JP2010145295A - Gas sensing element - Google Patents

Gas sensing element Download PDF

Info

Publication number
JP2010145295A
JP2010145295A JP2008324488A JP2008324488A JP2010145295A JP 2010145295 A JP2010145295 A JP 2010145295A JP 2008324488 A JP2008324488 A JP 2008324488A JP 2008324488 A JP2008324488 A JP 2008324488A JP 2010145295 A JP2010145295 A JP 2010145295A
Authority
JP
Japan
Prior art keywords
gas
detection element
gas detection
temperature
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008324488A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyazaki
洋 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2008324488A priority Critical patent/JP2010145295A/en
Publication of JP2010145295A publication Critical patent/JP2010145295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensing element being hardly influenced by environment temperature. <P>SOLUTION: The gas detecting element 1, capable of self-heating, includes a gas sensing part 12 set so as to freely contact with a detection gas. The gas sensing part 12 is covered with a heat-insulating member 13 with gas diffusion property and heat resistance at least at the temperature where the gas sensing part 12 reaches. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被検知ガスと接触自在に設けられたガス感応部を備え、自己加熱可能なガス検知素子に関する。   The present invention relates to a gas detection element that includes a gas sensitive part provided so as to be in contact with a gas to be detected and is capable of self-heating.

一般に、自己加熱可能な、所謂自己加熱型のガス検知素子としては、接触燃焼式ガス検知素子、半導体式ガス検知素子、固体電解質式ガス検知素子等が知られている。
例えば、接触燃焼式ガス検知素子は、アルミナ等の金属酸化物焼結体に白金等の貴金属触媒を担持したガス感応部としての燃焼触媒部を、白金等の貴金属線に設けてあり、燃焼触媒部において検知対象となる被検知ガスを貴金属触媒と接触・燃焼させることで、燃焼の際に生じる温度変化を貴金属線の抵抗値の変化として検出する。被検知ガスの燃焼熱は被検知ガスの濃度に比例し、貴金属線の抵抗値は燃焼熱に比例するため、被検知ガスの燃焼による貴金属線の抵抗の変化値を測定することによって被検知ガスの濃度を測定することができる。
In general, as a so-called self-heating type gas detection element capable of self-heating, a catalytic combustion type gas detection element, a semiconductor type gas detection element, a solid electrolyte type gas detection element, and the like are known.
For example, a catalytic combustion type gas detection element is provided with a combustion catalyst part as a gas sensitive part in which a noble metal catalyst such as platinum is supported on a metal oxide sintered body such as alumina provided on a noble metal wire such as platinum. The detected gas to be detected in the unit is brought into contact with the noble metal catalyst and burned, so that a temperature change that occurs during combustion is detected as a change in the resistance value of the noble metal wire. Since the combustion heat of the gas to be detected is proportional to the concentration of the gas to be detected and the resistance value of the noble metal wire is proportional to the heat of combustion, the gas to be detected is measured by measuring the change in resistance of the noble metal wire due to the combustion of the gas to be detected. Concentration can be measured.

このような接触燃焼式ガス検知素子は、例えば、燃料電池からの水素の漏れを検知する水素ガスセンサとして、水素燃料電池自動車(FCV)に採用されている。FCVは、ユーザーが燃料電池システムを起動させようと操作すると、まず水素ガスセンサが起動して水素の濃度を検知し、水素の漏れがないことを確認した後、燃料電池システムが起動する。このため、FCVでは、ユーザーが燃料電池システムを起動させようと操作してから実際に起動するまでにはタイムラグが発生することになり、このタイムラグを短くするために水素ガスセンサが起動してから水素を検知可能になるまでの時間を短縮することが求められる。近年では、FCVは−30℃のような低温の環境下においても使用できるようになり、これに伴い、水素ガスセンサにおいても、−30℃において使用可能、特にその環境下で水素を検知可能となるまでの時間が短いものが求められている。   Such a catalytic combustion type gas detection element is employed in a hydrogen fuel cell vehicle (FCV) as a hydrogen gas sensor for detecting leakage of hydrogen from a fuel cell, for example. When the user operates the FCV to start the fuel cell system, the hydrogen gas sensor is first started to detect the hydrogen concentration, and after confirming that there is no hydrogen leakage, the fuel cell system is started. For this reason, in FCV, there is a time lag between when the user operates to start the fuel cell system and when it is actually started. To reduce this time lag, the hydrogen gas sensor is It is required to shorten the time until it becomes possible to detect. In recent years, FCV can be used even in a low temperature environment such as −30 ° C., and accordingly, a hydrogen gas sensor can also be used at −30 ° C., and particularly hydrogen can be detected in that environment. A short time is required.

尚、本発明における従来技術となる接触燃焼式ガス検知素子等の自己加熱型のガス検知素子は、一般的な技術であるため、特許文献等の従来技術文献は示さない。   In addition, since the self-heating type gas detection element such as the catalytic combustion type gas detection element, which is a conventional technique in the present invention, is a general technique, prior art documents such as patent documents are not shown.

しかし、前記従来の接触燃焼式ガス検知素子では、上述の通り、被検知ガスの燃焼に伴う温度変化を検出するものであるため、環境温度の影響を受け易かった。通常、接触燃焼式ガス検知素子を用いたガスセンサにおいては、温度補償素子を設けて環境温度の影響を少なくしているが、−20℃〜−30℃のような低温下では、ガス検知素子の温度が不安定となり検知精度に影響が出るという問題があった。
また、その他の自己加熱型のガス検知素子についても、ガス検知素子の温度は環境温度によって影響を受けるため、同様の問題が生じていた。
However, since the conventional catalytic combustion type gas detection element detects a temperature change accompanying combustion of the gas to be detected as described above, it is easily affected by the environmental temperature. Usually, in a gas sensor using a catalytic combustion type gas detection element, a temperature compensation element is provided to reduce the influence of the environmental temperature. However, at a low temperature such as −20 ° C. to −30 ° C., the gas detection element There was a problem that the temperature became unstable and the detection accuracy was affected.
In addition, other self-heating type gas detection elements have the same problem because the temperature of the gas detection element is affected by the environmental temperature.

本発明は、上記課題に鑑みてなされたものであり、環境温度による影響を受け難いガス検知素子を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas detection element that is hardly affected by environmental temperature.

上記目的を達成するための本発明に係るガス検知素子の特徴構成は、被検知ガスと接触自在に設けられたガス感応部を備え、自己加熱可能なガス検知素子であって、ガス拡散性と少なくとも前記ガス感応部が到達する温度に対する耐熱性とを有する保温部材で、前記ガス感応部を被覆した点にある。   The characteristic configuration of the gas detection element according to the present invention for achieving the above object is a gas detection element that includes a gas sensitive part that is provided so as to be in contact with a gas to be detected, and is capable of self-heating. The gas sensitive part is covered with a heat retaining member having at least heat resistance to the temperature reached by the gas sensitive part.

本構成のように、ガス感応部を保温部材で被覆することにより、ガス検知素子を設置している環境の温度のガス感応部への影響を低減することができ、自己加熱による温度を維持することができる。
また、保温部材はガス拡散性を有しており、被検知ガスは保温部材を介してガス感応部に到達できるため、保温部材をガス感応部の近傍に設けることができ、保温効果が高まる。
さらに、保温部材は、少なくともガス感応部が到達する温度に対する耐熱性を有しているため、ガス感応部の近傍に設けても熱分解等によって悪影響を及ぼすことが無い。
したがって、本構成によれば、環境温度に関わらず、被検知ガスに対する検知精度を維持することができる。
By covering the gas sensitive part with a heat retaining member as in this configuration, the influence of the temperature of the environment where the gas detection element is installed on the gas sensitive part can be reduced, and the temperature due to self-heating is maintained. be able to.
Further, since the heat retaining member has gas diffusibility and the gas to be detected can reach the gas sensitive part via the heat retaining member, the heat retaining member can be provided in the vicinity of the gas sensitive part, and the heat retaining effect is enhanced.
Furthermore, since the heat retaining member has heat resistance to at least the temperature reached by the gas sensitive part, even if it is provided in the vicinity of the gas sensitive part, there is no adverse effect due to thermal decomposition or the like.
Therefore, according to this structure, the detection accuracy with respect to the gas to be detected can be maintained regardless of the environmental temperature.

本発明に係るガス検知素子において、前記ガス感応部は貴金属線に設けることが好ましい。
本構成のように、貴金属線にガス感応部を設けた、所謂ビーズ型のものに対して、保温部材を被覆することにより、特に効果が高まる。
In the gas detection element according to the present invention, the gas sensitive part is preferably provided on a noble metal wire.
The effect is particularly enhanced by covering the so-called bead type, in which the gas sensitive part is provided on the noble metal wire as in this configuration, by covering the heat retaining member.

本発明に係るガス検知素子において、前記保温部材は無機繊維からなる不織布であることが好ましい。
本構成によれば、良好な耐熱性とガス拡散性を有する保温部材を実現できる。
In the gas detection element according to the present invention, the heat retaining member is preferably a nonwoven fabric made of inorganic fibers.
According to this configuration, a heat retaining member having good heat resistance and gas diffusibility can be realized.

本発明に係るガス検知素子は、前記ガス感応部において前記被検知ガスを燃焼させることにより、当該燃焼に伴う温度変化を検出するものであることが好ましい。
本構成のような、ガス感応部において被検知ガスを燃焼させて、その温度変化を検出する接触燃焼式ガス検知素子に対しては、特に保温部材による効果が高くなる。
The gas detection element according to the present invention is preferably one that detects a temperature change accompanying the combustion by burning the detected gas in the gas sensitive part.
The effect of the heat retaining member is particularly high for the contact combustion type gas detection element that detects the temperature change by burning the detection target gas in the gas sensitive part as in this configuration.

以下、本発明に係るガス検知素子を用いたガスセンサの一実施形態について、図面を参照して説明する。ここでは、ガス検知素子として接触燃焼式ガス検知素子を例示するが、本発明はこれに限られるものではない。その他のガス検知素子として、熱線型半導体式ガス検知素子、固体電解質式ガス検知素子等、従来公知の自己加熱型のガス検知素子が挙げられる。   Hereinafter, an embodiment of a gas sensor using a gas detection element according to the present invention will be described with reference to the drawings. Here, a catalytic combustion type gas detection element is exemplified as the gas detection element, but the present invention is not limited to this. Other gas detection elements include conventionally known self-heating type gas detection elements such as a hot-wire semiconductor gas detection element and a solid electrolyte gas detection element.

本実施形態に係るガスセンサは、図3に示すように、被検知ガスを燃焼させて検知する接触燃焼式ガス検知素子1と、環境の変化等、被検知ガスの燃焼以外の温度変化に基づく、接触燃焼式ガス検知素子1の抵抗値の変化を補正する温度補償素子10と、固定抵抗R1,R2とをブリッジ回路に組み込んで構成してある。ブリッジ回路は、電源Eによって常時約90〜120mAの電流を供給し、接触ガス検知素子1を被検知ガスが接触燃焼し易い温度に保持してある。   As shown in FIG. 3, the gas sensor according to the present embodiment is based on a contact combustion type gas detection element 1 that detects and detects a gas to be detected, and a temperature change other than the combustion of the gas to be detected, such as an environmental change. A temperature compensation element 10 for correcting a change in resistance value of the catalytic combustion type gas detection element 1 and fixed resistances R1 and R2 are incorporated in a bridge circuit. The bridge circuit constantly supplies a current of about 90 to 120 mA by the power source E, and maintains the contact gas detection element 1 at a temperature at which the detected gas is easy to contact and burn.

接触燃焼式ガス検知素子1と温度補償素子10とは、抵抗値が等しくなるように設定してある。このため、被検知ガスが存在しない場合には、ブリッジ回路は平衡状態となり、センサ出力Vは生じない。一方、被検知ガスが存在すると、その燃焼によって接触燃焼式ガス検知素子1の温度が上昇して抵抗値が大きくなるため、ブリッジ回路の平衡がくずれ、センサ出力Vが生じる。このセンサ出力Vは被検知ガスの濃度に比例するため、このガスセンサにより空気中の被検知ガスの濃度を測定することができる。   The catalytic combustion type gas detection element 1 and the temperature compensation element 10 are set to have the same resistance value. For this reason, when there is no gas to be detected, the bridge circuit is in an equilibrium state, and the sensor output V is not generated. On the other hand, if the gas to be detected exists, the temperature of the catalytic combustion type gas detection element 1 rises due to the combustion and the resistance value increases, so that the balance of the bridge circuit is lost and the sensor output V is generated. Since the sensor output V is proportional to the concentration of the gas to be detected, the concentration of the gas to be detected in the air can be measured by this gas sensor.

接触燃焼式ガス検知素子1は、図2に示すように、コイル状の貴金属線11に、被検知ガスを燃焼させる燃焼触媒部12をガス感応部として被検知ガスと接触自在に設けてある。貴金属線11の両端は、図1に示すように、それぞれのニッケルピン2と連結させることにより、センサ基台3に取付けてあり、貴金属線の抵抗値はニッケルピンを介して測定可能にしてある。センサ基台3には、ガスが流通可能な通気口41を備える円筒形状のハウジング4が取付けてある。ハウジング4の内部には保温部材13が充填してあり、燃焼触媒部12は保温部材13で被覆された状態になっている。   As shown in FIG. 2, the catalytic combustion type gas detection element 1 is provided in a coiled noble metal wire 11 so that a combustion catalyst unit 12 for combusting the detected gas can be brought into contact with the detected gas as a gas sensitive unit. As shown in FIG. 1, both ends of the noble metal wire 11 are attached to the sensor base 3 by being connected to the respective nickel pins 2, and the resistance value of the noble metal wire can be measured via the nickel pins. . A cylindrical housing 4 having a vent 41 through which gas can flow is attached to the sensor base 3. The inside of the housing 4 is filled with a heat retaining member 13, and the combustion catalyst portion 12 is covered with the heat retaining member 13.

燃焼触媒部12は、触媒担体に貴金属触媒を担持してある。貴金属触媒としては、白金、パラジウム、白金とパラジウム等が使用でき、特に限定されない。触媒担体は、特に限定されないが、例えば、アルミナ、シリカアルミナ等の金属酸化物にセリア、ランタン等の希土類金属酸化物を担持した焼結体を好ましく適用することができる。金属酸化物としてアルミナ及びアルミナシリカの少なくともいずれか一方を用いる場合には、作製する触媒担体の細孔径を小さく、比表面積を大きくすることができるため、触媒担体に貴金属触媒を高分散させることができ、好ましい。もちろん、触媒担体はセリア等の希土類金属酸化物焼結体を主成分とすることもできる。   The combustion catalyst unit 12 carries a noble metal catalyst on a catalyst carrier. As the noble metal catalyst, platinum, palladium, platinum and palladium and the like can be used, and are not particularly limited. The catalyst carrier is not particularly limited, and for example, a sintered body in which a rare earth metal oxide such as ceria or lanthanum is supported on a metal oxide such as alumina or silica alumina can be preferably applied. When at least one of alumina and alumina silica is used as the metal oxide, the pore diameter of the catalyst carrier to be produced can be reduced and the specific surface area can be increased, so that the noble metal catalyst can be highly dispersed in the catalyst carrier. It is possible and preferable. Of course, the catalyst carrier can also contain a rare earth metal oxide sintered body such as ceria as a main component.

燃焼触媒部12は、略球形であることが好ましい。燃焼触媒部12が略球形であれば、燃焼触媒部12の表面における温度変化が貴金属線11に均等に伝わるため、貴金属線11の抵抗値は安定し易く、初期安定時間をより短くすることができる。   The combustion catalyst unit 12 is preferably substantially spherical. If the combustion catalyst portion 12 is substantially spherical, the temperature change on the surface of the combustion catalyst portion 12 is evenly transmitted to the noble metal wire 11, so that the resistance value of the noble metal wire 11 is easy to stabilize and the initial stabilization time can be shortened. it can.

また、燃焼触媒部12は、特に限定されないが、例えば、見掛け容積が0.014mm3以下となるように設ける。見掛け容積とは、内部の貴金属線11や燃焼触媒部12の細孔等を含んだ容積である。このような見掛け容積が小さい燃焼触媒部12を備える接触燃焼式ガス検知素子1は、燃焼触媒部12の付近の温度等が貴金属線11に伝わり易くなり、また燃焼触媒部12の全体の温度も安定し易くなるため好ましい。 The combustion catalyst unit 12 is not particularly limited, but is provided so that the apparent volume is 0.014 mm 3 or less, for example. The apparent volume is a volume including the inner noble metal wire 11 and the pores of the combustion catalyst portion 12. In the catalytic combustion type gas detection element 1 including the combustion catalyst portion 12 having a small apparent volume, the temperature in the vicinity of the combustion catalyst portion 12 is easily transmitted to the noble metal wire 11, and the temperature of the combustion catalyst portion 12 as a whole is also increased. Since it becomes easy to stabilize, it is preferable.

貴金属線11は、材質、線径、コイル径、コイル巻数等は、従来の接触燃焼式ガス検知素子に使用するものと同様で、特に限定されないが、本実施形態においては、燃焼触媒部12の見掛け容積を小さくするため、線径、コイル径を小さくする方が好ましく、例えば、線径10μm、コイル内径50μm、コイル巻数6ターン程度のものを使用する。貴金属線11の材質としては白金等を適用でき、特に限定されないが、例えば、白金にロジウムを8〜10%含有させた白金ロジウムは硬く、コイル内径が小さいコイル状に加工し易いため好ましい。   The noble metal wire 11 is not particularly limited in material, wire diameter, coil diameter, number of coil turns, and the like used in the conventional catalytic combustion type gas detection element, but in this embodiment, the noble metal wire 11 In order to reduce the apparent volume, it is preferable to reduce the wire diameter and the coil diameter. For example, a wire diameter of 10 μm, a coil inner diameter of 50 μm, and a coil winding number of about 6 turns is used. Platinum or the like can be used as the material for the noble metal wire 11 and is not particularly limited. For example, platinum rhodium containing 8 to 10% rhodium in platinum is preferable because it is hard and can be easily processed into a coil shape with a small coil inner diameter.

保温部材13は、無機繊維からなる不織布で形成してある。無機繊維としては、特に限定されないが、例えば、アルミナ、シリカ等のセラミックス繊維、ガラス繊維、炭素繊維、金属繊維等が使用でき、燃焼触媒部12が到達し得る温度に応じ、少なくともその温度に対して耐熱性を有するものを適宜選択すればよい。もちろん、無機繊維に限定されるものでなく、耐熱性を有するものであれば、他の材料も好ましく使用することができる。不織布は、内部に十分な空気を保持する保温機能を有すると共に、内部の空間が一方側から他方側へ連通しており一方側から近づいてきたガスを他方側へ拡散させるガス拡散性を有するため、本発明における保温材13として好ましく適用することができる。不織布の密度は、例えば0.01〜0.5g/cm3となるように設定することができるが、特に限定されない。すなわち、不織布の密度は、少なくとも被検知ガスと被検知ガスを燃焼させる酸素ガスとが拡散して燃焼触媒部12に到達できるように、適宜設定すればよい。このような保温部材13を燃焼触媒部12に設けることにより、環境温度の変動による燃焼触媒部12への影響を低減でき、燃焼触媒部12の自己加熱による温度を維持することができる。このため、被検知ガスの燃焼による温度変化を検出し易くなり、被検知ガスに対する検知精度を維持することができる。尚、本実施形態では、保温部材13は、燃焼触媒部12を被覆すると共に、ハウジング4の内部全体に充填した場合を例示したが、特に限定されず、例えば、燃焼触媒部12の近傍のみに設けることもできる。また、保温部材13が燃焼触媒部12を被覆するとは、燃焼触媒部12と保温部材13とが接触しているか否かに関わらず、燃焼触媒部12の周囲に存在していることを意味する。保温部材13は、保温性とガス拡散性を有するものであれば、不織布の形態に限定されるものではなく、例えば、織物、編物等を積層したものや、連通孔を有する多孔質材等を好ましく適用できる。連通孔を有する多孔質材としては、例えば、セラミックス製等、耐熱性を有する無機材料の多孔質材が好ましく適用できる。 The heat retaining member 13 is formed of a nonwoven fabric made of inorganic fibers. The inorganic fiber is not particularly limited. For example, ceramic fibers such as alumina and silica, glass fibers, carbon fibers, metal fibers, and the like can be used. Depending on the temperature that the combustion catalyst unit 12 can reach, at least with respect to the temperature. And having heat resistance may be selected as appropriate. Of course, it is not limited to inorganic fibers, and other materials can be preferably used as long as they have heat resistance. Non-woven fabric has a heat retaining function to retain sufficient air inside, and has a gas diffusibility that diffuses gas approaching from one side to the other side because the internal space communicates from one side to the other side. The heat insulating material 13 in the present invention can be preferably applied. The density of the nonwoven fabric can be set to be, for example, 0.01 to 0.5 g / cm 3 , but is not particularly limited. That is, the density of the nonwoven fabric may be appropriately set so that at least the detected gas and the oxygen gas for burning the detected gas can diffuse and reach the combustion catalyst unit 12. By providing such a heat retaining member 13 in the combustion catalyst unit 12, it is possible to reduce the influence on the combustion catalyst unit 12 due to fluctuations in environmental temperature, and to maintain the temperature due to self-heating of the combustion catalyst unit 12. For this reason, it becomes easy to detect the temperature change by combustion of to-be-detected gas, and the detection precision with respect to to-be-detected gas can be maintained. In this embodiment, the case where the heat retaining member 13 covers the combustion catalyst portion 12 and fills the entire inside of the housing 4 is illustrated, but is not particularly limited. For example, only in the vicinity of the combustion catalyst portion 12. It can also be provided. Further, the fact that the heat retaining member 13 covers the combustion catalyst portion 12 means that the heat retaining member 13 exists around the combustion catalyst portion 12 regardless of whether or not the combustion catalyst portion 12 and the heat retaining member 13 are in contact with each other. . The heat retaining member 13 is not limited to a non-woven fabric form as long as it has heat retaining properties and gas diffusibility. For example, a laminated material of woven fabric, knitted fabric, etc. It can be preferably applied. As the porous material having communication holes, for example, a porous material made of an inorganic material having heat resistance such as ceramics can be preferably applied.

温度補償素子10は、接触燃焼式ガス検知素子1の抵抗の変化値を補正するものであるため、接触燃焼式ガス検知素子1と温度特性が同一であることが好ましい。このため、本実施形態においては、接触燃焼式ガス検知素子1と同一の貴金属線に、貴金属触媒を担持しないことのみが異なる担体を同一の見掛け容積になるように設け、保温部材で同様に被覆してある。   Since the temperature compensation element 10 corrects the change in resistance of the catalytic combustion type gas detection element 1, it is preferable that the temperature characteristic of the temperature compensation element 10 is the same as that of the catalytic combustion type gas detection element 1. For this reason, in the present embodiment, the same noble metal wire as that of the catalytic combustion type gas detection element 1 is provided with a carrier having the same apparent volume except that no noble metal catalyst is supported, and is similarly covered with a heat retaining member. It is.

尚、その他の接触燃焼式ガス検知素子1を備えたガスセンサの構成、機能については、従来公知のガスセンサと同様である。   In addition, about the structure and function of the gas sensor provided with the other contact combustion type gas detection element 1, it is the same as that of a conventionally well-known gas sensor.

以下に、本発明に係るガス検知素子として、図1,2に示す接触燃焼式ガス検知素子1を用いた実施例を示し、本発明をより詳細に説明する。但し、本発明はこれらの実施例に限定されるものではない。   In the following, an embodiment using the catalytic combustion type gas detection element 1 shown in FIGS. 1 and 2 as a gas detection element according to the present invention will be shown, and the present invention will be described in more detail. However, the present invention is not limited to these examples.

(実施例1)
従来公知の方法により、貴金属線11としての白金にロジウムを10wt%含有させたコイル状の白金ロジウム線(線径10μm、コイル内径50μm、コイル巻数6ターン)に、アルミナに対してセリアを2mol%担持した触媒担体に貴金属触媒として白金触媒を10wt%担持した燃焼触媒部12を、素子径が0.3mm程度の略球形となるように設け、白金ロジウム線の両端を、それぞれニッケルピン2に接続した。次いで、図4に示すように、燃焼触媒部12にアルミナ繊維の不織布からなる保温部材13を被せ、その上からハウジング4を取り付け、本発明に係る接触燃焼式ガス検知素子1を作製した。尚、この時の保温部材13の充填密度は0.14g/cm3とした。
同様の方法により、接触燃焼式ガス検知素子1とは貴金属触媒を設けないことのみが異なる温度補償素子10を作製し、接触燃焼式ガス検知素子1と共に、図3に示すブリッジ回路に組み込んでガスセンサを作製した。
また、比較例として、実施例1の接触燃焼式ガス検知素子1及び温度補償素子10とは、それぞれ保温部材13を設けないことのみが異なるガスセンサを作製した。
Example 1
By a conventionally known method, 2 mol% of ceria is added to alumina in a coiled platinum rhodium wire (wire diameter: 10 μm, coil inner diameter: 50 μm, coil winding number: 6 turns) containing 10 wt% rhodium in platinum as the noble metal wire 11. A combustion catalyst part 12 carrying a platinum catalyst of 10 wt% as a noble metal catalyst on a supported catalyst carrier is provided so as to have a substantially spherical shape with an element diameter of about 0.3 mm, and both ends of the platinum rhodium wire are connected to nickel pins 2 respectively. did. Next, as shown in FIG. 4, the combustion catalyst portion 12 was covered with a heat retaining member 13 made of an alumina fiber non-woven fabric, and the housing 4 was attached thereon to produce the catalytic combustion type gas detection element 1 according to the present invention. At this time, the packing density of the heat retaining member 13 was set to 0.14 g / cm 3 .
By a similar method, a temperature compensation element 10 which is different from the catalytic combustion type gas detection element 1 only in that a noble metal catalyst is not provided is manufactured, and the gas sensor is incorporated into the bridge circuit shown in FIG. 3 together with the catalytic combustion type gas detection element 1. Was made.
In addition, as a comparative example, a gas sensor different from the catalytic combustion type gas detection element 1 and the temperature compensation element 10 of Example 1 only in that the heat retaining member 13 is not provided is manufactured.

このように作製したガスセンサについて、印加電圧1.6Vで、周囲の温度が−30℃〜100℃の時の水素のガス濃度に対するガス感度特性を調べた。その結果、保温部材13を設けたガスセンサでは、図5に示すように、周囲の環境温度による影響がなく、−30℃〜100℃において、水素感度が維持できることが分かった。これに対し、保温部材13を設けていないガスセンサでは、図6に示すように、水素が25%LEL以上の場合では、0℃以下になると感度が低下することが分かった。   The gas sensitivity characteristics of the gas sensor thus produced with respect to the gas concentration of hydrogen when the applied voltage was 1.6 V and the ambient temperature was −30 ° C. to 100 ° C. were examined. As a result, in the gas sensor provided with the heat retaining member 13, as shown in FIG. 5, it has been found that the hydrogen sensitivity can be maintained at −30 ° C. to 100 ° C. without being affected by the ambient environmental temperature. On the other hand, in the gas sensor not provided with the heat retaining member 13, as shown in FIG. 6, it was found that when hydrogen is 25% LEL or more, the sensitivity decreases when the temperature is 0 ° C. or less.

(実施例2)
実施例1及び比較例で使用したガスセンサに加え、図7に示すように、実施例1の接触燃焼式ガス検知素子1及び温度補償素子10とは保温部材13の充填密度のみが異なるガスセンサ(保温部材13の充填密度:0.01g/cm3)を作製し、それぞれのガスセンサについて20℃と−30℃とにおける水素に対する応答性を調べた。その結果、保温部材13を設けていないガスセンサでは、図10に示すように、−30℃におけるセンサ出力が低下したのに対し、保温部材13(充填密度:0.14g/cm3)を設けたガスセンサでは、図8に示すように、20℃と−30℃とでセンサ出力にほとんど変化がなかった。また、保温部材13の充填密度を低くしたガスセンサ(充填密度:0.01g/cm3)であっても、図9に示すように、保温部材13を設けない場合に比べて、−30℃におけるセンサ出力への影響を小さくできることが分かった。
(Example 2)
In addition to the gas sensors used in Example 1 and the comparative example, as shown in FIG. 7, the gas sensor (thermal insulation) differs from the catalytic combustion type gas detection element 1 and the temperature compensation element 10 of Example 1 only in the filling density of the thermal insulation member 13. The packing density of the member 13 was 0.01 g / cm 3 ), and the responsiveness to hydrogen at 20 ° C. and −30 ° C. was examined for each gas sensor. As a result, in the gas sensor not provided with the heat retaining member 13, the sensor output at −30 ° C. was lowered as shown in FIG. 10, whereas the heat retaining member 13 (filling density: 0.14 g / cm 3 ) was provided. In the gas sensor, as shown in FIG. 8, there was almost no change in the sensor output between 20 ° C. and −30 ° C. Moreover, even if it is a gas sensor (packing density: 0.01 g / cm < 3 >) which made the filling density of the heat retention member 13 low, as shown in FIG. 9, compared with the case where the heat insulation member 13 is not provided, in -30 degreeC. It was found that the influence on the sensor output can be reduced.

燃焼触媒部12に保温部材13を設けたガスセンサは、−30℃においても水素感度を良好に維持することができるため、例えば、FCVの水素漏れを検知するガスセンサとして好ましく適用することができる。   Since the gas sensor provided with the heat retaining member 13 in the combustion catalyst unit 12 can maintain good hydrogen sensitivity even at −30 ° C., for example, it can be preferably applied as a gas sensor for detecting hydrogen leakage of FCV.

また、−30℃で水素感度が低下した、保温部材13を設けていないガスセンサについて、接触燃焼式ガス検知素子のハウジング4を取り外し、燃焼触媒部12を調べたところ、図11に示すように、燃焼触媒部12の周りに氷が発生していることが分かった。これは、燃焼触媒部12での水素の燃焼によって発生した水蒸気が周囲の環境により冷やされて凍ったためであると考えられる。このため、本発明に係るガス検知素子は、可燃性ガスを燃焼させて検知する場合等、ガス検知の際に水(水蒸気)が発生する場合に特に有効であることが分かった。   Moreover, about the gas sensor which the hydrogen sensitivity fell at -30 degreeC and which did not provide the heat retention member 13, when the housing 4 of the contact combustion type gas detection element was removed and the combustion catalyst part 12 was investigated, as shown in FIG. It was found that ice was generated around the combustion catalyst section 12. This is considered to be because the water vapor generated by the combustion of hydrogen in the combustion catalyst unit 12 was cooled and frozen by the surrounding environment. For this reason, it has been found that the gas detection element according to the present invention is particularly effective when water (water vapor) is generated during gas detection, for example, when combustible gas is detected by combustion.

〔別の実施形態〕
上記の実施形態においては、本発明を、接触燃焼式ガス検知素子に適用した例について説明したが、これに限らず、半導体式ガス検知素子、固体電解質式ガス検知素子等、自己加熱型のガス検知素子に適用することができる。この場合においても、環境温度の変動による影響を低減することができ、自己加熱した温度を維持することができる。
[Another embodiment]
In the above-described embodiment, the present invention has been described with reference to an example in which the present invention is applied to a catalytic combustion type gas detection element. However, the present invention is not limited thereto. It can be applied to a sensing element. Even in this case, it is possible to reduce the influence due to the fluctuation of the environmental temperature, and it is possible to maintain the self-heated temperature.

本発明に係るガス検知素子は、燃料電池自動車の水素漏れを検知する水素ガスセンサ等、ガスを検知する各種ガスセンサに適用することができる。   The gas detection element according to the present invention can be applied to various gas sensors that detect gas, such as a hydrogen gas sensor that detects hydrogen leakage in a fuel cell vehicle.

本実施形態に係る接触燃焼式ガス検知素子の概略図Schematic of the catalytic combustion type gas detection element according to the present embodiment 本実施形態に係る接触燃焼式ガス検知素子の燃焼触媒部の概略図Schematic of the combustion catalyst part of the catalytic combustion type gas detection element according to the present embodiment 本実施形態に係るガスセンサの構成図Configuration diagram of gas sensor according to this embodiment 接触燃焼式ガス検知素子の構成を示す写真Photo showing the configuration of the catalytic combustion gas detector −30℃〜100℃における水素に対するガス感度特性を示すグラフThe graph which shows the gas sensitivity characteristic with respect to hydrogen in -30 degreeC-100 degreeC −30℃〜100℃における水素に対するガス感度特性を示すグラフThe graph which shows the gas sensitivity characteristic with respect to hydrogen in -30 degreeC-100 degreeC 接触燃焼式ガス検知素子の構成を示す写真Photo showing the configuration of the catalytic combustion gas detector −30℃及び20℃における水素に対する応答性を示すグラフGraph showing responsiveness to hydrogen at -30 ° C and 20 ° C −30℃及び20℃における水素に対する応答性を示すグラフGraph showing responsiveness to hydrogen at -30 ° C and 20 ° C −30℃及び20℃における水素に対する応答性を示すグラフGraph showing responsiveness to hydrogen at -30 ° C and 20 ° C 保温部材を設けていない接触燃焼式ガス検知素子の応答性試験後の写真Photo after a responsiveness test of a catalytic combustion type gas detector without a thermal insulation member

符号の説明Explanation of symbols

1 接触燃焼式ガス検知素子(ガス検知素子)
10 温度補償素子
11 貴金属線
12 燃焼触媒部(ガス感応部)
13 保温部材
1 Contact combustion type gas detector (gas detector)
10 Temperature compensation element 11 Precious metal wire 12 Combustion catalyst part (gas sensitive part)
13 Thermal insulation material

Claims (4)

被検知ガスと接触自在に設けられたガス感応部を備え、自己加熱可能なガス検知素子であって、
ガス拡散性と少なくとも前記ガス感応部が到達する温度に対する耐熱性とを有する保温部材で、前記ガス感応部を被覆してあるガス検知素子。
A gas sensing element having a gas sensitive part provided so as to be in contact with the gas to be sensed and capable of self-heating,
A gas detection element having a gas diffusibility and at least a heat-resisting member having heat resistance with respect to a temperature reached by the gas sensitive part, the gas sensitive part being covered.
前記ガス感応部は、貴金属線に設けてある請求項1に記載のガス検知素子。   The gas detection element according to claim 1, wherein the gas sensitive part is provided on a noble metal wire. 前記保温部材は、無機繊維からなる不織布である請求項1または2に記載のガス検知素子。   The gas detection element according to claim 1, wherein the heat retaining member is a nonwoven fabric made of inorganic fibers. 前記ガス感応部において前記被検知ガスを燃焼させることにより、当該燃焼に伴う温度変化を検出する請求項1〜3のいずれか1項に記載のガス検知素子。   The gas detection element according to any one of claims 1 to 3, wherein a temperature change caused by the combustion is detected by burning the detected gas in the gas sensitive part.
JP2008324488A 2008-12-19 2008-12-19 Gas sensing element Pending JP2010145295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324488A JP2010145295A (en) 2008-12-19 2008-12-19 Gas sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324488A JP2010145295A (en) 2008-12-19 2008-12-19 Gas sensing element

Publications (1)

Publication Number Publication Date
JP2010145295A true JP2010145295A (en) 2010-07-01

Family

ID=42565882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324488A Pending JP2010145295A (en) 2008-12-19 2008-12-19 Gas sensing element

Country Status (1)

Country Link
JP (1) JP2010145295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057130A (en) * 2014-09-09 2016-04-21 理研計器株式会社 Element for gas measuring devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205847A (en) * 1982-05-13 1983-11-30 ザ・ベンデイツクス・コ−ポレ−シヨン Sensor for combustible gas
JPS6446748U (en) * 1987-09-17 1989-03-22
JPH08201331A (en) * 1995-01-23 1996-08-09 Mitsubishi Electric Corp Gas sensor
JP2002535649A (en) * 1999-01-25 2002-10-22 マイン セイフティ アプライアンセス カンパニ− Gas detection sensor
JP2005207939A (en) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd Gas sensor structure and method for manufacturing gas sensor structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205847A (en) * 1982-05-13 1983-11-30 ザ・ベンデイツクス・コ−ポレ−シヨン Sensor for combustible gas
JPS6446748U (en) * 1987-09-17 1989-03-22
JPH08201331A (en) * 1995-01-23 1996-08-09 Mitsubishi Electric Corp Gas sensor
JP2002535649A (en) * 1999-01-25 2002-10-22 マイン セイフティ アプライアンセス カンパニ− Gas detection sensor
JP2005207939A (en) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd Gas sensor structure and method for manufacturing gas sensor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057130A (en) * 2014-09-09 2016-04-21 理研計器株式会社 Element for gas measuring devices

Similar Documents

Publication Publication Date Title
JP4580405B2 (en) Hydrogen gas sensor
CA2426420C (en) Catalytic sensor
JP4833717B2 (en) Contact combustion type gas sensor and its sensing element and compensating element
JP3146111B2 (en) Gas detection method and gas detection device
US20090035184A1 (en) Hydrogen gas sensor
US4541988A (en) Constant temperature catalytic gas detection instrument
KR20090082389A (en) Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
AU2001285148A1 (en) Catalytic sensor
JP2010276530A (en) Air-fuel ratio sensor
JPH11153571A (en) Oxygen sensor element
US4134818A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
JP2008286810A (en) Oxygen sensor element
JP5927647B2 (en) Gas detector
JPH03282247A (en) Detection of flammable gas
JP2010145295A (en) Gas sensing element
JP4783095B2 (en) Hydrogen gas detection element and hydrogen gas detection device
US20080156076A1 (en) Low Power Combustible Gas Sensor
JP6558884B2 (en) Contact combustion type gas sensor
JP2004020377A (en) Catalytic combustion type gas sensor
JP5021400B2 (en) Combustible gas detector
JP2005321215A (en) Catalytic combustion type gas sensor
JP2003090820A (en) NOx GAS SENSOR
JP2007248197A (en) Contact combustion type gas sensor
JP2009281973A (en) Soot detection device
JP2008304291A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120920