JP2010145046A - Vacuum heat treatment furnace and heat treatment object supporting device - Google Patents

Vacuum heat treatment furnace and heat treatment object supporting device Download PDF

Info

Publication number
JP2010145046A
JP2010145046A JP2008324204A JP2008324204A JP2010145046A JP 2010145046 A JP2010145046 A JP 2010145046A JP 2008324204 A JP2008324204 A JP 2008324204A JP 2008324204 A JP2008324204 A JP 2008324204A JP 2010145046 A JP2010145046 A JP 2010145046A
Authority
JP
Japan
Prior art keywords
heat treatment
treatment object
processing chamber
rotating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008324204A
Other languages
Japanese (ja)
Other versions
JP5506187B2 (en
Inventor
Daichi Yoshii
大智 吉井
Yoshihiro Wada
佳宏 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008324204A priority Critical patent/JP5506187B2/en
Publication of JP2010145046A publication Critical patent/JP2010145046A/en
Application granted granted Critical
Publication of JP5506187B2 publication Critical patent/JP5506187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress unevenness in cooling a treatment object in cooling the heat treatment object placed in a treatment chamber. <P>SOLUTION: This vacuum heat treatment furnace 10 includes the treatment chamber 13, a supporting part and a rotating part 16. In the treatment chamber 13, the heat treatment object 11 is heated, and the heated treatment object 11 is cooled in a cooling gas 12. The supporting part is disposed in the treatment chamber 13 to support the heat treatment object 11 in a state that the longitudinal direction of the heat treatment object 11 is directed from the inlet of the cooling gas 12 to the treatment chamber 13 toward an outlet, and is composed of a supporting member 19, an annular member 20, and a mounting jig 21. The rotating part 16 abuts on the heat treatment object 11, and rotates the heat treatment object 11 through its rotation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、加熱した熱処理対象物を冷却ガスでガス冷却するガス冷却式の真空熱処理炉及び熱処理対象物支持装置に関する。   The present invention relates to a gas-cooled vacuum heat treatment furnace and a heat treatment object support device for gas-cooling a heated heat treatment object with a cooling gas.

工具等の熱処理対象物を焼き入れ処理するため、真空熱処理炉が用いられている。この真空熱処理炉では、炉内を真空引きした状態で熱処理対象物を所定時間加熱した後、低温の冷却ガスを導入したり、熱処理対象物を油槽に投入したりする等して急冷処理する。従来の真空熱処理炉には、加熱方式として、炉の内面側に発熱体を配した断熱層からなる処理室を真空熱処理炉の本体内に設け、熱処理材である熱処理対象物を直接的に加熱する内熱式のものと、本体内に配した処理室の外側に熱源を設け、熱処理対象物を間接的に加熱する外熱式のものとがある。また、熱処理対象物として、例えば、ブローチ等のような長尺部材が用いられ、これら熱処理対象物の曲がりの発生を抑えるため、複数の熱処理対象物を処理室内に吊り下げて焼入処理している。そして、加熱後において熱処理対象物を冷却する際には、外部から処理室内に導入された冷媒ガスを用いて冷却するようにしている(例えば、特許文献1〜特許文献3)。   A vacuum heat treatment furnace is used for quenching a heat treatment object such as a tool. In this vacuum heat treatment furnace, the object to be heat treated is heated for a predetermined time in a state where the inside of the furnace is evacuated, and then a rapid cooling process is performed by introducing a low-temperature cooling gas or putting the object to be heat treated into an oil tank. In a conventional vacuum heat treatment furnace, as a heating method, a treatment chamber composed of a heat insulating layer with a heating element disposed on the inner surface side of the furnace is provided in the main body of the vacuum heat treatment furnace, and the heat treatment object as a heat treatment material is directly heated. There are an internal heat type that performs heat treatment and an external heat type that indirectly heats an object to be heat-treated by providing a heat source outside the processing chamber disposed in the main body. In addition, for example, a long member such as a broach is used as the heat treatment object, and in order to suppress the occurrence of bending of these heat treatment objects, a plurality of heat treatment objects are suspended in the processing chamber and quenched. Yes. And when cooling the heat processing target object after a heating, it is made to cool using the refrigerant gas introduced into the processing chamber from the outside (for example, patent documents 1-patent documents 3).

特許第2656839号公報Japanese Patent No. 2656839 特開平07−229683号公報JP 07-229683 A 特開2002−333277号公報JP 2002-333277 A

ところで、一般に、真空熱処理炉では、加熱と冷却を同一の場所で行い、熱処理対象物を囲んで加熱用のヒータや炉体があるため、冷却時に熱処理対象物に向けて処理室内に供給した冷却ガスの大部分は、熱処理対象物を同心円状に配置した円の中心部分に流れる。その結果、冷却ガスの流速が最大となり、最も冷却効果の高い箇所は、熱処理対象物を同心円状に配置した円の中心部分となる。このため、真空熱処理炉では、同心円状に配置した複数の熱処理対象物により形成される環状群の内側を流れる冷却ガスと、熱処理対象物と処理室との間を流れる冷却ガスとを均一な流速で、それぞれの熱処理対象物に供給することができない。   By the way, in general, in a vacuum heat treatment furnace, heating and cooling are performed in the same place, and there are a heater and a furnace body for heating that surround the object to be heat treated. Most of the gas flows in the central part of a circle in which the heat treatment object is arranged concentrically. As a result, the flow velocity of the cooling gas is maximized, and the portion having the highest cooling effect is the central portion of a circle in which the heat treatment objects are arranged concentrically. For this reason, in the vacuum heat treatment furnace, the cooling gas flowing inside the annular group formed by the plurality of heat treatment objects arranged concentrically and the cooling gas flowing between the heat treatment object and the processing chamber are uniformly flowed. Therefore, it cannot be supplied to each heat treatment object.

その結果、複数の熱処理対象物の内側を流れる冷却ガスと、熱処理対象物と処理室との間を流れる冷却ガスとの間で冷却効果に差異を生じ、熱処理対象物の冷却、特に、熱処理対象物の周方向における冷却が不均一になるという問題がある。本発明は、処理室内に設置した熱処理対象物を冷却するにあたり、前記熱処理対象物の冷却の不均一を抑制することを目的とする。   As a result, there is a difference in the cooling effect between the cooling gas flowing inside the plurality of heat treatment objects and the cooling gas flowing between the heat treatment object and the processing chamber, and cooling of the heat treatment object, in particular, the heat treatment object There is a problem that the cooling in the circumferential direction of the object becomes uneven. It is an object of the present invention to suppress non-uniform cooling of the heat treatment object when cooling the heat treatment object installed in the processing chamber.

上述した課題を解決し、目的を達成するために、本発明に係る真空熱処理炉は、熱処理対象物を加熱し、加熱した熱処理対象物を冷却ガスでガス冷却する処理室と、前記処理室内に設けられて、前記熱処理対象物の長手方向が、前記処理室への前記冷却ガスの入口から出口に向かうように前記熱処理対象物を支持する支持部と、当該支持部に支持された前記熱処理対象物を回転させる回転部と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a vacuum heat treatment furnace according to the present invention includes a treatment chamber for heating a heat treatment object, and gas-cooling the heated heat treatment object with a cooling gas, and the treatment chamber. A support part that supports the heat treatment object so that a longitudinal direction of the heat treatment object is directed from an inlet of the cooling gas to an outlet of the treatment chamber; and the heat treatment object supported by the support part. And a rotating part that rotates the object.

また、本発明に係る熱処理対象物支持装置は、熱処理対象物を加熱し、加熱した熱処理対象物を冷却ガスでガス冷却する処理室を備えた真空熱処理炉に設けられて、前記熱処理対象物を支持するものであり、前記処理室内に設けられて、前記熱処理対象物の長手方向が、前記処理室への前記冷却ガスの入口から出口に向かうように前記熱処理対象物を支持する支持部と、当該支持部に支持された前記熱処理対象物を回転させる回転部と、を含むことを特徴とする。   The apparatus for supporting a heat treatment object according to the present invention is provided in a vacuum heat treatment furnace having a treatment chamber for heating the heat treatment object and gas-cooling the heated heat treatment object with a cooling gas. A support part that is provided in the processing chamber and supports the heat treatment target so that a longitudinal direction of the heat treatment target is directed from an inlet of the cooling gas to the outlet to the processing chamber; And a rotating part that rotates the heat treatment object supported by the supporting part.

このように、加熱した熱処理対象物を冷却ガスで冷却する際には熱処理対象物が回転するので、熱処理対象物は、処理室の中心側を流れる冷却ガスによって冷却される部分と、処理室の外周側を流れる冷却ガスによって冷却される部分とが時間の経過とともに入れ替わる。その結果、処理室の中心側を流れる冷却ガスと、処理室の外周側を流れる冷却ガスとの速度差に起因して、熱処理対象物と冷却ガスとの間の伝熱特性に差異がある場合でも、前記伝熱特性の差異は冷却中に平均化されるので、熱処理対象物の冷却の不均一が抑制される。   In this way, when the heated heat treatment object is cooled with the cooling gas, the heat treatment object rotates, so that the heat treatment object includes a portion cooled by the cooling gas flowing in the center of the processing chamber, The portion cooled by the cooling gas flowing on the outer peripheral side is replaced with the passage of time. As a result, there is a difference in the heat transfer characteristics between the heat treatment object and the cooling gas due to the speed difference between the cooling gas flowing in the center of the processing chamber and the cooling gas flowing in the outer periphery of the processing chamber. However, since the difference in the heat transfer characteristics is averaged during cooling, non-uniform cooling of the heat treatment object is suppressed.

本発明の好ましい態様としては、前記真空熱処理炉において、前記回転部は、断面が円形の部材であり、外周部に前記熱処理対象物を当接させるとともに、前記回転部の断面の中心を通る軸線を回転軸として回転することが望ましい。また、本発明の好ましい態様としては、前記熱処理対象物支持装置において、前記回転部は、断面が円形の部材であり、外周部に前記熱処理対象物を当接させるとともに、前記回転部の断面の中心を通る軸線を回転軸として回転することが望ましい。このようにすれば、簡単な構成で熱処理対象物を回転させることができる。   As a preferred aspect of the present invention, in the vacuum heat treatment furnace, the rotating part is a member having a circular cross section, and the heat treatment object is brought into contact with an outer peripheral part and passes through the center of the cross section of the rotating part. It is desirable to rotate around the rotation axis. Further, as a preferred aspect of the present invention, in the heat treatment object support device, the rotating part is a member having a circular cross section, and the heat treatment object is brought into contact with an outer peripheral part, and the cross section of the rotating part is It is desirable to rotate using an axis passing through the center as a rotation axis. In this way, the heat treatment object can be rotated with a simple configuration.

本発明の好ましい態様としては、前記真空熱処理炉において、前記回転部の外周部に配置されて、前記回転部とともに前記熱処理対象物を挟持する外側保持部を有することが望ましい。また、本発明の好ましい態様としては、前記熱処理対象物支持装置において、前記回転部の外周部に配置されて、前記回転部とともに前記熱処理対象物を挟持する外側保持部を有することが望ましい。これによって、熱処理対象物の回転中心の移動が抑制されるので、熱処理対象物は安定して回転して、熱処理対象物の冷却の不均一をより効果的に抑制できる。   As a preferred aspect of the present invention, in the vacuum heat treatment furnace, it is desirable to have an outer holding portion that is disposed on an outer peripheral portion of the rotating portion and holds the heat treatment object together with the rotating portion. Moreover, as a preferable aspect of the present invention, in the heat treatment object support device, it is preferable that the heat treatment object support device includes an outer holding part that is disposed on an outer peripheral part of the rotation part and sandwiches the heat treatment object together with the rotation part. Thereby, since the movement of the rotation center of the heat treatment object is suppressed, the heat treatment object can be stably rotated, and uneven cooling of the heat treatment object can be more effectively suppressed.

本発明の好ましい態様としては、前記真空熱処理炉において、前記支持部は、前記熱処理対象物の少なくとも一方の端部を把持して前記処理室の内部に吊り下げ、前記回転部は、前記支持部を回転させることが望ましい。また、本発明の好ましい態様としては、前記熱処理対象物支持装置において、前記支持部は、前記熱処理対象物の少なくとも一方の端部を把持して前記処理室の内部に吊り下げ、前記回転部は、前記支持部を回転させることが望ましい。これによって、熱処理対象物の寸法が大きい場合でも、処理室内で熱処理対象物を回転させることができる。   As a preferred aspect of the present invention, in the vacuum heat treatment furnace, the support portion grips at least one end of the heat treatment object and is suspended in the processing chamber, and the rotating portion is the support portion. It is desirable to rotate. Further, as a preferred aspect of the present invention, in the heat treatment object support device, the support part holds at least one end of the heat treatment object and suspends the heat treatment object inside the processing chamber, and the rotating part is It is desirable to rotate the support part. Thereby, even when the size of the heat treatment object is large, the heat treatment object can be rotated in the processing chamber.

本発明の好ましい態様としては、前記真空熱処理炉において、前記処理室の内壁に設けられ、前記熱処理対象物と対応する位置に突部を有することが望ましい。これによって、熱処理対象物の表面に形成される温度境界層を薄くできるので、熱処理対象物の長手方向における温度分布を低減できる。   As a preferred aspect of the present invention, in the vacuum heat treatment furnace, it is desirable that a protrusion is provided at a position corresponding to the heat treatment object provided on the inner wall of the treatment chamber. As a result, the temperature boundary layer formed on the surface of the heat treatment object can be thinned, so that the temperature distribution in the longitudinal direction of the heat treatment object can be reduced.

本発明は、処理室内に設置した熱処理対象物を冷却するにあたり、前記処理対象物の冷却の不均一を抑制できる。   The present invention can suppress non-uniform cooling of the processing object when cooling the heat processing object installed in the processing chamber.

以下、本発明につき図面を参照しつつ詳細に説明する。なお、以下の説明により本発明が限定されるものではない。また、以下の説明における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following description. In addition, constituent elements in the following description include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range.

[実施形態1]
本実施形態は、熱処理対象物を加熱するとともに、加熱した熱処理対象物を冷却ガスでガス冷却する処理室内に、熱処理対象物の長手方向が、処理室に設けられる冷却ガスの入口から出口に向かうように熱処理対象物を支持する支持部と、熱処理対象物を回転させる回転部とを設け、冷却ガスによって加熱した熱処理対象物を冷却する際には、回転部によって熱処理対象物を、その軸線を中心に回転させる点に特徴がある。以下においては、鉛直方向と平行な方向、より具体的には、鉛直方向に向かって冷却ガスを流す例を説明するが、冷却ガスを流す方向はこれに限定されるものではない。例えば、鉛直方向とは反対方向に冷却ガスを流してもよいし、水平方向に冷却ガスを流してもよい。
[Embodiment 1]
In this embodiment, the longitudinal direction of the heat treatment object is directed from the inlet of the cooling gas provided in the treatment chamber to the outlet in the treatment chamber in which the heat treatment object is heated and the heated heat treatment object is gas-cooled with the cooling gas. When the heat treatment object heated by the cooling gas is cooled, the support part for supporting the heat treatment object and the rotating part for rotating the heat treatment object are provided. It is characterized in that it is rotated to the center. Hereinafter, an example in which the cooling gas flows in a direction parallel to the vertical direction, more specifically, in the vertical direction will be described, but the direction in which the cooling gas flows is not limited thereto. For example, the cooling gas may flow in the direction opposite to the vertical direction, or the cooling gas may flow in the horizontal direction.

図1は、実施形態1に係る真空熱処理炉の構成を示す全体構成図である。図2は、図1のA−A断面図である。図3は、図1のB−B矢視図である。図4は、真空熱処理炉による熱処理の一例を示すタイミングチャートである。冷却ガスを利用したガス冷却式の真空熱処理炉10は、加熱後に炉内及び熱処理対象物についた水分等がガス化した後に再度減圧し、不活性ガス等を再充填するため、水分による色付きのない熱処理(「光輝熱処理」)ができ、脱炭浸炭もなく変形も少ない上、作業環境がよい等、種々の利点を有している。   FIG. 1 is an overall configuration diagram showing the configuration of the vacuum heat treatment furnace according to the first embodiment. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 3 is a BB arrow view of FIG. FIG. 4 is a timing chart showing an example of heat treatment by a vacuum heat treatment furnace. The gas-cooled vacuum heat treatment furnace 10 using a cooling gas is colored after being heated because the moisture in the furnace and the object to be heat treated is gasified and then decompressed again to refill the inert gas. Heat treatment (“bright heat treatment”), there are various advantages such as no decarburization, less deformation, and good working environment.

図1に示すように、真空熱処理炉10は、熱処理対象物11を加熱し、加熱した熱処理対象物11を冷却ガス12でガス冷却する処理室13を備える。本実施形態において、熱処理対象物11としては、例えば、切削用工具の一種のブローチである。本実施形態において、熱処理対象物11はブローチに限定されるものではない。真空熱処理炉10は、冷却ガス12を処理室13に供給するガス供給部14と、冷却ガス12を処理室13から排出するガス排出部15と、熱処理対象物11を処理室13内に支持する支持部、及び熱処理対象物11を回転させる回転部16を有する熱処理対象物支持装置40とを有する。ガス供給部14は、処理室13の一方の端部側に設けられ、ガス排出部15は、処理室13の他方の端部側に設けられる。処理室13は、ガス通気口17、18を備えており、ガス通気口17は、冷却ガス12をガス供給部14から処理室13内に通過させ、ガス通気口18は、処理室13内の冷却ガス12をガス排出部15に通過させる。   As shown in FIG. 1, the vacuum heat treatment furnace 10 includes a processing chamber 13 that heats a heat treatment object 11 and gas-cools the heated heat treatment object 11 with a cooling gas 12. In the present embodiment, the heat treatment object 11 is, for example, a kind of broach of a cutting tool. In the present embodiment, the heat treatment object 11 is not limited to the broach. The vacuum heat treatment furnace 10 supports the gas supply unit 14 that supplies the cooling gas 12 to the processing chamber 13, the gas discharge unit 15 that discharges the cooling gas 12 from the processing chamber 13, and the heat treatment object 11 in the processing chamber 13. And a heat treatment object support device 40 having a rotating part 16 that rotates the support part and the heat treatment object 11. The gas supply unit 14 is provided on one end side of the processing chamber 13, and the gas discharge unit 15 is provided on the other end side of the processing chamber 13. The processing chamber 13 includes gas vents 17 and 18. The gas vent 17 allows the cooling gas 12 to pass from the gas supply unit 14 into the processing chamber 13, and the gas vent 18 is provided in the processing chamber 13. The cooling gas 12 is passed through the gas discharge unit 15.

真空熱処理炉10においては、処理室13を通過する冷却ガス12の流れ方向を真空熱処理炉10のガス供給部14からガス排出部15に流れるようにしているが、冷却ガス12の流れる方向はこれに限定されるものではなく、冷却ガス12の流れ方向をガス排出部15からガス供給部14に向かう方向としてもよい。この場合、ガス排出部15から冷却ガス12が供給されて、ガス供給部14に処理室13内の冷却ガス12が排出される。また、処理室13内における冷却ガス12の流れ方向を交互に切り替えるようにしてもよい。このようにすると、熱処理対象物11の冷却特性を熱処理対象物11の長手方向で均一にできる。   In the vacuum heat treatment furnace 10, the flow direction of the cooling gas 12 passing through the processing chamber 13 flows from the gas supply unit 14 to the gas discharge unit 15 of the vacuum heat treatment furnace 10. However, the flow direction of the cooling gas 12 may be the direction from the gas discharge unit 15 toward the gas supply unit 14. In this case, the cooling gas 12 is supplied from the gas discharge unit 15, and the cooling gas 12 in the processing chamber 13 is discharged to the gas supply unit 14. Further, the flow direction of the cooling gas 12 in the processing chamber 13 may be switched alternately. In this way, the cooling characteristics of the heat treatment object 11 can be made uniform in the longitudinal direction of the heat treatment object 11.

処理室13は、真空熱処理炉10の本体内に、断熱壁によって形成されてなるものである。処理室13は、筒状の胴部を有する鋼製の圧力容器であり、真空ポンプに連通されている。前記断熱壁は、ガラス繊維等の断熱材からなる筒状のもので、真空熱処理炉10の本体内に間隙を隔てて配設され、その内周面上にヒータを周設し、処理室13が形成されている。この処理室13の内側に熱処理対象物11が収容される。   The processing chamber 13 is formed by a heat insulating wall in the main body of the vacuum heat treatment furnace 10. The processing chamber 13 is a steel pressure vessel having a cylindrical body and is communicated with a vacuum pump. The heat insulating wall has a cylindrical shape made of a heat insulating material such as glass fiber, and is disposed in the main body of the vacuum heat treatment furnace 10 with a gap therebetween. A heater is provided on the inner peripheral surface of the heat processing wall 13. Is formed. The heat treatment object 11 is accommodated inside the processing chamber 13.

なお、処理室13は、筒状の断熱層が二層以上で構成される多層構造としてもよい。また、処理室13のガス供給部14側の隔壁13a、及びガス排出部15側の隔壁13bは、環状の断熱層で形成されており、この環状の断熱層からなる両隔壁13a、13bに設けられる内孔が、冷却ガス12のガス通気口17、18を各々形成する。また、この環状の断熱層は、処理室13の側面を構成する筒状の断熱層から着脱自由に構成される。処理室13の内周面に設けられるヒータは、例えば、棒状のグラファイトフェルト等を素材としてなるものであり、所定間隔で縦方向に整列されて、周方向に向かって配置されている。また、ヒータは、処理室13の外部に設けられた通電及び入力制御手段に接続されている。   In addition, the process chamber 13 is good also as a multilayered structure where a cylindrical heat insulation layer comprises two or more layers. Further, the partition wall 13a on the gas supply unit 14 side and the partition wall 13b on the gas discharge unit 15 side of the processing chamber 13 are formed of an annular heat insulating layer, and are provided in both the partition walls 13a and 13b made of the annular heat insulating layer. The inner holes formed form the gas vents 17 and 18 for the cooling gas 12, respectively. Further, the annular heat insulating layer is configured to be freely attached and detached from a cylindrical heat insulating layer constituting the side surface of the processing chamber 13. The heater provided on the inner peripheral surface of the processing chamber 13 is made of, for example, a bar-shaped graphite felt or the like, and is aligned in the vertical direction at a predetermined interval and arranged in the circumferential direction. The heater is connected to energization and input control means provided outside the processing chamber 13.

真空熱処理炉10に設けられている真空ポンプにより処理室13内を真空にした後、熱処理対象物11は、処理室13の内周面上に設けられているヒータにより、真空中で加熱される。加熱された熱処理対象物11を冷却する際には、ガス供給部14から冷却ガス12が供給される。ガス供給部14に供給された冷却ガス12は、処理室13の隔壁13aに設けられたガス通気口17を通過して、処理室13内に配置した複数の熱処理対象物11に至り、これらを冷却する。冷却ガス12としては、例えば、アルゴン、ヘリウム、窒素、水素等の不活性ガスが用いられる。また、真空熱処理炉10の本体内には、例えばガス供給手段(例えば、ガスボンベ)及びファンが設けられている。ガス供給手段から供給された不活性ガスは、クーラ等のガス冷却装置で冷却された後、ファンの回転によりガス供給部14に冷却ガス12として供給される。   After the inside of the processing chamber 13 is evacuated by a vacuum pump provided in the vacuum heat treatment furnace 10, the heat treatment object 11 is heated in a vacuum by a heater provided on the inner peripheral surface of the processing chamber 13. . When the heated heat treatment object 11 is cooled, the cooling gas 12 is supplied from the gas supply unit 14. The cooling gas 12 supplied to the gas supply unit 14 passes through the gas vents 17 provided in the partition wall 13a of the processing chamber 13, reaches a plurality of heat treatment objects 11 arranged in the processing chamber 13, and these are Cooling. As the cooling gas 12, for example, an inert gas such as argon, helium, nitrogen, or hydrogen is used. Further, in the main body of the vacuum heat treatment furnace 10, for example, a gas supply means (for example, a gas cylinder) and a fan are provided. The inert gas supplied from the gas supply means is cooled by a gas cooling device such as a cooler, and then supplied to the gas supply unit 14 as the cooling gas 12 by the rotation of the fan.

隔壁13aのガス通気口17であって、ガス供給部14側には、整流筒22が設けられている。整流筒22は内径及び外径がそれぞれ異なる円筒状の管22a、22b、22c、22dを同心円状に配置することで多層に構成されている。これにより、処理室13内に供給される冷却ガス12の流れを整流し、冷却ガス12が処理室13内の中央付近に流れるようにできるので、熱処理対象物11に対しては均一に冷却ガス12を送給できる。なお、処理室13内の複数の熱処理対象物11は、ガス冷却を行う際、すべての熱処理対象物11に均一に冷却ガス12を供給する必要があるので、処理室13内に複数の熱処理対象物11を同心円状に、かつ等間隔で配置しているが、熱処理対象物11の配置はこれに限定されるものではない。ここで、真空熱処理炉10による熱処理の一例を説明する。   A rectifying cylinder 22 is provided on the gas supply port 14 side of the gas vent 17 of the partition wall 13a. The rectifying cylinder 22 is configured in multiple layers by concentrically arranging cylindrical tubes 22a, 22b, 22c, and 22d having different inner and outer diameters. Thereby, the flow of the cooling gas 12 supplied into the processing chamber 13 can be rectified so that the cooling gas 12 flows near the center in the processing chamber 13, so that the cooling gas can be uniformly applied to the heat treatment object 11. 12 can be sent. The plurality of heat treatment objects 11 in the processing chamber 13 need to supply the cooling gas 12 uniformly to all of the heat treatment objects 11 when performing gas cooling. Although the objects 11 are arranged concentrically and at equal intervals, the arrangement of the heat treatment object 11 is not limited to this. Here, an example of heat treatment by the vacuum heat treatment furnace 10 will be described.

処理室13内に熱処理対象物11を配置したら、時間t=t1でヒータの電源を投入して真空熱処理炉10の加熱を開始する。そして、処理室13内の温度Tが所定の熱処理温度Thになったら(時間t=t2)、ヒータに投入する電力を調整して、処理室13内の温度Tを熱処理温度Thのまま所定の時間(t3−t2)保持する。時間t=t3になったら、ヒータをOFFするとともに、冷却ガス12を処理室13内に供給して熱処理対象物11を急冷する。処理室13内の温度TがTlになったら(時間t=t4)再びヒータに電力を投入して、温度T=Tlのまま所定の時間(t5−t4)保持する。時間t=t5になったらヒータをOFFして、熱処理対象物11を徐冷する。   When the heat treatment object 11 is disposed in the processing chamber 13, the heater is turned on at time t = t1 to start heating the vacuum heat treatment furnace 10. Then, when the temperature T in the processing chamber 13 reaches a predetermined heat treatment temperature Th (time t = t2), the electric power supplied to the heater is adjusted, and the temperature T in the processing chamber 13 is kept at the predetermined heat treatment temperature Th. Hold time (t3-t2). When time t = t3, the heater is turned off and the cooling gas 12 is supplied into the processing chamber 13 to rapidly cool the heat treatment object 11. When the temperature T in the processing chamber 13 reaches Tl (time t = t4), power is again applied to the heater, and the temperature T = Tl is maintained for a predetermined time (t5-t4). When time t = t5, the heater is turned off and the heat treatment object 11 is gradually cooled.

図2に示すように、処理室13内には、6個の熱処理対象物11が回転部16の外周部に配置されている。このように、本実施形態では、6個の熱処理対象物11が処理室13内に同心円状に配置され、環状群を形成している。なお、本実施形態では、処理室13内に熱処理対象物11を6個配置しているが、これに限定されるものではない。図1、図3に示すように、処理室13内には、熱処理対象物11を処理室13内に配置するための支持部材19が設けられている。支持部材19には、環状部材20が取り付けられており、この環状部材20に設けられている複数の取り付け冶具21により、複数の熱処理対象物11が環状部材20から吊り下げられて、処理室13内に配置される。本実施形態において、熱処理対象物支持装置40を構成する支持部は、支持部材19と、環状部材20と、取り付け治具21とで構成される。このような構成により、支持部は、熱処理対象物11の長手方向が、処理室13への冷却ガス12の入口(ガス通気口17)から出口(ガス通気口18)に向かうように熱処理対象物11を支持する。   As shown in FIG. 2, six heat treatment objects 11 are arranged in the outer peripheral portion of the rotating portion 16 in the processing chamber 13. Thus, in this embodiment, the six heat processing objects 11 are concentrically arranged in the processing chamber 13 to form an annular group. In the present embodiment, six heat treatment objects 11 are arranged in the processing chamber 13, but the present invention is not limited to this. As shown in FIGS. 1 and 3, a support member 19 for arranging the heat treatment object 11 in the processing chamber 13 is provided in the processing chamber 13. An annular member 20 is attached to the support member 19, and a plurality of heat treatment objects 11 are suspended from the annular member 20 by a plurality of attachment jigs 21 provided on the annular member 20. Placed inside. In this embodiment, the support part which comprises the heat processing target object support apparatus 40 is comprised with the supporting member 19, the annular member 20, and the attachment jig 21. As shown in FIG. With such a configuration, the support portion has the heat treatment object 11 so that the longitudinal direction of the heat treatment object 11 is directed from the inlet (gas vent 17) of the cooling gas 12 to the processing chamber 13 toward the outlet (gas vent 18). 11 is supported.

本実施形態において、熱処理対象物支持装置40を構成する回転部16は、断面が円形の部材である。本実施形態において、図2、図3に示すように、回転部16は、円柱状の部材である。回転部16は、自身の外周部を、支持部によって処理室13内に配置された熱処理対象物11の外周部に当接させる。そして、回転部16は、自身の断面の中心(より具体的には重心)を通る軸線Zを回転軸として回転する。このように、回転部16の軸線Zは、回転部16の回転軸となる。   In this embodiment, the rotation part 16 which comprises the heat processing target object support apparatus 40 is a member with a circular cross section. In the present embodiment, as shown in FIGS. 2 and 3, the rotating portion 16 is a columnar member. The rotating part 16 makes its outer peripheral part contact the outer peripheral part of the heat treatment object 11 arranged in the processing chamber 13 by the support part. The rotating unit 16 rotates about the axis Z passing through the center (more specifically, the center of gravity) of its cross section as a rotation axis. Thus, the axis Z of the rotation unit 16 becomes the rotation axis of the rotation unit 16.

回転部16は、軸受を備えた回転部支持体16Bに回転可能に支持される。また、回転部支持体16Bに回転可能は、回転部支持部材23によって処理室13内に支持される。このような構成により、回転部16は、処理室13内で回転可能に支持される。回転部16は、回転部駆動手段である電動機32によって駆動される。本実施形態において、電動機32が発生した動力は、減速機31を通り、回転部16に連結される動力伝達軸30を介して回転部16に伝達される。これによって、電動機32は回転部16を回転させる。本実施形態において、電動機及び減速機31は、ガス排出部15内に配置しているが、電動機32及び減速機31をガス排出部15の外部に配置してもよい。   The rotating part 16 is rotatably supported by a rotating part support 16B having a bearing. Further, the rotating part support 16 </ b> B is rotatably supported by the rotating part support member 23 in the processing chamber 13. With such a configuration, the rotating unit 16 is rotatably supported in the processing chamber 13. The rotating unit 16 is driven by an electric motor 32 which is a rotating unit driving unit. In the present embodiment, the power generated by the electric motor 32 passes through the speed reducer 31 and is transmitted to the rotating unit 16 through the power transmission shaft 30 connected to the rotating unit 16. Thereby, the electric motor 32 rotates the rotating unit 16. In the present embodiment, the electric motor and the speed reducer 31 are disposed in the gas discharge unit 15, but the electric motor 32 and the speed reducer 31 may be disposed outside the gas discharge unit 15.

回転部16の外周部には熱処理対象物11が当接しているので、回転部16が回転すると(図3の矢印R方向)、回転部16と熱処理対象物11との間の摩擦により熱処理対象物11も回転する。熱処理対象物11を加熱した後の冷却工程において、冷却ガス12を処理室13内に供給しながら電動機32によって回転部16を回転させると、熱処理対象物11も回転する。このように、熱処理対象物11が回転するので、熱処理対象物11は、処理室13の中心側を流れる冷却ガス12によって冷却される部分と、処理室13の外周側(内壁13w側)を流れる冷却ガス12によって冷却される部分とが入れ替わる。これによって、処理室13の中心側を流れる冷却ガス12と、処理室13の外周側を流れる冷却ガス12との速度差に起因する伝熱特性の差異がある場合でも、熱処理対象物11と冷却ガス12との間の伝熱特性の差異が平均化されて熱処理対象物11の冷却の不均一が抑制されるので、熱処理対象物11の周方向における温度分布が低減される。その結果、熱処理対象物支持装置40及びこれを備える真空熱処理炉10は、熱処理対象物11の全体の歪み、硬さのばらつき、内部組織や結晶粒度のばらつきを低減できる。   Since the heat treatment object 11 is in contact with the outer peripheral portion of the rotating part 16, when the rotating part 16 rotates (in the direction of arrow R in FIG. 3), the heat treatment object is caused by friction between the rotating part 16 and the heat treatment object 11. The object 11 also rotates. In the cooling step after heating the heat treatment object 11, if the rotating unit 16 is rotated by the electric motor 32 while supplying the cooling gas 12 into the processing chamber 13, the heat treatment object 11 is also rotated. Thus, since the heat treatment object 11 rotates, the heat treatment object 11 flows through the portion cooled by the cooling gas 12 flowing in the center side of the processing chamber 13 and the outer peripheral side (inner wall 13w side) of the processing chamber 13. The portion cooled by the cooling gas 12 is replaced. As a result, even when there is a difference in heat transfer characteristics due to the speed difference between the cooling gas 12 flowing in the center side of the processing chamber 13 and the cooling gas 12 flowing in the outer peripheral side of the processing chamber 13, Since the difference in heat transfer characteristics with the gas 12 is averaged and uneven cooling of the heat treatment object 11 is suppressed, the temperature distribution in the circumferential direction of the heat treatment object 11 is reduced. As a result, the heat treatment object support device 40 and the vacuum heat treatment furnace 10 including the same can reduce the overall distortion, hardness variation, internal structure and crystal grain size variation of the heat treatment object 11.

また、本実施形態において、回転部16は、処理室13内に同心円状に配置され、環状群を形成している6個の熱処理対象物11の中心部分に配置される。このような構成によって、ガス供給部14から隔壁13aのガス通気口17を介して処理室13内に供給された冷却ガス12は、回転部16のガス供給部14側及びその近傍に衝突する。すると、冷却ガス12の流れる方向が変更され、冷却ガス12は、処理室13の中心側と処理室13の外周側とに分散して流れていく。これによって、処理室13の中心側を流れる冷却ガス12の流量を低減させて流速を小さくするとともに、処理室13の外周側を流れる冷却ガス12の流量を増加させて流速を大きくする。   Moreover, in this embodiment, the rotation part 16 is arrange | positioned concentrically within the process chamber 13, and is arrange | positioned in the center part of the six heat processing target objects 11 which form the cyclic | annular group. With such a configuration, the cooling gas 12 supplied from the gas supply unit 14 into the processing chamber 13 via the gas vent 17 of the partition wall 13a collides with the gas supply unit 14 side of the rotating unit 16 and the vicinity thereof. Then, the flowing direction of the cooling gas 12 is changed, and the cooling gas 12 flows in a distributed manner on the center side of the processing chamber 13 and the outer peripheral side of the processing chamber 13. As a result, the flow rate of the cooling gas 12 flowing in the center of the processing chamber 13 is reduced to reduce the flow velocity, and the flow rate of the cooling gas 12 flowing in the outer peripheral side of the processing chamber 13 is increased to increase the flow velocity.

これにより、処理室13の中心側を流れる冷却ガス12と処理室13の外周側を流れる冷却ガス12との速度分布を均一化させることができる。その結果、処理室13の中心側を流れる冷却ガス12の伝熱特性と処理室13の外周側を流れる冷却ガス12の伝熱特性との差異を低減できるので、冷却ガス12による熱処理対象物11の冷却効果の差異をより効果的に低減できる。その結果、熱処理対象物11をより均等に冷却できるので、熱処理対象物11の周方向における温度分布をより低減できる。そして、熱処理対象物11の全体の歪み、硬さのばらつき、内部組織や結晶粒度のばらつきをより効果的に低減することができる。   Thereby, the velocity distribution of the cooling gas 12 flowing in the center side of the processing chamber 13 and the cooling gas 12 flowing in the outer peripheral side of the processing chamber 13 can be made uniform. As a result, the difference between the heat transfer characteristics of the cooling gas 12 flowing in the center of the processing chamber 13 and the heat transfer characteristics of the cooling gas 12 flowing in the outer peripheral side of the processing chamber 13 can be reduced. The difference in the cooling effect can be reduced more effectively. As a result, since the heat treatment object 11 can be cooled more uniformly, the temperature distribution in the circumferential direction of the heat treatment object 11 can be further reduced. And the distortion of the whole heat processing target object 11, the dispersion | variation in hardness, the internal structure, and the dispersion | variation in crystal grain size can be reduced more effectively.

隔壁13a、13bの各々のガス通気口17、18は、処理室13に相対するように配置されており、熱処理対象物11と接触し、昇温した冷却ガス12は、処理室13の他方の隔壁13bに設けられるガス通気口18を通過して、ガス排出部15から処理室13の外部に排出される。真空熱処理炉10は、隔壁13bのガス通気口18にも整流筒22を備えており、処理室13内から排出される冷却ガス12の流れを整流した後、ガス排出部15に排出するようにしている。隔壁13bのガス通気口18からガス排出部15に流出した冷却ガス12は、再度、上述したガス冷却装置で冷却した後、ファンによりガス供給部14に送給され、処理室13内に供給される。   The gas vents 17, 18 of the partition walls 13 a, 13 b are arranged so as to face the processing chamber 13, and contact with the heat treatment object 11, and the cooling gas 12 whose temperature has been increased is supplied to the other side of the processing chamber 13. The gas passes through the gas vent 18 provided in the partition wall 13 b and is discharged from the gas discharge unit 15 to the outside of the processing chamber 13. In the vacuum heat treatment furnace 10, the gas vent 18 of the partition wall 13 b is also provided with a rectifying cylinder 22, and the flow of the cooling gas 12 discharged from the processing chamber 13 is rectified and then discharged to the gas discharge unit 15. ing. The cooling gas 12 flowing out from the gas vent 18 of the partition wall 13b to the gas discharge unit 15 is cooled again by the gas cooling device described above, and then supplied to the gas supply unit 14 by a fan and supplied into the processing chamber 13. The

[第1変形例]
図5は、実施形態1の第1変形例に係る真空熱処理炉を示す断面図である。図6は、実施形態1の第1変形例に係る真空熱処理炉の一部を示す図である。本変形例は、実施形態1の構成に加え、処理室13の内壁13wに、熱処理対象物11と対応する位置に突部25を設けるものである。図5、6に示すように、本変形例において、真空熱処理炉10cは、処理室13の内壁13wに、熱処理対象物11と各々対応する位置に突部25が形成される。
[First Modification]
FIG. 5 is a cross-sectional view illustrating a vacuum heat treatment furnace according to a first modification of the first embodiment. FIG. 6 is a diagram illustrating a part of the vacuum heat treatment furnace according to the first modification of the first embodiment. In this modification, in addition to the configuration of the first embodiment, a protrusion 25 is provided on the inner wall 13w of the processing chamber 13 at a position corresponding to the heat treatment object 11. As shown in FIGS. 5 and 6, in this modification, the vacuum heat treatment furnace 10 c is formed with protrusions 25 on the inner wall 13 w of the treatment chamber 13 at positions corresponding to the heat treatment object 11.

図6に示すように、処理室13内に供給された冷却ガス12は、冷却ガス12が衝突する熱処理対象物11の端部11t1から、昇温した熱処理対象物11の高温部分と処理室13内に供給された冷却ガス12による低温部分との間に、温度境界層26が形成される。また、熱処理対象物11を冷却する際、処理室13内を通過する冷却ガス12は一方向に流れるため、温度境界層26は、冷却ガス12の流れ方向下流側に進むにしたがって厚くなる。   As shown in FIG. 6, the cooling gas 12 supplied into the processing chamber 13 is heated from the end portion 11 t 1 of the heat treatment object 11 with which the cooling gas 12 collides with the high temperature portion of the heat treatment object 11 and the processing chamber 13. A temperature boundary layer 26 is formed between the low temperature portion of the cooling gas 12 supplied therein. Further, when the heat treatment object 11 is cooled, the cooling gas 12 passing through the processing chamber 13 flows in one direction, so that the temperature boundary layer 26 becomes thicker as it goes downstream in the flow direction of the cooling gas 12.

本変形例のように、処理室13の内隔壁13cに熱処理対象物11と各々対応する位置に突部25を設けることで、図6に示すように、熱処理対象物11の外側に形成される温度境界層26の厚さを薄くすることができる。これによって、熱処理対象物11への熱伝達率を向上させることができるので、処理室13内に供給された冷却ガス12により、さらに効率よく熱処理対象物11を冷却できる。   As shown in FIG. 6, as shown in FIG. 6, the protrusions 25 are provided on the inner partition wall 13 c of the processing chamber 13 at positions corresponding to the heat treatment object 11, respectively. The thickness of the temperature boundary layer 26 can be reduced. As a result, the heat transfer rate to the heat treatment object 11 can be improved, so that the heat treatment object 11 can be more efficiently cooled by the cooling gas 12 supplied into the processing chamber 13.

[第2変形例]
図7は、実施形態1の第2変形例に係る回転部を示す図である。本変形例は、実施形態1の構成に加え、冷却ガス12の流れ方向上流側における回転部16bの先端部16btを、半球状に形成するものである。図7に示すように、本変形例においては、回転部16bの先端部16btを半球状にしているため、回転部16bの先端部16btに衝突した冷却ガス12を滑らかに流すことができる。これによって、実施形態1に係る真空熱処理炉10の回転部16のように上部側の先端部を平面状に構成した場合と比較して、処理室13に供給される冷却ガス12を、回転部16bの周囲に配置されている複数の熱処理対象物11に対して円滑に分散させることができる。
[Second Modification]
FIG. 7 is a diagram illustrating a rotating unit according to a second modification of the first embodiment. In this modification, in addition to the configuration of the first embodiment, the tip portion 16bt of the rotating portion 16b on the upstream side in the flow direction of the cooling gas 12 is formed in a hemispherical shape. As shown in FIG. 7, in the present modification, the tip portion 16bt of the rotating portion 16b is hemispherical, so that the cooling gas 12 colliding with the tip portion 16bt of the rotating portion 16b can flow smoothly. As a result, the cooling gas 12 supplied to the processing chamber 13 can be supplied to the rotating portion as compared with the case where the upper end portion is configured in a planar shape like the rotating portion 16 of the vacuum heat treatment furnace 10 according to the first embodiment. It is possible to smoothly disperse the plurality of heat treatment objects 11 arranged around 16b.

[第3変形例]
図8は、実施形態1の第3変形例に係る真空熱処理炉の構成を示す全体構成図である。図9は、図8のB−B矢視図である。本変形例は、実施形態1の構成に加え、回転部16の外周部に、回転部16とともに熱処理対象物11を挟持する外側保持部20arを設けるものである。図9に示すように、環状部材20aには、その径方向外側に突出する外側保持部20arを支持する支持体20atが複数設けられる。外側保持部20arは、円柱状の部材であり、支持体20atによって外側保持部20arの軸線を中心として回転可能に支持される。
[Third Modification]
FIG. 8 is an overall configuration diagram illustrating a configuration of a vacuum heat treatment furnace according to a third modification of the first embodiment. FIG. 9 is a view taken along arrow BB in FIG. In this modification, in addition to the configuration of the first embodiment, an outer holding portion 20ar that sandwiches the heat treatment object 11 together with the rotating portion 16 is provided on the outer peripheral portion of the rotating portion 16. As shown in FIG. 9, the annular member 20a is provided with a plurality of supports 20at that support the outer holding portion 20ar protruding outward in the radial direction. The outer holding portion 20ar is a cylindrical member, and is supported by the support body 20at so as to be rotatable about the axis of the outer holding portion 20ar.

回転部16の外周部に配置される熱処理対象物11は、2個の外側保持部20arと回転部16との間に配置される。これによって、熱処理対象物11は、外側保持部20arと回転部16とで挟持される。このとき、外側保持部20arが、回転部16に向かう力を熱処理対象物11に対して付与するようにしてもよい。これによって、熱処理対象物11を、外側保持部20arと回転部16との間に確実に保持できる。本変形例では、外側保持部20arによって熱処理対象物11の位置を規制できるので、回転部16を回転させて熱処理対象物11を回転させる際には、熱処理対象物11の回転軸の動きを抑制できる。その結果、加熱後の冷却においては、熱処理対象物11を安定して回転させて、より確実に熱処理対象物11の冷却の不均一を抑制して、熱処理対象物の周方向における温度分布を抑制できる。   The heat treatment object 11 arranged on the outer peripheral part of the rotating part 16 is arranged between the two outer holding parts 20 ar and the rotating part 16. As a result, the heat treatment object 11 is sandwiched between the outer holding portion 20ar and the rotating portion 16. At this time, the outer holding portion 20ar may apply a force toward the rotating portion 16 to the heat treatment object 11. Thereby, the heat treatment object 11 can be reliably held between the outer holding portion 20ar and the rotating portion 16. In the present modification, the position of the heat treatment object 11 can be regulated by the outer holding portion 20ar, and therefore, when the heat treatment object 11 is rotated by rotating the rotating unit 16, the movement of the rotation axis of the heat treatment object 11 is suppressed. it can. As a result, in cooling after heating, the heat treatment object 11 is stably rotated to more reliably suppress non-uniform cooling of the heat treatment object 11 and suppress the temperature distribution in the circumferential direction of the heat treatment object. it can.

[実施形態2]
図10は、実施形態2に係る真空熱処理炉の構成を示す全体構成図である。実施形態2は、実施形態1と略同様であるが、熱処理対象物11の少なくとも一方の端部を把持して処理室13の内部に吊り下げる支持部21cを、回転部16cが直接回転させる点が異なる。他の構成は、実施形態1と同様である。図10に示すように、真空熱処理炉10cは、支持部21cと回転部16cとを有する熱処理対象物支持装置40cを備える。支持部21cは、熱処理対象物11の少なくとも一方の端部を把持するため、チャック等の把持機構を備えており、回転部16cに取り付けられる。
[Embodiment 2]
FIG. 10 is an overall configuration diagram showing the configuration of the vacuum heat treatment furnace according to the second embodiment. The second embodiment is substantially the same as the first embodiment except that the rotating part 16c directly rotates the support part 21c that holds at least one end of the heat treatment object 11 and suspends it in the processing chamber 13. Is different. Other configurations are the same as those of the first embodiment. As shown in FIG. 10, the vacuum heat treatment furnace 10c includes a heat treatment object support device 40c having a support portion 21c and a rotation portion 16c. The support portion 21c includes a gripping mechanism such as a chuck for gripping at least one end portion of the heat treatment object 11, and is attached to the rotating portion 16c.

回転部16cは、動力伝達軸30aに連結されている。回転部16cとは反対側における動力伝達軸30aの端部は、減速機31aに連結されている。このような構成により、電動機32aの発生した動力は、減速機31a及び動力伝達軸30aを介して回転部16cに伝達され、回転部16cを回転させる。回転部16cが回転すると、これに取り付けられている支持部21cも回転する。本実施形態では、減速機31a及び電動機32aは、ガス供給部14内に配置される。   The rotating part 16c is connected to the power transmission shaft 30a. The end of the power transmission shaft 30a on the side opposite to the rotating portion 16c is connected to the speed reducer 31a. With such a configuration, the power generated by the electric motor 32a is transmitted to the rotating part 16c via the speed reducer 31a and the power transmission shaft 30a, and rotates the rotating part 16c. When the rotation part 16c rotates, the support part 21c attached to this also rotates. In the present embodiment, the speed reducer 31 a and the electric motor 32 a are disposed in the gas supply unit 14.

冷却時には、電動機32aが回転して、回転部16c及び支持部21cを回転させる。これによって、熱処理対象物11と冷却ガス12との間の伝熱特性の差異が平均化されて熱処理対象物11の冷却の不均一が抑制されるので、熱処理対象物11の周方向における温度分布が低減される。その結果、熱処理対象物支持装置40c及びこれを備える真空熱処理炉10cは、熱処理対象物11の全体の歪み、硬さのばらつき、内部組織や結晶粒度のばらつきを低減できる。本実施形態に係る真空熱処理炉10c及び熱処理対象物支持装置40cは、熱処理対象物11の寸法が大きい場合に好ましい。   At the time of cooling, the electric motor 32a rotates and rotates the rotation part 16c and the support part 21c. As a result, the difference in heat transfer characteristics between the heat treatment object 11 and the cooling gas 12 is averaged and uneven cooling of the heat treatment object 11 is suppressed, so that the temperature distribution in the circumferential direction of the heat treatment object 11 is suppressed. Is reduced. As a result, the heat treatment object support device 40c and the vacuum heat treatment furnace 10c including the same can reduce the overall distortion, hardness variation, internal structure and crystal grain size variation of the heat treatment object 11. The vacuum heat treatment furnace 10c and the heat treatment object support device 40c according to the present embodiment are preferable when the size of the heat treatment object 11 is large.

以上のように、本発明に係る真空熱処理炉及び熱処理対象物支持装置は、真空熱処理炉による熱処理において、熱処理対象物を均一に冷却することに有用である。   As described above, the vacuum heat treatment furnace and the heat treatment object support device according to the present invention are useful for uniformly cooling the heat treatment object in the heat treatment by the vacuum heat treatment furnace.

実施形態1に係る真空熱処理炉の構成を示す全体構成図である。1 is an overall configuration diagram showing a configuration of a vacuum heat treatment furnace according to Embodiment 1. FIG. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B矢視図である。It is a BB arrow line view of FIG. 真空熱処理炉による熱処理の一例を示すタイミングチャートである。It is a timing chart which shows an example of the heat processing by a vacuum heat processing furnace. 実施形態1の第1変形例に係る真空熱処理炉を示す断面図である。It is sectional drawing which shows the vacuum heat processing furnace which concerns on the 1st modification of Embodiment 1. 実施形態1の第1変形例に係る真空熱処理炉の一部を示す図である。It is a figure which shows a part of vacuum heat treatment furnace which concerns on the 1st modification of Embodiment 1. FIG. 実施形態1の第2変形例に係る回転部を示す図である。It is a figure which shows the rotation part which concerns on the 2nd modification of Embodiment 1. FIG. 実施形態1の第3変形例に係る真空熱処理炉の構成を示す全体構成図である。It is a whole block diagram which shows the structure of the vacuum heat processing furnace which concerns on the 3rd modification of Embodiment 1. 図8のB−B矢視図である。It is a BB arrow line view of FIG. 実施形態2に係る真空熱処理炉の構成を示す全体構成図である。FIG. 3 is an overall configuration diagram showing a configuration of a vacuum heat treatment furnace according to a second embodiment.

符号の説明Explanation of symbols

10、10c 真空熱処理炉
11 熱処理対象物
11t1 端部
12 冷却ガス
13 処理室
13a、13b 隔壁
13c 内隔壁
13w 内壁
14 ガス供給部
15 ガス排出部
16、16b、16c 回転部
16B 回転部支持体
16bt 先端部
17、18 ガス通気口
19 支持部材
20、20a 環状部材
20ar 外側保持部
20at 支持体
21 取り付け治具
21c 支持部
22 整流筒
22a、22b、22c 管
23 回転部支持部材
25 突部
26 温度境界層
30、30a 動力伝達軸
31、31a 減速機
32、32a 電動機
40、40c 熱処理対象物支持装置
DESCRIPTION OF SYMBOLS 10, 10c Vacuum heat treatment furnace 11 Heat processing object 11t1 End part 12 Cooling gas 13 Processing chamber 13a, 13b Partition wall 13c Inner partition wall 13w Inner wall 14 Gas supply part 15 Gas discharge part 16, 16b, 16c Rotation part 16B Rotation part support body 16bt Tip Portions 17, 18 Gas vent 19 Support member 20, 20a Annular member 20ar Outer holding portion 20at Support body 21 Mounting jig 21c Support portion 22 Rectifier tube 22a, 22b, 22c Tube 23 Rotating portion support member 25 Projection portion 26 Temperature boundary layer 30, 30a Power transmission shaft 31, 31a Reduction gear 32, 32a Electric motor 40, 40c Heat treatment object support device

Claims (9)

熱処理対象物を加熱し、加熱した熱処理対象物を冷却ガスでガス冷却する処理室と、
前記処理室内に設けられて、前記熱処理対象物の長手方向が、前記処理室への前記冷却ガスの入口から出口に向かうように前記熱処理対象物を支持する支持部と、
当該支持部に支持された前記熱処理対象物を回転させる回転部と、
を含むことを特徴とする真空熱処理炉。
A treatment chamber for heating the object to be heat-treated, and gas-cooling the heated object to be heat-treated with a cooling gas;
A support portion that is provided in the processing chamber and supports the heat treatment target so that a longitudinal direction of the heat treatment target is directed from an inlet of the cooling gas to the processing chamber toward an outlet;
A rotating unit for rotating the heat treatment object supported by the support unit;
A vacuum heat treatment furnace comprising:
前記回転部は、断面が円形の部材であり、外周部に前記熱処理対象物を当接させるとともに、前記回転部の断面の中心を通る軸線を回転軸として回転する請求項1に記載の真空熱処理炉。   2. The vacuum heat treatment according to claim 1, wherein the rotating part is a member having a circular cross section, and the heat treatment target is brought into contact with an outer peripheral part, and the rotating part rotates around an axis passing through the center of the cross section of the rotating part. Furnace. 前記回転部の外周部に配置されて、前記回転部とともに前記熱処理対象物を挟持する外側保持部を有する請求項2に記載の真空熱処理炉。   The vacuum heat treatment furnace according to claim 2, further comprising an outer holding portion that is disposed on an outer peripheral portion of the rotating portion and sandwiches the heat treatment object together with the rotating portion. 前記支持部は、前記熱処理対象物の少なくとも一方の端部を把持して前記処理室の内部に吊り下げ、
前記回転部は、前記支持部を回転させる請求項1に記載の真空熱処理炉。
The support part holds at least one end of the object to be heat-treated and is suspended inside the processing chamber,
The vacuum heat treatment furnace according to claim 1, wherein the rotating unit rotates the support unit.
前記処理室の内壁に設けられ、前記熱処理対象物と対応する位置に突部を有する請求項1から4のいずれか1項に記載の真空熱処理炉。   5. The vacuum heat treatment furnace according to claim 1, wherein the vacuum heat treatment furnace is provided on an inner wall of the treatment chamber and has a protrusion at a position corresponding to the heat treatment object. 熱処理対象物を加熱し、加熱した熱処理対象物を冷却ガスでガス冷却する処理室を備えた真空熱処理炉に設けられて、前記熱処理対象物を支持するものであり、
前記処理室内に設けられて、前記熱処理対象物の長手方向が、前記処理室への前記冷却ガスの入口から出口に向かうように前記熱処理対象物を支持する支持部と、
当該支持部に支持された前記熱処理対象物を回転させる回転部と、
を含むことを特徴とする熱処理対象物支持装置。
It is provided in a vacuum heat treatment furnace provided with a treatment chamber for heating a heat treatment object and gas-cooling the heated heat treatment object with a cooling gas, and supports the heat treatment object,
A support portion that is provided in the processing chamber and supports the heat treatment target so that a longitudinal direction of the heat treatment target is directed from an inlet of the cooling gas to the processing chamber toward an outlet;
A rotating unit for rotating the heat treatment object supported by the support unit;
An apparatus for supporting an object to be heat-treated, comprising:
前記回転部は、断面が円形の部材であり、外周部に前記熱処理対象物を当接させるとともに、前記回転部の断面の中心を通る軸線を回転軸として回転する請求項6に記載の熱処理対象物支持装置。   7. The heat treatment target according to claim 6, wherein the rotating part is a member having a circular cross section, the heat treatment target is brought into contact with an outer peripheral part, and an axis passing through the center of the cross section of the rotating part is rotated as a rotation axis. Object support device. 前記回転部の外周部に配置されて、前記回転部とともに前記熱処理対象物を挟持する外側保持部を有する請求項7に記載の熱処理対象物支持装置。   The heat treatment object support device according to claim 7, further comprising an outer holding part that is disposed on an outer peripheral part of the rotation part and sandwiches the heat treatment object together with the rotation part. 前記支持部は、前記熱処理対象物の少なくとも一方の端部を把持して前記処理室の内部に吊り下げ、
前記回転部は、前記支持部を回転させる請求項6に記載の熱処理対象物支持装置。
The support part holds at least one end of the object to be heat-treated and is suspended inside the processing chamber,
The heat treatment object support device according to claim 6, wherein the rotation unit rotates the support unit.
JP2008324204A 2008-12-19 2008-12-19 Vacuum heat treatment furnace and heat treatment object support device Expired - Fee Related JP5506187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324204A JP5506187B2 (en) 2008-12-19 2008-12-19 Vacuum heat treatment furnace and heat treatment object support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324204A JP5506187B2 (en) 2008-12-19 2008-12-19 Vacuum heat treatment furnace and heat treatment object support device

Publications (2)

Publication Number Publication Date
JP2010145046A true JP2010145046A (en) 2010-07-01
JP5506187B2 JP5506187B2 (en) 2014-05-28

Family

ID=42565655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324204A Expired - Fee Related JP5506187B2 (en) 2008-12-19 2008-12-19 Vacuum heat treatment furnace and heat treatment object support device

Country Status (1)

Country Link
JP (1) JP5506187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893373A (en) * 2010-07-23 2010-11-24 青岛科技大学 Vertical and horizontal efficient energy-saving vacuum controlled atmosphere furnace for continuous production
CN102538480A (en) * 2012-03-20 2012-07-04 太仓市华瑞真空炉业有限公司 Condensation device of vacuum furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267216A (en) * 1989-04-08 1990-11-01 Ulvac Corp Vacuum heat treatment furnace
JPH05230528A (en) * 1992-02-24 1993-09-07 Daido Steel Co Ltd Method for accelerating gas circulation cooling in vacuum furnace
JP2005257241A (en) * 2004-03-15 2005-09-22 Toyota Motor Corp Heat treatment device
JP2008303448A (en) * 2007-06-11 2008-12-18 Daido Steel Co Ltd Cooling system for vertical-furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267216A (en) * 1989-04-08 1990-11-01 Ulvac Corp Vacuum heat treatment furnace
JPH05230528A (en) * 1992-02-24 1993-09-07 Daido Steel Co Ltd Method for accelerating gas circulation cooling in vacuum furnace
JP2005257241A (en) * 2004-03-15 2005-09-22 Toyota Motor Corp Heat treatment device
JP2008303448A (en) * 2007-06-11 2008-12-18 Daido Steel Co Ltd Cooling system for vertical-furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893373A (en) * 2010-07-23 2010-11-24 青岛科技大学 Vertical and horizontal efficient energy-saving vacuum controlled atmosphere furnace for continuous production
CN102538480A (en) * 2012-03-20 2012-07-04 太仓市华瑞真空炉业有限公司 Condensation device of vacuum furnace

Also Published As

Publication number Publication date
JP5506187B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US8845955B2 (en) Heat treatment furnace
JP6723751B2 (en) Multi-chamber furnace for vacuum carburizing and hardening of gears, shafts, rings and similar workpieces
CN102154614B (en) Vacuum carburization processing method and vacuum carburization processing apparatus
EP1964160B1 (en) Magnetic annealing tool heat exchange system and processes
JP2008303402A (en) High frequency induction-hardening apparatus and method for manufacturing rolling bearing, rolling bearing
JP2011080740A (en) Rotary kiln and product
JP5912670B2 (en) Work gas cooling system
JP5506187B2 (en) Vacuum heat treatment furnace and heat treatment object support device
JP2009242854A (en) Workpiece support tool for induction heating type carburizing treatment apparatus
TW201544600A (en) Heat-treatment device and heat-treatment method
JP4288110B2 (en) Semiconductor manufacturing equipment
JP6171090B2 (en) Heat treatment equipment
JP5277545B2 (en) Induction heat treatment method and induction heat treatment apparatus
JP2007332411A (en) Method for manufacturing bearing ring of rolling bearing
JP2009167484A (en) Heat-treatment apparatus for cylindrical metallic member
JP6436000B2 (en) Carburizing equipment
JP2009200330A (en) Semiconductor manufacturing device
JP2009264680A (en) Vacuum heat treatment furnace
JP2000248316A (en) Continuous quenching and tempering treating apparatus for steel wire
JPH0997765A (en) Substrate processing device
CN102517565A (en) Vertical deposition furnace tube
JP2006009043A (en) Method and apparatus for surface-quenching raceway surface of outer ring of needle roller bearing by induction heating
JP2013038128A (en) Heat treatment apparatus
JPWO2018221465A1 (en) Multi-chamber heat treatment equipment
JP2009107855A (en) Member processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R151 Written notification of patent or utility model registration

Ref document number: 5506187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees