not shown) provided in the first transfer container 105a, and the cylindrical substrate is brought to a predetermined temperature. 151 is heated.

円筒状基体151の加熱処理が終了したら、搬送容器ゲート弁121、ゲート弁111を開き、第1搬送容器105aの中に加熱された円筒状基体151を収容する。次いで、成膜用処理容器103の上に第1搬送容器105aを移動させ、搬送容器ゲート弁121とゲート弁112の空間を排気装置142により減圧にする。次いで搬送容器ゲート弁121とゲート弁112を開き、第1搬送容器105aから成膜用処理容器103の中へ円筒状基体151を移動させる。
その後、成膜用処理容器103の中で、円筒状基体151の上にa−Si薄膜を形成し、電子写真感光体とする成膜工程を行う。成膜工程終了後の電子写真感光体の温度は200℃以上であることが、電子写真感光体の特性上好ましい。これは、成膜中の円筒状基体の表面での表面反応を促進させ、充分に構造緩和をさせるためである。
When the heat treatment of the cylindrical substrate 151 is completed, the transfer container gate valve 121 and the gate valve 111 are opened, and the heated cylindrical substrate 151 is accommodated in the first transfer container 105a. Next, the first transfer container 105 a is moved onto the film formation processing container 103, and the space between the transfer container gate valve 121 and the gate valve 112 is reduced by the exhaust device 142. Next, the transfer container gate valve 121 and the gate valve 112 are opened, and the cylindrical substrate 151 is moved from the first transfer container 105 a into the film forming process container 103.
Thereafter, an a-Si thin film is formed on the cylindrical substrate 151 in the film-forming treatment container 103, and a film forming process for forming an electrophotographic photosensitive member is performed. The temperature of the electrophotographic photosensitive member after the film forming step is preferably 200 ° C. or higher in view of the characteristics of the electrophotographic photosensitive member. This is because the surface reaction on the surface of the cylindrical substrate during film formation is promoted and the structure is sufficiently relaxed.

成膜工程終了後は、第2搬送容器105bを成膜用処理容器103の上に移動させ、搬送容器ゲート弁122とゲート弁112の空間を排気装置142により減圧にする。次いで搬送容器ゲート弁122とゲート弁112を開き、成膜用処理容器103から第2搬送容器105bへ電子写真感光体を移動させる。次いで、搬送容器ゲート弁122を閉め、窒素(N)ガスにて第2搬送容器105bの中をベントする。
そして、冷却ステージ104の上に第2搬送容器105bを移動させ、搬送容器ゲート弁122を開け、第2搬送容器105bから冷却ステージ104へ電子写真感光体を大気中に取り出す(排出する)排出工程を行う。
After completion of the film formation step, the second transfer container 105b is moved onto the film formation processing container 103, and the space between the transfer container gate valve 122 and the gate valve 112 is reduced by the exhaust device 142. Next, the transfer container gate valve 122 and the gate valve 112 are opened, and the electrophotographic photosensitive member is moved from the film formation processing container 103 to the second transfer container 105b. Next, the transfer container gate valve 122 is closed, and the inside of the second transfer container 105b is vented with nitrogen (N 2 ) gas.
Then, the second transfer container 105b is moved onto the cooling stage 104, the transfer container gate valve 122 is opened, and the electrophotographic photosensitive member is taken out (discharged) from the second transfer container 105b to the cooling stage 104 into the atmosphere. I do.

次いで、冷却ステージ201の上で冷却工程を行う。本発明における冷却工程は、まず外面冷却工程を行い、次いで内面冷却工程を行う。このような手法とすることで、減圧可能な容器以外においても膜ハガレを発生させずに、電子写真感光体を冷却することができる。
膜ハガレは、冷却の過程で膜の持つ熱応力のバランスが崩れてしまうことが原因で発生すると考えられる。本発明の冷却方法では、外面から冷却を行い、次いで内面から冷却を行うことで、膜の持つ熱応力のバランスを保ったまま冷却することができ、膜ハガレの発生を抑制できているのではないかと推察される。
Next, a cooling process is performed on the cooling stage 201. In the cooling process of the present invention, an outer surface cooling process is first performed, and then an inner surface cooling process is performed. By adopting such a method, the electrophotographic photosensitive member can be cooled without causing film peeling even in containers other than those capable of decompression.
It is considered that film peeling occurs because the balance of thermal stress of the film is lost during the cooling process. In the cooling method of the present invention, by cooling from the outer surface and then from the inner surface, the film can be cooled while maintaining the balance of the thermal stress of the film, and the occurrence of film peeling can be suppressed. It is guessed that there is not.

外面冷却工程では、冷却ガス吹き出し口206から吹き出される冷却ガスを、電子写真感光体210の外面に吹き付けることで電子写真感光体210を冷却する。この際、電子写真感光体210を基体保持部材205から外して行っても良いが、成膜終了後の電子写真感光体210や基体保持部材205は高温であるため、作業性を考慮すると、基体保持部材205に装着された状態で行うことが好ましい。
また外面冷却工程は、冷却前の温度が200℃以上ある電子写真感光体が、50℃以上150℃以下の温度範囲になるまで冷却を行うことが作業性や成膜副生成物及びダストの飛散防止という点でより好ましい。また、電子写真感光体の冷却速度は、5℃/min以上30℃/min以下の範囲であることが、膜ハガレ抑制やタクトタイムの短縮という点でより好ましい。
In the outer surface cooling step, the electrophotographic photosensitive member 210 is cooled by spraying the cooling gas blown from the cooling gas outlet 206 onto the outer surface of the electrophotographic photosensitive member 210. At this time, the electrophotographic photosensitive member 210 may be removed from the substrate holding member 205. However, since the electrophotographic photosensitive member 210 and the substrate holding member 205 after film formation are at a high temperature, the substrate is considered in consideration of workability. It is preferable to carry out it while it is mounted on the holding member 205.
In the outer surface cooling process, the electrophotographic photosensitive member having a temperature before cooling of 200 ° C. or higher is cooled until it reaches a temperature range of 50 ° C. or higher and 150 ° C. or lower. It is more preferable in terms of prevention. Further, the cooling rate of the electrophotographic photosensitive member is more preferably in the range of 5 ° C./min to 30 ° C./min in terms of suppressing film peeling and shortening tact time.

内面冷却工程では、冷却ガス吹き出し口208から吹き出される冷却ガスを、電子写真感光体210が装着された基体保持部材205、もしくは電子写真感光体210の内面に吹き付けることで電子写真感光体210を冷却する。
この際、電子写真感光体210を基体保持部材205に装着したまま行っても良いが、冷却効率を考慮すると、基体保持部材205から外した状態で行うことがより好ましい。これは、外面冷却工程終了後の電子写真感光体210が50℃以上150℃以下の温度範囲にあるため、ある程度の作業安全性も確保されているためである。
また内面冷却工程は、電子写真感光体が10℃以上50℃未満の温度範囲になるまで冷却を行うことが膜ハガレを抑制する上で好ましい。また、電子写真感光体の冷却速度は、5℃/min以上30℃/min以下の範囲であることが、膜ハガレ抑制やタクトタイムの短縮という点でより好ましい。
In the inner surface cooling process, the cooling gas blown out from the cooling gas outlet 208 is blown onto the substrate holding member 205 on which the electrophotographic photosensitive member 210 is mounted or the inner surface of the electrophotographic photosensitive member 210 to thereby remove the electrophotographic photosensitive member 210. Cooling.
At this time, the electrophotographic photosensitive member 210 may be mounted while being attached to the substrate holding member 205, but it is more preferable that the operation is performed with the electrophotographic photosensitive member 210 removed from the substrate holding member 205 in consideration of cooling efficiency. This is because the electrophotographic photosensitive member 210 after the outer surface cooling process is in a temperature range of 50 ° C. or higher and 150 ° C. or lower, so that a certain degree of work safety is ensured.
In the inner surface cooling step, it is preferable to cool the electrophotographic photosensitive member until the temperature of the electrophotographic photosensitive member becomes 10 ° C. or higher and lower than 50 ° C. in order to suppress film peeling. Further, the cooling rate of the electrophotographic photosensitive member is more preferably in the range of 5 ° C./min to 30 ° C./min in terms of suppressing film peeling and shortening tact time.

また外面冷却工程および内面冷却工程のいずれか一方または双方は、周囲が囲われた空間の中で行われることが好ましい。例えば、図3に示すように周囲が仕切り板311で囲われた冷却ステージ301の上で行うことが好ましい。ただし、図3においては、内部が見えるように、手前の仕切り板を透明なものとして図示する。
冷却ステージ301の周囲を仕切り板311で囲むことは、電子写真感光体や基体保持部材に付着した成膜副生成物や、冷却ステージの上のダストが、冷却ガスによって巻き上げられ、周囲に飛散することを防ぐ上で好ましい。周囲を囲う仕切り板の部材に特に制限はないが、アルミやSUS(Stainless Used Steel)といった金属は、部材からの発塵が比較的少ないため好ましい。また、仕切り板の一部またはすべてをロールカーテンのような開閉自在なものとしてもよい。
冷却ガス吹き出し板307にはスリット形状の冷却ガス吹き出し口306が設けられている。冷却ガス吹き出し管309にもスリット形状の冷却ガス吹き出し口308が設けられている。
Moreover, it is preferable that either one or both of an outer surface cooling process and an inner surface cooling process is performed in the space enclosed. For example, as shown in FIG. 3, it is preferable to perform the process on a cooling stage 301 surrounded by a partition plate 311. However, in FIG. 3, the front partition plate is illustrated as being transparent so that the inside can be seen.
Surrounding the periphery of the cooling stage 301 with the partition plate 311 is that film-forming by-products attached to the electrophotographic photosensitive member and the substrate holding member and dust on the cooling stage are wound up by the cooling gas and scattered around. It is preferable to prevent this. There are no particular restrictions on the members of the partition plate surrounding the periphery, but metals such as aluminum and SUS (Stainless Used Steel) are preferred because they generate relatively little dust. Further, a part or all of the partition plate may be freely opened and closed like a roll curtain.
The cooling gas blowing plate 307 is provided with a slit-shaped cooling gas blowing port 306. The cooling gas blowing pipe 309 is also provided with a slit-shaped cooling gas blowing port 308.

また外面冷却工程および内面冷却工程のいずれか一方または双方は、冷却ガスを吸引しながら行うことが好ましい。例えば、図4に示すように、電子写真感光体に吹き付けられた後の冷却ガスを、図示しない冷却ガス吸引装置によって、冷却ガス吸引口412から吸引しながら行っても良い。図4においても、内部が見えるように、手前の仕切り板を透明なものとして図示する。
冷却ステージ401の周囲を仕切り板411で囲み、かつ電子写真感光体に吹き付けられた後の冷却ガスを冷却ガス吸引口412から吸引することは、電子写真感光体や基体保持部材に付着した成膜副生成物や、冷却ステージの上のダストが、冷却ガスによって巻き上げられ、周囲に飛散することを防ぐ上でより好ましい。冷却ガス吸引口412は、冷却ガスを吸引できる形状であれば特に指定はなく、図4に示すようにスリット状でも良いし、穴形状(図示せず)でもよい。
また、冷却ガスに使用されるガスは、安全上問題のないガスであれば特に制限はないが、窒素ガスや空気であることが、取り扱い上やコストの面で好ましい。また冷却ガスの温度は、外面冷却工程に使用される冷却ガスが、50℃以上150℃以下、内面冷却工程に使用される冷却ガスが、10℃以上50℃未満の温度範囲であることが、過冷却防止やタクトタイムの短縮という点で好ましい。
Moreover, it is preferable to perform either one or both of the outer surface cooling step and the inner surface cooling step while sucking the cooling gas. For example, as shown in FIG. 4, the cooling gas after being blown onto the electrophotographic photosensitive member may be sucked from a cooling gas suction port 412 by a cooling gas suction device (not shown). Also in FIG. 4, the front partition plate is illustrated as being transparent so that the inside can be seen.
Surrounding the cooling stage 401 with a partition plate 411 and sucking the cooling gas after sprayed onto the electrophotographic photosensitive member from the cooling gas suction port 412 is a film deposited on the electrophotographic photosensitive member or the substrate holding member. By-products and dust on the cooling stage are more preferable for preventing the dust from being wound up by the cooling gas and scattered around. The cooling gas suction port 412 is not particularly specified as long as it can suck the cooling gas, and may have a slit shape or a hole shape (not shown) as shown in FIG.
The gas used for the cooling gas is not particularly limited as long as it is a gas that does not cause safety problems, but nitrogen gas or air is preferable in terms of handling and cost. The temperature of the cooling gas is such that the cooling gas used in the outer surface cooling step is in a temperature range of 50 ° C. or higher and 150 ° C. or lower, and the cooling gas used in the inner surface cooling step is in a temperature range of 10 ° C. or higher and lower than 50 ° C. This is preferable in terms of preventing overcooling and shortening the tact time.

以下、実施例、比較例を挙げながら本発明を詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.

(実施例1)
図1に示す電子写真感光体の製造装置と図2に示す冷却ステージを用いて、直径84mm、長さ381mmのアルミ製の円筒状基体に少なくともケイ素を含む非晶質材料で形成された光導電層を有する電子写真感光体を、表1に示した条件で作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について以下の手法で検証を行った。その結果を表10に示す。
Example 1
Using the electrophotographic photoreceptor manufacturing apparatus shown in FIG. 1 and the cooling stage shown in FIG. 2, a photoconductive film formed of an amorphous material containing at least silicon on an aluminum cylindrical substrate having a diameter of 84 mm and a length of 381 mm. An electrophotographic photoreceptor having a layer was produced under the conditions shown in Table 1.
The following items were verified for each item of the amount of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

《設備投資額》
電子写真感光体の製造装置を構成するために必要な設備投資額を実施例1での設備投資額をリファレンス100%とした場合の相対評価でランク付けをおこなった。
A:リファレンスに比べて90%以上110%未満であり、リファレンスと同等レベル
B:リファレンスに比べて110%以上150%未満のレベル
《Capital investment》
The capital investment required for configuring the electrophotographic photosensitive member manufacturing apparatus was ranked by relative evaluation when the capital investment in Example 1 was set to 100% as a reference.
A: 90% or more and less than 110% compared to the reference, and level equivalent to the reference B: 110% or more and less than 150% compared to the reference

《タクトタイム》
基体保持部材に円筒状基体を装着し、投入ステージ設置してから、電子写真感光体を検査工程へ送るまでを1サイクルとし、5サイクル終了するまでに要した時間から算出した1サイクルの平均所要時間をタクトタイムとした。そして、実施例1での平均所要時間をリファレンス100%とした場合の相対評価でランク付けをおこなった。
AA:リファレンスに比べて80%以上90%未満のレベル
A:リファレンスに比べて90%以上110%未満であり、リファレンスと同等レベル
B:リファレンスに比べて110%以上150%未満のレベル
C:リファレンスに比べて150%以上190%未満のレベル
"Tact time"
An average required for one cycle calculated from the time required to complete the five cycles is defined as one cycle from the mounting of the cylindrical substrate to the substrate holding member and the setting of the input stage to the sending of the electrophotographic photosensitive member to the inspection process. Time was taken as takt time. And ranking was performed by relative evaluation when the average required time in Example 1 was set to 100%.
AA: 80% or more and less than 90% level A compared to the reference A: 90% or more and less than 110% compared to the reference level B: 110% or more and less than 150% level C compared to the reference C: Reference 150% or more and less than 190% level

《膜ハガレ評価》
作成した電子写真感光体が膜ハガレを起こしているかを膜ハガレ評価として、以下のような基準でランク付けをおこなった。
A:膜ハガレの発生なし
B:電子写真感光体の端部で軽微な膜ハガレが発生
<Evaluation of film peeling>
Whether the produced electrophotographic photosensitive member caused film peeling was evaluated based on the following criteria as film peeling evaluation.
A: No film peeling occurs
B: Minor film peeling occurs at the edge of the electrophotographic photosensitive member

《冷却ガスコスト》
電子写真感光体を冷却するために使用した冷却ガスのコストを冷却ガスコストとし、実施例1での冷却ガスコストをリファレンス100%とした場合の相対評価でランク付けをおこなった。
AAA:リファレンスに比べて70%未満のレベル
AA:リファレンスに比べて70%以上90%未満のレベル
A:リファレンスに比べて90%以上110%未満あり、リファレンスと同等レベル
《Cooling gas cost》
The cooling gas used for cooling the electrophotographic photosensitive member was ranked as the cooling gas cost, and the ranking was performed based on the relative evaluation when the cooling gas cost in Example 1 was set to 100%.
AAA: Level less than 70% compared to reference AA: Level 70% or more and less than 90% compared to reference A: Level equal to or greater than 90% or less than 110% compared to reference, equivalent to reference

《総合評価》
設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコストの項目で得られた結果を、AAAランクが4点、AAランクを3点、Aランクを2点、Bランクを1点、Cランクを0点として合計した得点をもとに、以下のように総合的にランク付けをおこなった。
AA:10点以上のもの
A:8点以上9点以下のもの
B:6点以上7点以下のもの
"Comprehensive evaluation"
The results obtained in the items of capital investment, tact time, film peeling evaluation, cooling gas cost, AAA rank 4 points, AA rank 3 points, A rank 2 points, B rank 1 point, C rank Based on the total score of 0 points, ranking was performed as follows.
AA: 10 points or more A: 8 points or more and 9 points or less B: 6 points or more and 7 points or less

(実施例2)
実施例1の手順において、電子写真感光体を基体保持部材から外して内面冷却工程を行った点と、冷却ガスとして空気を用いた点を変更し、表2に示す条件で電子写真感光体を作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
(Example 2)
In the procedure of Example 1, the point where the electrophotographic photosensitive member was removed from the substrate holding member and the inner surface cooling step was performed and the point where air was used as the cooling gas were changed, and the electrophotographic photosensitive member was subjected to the conditions shown in Table 2. Produced.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

(実施例3)
実施例2の手順において、冷却ステージとして図3に示す冷却ステージを用いた点を変更し、表3に示す条件で電子写真感光体を作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
(Example 3)
In the procedure of Example 2, the point that the cooling stage shown in FIG. 3 was used as the cooling stage was changed, and an electrophotographic photosensitive member was produced under the conditions shown in Table 3.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

(実施例4)
実施例2の手順において、冷却ステージとして図4に示す冷却ステージを用いた点と、冷却ガスとして窒素ガスを用いた点を変更し、表4に示す条件で電子写真感光体を作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
Example 4
In the procedure of Example 2, the point using the cooling stage shown in FIG. 4 as the cooling stage and the point using nitrogen gas as the cooling gas were changed, and an electrophotographic photosensitive member was produced under the conditions shown in Table 4.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

(比較例1)
実施例1の手順において、電子写真感光体の製造装置として図5に示す従来の製造装置を用い、電子写真感光体の冷却を冷却用処理容器の中で行った点を変更し、表5に示す条件で電子写真感光体を作製した。
図5に示す従来の製造装置の冷却用処理容器504は、電子写真感光体を内面から冷却する機能を有しない。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
(Comparative Example 1)
In the procedure of Example 1, the conventional manufacturing apparatus shown in FIG. 5 was used as an apparatus for manufacturing an electrophotographic photosensitive member, and the electrophotographic photosensitive member was cooled in a cooling processing container. An electrophotographic photoreceptor was produced under the conditions shown.
The cooling processing container 504 of the conventional manufacturing apparatus shown in FIG. 5 does not have a function of cooling the electrophotographic photosensitive member from the inner surface.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

(比較例2)
実施例1の手順において、電子写真感光体の冷却を成膜用処理容器の中で行った点を変更し、表6に示す条件で電子写真感光体を作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
(Comparative Example 2)
In the procedure of Example 1, the point that the electrophotographic photosensitive member was cooled in the film-forming processing container was changed, and an electrophotographic photosensitive member was produced under the conditions shown in Table 6.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

(比較例3)
実施例1の手順において、電子写真感光体の冷却を冷却ステージの上に放置することで行った点を変更し、表7に示す条件で電子写真感光体を作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
(Comparative Example 3)
In the procedure of Example 1, the point where the electrophotographic photosensitive member was cooled on the cooling stage was changed, and an electrophotographic photosensitive member was produced under the conditions shown in Table 7.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

(比較例4)
実施例1の手順において、電子写真感光体の冷却を内面冷却工程、外面冷却工程の順に行った点を変更し、表8に示す条件で電子写真感光体を作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
(Comparative Example 4)
In the procedure of Example 1, the electrophotographic photoconductor was cooled in the order of the inner surface cooling step and the outer surface cooling step, and an electrophotographic photoconductor was produced under the conditions shown in Table 8.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

(比較例5)
実施例1の手順において、電子写真感光体の冷却を外面冷却工程と内面冷却工程を同時に行った点を変更し、表9に示す条件で電子写真感光体を作製した。
そして、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目について実施例1と同様の手法で検証を行った。その結果を表10に示す。
(Comparative Example 5)
The electrophotographic photosensitive member was manufactured under the conditions shown in Table 9 by changing the point that the outer surface cooling step and the inner surface cooling step were simultaneously performed in the procedure of Example 1.
Then, the items of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation were verified by the same method as in Example 1. The results are shown in Table 10.

Figure 2010145478
Figure 2010145478

Figure 2010145478
Figure 2010145478

表10より、冷却用の処理容器を用いない本発明の電子写真感光体の製造方法を用いた実施例1では、従来の冷却用の処理容器を用いた比較例1と比較して、設備投資額の抑制が可能となった。
また、成膜処理容器の中で冷却工程を行わない本発明の電子写真感光体の製造方法を用いた実施例1では、成膜処理容器の中で冷却工程を行う比較例2と比較して、タクトタイムの短縮が可能となった。
また、冷却ガスによる外面冷却工程及び内面冷却工程を行う、本発明の電子写真感光体の製造方法を用いた実施例1では、比較例3と比較して、タクトタイムの短縮と膜ハガレの抑制が可能となった。
また、外面冷却工程を行い、次いで内面冷却工程を行う本発明の電子写真感光体の製造方法を用いた実施例1では、比較例4と比較して、タクトタイムの短縮と膜ハガレの抑制が可能となった。
また、外面冷却工程を行い、次いで内面冷却工程を行う本発明の電子写真感光体の製造方法を用いた実施例1では、比較例5と比較して、膜ハガレの抑制が可能となった。
また、冷却ガスに窒素ガスを用いることで冷却ガスのコストを抑制することができ、冷却ガスに空気を用いることで、さらなる冷却ガスのコストを抑制することが可能となった。
また、基体保持部材から電子写真感光体を外して内面冷却工程を行う実施例2、3,4では、実施例1と比較して、さらなるタクトタイムの短縮が可能となった。
そして、本発明の電子写真感光体の製造方法を用いた実施例は、比較例と比較して、総合的に優れていることが確認された。
From Table 10, in Example 1 using the method for producing an electrophotographic photosensitive member of the present invention that does not use a cooling processing container, capital investment was compared with Comparative Example 1 using a conventional cooling processing container. The amount can be reduced.
Further, in Example 1 using the method for producing an electrophotographic photosensitive member of the present invention in which the cooling process is not performed in the film formation processing container, as compared with Comparative Example 2 in which the cooling process is performed in the film formation processing container. The tact time can be shortened.
Further, in Example 1 using the method for producing an electrophotographic photosensitive member of the present invention in which an outer surface cooling process and an inner surface cooling process using a cooling gas are performed, the tact time is shortened and film peeling is suppressed as compared with Comparative Example 3. Became possible.
Further, in Example 1 using the method of manufacturing the electrophotographic photosensitive member of the present invention in which the outer surface cooling process is performed and then the inner surface cooling process is performed, tact time is shortened and film peeling is suppressed as compared with Comparative Example 4. It has become possible.
Further, in Example 1 using the electrophotographic photosensitive member manufacturing method of the present invention in which the outer surface cooling step and then the inner surface cooling step are performed, film peeling can be suppressed as compared with Comparative Example 5.
In addition, it is possible to reduce the cost of the cooling gas by using nitrogen gas as the cooling gas, and it is possible to further reduce the cost of the cooling gas by using air as the cooling gas.
Further, in Examples 2, 3 and 4 in which the electrophotographic photosensitive member was removed from the substrate holding member and the inner surface cooling step was performed, it was possible to further shorten the tact time as compared with Example 1.
And it was confirmed that the Example using the manufacturing method of the electrophotographic photoreceptor of the present invention is comprehensively superior to the comparative example.

次に、実施例1から実施例4について、成膜副生成物及びダスト飛散面積の項目について以下の手法で検証を行った。その結果を表11に示す。
《成膜副生成物及びダスト飛散面積》
冷却工程において、電子写真感光体や基体保持部材に付着した成膜副生成物や、冷却ステージの上のダストが冷却ガスによって飛散した面積を成膜副生成物及びダスト飛散面積とした。そして、実施例1での冷却ガスコストをリファレンス100%とした場合の相対評価でランク付けをおこなった。飛散面積は、冷却ステージ周辺の床に粘着シートを設置し、成膜副生成物及びダストが付着した面積を測定した。
AAA:リファレンスに比べて30%未満のレベル
AA:リファレンスに比べて30%以上90%未満のレベル
A:リファレンスに比べて90%以上110%未満あり、リファレンスと同等レベル
B:リファレンスに比べて110%以上170%未満のレベル
Next, with respect to Example 1 to Example 4, the items of the film formation by-product and the dust scattering area were verified by the following method. The results are shown in Table 11.
<< Film formation by-products and dust scattering area >>
In the cooling step, the area where the film formation by-product attached to the electrophotographic photosensitive member and the substrate holding member and the dust on the cooling stage were scattered by the cooling gas was defined as the film formation by-product and the dust scattering area. And it ranked by the relative evaluation at the time of setting the cooling gas cost in Example 1 to 100% of a reference. As for the scattering area, an adhesive sheet was placed on the floor around the cooling stage, and the area where the deposition by-products and dust adhered was measured.
AAA: Level of less than 30% compared to reference AA: Level of 30% or more and less than 90% compared to reference A: 90% or more and less than 110% compared to reference, level B equivalent to reference B: 110 compared to reference % Or more and less than 170%

Figure 2010145478
Figure 2010145478

表11より、周囲が囲まれた冷却ステージを用いて冷却工程を行う実施例3では、実施例1、2と比較して、成膜副生成物及びダストの飛散が抑制される結果となった。
また、冷却ガスを吸引しながら冷却工程を行う実施例4では、実施例3と比較して、成膜副生成物及びダストの飛散がさらに抑制される結果となった。
From Table 11, in Example 3 which performs a cooling process using the cooling stage with which the circumference | surroundings were enclosed, compared with Example 1, 2, it became a result by which scattering of the film-forming by-product and dust was suppressed. .
Further, in Example 4 in which the cooling process was performed while sucking the cooling gas, as compared with Example 3, the film formation by-product and dust scattering were further suppressed.

(実施例5)
実施例1の手順において、外面冷却工程終了時の電子写真感光体の温度が、表12に示す温度とする点を変更した電子写真感光体を、実施例5−1〜5−6として作製した。
そして、成膜副生成物及びダスト飛散面積の項目については実施例1から実施例4を検証した手法と同様の手法で検証を行い、作業性の項目について以下の手法で検証を行った。その結果をあわせて表13に示す。
(Example 5)
In the procedure of Example 1, electrophotographic photosensitive members in which the temperature of the electrophotographic photosensitive member at the end of the outer surface cooling step was changed to the temperatures shown in Table 12 were produced as Examples 5-1 to 5-6. .
And about the item of a film formation by-product and a dust scattering area, it verified by the method similar to the method which verified Example 1- Example 4, and verified the item of workability | operativity with the following method. The results are also shown in Table 13.

《作業性》
冷却工程において、基体保持部材から電子写真感光体を外す際の作業性を以下のような基準でランク付けをおこなった。
A:耐熱保護具を着用した上で一人作業可能
B:耐熱保護具を着用した上で二人作業必須
"Workability"
In the cooling process, the workability when removing the electrophotographic photosensitive member from the substrate holding member was ranked according to the following criteria.
A: One person can work while wearing heat-resistant protective equipment. B: Two persons must work while wearing heat-resistant protective equipment.

Figure 2010145478
Figure 2010145478

Figure 2010145478
Figure 2010145478

表13より、外面冷却工程終了時の電子写真感光体の温度が150℃以下の温度に達してから内面冷却工程を行う実施例5−1から実施例5−5では、作業性が良好である結果となった。また、外面冷却工程終了時の電子写真感光体の温度が50℃以上の温度で内面冷却工程を行う実施例5−2から5−6では、成膜副生成物及びダストの飛散を抑制できる結果となった。
尚、設備投資額、タクトタイム、膜ハガレ評価、冷却ガスコスト、総合評価の各項目については実施例1と同等であった。
From Table 13, in Example 5-1 to Example 5-5 in which the inner surface cooling process is performed after the temperature of the electrophotographic photosensitive member at the end of the outer surface cooling process reaches a temperature of 150 ° C. or less, the workability is good. As a result. Further, in Examples 5-2 to 5-6 in which the inner surface cooling process is performed at a temperature of the electrophotographic photosensitive member at the end of the outer surface cooling process of 50 ° C. or higher, it is possible to suppress scattering of film formation byproducts and dust. It became.
In addition, each item of the amount of capital investment, tact time, film peeling evaluation, cooling gas cost, and comprehensive evaluation was equivalent to Example 1.

本発明による電子写真感光体の製造方法に用いられる製造装置の一例を表す模式図である。It is a schematic diagram showing an example of the manufacturing apparatus used for the manufacturing method of the electrophotographic photoreceptor by this invention. 本発明による電子写真感光体の製造方法に用いられる冷却ステージの一例を表す模式図である。It is a schematic diagram showing an example of the cooling stage used for the manufacturing method of the electrophotographic photosensitive member by this invention. 本発明による電子写真感光体の製造方法に用いられる冷却ステージの一例を表す模式図である。It is a schematic diagram showing an example of the cooling stage used for the manufacturing method of the electrophotographic photosensitive member by this invention. 本発明による電子写真感光体の製造方法に用いられる冷却ステージの一例を表す模式図である。It is a schematic diagram showing an example of the cooling stage used for the manufacturing method of the electrophotographic photosensitive member by this invention. 従来の電子写真感光体の製造方法に用いられる製造装置の一例を表す模式図である。It is a schematic diagram showing an example of the manufacturing apparatus used for the manufacturing method of the conventional electrophotographic photoreceptor.

符号の説明Explanation of symbols

101 投入ステージ
102 加熱用処理容器
103 成膜用処理容器
104 冷却ステージ
105a 第1搬送容器
105b 第2搬送容器
111、112 ゲート弁
121、122 搬送容器ゲート弁
131、132 排気装置
141、142 排気装置
151 円筒状基体
152 基体保持部材
201、301、401 冷却ステージ
202 外面冷却エリア
203 内面冷却エリア
204 受け台
205 基体保持部材
206、306 冷却ガス吹き出し口
207、307 冷却ガス吹き出し板
208、308 冷却ガス吹き出し口
209、309 冷却ガス吹き出し管
210 電子写真感光体
311 仕切り板
412 冷却ガス吸引口
504 冷却用処理容器

101 Input stage 102 Processing container for heating 103 Processing container for film formation 104 Cooling stage 105a First transport container 105b Second transport container 111, 112 Gate valve 121, 122 Transport container gate valve 131, 132 Exhaust device 141, 142 Exhaust device 151 Cylindrical substrate 152 Substrate holding member 201, 301, 401 Cooling stage 202 Outer surface cooling area 203 Inner surface cooling area 204 Receiving base 205 Substrate holding member 206, 306 Cooling gas blowing port 207, 307 Cooling gas blowing plate 208, 308 Cooling gas blowing port 209, 309 Cooling gas blowing tube 210 Electrophotographic photosensitive member 311 Partition plate 412 Cooling gas suction port 504 Cooling processing vessel

Claims (6)

導電性を有する円筒状基体の表面に、ケイ素を含む非晶質材料で形成された光導電層を少なくとも有する電子写真感光体の製造方法であって、
基体保持部材によって保持されかつ加熱された前記円筒状基体の表面に、処理容器の中において、ケイ素を含む非晶質材料で形成された光導電層を成膜する成膜工程と、
前記成膜工程の後に前記電子写真感光体を大気中に取り出す排出工程と、
前記排出工程の後に前記電子写真感光体を、冷却ガスにより前記電子写真感光体の外面から、冷却する外面冷却工程と、
前記外面冷却工程の後に前記電子写真感光体を、冷却ガスにより前記電子写真感光体の内面から、冷却する内面冷却工程を有することを特徴とする電子写真感光体の製造方法。
A method for producing an electrophotographic photosensitive member having at least a photoconductive layer formed of an amorphous material containing silicon on a surface of a cylindrical substrate having conductivity,
A film forming step of forming a photoconductive layer formed of an amorphous material containing silicon in a processing container on the surface of the cylindrical substrate held and heated by the substrate holding member;
A discharging step of taking out the electrophotographic photosensitive member into the atmosphere after the film forming step;
An outer surface cooling step for cooling the electrophotographic photosensitive member from the outer surface of the electrophotographic photosensitive member with a cooling gas after the discharging step;
A method for producing an electrophotographic photosensitive member, comprising: an inner surface cooling step of cooling the electrophotographic photosensitive member from an inner surface of the electrophotographic photosensitive member with a cooling gas after the outer surface cooling step.
前記成膜工程終了時の電子写真感光体の温度が200℃以上であり、前記外面冷却工程を前記電子写真感光体の温度が50℃以上150℃以下の範囲になるまで行い、
次いで、前記内面冷却工程を行うことを特徴とする請求項1に記載の電子写真感光体の製造方法。
The temperature of the electrophotographic photosensitive member at the end of the film forming step is 200 ° C. or higher, and the outer surface cooling step is performed until the temperature of the electrophotographic photosensitive member is in a range of 50 ° C. or higher and 150 ° C. or lower.
The method for producing an electrophotographic photosensitive member according to claim 1, wherein the inner surface cooling step is then performed.
前記外面冷却工程および前記内面冷却工程のいずれか一方または双方が、周囲が囲われた空間の中で行われることを特徴とする請求項1または2に記載の電子写真感光体の製造方法。   3. The method of manufacturing an electrophotographic photosensitive member according to claim 1, wherein one or both of the outer surface cooling step and the inner surface cooling step is performed in a space surrounded by the periphery. 前記外面冷却工程および前記内面冷却工程のいずれか一方または双方が、前記冷却ガスを吸引しながら行われることを特徴とする請求項1乃至3のいずれかに記載の電子写真感光体の製造方法。   4. The method for producing an electrophotographic photosensitive member according to claim 1, wherein one or both of the outer surface cooling step and the inner surface cooling step is performed while sucking the cooling gas. 前記内面冷却工程を、前記電子写真感光体を前記基体保持部材から外した状態で、前記電子写真感光体の内面に冷却ガスを吹き付けることにより行うことを特徴とする請求項1乃至4のいずれかに記載の電子写真感光体の製造方法。   5. The inner surface cooling step is performed by spraying a cooling gas on the inner surface of the electrophotographic photosensitive member in a state where the electrophotographic photosensitive member is removed from the substrate holding member. A process for producing an electrophotographic photoreceptor according to 1. 前記冷却ガスが、窒素ガスもしくは空気であることを特徴とする請求項1乃至5のいずれかに記載の電子写真感光体の製造方法。

The method for producing an electrophotographic photosensitive member according to claim 1, wherein the cooling gas is nitrogen gas or air.

JP2008319567A 2008-12-16 2008-12-16 Method for producing electrophotographic photosensitive member Expired - Fee Related JP5441399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319567A JP5441399B2 (en) 2008-12-16 2008-12-16 Method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319567A JP5441399B2 (en) 2008-12-16 2008-12-16 Method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2010145478A true JP2010145478A (en) 2010-07-01
JP2010145478A5 JP2010145478A5 (en) 2012-01-26
JP5441399B2 JP5441399B2 (en) 2014-03-12

Family

ID=42566024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319567A Expired - Fee Related JP5441399B2 (en) 2008-12-16 2008-12-16 Method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5441399B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674257A (en) * 1979-11-21 1981-06-19 Minolta Camera Co Ltd Electrophotographic receptor
JPS58194037A (en) * 1982-05-10 1983-11-11 Toshiba Corp Electrophotographic receptor
JPS6293373A (en) * 1985-10-16 1987-04-28 Sharp Corp Production of photoconductor
JPH02115373A (en) * 1988-10-25 1990-04-27 Sumitomo Electric Ind Ltd Method and apparatus for producing photosensitive body
JP2001316823A (en) * 2000-05-02 2001-11-16 Canon Inc Vacuum treating method and apparatus
JP2005133161A (en) * 2003-10-30 2005-05-26 Kyocera Corp Film deposition method by heating body cvd method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674257A (en) * 1979-11-21 1981-06-19 Minolta Camera Co Ltd Electrophotographic receptor
JPS58194037A (en) * 1982-05-10 1983-11-11 Toshiba Corp Electrophotographic receptor
JPS6293373A (en) * 1985-10-16 1987-04-28 Sharp Corp Production of photoconductor
JPH02115373A (en) * 1988-10-25 1990-04-27 Sumitomo Electric Ind Ltd Method and apparatus for producing photosensitive body
JP2001316823A (en) * 2000-05-02 2001-11-16 Canon Inc Vacuum treating method and apparatus
JP2005133161A (en) * 2003-10-30 2005-05-26 Kyocera Corp Film deposition method by heating body cvd method

Also Published As

Publication number Publication date
JP5441399B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
CN1327485C (en) Cleaning method of thin tilm forming device
JP4225998B2 (en) Film forming method, film forming apparatus, and storage medium
TWI469242B (en) Cleaning method, method of manufacturing semiconductor device, substrate processing apparatus and recording medium
JP4675127B2 (en) Thin film forming apparatus, thin film forming apparatus cleaning method and program
JP2010059522A (en) Film forming method and film forming apparatus
JP2015127453A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2004006639A (en) Method for manufacturing semiconductor device
US10676820B2 (en) Cleaning method and film forming method
CN102732855A (en) Method for cleaning thin film forming apparatus, thin film forming method, and thin film forming apparatus
JP2009200142A (en) Film forming device and film forming method
JP4369448B2 (en) Quartz product baking method
JP5441399B2 (en) Method for producing electrophotographic photosensitive member
CN100533656C (en) Film formation apparatus and method of using the same
US20180304286A1 (en) Substrate processing apparatus, method of coating particle in process gas nozzle and substrate processing method
JP5690219B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
US20030175426A1 (en) Heat treatment apparatus and method for processing substrates
JP2011014771A (en) Epitaxial growth method
JP2010212712A (en) Method of manufacturing semiconductor device, cleaning method, and apparatus for manufacturing semiconductor device
CN102723272B (en) Method for manufacturing semiconductor
JP2007084885A (en) Method and apparatus for forming deposited film
US11572622B2 (en) Systems and methods for cleaning low-k deposition chambers
JP2006060167A (en) Method of cleaning semiconductor substrate processing apparatus
JP5661444B2 (en) Thin film forming apparatus, thin film forming apparatus cleaning method and program
JP2714576B2 (en) Heat treatment equipment
JP2002343784A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R151 Written notification of patent or utility model registration

Ref document number: 5441399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees