JP2010145036A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2010145036A
JP2010145036A JP2008323829A JP2008323829A JP2010145036A JP 2010145036 A JP2010145036 A JP 2010145036A JP 2008323829 A JP2008323829 A JP 2008323829A JP 2008323829 A JP2008323829 A JP 2008323829A JP 2010145036 A JP2010145036 A JP 2010145036A
Authority
JP
Japan
Prior art keywords
temperature
water
cooled
cooling device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008323829A
Other languages
Japanese (ja)
Other versions
JP5459578B2 (en
Inventor
Katsuhiko Morizaki
勝彦 森崎
Hisashi Kato
恒 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008323829A priority Critical patent/JP5459578B2/en
Publication of JP2010145036A publication Critical patent/JP2010145036A/en
Application granted granted Critical
Publication of JP5459578B2 publication Critical patent/JP5459578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device capable of stably supplying cooling water with excellent accuracy even when a load is largely fluctuated on equipment side for supplying the cooling water. <P>SOLUTION: In the cooling device 1, a heat exchanger 6 is provided in a flowing circuit 91 of cooled water to be supplied, and a refrigerant water circuit 65 is structured of the heat exchanger 6, a radiator 61 through which outside air can be passed and a circulating pump 63. The cooling device includes a radiator fan 67 for introducing outside air to the radiator 61. A temperature detector 51 is provided on the inlet side of the cooled water in the heat exchanger 6, and based on a deviation between the temperature T<SB>IN</SB>of the cooled water detected by the temperature detector 51 and a required set temperature T<SB>0</SB>, flow rate control of the refrigerant water circuit 65 is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷却すべき機器から戻る被冷却水を冷却した後、前記機器に被冷却水を再び送り出すフリークーリングを利用した冷却装置に関し、特に送り出す被冷却水の温度精度を改良した冷却装置に関するものである。   The present invention relates to a cooling device using free cooling that cools the water to be cooled returning from the device to be cooled and then sends the water to be cooled again to the device, and particularly relates to a cooling device that improves the temperature accuracy of the water to be cooled that is sent out. Is.

従来、被冷却水を中低温に最小限のエネルギで冷却する冷却装置として特許文献1に開示されたものがある。このものは、伝熱パイプに被冷却流体を通し、ファンによって前記伝熱パイプを冷却する冷却塔において、前記被冷却流体が通過する伝熱パイプにフィンを設けたラジエータを前記冷却塔の外側部に設け、圧縮機、コンデンサ、膨張弁、蒸発器とからなり冷媒を圧縮、膨張を繰り返し運転するチラーを設け、前記コンデンサは伝熱パイプにフィンを設けたフィン付きコンデンサに設けて前記ラジエータの内側に配置し、前記冷却塔のファンによってラジエータとコンデンサに送風し、冷却すべき機器から戻る被冷却流体を前記ラジエータから前記チラーの蒸発器を通して冷却し、冷却すべき機器に送り出す冷却装置である。そして、この冷却装置は、出口管路に取り付けた温度計の温度が設定温度より高くなったときは、まずファンの送風量を増し、なおも温度計の温度が設定温度範囲よりも高くなったときにはチラーの圧縮機の運転台数制御を行う。また温度計の温度が設定温度範囲より低くなったときは、上記とは逆にまず圧縮機の運転台数が順次停止され、なおも温度計の温度が設定温度範囲よりも低くなったときはファンの送風量を減少する制御が行われる(段落番号0015参照)。   Conventionally, there is one disclosed in Patent Document 1 as a cooling device that cools water to be cooled to medium to low temperatures with minimum energy. In this cooling tower in which a fluid to be cooled is passed through a heat transfer pipe and the heat transfer pipe is cooled by a fan, a radiator provided with fins in the heat transfer pipe through which the fluid to be cooled passes is provided outside the cooling tower. Provided with a compressor, a condenser, an expansion valve, an evaporator, and a chiller that repeatedly compresses and expands the refrigerant. The condenser is provided in a condenser with a fin provided with fins on the heat transfer pipe, and is disposed inside the radiator. The cooling device is disposed in the cooling tower, blows air to the radiator and the condenser by the fan of the cooling tower, cools the fluid to be cooled returning from the equipment to be cooled from the radiator through the evaporator of the chiller, and sends the fluid to the equipment to be cooled. And when the temperature of the thermometer attached to the outlet pipe became higher than the set temperature, this cooling device first increased the air flow rate of the fan, and the temperature of the thermometer was still higher than the set temperature range. Occasionally, the number of operating chiller compressors is controlled. When the temperature of the thermometer falls below the set temperature range, the number of compressors operating is first stopped sequentially, and when the temperature of the thermometer falls below the set temperature range, Control is performed to reduce the air flow rate (see paragraph 0015).

特許文献2には、タンク内を隔壁によって複数の水室に区画し、各水室ごとに、隣接する水室間の水流を制御するバルブを設け、さらに常に吐出口に通じている水室内に、水温に応じて作動するサーモエレメントを設けてその可動部をバルブに結合し、バルブを開閉することによって吐出口に導通する水室の数及び流量を変化させるラジエータが記載されている。   In Patent Document 2, a tank is partitioned into a plurality of water chambers by partition walls, and a valve for controlling the water flow between adjacent water chambers is provided for each water chamber, and the water chamber is always in communication with a discharge port. Further, there is described a radiator in which a thermo element that operates according to a water temperature is provided, a movable part thereof is coupled to a valve, and the number and flow rate of water chambers connected to a discharge port are changed by opening and closing the valve.

特許文献3には、冷凍機などの熱交換器において、熱交換器内の被冷却媒体流路における中間温度地点に温度検出点を設けるとともに該温度検出点の温度とその設定温度との偏差に基づいて冷却熱量を調整する温度調節装置が記載され、冷却能力の変化に拘わらず出口温度を一定に保つことができ、かつ安定化と調節精度の向上が達成されるとされている。   In Patent Document 3, in a heat exchanger such as a refrigerator, a temperature detection point is provided at an intermediate temperature point in a flow path of a medium to be cooled in the heat exchanger, and a deviation between the temperature at the temperature detection point and its set temperature is set. A temperature adjusting device for adjusting the amount of cooling heat based on this is described, and it is said that the outlet temperature can be kept constant regardless of the change in cooling capacity, and that stabilization and improvement in adjustment accuracy are achieved.

特開2000−266447号公報JP 2000-266447 A 特開平2−308919号公報JP-A-2-308919 特開昭58−68122号公報JP 58-68122 A

ところで冷却水を必要とする機器にはレーザ加工機のように、加工精度に影響する熱的安定性を確保し、加工品質の低下を回避するため、温度変動の少ない高度の冷却水精度と、ワークの材質,板厚,加工速度及び加工面粗度等による比較的大きな負荷変動に対しても十分に追従可能な冷却性能が要求されている。   By the way, for equipment that requires cooling water, like laser processing machines, in order to ensure thermal stability that affects processing accuracy and avoid degradation of processing quality, high cooling water accuracy with little temperature fluctuation, Cooling performance that can sufficiently follow relatively large load fluctuations due to workpiece material, plate thickness, machining speed, and machined surface roughness is required.

しかしながら、特許文献1記載の冷却装置においては、被冷却水の出口に設けた温度検出器の温度と設定温度とを比較して温度制御を行っているために、圧縮機やファンをPID制御で可変に制御したとしても、ハンチング現象を起こしてしまい、冷却水を必要とする機器へ供給される冷却水の温度精度が十分に安定化しないという問題点があった。
特許文献2に記載のラジエータは温度負荷に応じてラジエータの放熱面積を変化させることができるもののラジエータの総面積は大きく設けざるを得ず、また水室単位でしか放熱面積を変化させることができないので、冷却水の温度制御の面でも十分とはいえない。
However, in the cooling device described in Patent Document 1, since the temperature control is performed by comparing the temperature of the temperature detector provided at the outlet of the water to be cooled with the set temperature, the compressor and fan are controlled by PID control. Even if it is variably controlled, a hunting phenomenon occurs, and there is a problem that the temperature accuracy of the cooling water supplied to equipment that requires the cooling water is not sufficiently stabilized.
Although the radiator described in Patent Document 2 can change the heat radiation area of the radiator according to the temperature load, the total area of the radiator must be large, and the heat radiation area can be changed only in units of water chambers. Therefore, it cannot be said that the temperature control of the cooling water is sufficient.

一方、特許文献3に記載のものでは、比較的温度制度が安定化するものの、大きな負荷変動があった場合には、近年要求される冷却水精度(例えば±1℃以下)を満足させるには十分でなかった。
本発明は、上記の課題に鑑みてなされたもので、冷却水を供給する機器側に大きな負荷変動があったとしても精度の良い冷却水を安定して供給することのできる冷却装置を提供することを目的としている。
On the other hand, in the thing of patent document 3, although a temperature system is stabilized comparatively, when there is a big load fluctuation, in order to satisfy the cooling water precision (for example, ± 1 degrees C or less) demanded in recent years. It was not enough.
The present invention has been made in view of the above problems, and provides a cooling device that can stably supply highly accurate cooling water even when there is a large load fluctuation on the apparatus side that supplies the cooling water. The purpose is that.

本発明は、供給すべき被冷却水流動回路に熱交換器を設け、前記熱交換器と、外気が通過可能なラジエータと、循環ポンプとの冷媒水回路を構成し、前記ラジエータに外気を導入するためのラジエータファンを有する冷却装置において、前記熱交換器における被冷却水の入口側に温度検出器を設け、前記温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて、前記冷媒水回路の流量制御を行うことを特徴とする冷却装置である。   The present invention provides a cooling water flow circuit to be supplied with a heat exchanger, constitutes a refrigerant water circuit including the heat exchanger, a radiator through which outside air can pass, and a circulation pump, and introduces outside air into the radiator. In the cooling device having a radiator fan, a temperature detector is provided on the inlet side of the water to be cooled in the heat exchanger, and the deviation between the temperature of the water to be cooled detected by the temperature detector and the required set temperature The cooling device is configured to control the flow rate of the refrigerant water circuit based on the above.

上記の構成によれば、熱交換器における被冷却水の出口側での温度と設定温度との偏差に基づいて冷媒水回路の流量を可変に制御するので、冷却水を供給する機器側に大きな負荷変動があったとしても精度の良い冷却水を安定して供給することができる。 According to the above configuration, since the flow rate of the coolant water circuit is variably controlled based on the deviation between the temperature on the outlet side of the water to be cooled in the heat exchanger and the set temperature, it is large on the equipment side that supplies the cooling water. Even if the load fluctuates, accurate cooling water can be stably supplied.

本発明において、前記循環ポンプにインバータ制御装置を設け、前記冷媒水回路の流量制御を行うことができる。   In the present invention, the circulation pump can be provided with an inverter control device to control the flow rate of the refrigerant water circuit.

また本発明において、前記ラジエータファンの回転数はインバータ制御にて制御され、前記ラジエータファンの回転数を、前記熱交換器における被冷却水の入口側に設けた前記温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて制御することが好ましい。   In the present invention, the rotation speed of the radiator fan is controlled by inverter control, and the rotation speed of the radiator fan is detected by the temperature detector provided on the inlet side of the cooling water in the heat exchanger. It is preferable to control based on the deviation between the temperature of the cooling water and the required set temperature.

また本発明において、前記熱交換器の下流側にインバータ制御可能な圧縮機と、凝縮器と、膨張弁と、蒸発器とからり、前記蒸発器で冷媒と被冷却水との熱交換を行なうチラーユニットを設け、前記蒸発器における被冷却水の入口側に設けた温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて、前記圧縮機をインバータ制御することができる。   Further, in the present invention, a compressor capable of inverter control, a condenser, an expansion valve, and an evaporator are provided downstream of the heat exchanger, and heat exchange between the refrigerant and the water to be cooled is performed by the evaporator. A chiller unit is provided, and the compressor is inverter controlled based on a deviation between the temperature of the cooling water detected by the temperature detector provided on the inlet side of the cooling water in the evaporator and the required set temperature. Can do.

上記本発明において、前記圧縮機の入口と出口とを連通するバイパス回路と、該バイパス回路に設けた開閉弁とを備え、前記圧縮機がインバータ制御可能な周波数領域では、前記蒸発器における被冷却水の入口側に設けた温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて、前記圧縮機をインバータ制御するとともに、前記圧縮機がインバータ制御不可能な低周波数領域では、前記開閉弁を開となし、前記蒸発器出口温度検出器で検出される蒸発器出口温度と要求された設定温度の偏差に基づいて、前記電子膨張弁の開度を調整制御することができる。   In the present invention, the evaporator includes a bypass circuit communicating the inlet and the outlet of the compressor, and an on-off valve provided in the bypass circuit. Based on the deviation between the temperature of the water to be cooled detected by the temperature detector provided on the water inlet side and the required set temperature, the compressor is controlled by an inverter, and the compressor cannot be controlled by the inverter. In the frequency domain, the on-off valve is opened, and the opening degree of the electronic expansion valve is adjusted and controlled based on the deviation between the evaporator outlet temperature detected by the evaporator outlet temperature detector and the required set temperature. be able to.

本発明に係る冷却装置によれば、熱交換器における被冷却水の入口側での温度と設定温度との偏差に基づいて冷媒水回路の流量を可変に制御するので、冷却水を供給する機器側に大きな負荷変動があったとしても精度の良い冷却水を安定して供給することができる。   According to the cooling device of the present invention, the flow rate of the coolant water circuit is variably controlled based on the deviation between the temperature on the inlet side of the water to be cooled in the heat exchanger and the set temperature, so that the equipment that supplies the cooling water Even if there is a large load fluctuation on the side, accurate cooling water can be stably supplied.

<第一の実施の形態>
本発明の第一の実施の形態を図1から図7を用いて説明する。図1は本発明の冷却装置の第一実施例の概念模式図を、図2は本発明の冷却装置の第一実施例の主制御フローチャートを、図3は本発明の一部を構成するラジエータ回路の冷却制御のフローチャートを、図4はラジエータ回路における低温度差制御を説明する概念図を、図5は本発明の一部を構成する冷凍回路の冷却制御のフローチャートを、図6は本発明の一部を構成する圧縮機の冷却制御を説明する概念図を、図7は冷凍回路を構成する開閉弁の制御のフローチャートを示している。
<First embodiment>
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a conceptual schematic diagram of a first embodiment of the cooling device of the present invention, FIG. 2 is a main control flowchart of the first embodiment of the cooling device of the present invention, and FIG. 3 is a radiator constituting a part of the present invention. FIG. 4 is a conceptual diagram illustrating low temperature difference control in a radiator circuit, FIG. 5 is a flowchart of cooling control of a refrigeration circuit constituting a part of the present invention, and FIG. Fig. 7 is a conceptual diagram for explaining cooling control of a compressor constituting a part of Fig. 7, and Fig. 7 is a flowchart of control of on-off valves constituting a refrigeration circuit.

図1に示すように冷却装置1は、圧縮機2と凝縮器3と電子膨張弁4と蒸発器5とでなり内部に冷媒が循環する冷凍回路10と、これらを制御するための図示しない制御装置を有する。圧縮機2は動作周波数をインバータ制御可能なもので、制御装置からの指示信号によって周波数を可変にすることができる。凝縮器3は冷媒の流れる銅管等を曲げ加工し、冷却フィンを取り付けたもので、外気を通過させることが可能なように凝縮器ファン31を有する。電子膨張弁4は、制御装置から発せられるパルス信号によって弁の開度を調整できるものである。蒸発器5は、例えばステンレス鋼製で、冷却すべき(図示しない)機器から主ポンプ90を介して循環する循環回路91に流れる被冷却水と熱交換する。   As shown in FIG. 1, the cooling device 1 includes a compressor 2, a condenser 3, an electronic expansion valve 4, and an evaporator 5, a refrigeration circuit 10 in which a refrigerant circulates, and a control (not shown) for controlling them. Have the device. The compressor 2 is capable of inverter control of the operating frequency, and the frequency can be varied by an instruction signal from the control device. The condenser 3 is formed by bending a copper pipe or the like through which a refrigerant flows and is provided with a cooling fin, and has a condenser fan 31 so that outside air can pass therethrough. The electronic expansion valve 4 can adjust the opening degree of the valve by a pulse signal emitted from the control device. The evaporator 5 is made of stainless steel, for example, and exchanges heat with water to be cooled flowing from a device to be cooled (not shown) to a circulation circuit 91 that circulates via a main pump 90.

圧縮機2の出口と蒸発器5の入口を接続するバイパス回路21が設けられており、その途中に開閉弁23を備え、圧縮機2から排出された高圧冷媒の一部を蒸発器5の入口側へ導入できるようになっている。   A bypass circuit 21 connecting the outlet of the compressor 2 and the inlet of the evaporator 5 is provided, and an on-off valve 23 is provided in the middle of the bypass circuit 21, and a part of the high-pressure refrigerant discharged from the compressor 2 is supplied to the inlet of the evaporator 5. It can be introduced to the side.

また蒸発器5と主ポンプ90との間にはステンレス製の熱交換器6が設けられ、ラジエータ61と循環ポンプ63とで冷媒水回路65が形成され、内部には冷媒として不凍液が循環している。ラジエータ61には、外気を通過させることが可能なようにラジエータファン67が設けられている。   Further, a stainless steel heat exchanger 6 is provided between the evaporator 5 and the main pump 90, and a radiator water circuit 65 is formed by the radiator 61 and the circulation pump 63, and an antifreeze liquid is circulated as a refrigerant inside. Yes. The radiator 61 is provided with a radiator fan 67 so that outside air can pass therethrough.

そして循環回路91の熱交換器6における被冷却水の入口側には入口温度検出器51が、熱交換器6における被冷却水の出口側と、蒸発器5における被冷却水の入口側との間にはには中間温度検出器52が、蒸発器5における被冷却水の出口側には出口温度検出器53が設けられている。また冷媒回路10の圧縮機2の出口側には冷媒の圧力を検出する出口圧力検出器11が設けられている。さらに図示しない外気乾球温度検出器が冷却装置1には備えている。   An inlet temperature detector 51 is provided on the inlet side of the water to be cooled in the heat exchanger 6 of the circulation circuit 91, and the outlet side of the water to be cooled in the heat exchanger 6 and the inlet side of the water to be cooled in the evaporator 5. An intermediate temperature detector 52 is provided between them, and an outlet temperature detector 53 is provided on the outlet side of the water to be cooled in the evaporator 5. An outlet pressure detector 11 that detects the pressure of the refrigerant is provided on the outlet side of the compressor 2 of the refrigerant circuit 10. Further, the cooling device 1 includes an outside air dry bulb temperature detector (not shown).

なお循環回路91には、貯水タンク93と純水器95を設け、被冷却水の導電率を所定の値以下に維持するようにすることもできる。特に被冷却水の導電率が問題になる場合には、上述のように蒸発器5および熱交換器6をステンレス製にしておくことが好ましい。   The circulation circuit 91 may be provided with a water storage tank 93 and a deionizer 95 so that the conductivity of the water to be cooled is kept below a predetermined value. In particular, when the conductivity of the water to be cooled becomes a problem, the evaporator 5 and the heat exchanger 6 are preferably made of stainless steel as described above.

続いて図2を用いて冷却装置1の主動作を詳細に説明する。
図示するように、まず主ポンプ90を起動させる(S1:ステップ1)。そして循環回路91内の被冷却水を所定の時間(例えば30秒)循環させて(S2:ステップ2)、被冷却水の温度の測定を開始する。出口温度検出器53で検出された出口温度TOUTが設定温度Tよりも低い場合には、被冷却水を冷却する必要がないので、その状態を維持し、出口温度TOUTが設定温度T以上になったら次の工程に進む(S3:ステップ3)。
Next, the main operation of the cooling device 1 will be described in detail with reference to FIG.
As shown in the figure, first, the main pump 90 is started (S1: Step 1). Then, the water to be cooled in the circulation circuit 91 is circulated for a predetermined time (for example, 30 seconds) (S2: Step 2), and measurement of the temperature of the water to be cooled is started. When the outlet temperature T OUT detected by the outlet temperature detector 53 is lower than the set temperature T 0 , it is not necessary to cool the water to be cooled, so that the state is maintained and the outlet temperature T OUT is set to the set temperature T When it becomes 0 or more, the process proceeds to the next step (S3: Step 3).

続いて、冷媒水回路65と冷媒回路10の冷却制御の起動条件を同時にチェックする。このようにステップ3までで冷媒水回路65と冷媒回路10を起動できる準備を行っておき、それぞれの起動条件を同時にチェックすると、被冷却水を最適な冷却条件で、かつ最短時間で冷却を開始することができる。   Subsequently, the activation conditions for the cooling control of the refrigerant water circuit 65 and the refrigerant circuit 10 are checked simultaneously. In this way, preparation is made so that the refrigerant water circuit 65 and the refrigerant circuit 10 can be started up to step 3, and when the respective start conditions are checked at the same time, cooling of the water to be cooled is started under the optimum cooling conditions and in the shortest time. can do.

便宜上、冷媒水回路65の制御を先ず説明する。
まず外気乾球温度検出器で検出した外気乾球温度DBと入口温度検出器51で検出した入口温度(熱交換器入口温度)TINとを比較して、入口温度TINから外気乾球温度DBを引いた値が、所定の冷媒水起動温度Tfonよりも小さい場合合には、この状態を維持し、大きい場合には次の工程に進む(S4:ステップ4)。そして、ラジエータファン67を起動させてラジエータファン67のインバータ制御を開始する(S5:ステップ5)。このとき同時に循環ポンプ63も起動させる。循環ポンプ63の回転数を規定するインバータからは定格の60Hzが出力されている。
For convenience, the control of the refrigerant water circuit 65 will be described first.
First, compared with the outside air dry bulb temperature detector detecting outside air dry-bulb temperature DB and the inlet temperature detector 51 detects the inlet temperature (heat exchanger inlet temperature) T IN, the outside air dry bulb temperature from the inlet temperature T IN If the value obtained by subtracting DB is lower than the predetermined coolant water activation temperature T fon , this state is maintained, and if it is greater, the process proceeds to the next step (S4: Step 4). Then, the radiator fan 67 is activated to start inverter control of the radiator fan 67 (S5: step 5). At the same time, the circulation pump 63 is also started. The rated 60 Hz is output from the inverter that regulates the rotational speed of the circulation pump 63.

具体的には、図3に示すように、熱交換器6における被冷却水の出口側温度(中間温度検出器52で検出される中間温度)Tcと被冷却水に要求される設定温度Tとの偏差に基づいて、PID指令値を発生させる(S51)。つまり中間温度Tcと設定温度Tとの偏差が大きければラジエータファン67の回転数を増すためのPID指令値が発生し、逆に偏差が小さければ回転数を減少させるためのPID指令値が発生する。 Specifically, as shown in FIG. 3, the outlet side temperature of the cooling water in the heat exchanger 6 (intermediate temperature detected by the intermediate temperature detector 52) Tc and the set temperature T 0 required for the cooling water. Based on the deviation, a PID command value is generated (S51). That intermediate PID command value for increasing the rotational speed of the temperature Tc and the set temperature T 0 when the deviation is large the radiator fan 67 is generated, the PID command value for decreasing the rotational speed the smaller the deviation in the opposite occurred To do.

次に設定温度Tと外気乾球温度DBとの差が所定値T以上であるかを判断する(S52)。この所定値Tは、ラジエータ61による冷却が過剰になり過ぎないかを判断する値で、例えば15℃である。すなわち設定温度Tと外気乾球温度DBとの差が所定値Tより大であると冷媒水が冷えすぎ、熱交換器6で熱交換された被冷却水の温度が必要以上に低下するためである。そして、設定温度Tと外気乾球温度DBとの差が所定値Tよ以下である場合には、冷媒水の冷えすぎがないと判断して、そのままPID指令値の周波数でラジエータファン67の運転を継続しステップ6に進む(S53)。 Next, it is determined whether or not the difference between the set temperature T 0 and the outside air dry bulb temperature DB is a predetermined value T 2 or more (S52). The predetermined value T 2 are, in the value to determine the cooling by the radiator 61 does not become too excessive, for example, 15 ° C.. That is, if the difference between the set temperature T 0 and the outside air dry bulb temperature DB is greater than the predetermined value T 2 , the coolant water is too cold, and the temperature of the water to be cooled that is heat-exchanged by the heat exchanger 6 is unnecessarily lowered. Because. When the difference between the set temperature T 0 and the outside air dry bulb temperature DB is equal to or less than the predetermined value T 2 , it is determined that the coolant water is not excessively cooled, and the radiator fan 67 is directly used at the frequency of the PID command value. The operation is continued and the process proceeds to Step 6 (S53).

逆に設定温度Tと外気乾球温度DBとの差が所定値Tより大である場合には、熱交換器6における被冷却水の入口温度(熱交換器入口温度)TINと設定温度Tの偏差が所定値T以上であるか否かを判断する(S54)。この所定値Tも、ラジエータ61による冷却が過剰になり過ぎないかを判断する値で、例えば3℃である。そして、入口温度TINと設定温度Tの偏差が所定値Tより大である場合には、冷媒水の冷えすぎがないと判断して、そのままPID指令値の周波数でラジエータファン67の運転を継続しステップ6に進む(S53)。 Conversely, when the difference between the set temperature T 0 and the outside air dry bulb temperature DB is larger than the predetermined value T 2 , the inlet temperature (heat exchanger inlet temperature) T IN of the water to be cooled in the heat exchanger 6 is set. It is determined whether or not the temperature T 0 deviation is equal to or greater than a predetermined value T 1 (S54). The predetermined value T 1 is also a value that determines whether the cooling by the radiator 61 does not become too excessive, for example, 3 ° C.. When the deviation between the inlet temperature T IN and the set temperature T 0 is larger than the predetermined value T 1 , it is determined that the coolant water is not too cold and the radiator fan 67 is operated as it is at the frequency of the PID command value. To continue to step 6 (S53).

逆に入口温度TINと設定温度Tの偏差が所定値T以下である場合には、図4に示す低温度差制御に進む(S55)。図4は低温度差の場合の制御状態を示す一例で、図4(a)は循環ポンプ63のポンプ回転数制御、図4(b)はラジエータファン67のファン回転数制御を示し、横軸ΔTfは被冷却水の入口温度TINと設定温度Tの偏差を示している。 Conversely, when the deviation between the inlet temperature T IN and the set temperature T 0 is equal to or less than the predetermined value T 1 , the process proceeds to the low temperature difference control shown in FIG. 4 (S55). FIG. 4 shows an example of the control state in the case of a low temperature difference. FIG. 4 (a) shows the pump speed control of the circulation pump 63, FIG. 4 (b) shows the fan speed control of the radiator fan 67, and the horizontal axis ΔTf indicates the deviation between the inlet temperature T IN of the water to be cooled and the set temperature T 0 .

図4(a)に示すように、所定値T(上述の例で3℃)を複数(この例では1℃毎)に区分し、ポンプ回転最低周波数(6Hz)と、区分毎のポンプ回転最大周波数(ここでは、12.7Hz、28.6Hz、50Hz)を設定する。そして、ポンプ回転最低周波数と、区分毎のポンプ回転最大周波数との勾配(D1、D2、D3)を求める。これらポンプ回転最低周波数、ポンプ回転最大周波数、勾配(D1、D2、D3)は予め設定して冷却装置1の制御装置に記憶されている。区分内では、ΔTfとこの勾配(D1、D2、D3)からポンプ回転周波数を求め、このポンプ回転周波数で循環ポンプ63を運転する。 As shown in FIG. 4A, the predetermined value T 1 (3 ° C. in the above example) is divided into a plurality (in this example, every 1 ° C.), the lowest pump rotation frequency (6 Hz), and the pump rotation for each division. The maximum frequency (here, 12.7 Hz, 28.6 Hz, 50 Hz) is set. And the gradient (D1, D2, D3) of the pump rotation minimum frequency and the pump rotation maximum frequency for each section is obtained. These minimum pump rotation frequency, maximum pump rotation frequency, and gradient (D1, D2, D3) are preset and stored in the control device of the cooling device 1. Within the section, the pump rotation frequency is obtained from ΔTf and this gradient (D1, D2, D3), and the circulating pump 63 is operated at this pump rotation frequency.

また図4(b)に示すように、所定値T(上述の例で3℃)を複数(この例では1℃毎)に区分し、ファン回転最低周波数(15Hz)と、区分毎のファン回転最大周波数(ここでは、15Hz、25Hz、40Hz)を設定する。そして、ファン回転最低周波数と、区分毎のファン回転最大周波数との勾配(D4、D5、D6)を求める。これらファン回転最低周波数、ファン回転最大周波数、勾配(D4、D5、D6)は予め設定して冷却装置1の制御装置に記憶されている。区分内では、ΔTfとこの勾配(D4、D5、D6)からファン回転周波数を求め、このファン回転周波数でラジエータファン67を運転する。
なお、勾配D1〜D3、勾配D4〜D6の関係は、D1<D2<D3、D4<D5<D6とすることが好ましい。
Further, as shown in FIG. 4B, the predetermined value T 1 (3 ° C. in the above example) is divided into a plurality (in this example, every 1 ° C.), the lowest fan rotation frequency (15 Hz), and the fan for each division. The maximum rotation frequency (here, 15 Hz, 25 Hz, 40 Hz) is set. Then, gradients (D4, D5, D6) between the minimum fan rotation frequency and the maximum fan rotation frequency for each section are obtained. These minimum fan rotation frequency, maximum fan rotation frequency, and gradient (D4, D5, D6) are preset and stored in the control device of the cooling device 1. In the section, the fan rotation frequency is obtained from ΔTf and this gradient (D4, D5, D6), and the radiator fan 67 is operated at this fan rotation frequency.
Note that the relationships between the gradients D1 to D3 and the gradients D4 to D6 are preferably D1 <D2 <D3 and D4 <D5 <D6.

このように冷却装置1には、ラジエータ61と循環ポンプ63とで冷媒水回路65(所謂フリークーリング回路)を有し熱交換器6で被冷却水を冷却することができるので、省エネルギで所望の被冷却水を得ることができる。特に、外気乾球温度DBが比較的低い秋から春にかけての期間や夜間などは有効に作用する。一般的にフリークーリングは外気温度に冷却能力が左右されるので、被冷却水の温度制御は困難である。しかしながら、図3、図4に示すように、過冷却になるか否かの制御ステップをふみ、過冷却になるおそれのある場合には、循環ポンプ63、ラジエータファン67の回転周波数に最大値を設けインバータ制御するので、非冷却水は精度の良い温度状態(例えば±1℃)で供給することができる。   As described above, the cooling device 1 has the refrigerant water circuit 65 (so-called free cooling circuit) by the radiator 61 and the circulation pump 63 and can cool the water to be cooled by the heat exchanger 6. Water to be cooled can be obtained. In particular, it works effectively during the period from autumn to spring, nighttime, etc., where the outside air dry bulb temperature DB is relatively low. In general, since the cooling capacity of free cooling depends on the outside air temperature, it is difficult to control the temperature of the water to be cooled. However, as shown in FIG. 3 and FIG. 4, if there is a possibility of overcooling by including a control step for determining whether or not supercooling occurs, the maximum value is set for the rotation frequency of the circulation pump 63 and the radiator fan 67. Since the provided inverter is controlled, the non-cooling water can be supplied in an accurate temperature state (for example, ± 1 ° C.).

図2に戻って、外気乾球温度検出器で検出した外気乾球温度DBと入口温度検出器51で検出した入口温度TINとを比較して、入口温度TINから外気乾球温度DBを差し引いた値が所定の冷媒水停止温度Tfoffよりも大きい場合には、ステップ5に戻ってラジエータファン67と循環ポンプ63の制御を継続し、小さい場合には次の工程に進む(S6:ステップ6)。そして、ラジエータファン67を停止させ、PID制御をOFFにする(S7:ステップ7)。 Returning to FIG. 2 compares the inlet temperature T IN detected by the outside air dry bulb temperature DB detected by the outside air dry bulb temperature detector inlet temperature detector 51, the outside air dry bulb temperature DB from the inlet temperature T IN When the subtracted value is larger than the predetermined coolant water stop temperature T foff , the process returns to step 5 to continue the control of the radiator fan 67 and the circulation pump 63, and when smaller, the process proceeds to the next step (S6: step). 6). Then, the radiator fan 67 is stopped and the PID control is turned off (S7: Step 7).

なお、冷媒水起動温度Tfonと冷媒水停止温度Tfoffは予め設定して制御装置内に記憶させておく。概ね、冷媒水起動温度Tfonは2℃、冷媒水停止温度Tfoffは1.5℃に設定する。 The refrigerant water start temperature T fon and the refrigerant water stop temperature T foff are set in advance and stored in the control device. Generally, the coolant water start temperature T fon is set to 2 ° C., and the coolant water stop temperature T foff is set to 1.5 ° C.

続いて、冷媒回路10の冷却制御について説明する。
図2に示すように、設定温度Tと外気乾球温度DBとを比較して、その差が所定のチラー起動温度TCON以上である場合には、その状態を維持し、チラー起動温度TCON以下である場合には、圧縮機2、電子膨張弁4及び開閉弁23の制御運転を開始する(S8:ステップ8からS9:ステップ9)。運転開始時には、圧縮機2の回転数を制御するインバータは所定の周波数(例えば25Hz)にセットして運転を行う。
Subsequently, cooling control of the refrigerant circuit 10 will be described.
As shown in FIG. 2, when the set temperature T 0 and the outside air dry bulb temperature DB are compared and the difference is not less than a predetermined chiller start temperature T CON , the state is maintained and the chiller start temperature T If it is equal to or lower than CON , the control operation of the compressor 2, the electronic expansion valve 4 and the on-off valve 23 is started (S8: Step 8 to S9: Step 9). At the start of operation, the inverter that controls the rotation speed of the compressor 2 is set to a predetermined frequency (for example, 25 Hz) for operation.

圧縮機2、電子膨張弁4の制御及び開閉弁23の制御は並列して同時進行するが、まず圧縮機2の制御について詳細に説明する。
図5(a)に示すように、中間温度Tcと要求された設定温度Tの偏差ΔTtを求める(S91)。具体的には図6(a)に示すように、中間温度Tc(又は冷媒水回路65が動作している場合には入口温度TIN)は冷却すべき機器(例えばレーザ加工機)の負荷状態によって大きく変動する。そこで、冷媒回路10の蒸発器5における入口温度である中間温度Tcと要求された設定温度Tの偏差ΔTtを求める。図6(b)に示すように、偏差ΔTt(℃)と圧縮機2の回転周波数H(Hz)には、H=K・ΔTt(Kは係数)の関係にある。この式に基づいて回転周波数Hを求める(図5(a)、S92)。即ち、偏差ΔTtが小さい場合には小さな周波数で、偏差ΔTtが大きい場合には、大きな周波数が求まることとなる。
The control of the compressor 2 and the electronic expansion valve 4 and the control of the on-off valve 23 proceed simultaneously in parallel. First, the control of the compressor 2 will be described in detail.
As shown in FIG. 5 (a), a deviation ΔTt set temperature T 0 which is required an intermediate temperature Tc (S91). Specifically, as shown in FIG. 6A, the intermediate temperature Tc (or the inlet temperature T IN when the refrigerant water circuit 65 is operating) is the load state of the device to be cooled (for example, a laser processing machine). It varies greatly depending on. Therefore, a deviation ΔTt set temperature T 0 which is required an intermediate temperature Tc is the inlet temperature of the evaporator 5 in the refrigerant circuit 10. As shown in FIG. 6B, the deviation ΔTt (° C.) and the rotation frequency H 1 (Hz) of the compressor 2 have a relationship of H 1 = K 1 · ΔTt (K 1 is a coefficient). Determining the rotational frequency H 1 based on the equation (FIG. 5 (a), S92). That is, a small frequency is obtained when the deviation ΔTt is small, and a large frequency is obtained when the deviation ΔTt is large.

ただし、圧縮機2には、図6(b)に示すように、インバータ制御ができない低周波数領域(例えば、25Hz以下)が存在する。この低周波数領域は偏差ΔTt=H/Kにて求められる。そこで、求めたH1がインバータ制御下限以上にあるか否かを判断し(図5(a)、S93)、H1がインバータ制御下限以上であれば、そのままH1の周波数で圧縮機2を制御する(S94)。H1がインバータ制御下限を下回っていれば、圧縮機2は最低周波数(25Hz)での一定運転を行う(S95)。 However, as shown in FIG. 6B, the compressor 2 has a low frequency region (for example, 25 Hz or less) where the inverter cannot be controlled. This low frequency region is obtained by the deviation ΔTt = H 1 / K 1 . Therefore, it is determined whether or not the obtained H1 is equal to or higher than the inverter control lower limit (FIG. 5A, S93). If H1 is equal to or higher than the inverter control lower limit, the compressor 2 is directly controlled at the frequency of H1 ( S94). If H1 is below the inverter control lower limit, the compressor 2 performs a constant operation at the lowest frequency (25 Hz) (S95).

次に電子膨張弁4は、図5(b)に示すように、出口温度検出器53で検出される出口温度TOUTと要求された設定温度Tを比較して、電子膨張弁4の開度を調整制御を行う。具体的には、出口温度TOUTが設定温度Tより高い場合には、電子膨張弁4を開弁する信号を送り、逆に出口温度TOUTが設定温度Tより低い場合には、より電子膨張弁4を閉弁する信号を送る(S96、S97、S98)。 Next, as shown in FIG. 5B, the electronic expansion valve 4 compares the outlet temperature T OUT detected by the outlet temperature detector 53 with the requested set temperature T 0, and opens the electronic expansion valve 4. Adjust the degree of control. Specifically, when the outlet temperature T OUT is higher than the set temperature T 0 , a signal for opening the electronic expansion valve 4 is sent, and conversely, when the outlet temperature T OUT is lower than the set temperature T 0 , A signal for closing the electronic expansion valve 4 is sent (S96, S97, S98).

電子膨張弁4は例えば開度100%で480パルスとされるような比例制御弁である。そしてステップ97、及びステップ98で電子膨張弁4に出力する開弁又は閉弁の信号は、開度5%の相当する24パルスを出力する。制御温度の精度を更に上げるには、細かなパルス数で出力することが好ましいことは言うまでもない。パルス数の刻みの程度は、要求される制御温度精度と、制御の追従速度で定めればよい。さらに、設定温度Tと出口温度Toutの偏差の大小で電子膨張弁4に出力する開弁又は閉弁の信号を調整することもできる。開弁又は閉弁の信号が出力されると図2のステップ10へ進む。 For example, the electronic expansion valve 4 is a proportional control valve having an opening degree of 100% and 480 pulses. The valve opening or closing signal output to the electronic expansion valve 4 in step 97 and step 98 outputs 24 pulses corresponding to an opening degree of 5%. Needless to say, in order to further increase the accuracy of the control temperature, it is preferable to output with a fine pulse number. The degree of increment of the pulse number may be determined by the required control temperature accuracy and the control tracking speed. Further, the valve opening or closing signal output to the electronic expansion valve 4 can be adjusted depending on the difference between the set temperature T 0 and the outlet temperature T out . When the valve opening or closing signal is output, the process proceeds to step 10 in FIG.

このように、冷却装置1は、中間温度Tcと設定温度Tとの偏差ΔTtに基づいて圧縮機2の冷却能力を可変に制御するので、被冷却水を供給する機器側に大きな負荷変動があったとしても応答性よく温度制御が追従する。さらに出口温度TOUTと設定温度Tの偏差に基づいて、電子膨張弁4の開度を調整制御するので、微小な温度制御精度が向上して、冷却水を供給する機器側に大きな負荷変動があったとしても温度精度の良い被冷却水を安定して供給することができる。 Thus, since the cooling device 1 variably controls the cooling capacity of the compressor 2 based on the deviation ΔTt between the intermediate temperature Tc and the set temperature T 0 , there is a large load fluctuation on the equipment side that supplies the water to be cooled. Even if there is, temperature control follows with good responsiveness. Furthermore, since the opening degree of the electronic expansion valve 4 is adjusted and controlled based on the deviation between the outlet temperature T OUT and the set temperature T 0 , minute temperature control accuracy is improved, and a large load fluctuation is caused on the device side that supplies the cooling water. Even if there is, it is possible to stably supply water to be cooled with high temperature accuracy.

一方、開閉弁23の制御は、図7に示すように、予め設定しておいた所定の温度と各条件とを比較して、開閉制御を行う。
出口温度検出器53で検出される出口温度TOUTと要求された設定温度Tを比較して、所定温度Tより大きな温度差の場合には、この状態を維持し、所定温度T以下の場合には次のステップに進む(S101)。蒸発器5の入口側で検出される中間温度Tcと要求された設定温度Tを比較して、所定温度Tより大きな温度差の場合には、この状態を維持し、所定温度T以下の場合には、開閉弁23を開弁する(S102、S103)。ここでは、圧縮機2の運転が可能な高負荷状態にあるのか、圧縮機2の運転が不可能な低負荷状態にあるのかを判断し、圧縮機2の運転が不可能な場合に開閉弁23を開弁させる動作を行っている。所定温度T、所定温度Tは圧縮機2の能力や被冷却流体に求められる温度精度で定めればよく、例えば能力や被冷却流体に求められる温度精度が±1℃の場合には、所定温度T=0.2℃、所定温度T=1.2℃である。
On the other hand, as shown in FIG. 7, the on / off valve 23 is controlled by comparing a predetermined temperature set in advance with each condition.
The outlet temperature T OUT detected by the outlet temperature detector 53 is compared with the requested set temperature T 0, and if the temperature difference is larger than the predetermined temperature T 3 , this state is maintained and the predetermined temperature T 3 or less. In this case, the process proceeds to the next step (S101). The intermediate temperature Tc detected on the inlet side of the evaporator 5 is compared with the required set temperature T 0, and when the temperature difference is larger than the predetermined temperature T 4 , this state is maintained and the predetermined temperature T 4 or less is maintained. In this case, the on-off valve 23 is opened (S102, S103). Here, it is determined whether the compressor 2 is in a high load state where the operation of the compressor 2 is possible or a low load state where the operation of the compressor 2 is impossible. When the operation of the compressor 2 is impossible, the on-off valve The operation of opening the valve 23 is performed. The predetermined temperature T 3 and the predetermined temperature T 4 may be determined by the capacity of the compressor 2 and the temperature accuracy required for the fluid to be cooled. For example, when the temperature accuracy required for the capacity and the fluid to be cooled is ± 1 ° C., The predetermined temperature T 3 = 0.2 ° C. and the predetermined temperature T 4 = 1.2 ° C.

そして、蒸発器5の入口側で検出される中間温度Tcと要求された設定温度Tを比較して、所定温度Tより小さな温度差の場合には、この状態を維持し、所定温度T以上の場合には、次のステップに進む(S104)。中間温度Tcと出口温度TOUTとの差が所定温度Tよりも小さいときには、この状態を維持し、所定温度T以上の場合には、開閉弁23を閉弁する(S105、S106)。ここでは、再び圧縮機2が低負荷状態から脱し、インバータ制御運転が可能になったのか否かを判断している。所定温度T、所定温度Tは圧縮機2の能力や被冷却流体に求められる温度精度で定めればよく、例えば能力や被冷却流体に求められる温度精度が±1℃の場合には、所定温度T=0.8℃、所定温度T=0.2℃である。そして、ステップ10に進む。 Then, the intermediate temperature Tc detected on the inlet side of the evaporator 5 is compared with the required set temperature T 0, and when the temperature difference is smaller than the predetermined temperature T 5 , this state is maintained and the predetermined temperature T In the case of 5 or more, the process proceeds to the next step (S104). When the difference between the intermediate temperature Tc and the outlet temperature T OUT is less than the predetermined temperature T 6 maintains this state, when the predetermined temperature or higher T 6 is closed off valve 23 (S105, S106). Here, it is determined again whether or not the compressor 2 has escaped from the low load state and inverter control operation has become possible. The predetermined temperature T 5 and the predetermined temperature T 6 may be determined by the capacity of the compressor 2 and the temperature accuracy required for the fluid to be cooled. For example, when the temperature accuracy required for the capacity and the fluid to be cooled is ± 1 ° C., The predetermined temperature T 5 = 0.8 ° C. and the predetermined temperature T 6 = 0.2 ° C. Then, the process proceeds to Step 10.

一方、被冷却水に予想外の温度変化があった場合に備えて、開閉弁23を強制的に開閉するステップを有する。即ち、設定温度Tから所定温度Tを差し引いた値が出口温度TOUTよりも大きい場合には、開閉弁23を開弁し、一方、設定温度Tに所定温度Tを加えた値が出口温度TOUTよりも小さい場合には、開閉弁23を閉弁する(S107、S108)。例えば、所定温度T=0.6℃、所定温度T=0.7℃である。 On the other hand, it has a step of forcibly opening and closing the on-off valve 23 in preparation for a case where an unexpected temperature change occurs in the water to be cooled. That is, when the value from the set temperature T 0 by subtracting the predetermined temperature T 7 is larger than the outlet temperature T OUT is to open the on-off valve 23, on the other hand, by adding a predetermined temperature T 8 to the set temperature T 0 value Is smaller than the outlet temperature T OUT , the on-off valve 23 is closed (S107, S108). For example, the predetermined temperature T 7 = 0.6 ° C. and the predetermined temperature T 8 = 0.7 ° C.

図2に戻って、外気乾球温度DBが低下したとき、設定温度Tと外気乾球温度DBとを比較して、その差が所定のチラー停止温度TCoff以下である場合には、その状態を維持し、チラー停止温度TCoff以上である場合には、所定時間(例えば2分)運転したかを確認後に、圧縮機2を停止させる(S10:ステップ10からS12:ステップ12)。すなわち、圧縮機2を運転しなくとも、ラジエータ61によるフリークーリングのみで被冷却水を供給できるためである。
ただし、圧縮機2は停止後、すぐに再起動させることが好ましくないために、一旦停止した後には所定の時間(例えば3分間)のインターバル時間をおく(S13:ステップ13)。
Returning to FIG. 2, when the outside air dry bulb temperature DB decreases, the set temperature T 0 is compared with the outside air dry bulb temperature DB, and if the difference is equal to or less than the predetermined chiller stop temperature T Coff , If the state is maintained and the temperature is equal to or higher than the chiller stop temperature T Coff , the compressor 2 is stopped after confirming whether it has been operated for a predetermined time (for example, 2 minutes) (S10: Step 10 to S12: Step 12). That is, even if the compressor 2 is not operated, the water to be cooled can be supplied only by free cooling by the radiator 61.
However, since the compressor 2 is not preferably restarted immediately after being stopped, an interval time of a predetermined time (for example, 3 minutes) is set after the temporary stop (S13: Step 13).

ここで、チラー起動温度TCON(例えば14℃)と、チラー停止温度TCoff(例えば15℃)はラジエータ61の冷却能力によって予め求め、制御装置に記憶させておく値である。ラジエータ61の冷却能力は、ラジエータに流動する冷媒水の管径、フィンの形態、表面積、ラジエータを通過する風速などで決定される。 Here, the chiller start temperature T CON (for example, 14 ° C.) and the chiller stop temperature T Coff (for example, 15 ° C.) are values obtained in advance by the cooling capacity of the radiator 61 and stored in the control device. The cooling capacity of the radiator 61 is determined by the diameter of the coolant water flowing through the radiator, the shape of the fins, the surface area, the wind speed passing through the radiator, and the like.

以上説明したように、冷却装置1は、蒸発器5の入口側で検出される中間温度Tcと設定温度Tとの偏差に基づいて圧縮機2の冷却能力を可変に制御するので、冷却水を供給する機器側に大きな負荷変動があったとしても応答性よく温度制御が追従し、温度精度の良い被冷却水を安定して供給することができる。 As described above, the cooling device 1 variably controls the cooling capacity of the compressor 2 based on the deviation between the intermediate temperature Tc detected on the inlet side of the evaporator 5 and the set temperature T 0. Even if there is a large load fluctuation on the equipment supplying side, the temperature control follows with good responsiveness, and the water to be cooled with high temperature accuracy can be stably supplied.

<第2の実施の形態>
図8に本発明の冷却装置の第二実施例の主制御フローチャートを示す。
上記した第1の実施の形態においては、ラジエータ61を有する冷媒水回路65の制御と、圧縮機2を有する冷凍回路10の制御とを平行させて運転した。被冷却水を時間送れなく温度制御するためには有効な形態である。一方、省エネルギの観点からは、ラジエータ61を有する冷媒水回路65の運転時間を長くさせるほうが有効である。
<Second Embodiment>
FIG. 8 shows a main control flowchart of the second embodiment of the cooling apparatus of the present invention.
In the first embodiment described above, the control of the refrigerant water circuit 65 including the radiator 61 and the control of the refrigeration circuit 10 including the compressor 2 are operated in parallel. This is an effective form for controlling the temperature of the water to be cooled without being sent in time. On the other hand, from the viewpoint of energy saving, it is more effective to lengthen the operation time of the refrigerant water circuit 65 having the radiator 61.

第2の実施の形態において、冷却装置の構成は、図1に示した冷却装置1と同一であるので、その詳細な説明は省略し、図8に示す制御フローを有する。即ち、まず主ポンプ90を起動させる(S1A)。そして循環回路91内の被冷却水を所定の時間(例えば30秒)循環させて(S2A)、被冷却水の温度の測定を開始する。出口温度検出器53で検出された出口温度TOUTが設定温度Tよりも低い場合には、被冷却水を冷却する必要がないので、その状態を維持し、出口温度TOUTが設定温度T以上になったら次の工程に進む(S3A)。 In the second embodiment, since the configuration of the cooling device is the same as that of the cooling device 1 shown in FIG. 1, the detailed description thereof is omitted, and the control flow shown in FIG. 8 is provided. That is, first, the main pump 90 is activated (S1A). Then, the cooling water in the circulation circuit 91 is circulated for a predetermined time (for example, 30 seconds) (S2A), and measurement of the temperature of the cooling water is started. When the outlet temperature T OUT detected by the outlet temperature detector 53 is lower than the set temperature T 0 , it is not necessary to cool the water to be cooled, so that the state is maintained and the outlet temperature T OUT is set to the set temperature T When it becomes 0 or more, the process proceeds to the next step (S3A).

まず外気乾球温度検出器で検出した外気乾球温度DBと入口温度検出器51で検出した入口温度(熱交換器入口温度)TINとを比較して、入口温度TINから外気乾球温度DBを引いた値が、所定の冷媒水起動温度Tfonよりも小さい場合には、この状態を維持し、大きい場合には次の工程に進む(S4A)。そして、ラジエータファン67を起動させてラジエータファン67のインバータ制御を開始する(S5A)。このときの制御の詳細は図3に示した制御フローと同一なので、詳細な説明を省略する。 First, compared with the outside air dry bulb temperature detector detecting outside air dry-bulb temperature DB and the inlet temperature detector 51 detects the inlet temperature (heat exchanger inlet temperature) T IN, the outside air dry bulb temperature from the inlet temperature T IN If the value obtained by subtracting DB is lower than the predetermined coolant water activation temperature T fon , this state is maintained, and if it is greater, the process proceeds to the next step (S4A). Then, the radiator fan 67 is activated to start inverter control of the radiator fan 67 (S5A). The details of the control at this time are the same as the control flow shown in FIG.

蒸発器5の入口側で検出される中間温度Tcと入口温度検出器51で検出した入口温度TINとを比較して、入口温度TINから中間温度Tcを差し引いた値が所定の冷媒水停止温度Tfoffよりも高い場合には、ステップ5Aに戻ってラジエータファン67と循環ポンプ63の制御を継続し、低い場合には次の工程に進む(S6A)。そして、ラジエータファン67を停止させ、インバータ制御をOFFにする(S7A)。 Compares the inlet temperature T IN detected at intermediate temperatures Tc and the inlet temperature detector 51 to be detected at the inlet side of the evaporator 5, the value is a predetermined refrigerant water stop minus the intermediate temperature Tc from the inlet temperature T IN If the temperature is higher than the temperature T foff , the process returns to step 5A to continue the control of the radiator fan 67 and the circulation pump 63. If the temperature is lower, the process proceeds to the next step (S6A). Then, the radiator fan 67 is stopped and the inverter control is turned off (S7A).

ステップ3Aと同時に、ラジエータファン67がPID制御稼動中であるか(即ち、ステップ5A実装中であるか)を判断する(S81A)。ラジエータファン67が稼動していない場合には、出口温度Toutと設定温度Tとを比較して(S82A)、出口温度Toutが設定温度T以上であれば、ステップ9Aに進む。 Simultaneously with step 3A, it is determined whether the radiator fan 67 is operating in PID control (that is, whether step 5A is being implemented) (S81A). If the radiator fan 67 is not running, by comparing the outlet temperature T out and the set temperature T 0 (S82a), if the outlet temperature T out is the set temperature T 0 or more, the process proceeds to step 9A.

一方、ラジエータファン67が稼動中である場合には、ラジエータファン67の回転数が最大値になっているかを判断する(S83A)。すなわち、冷媒水回路65による冷却能力が最大値になり、冷凍回路10での補完を必要としているか否かを判断する。そして、ラジエータファン67の回転数が最大値になっていれば、出口温度Toutが設定温度Tに所定温度T20を加えた値以上になっているかを判断する(S84A)。この所定温度T20は、要求される温度精度許容幅(例えば±1℃)よりも小さい値で、例えば0.6℃である。 On the other hand, when the radiator fan 67 is in operation, it is determined whether the rotational speed of the radiator fan 67 is the maximum value (S83A). That is, it is determined whether or not the cooling capacity of the refrigerant water circuit 65 reaches the maximum value and complementation in the refrigeration circuit 10 is required. Then, if the rotation speed of the fan 67 becomes a maximum value, it is determined whether meets or exceeds the outlet temperature T out is obtained by adding a predetermined temperature T 20 to the set temperature T 0 (S84A). The predetermined temperature T 20 is a value smaller than the required temperature accuracy tolerance (e.g. ± 1 ° C.), for example, 0.6 ° C..

ステップ84A又はステップ82Aの条件を満たせば、圧縮機2、電子膨張弁4、及び開閉弁23の制御運転を開始する(S9A)。S9Aにおける制御フローは、図5及び図7に示した制御フローと同一なので、詳細な説明を省略する。   If the condition of step 84A or step 82A is satisfied, the control operation of the compressor 2, the electronic expansion valve 4, and the on-off valve 23 is started (S9A). Since the control flow in S9A is the same as the control flow shown in FIGS. 5 and 7, detailed description thereof is omitted.

外気乾球温度DBが低下してくると再び冷媒水回路65による冷却が可能となってくる。そこで、設定温度Tと外気乾球温度DBとを比較して、その差が所定のチラー停止温度TCoff以上である場合(S10A)、且つ中間温度Tcが設定温度T0に所定温度T21を加えた値よりも小さい場合(S10B)には、所定時間(例えば2分)運転したかを確認後に、圧縮機2を停止させる(S11AからS12A)。すなわち、圧縮機2を運転しなくとも、ラジエータ61によるフリークーリングのみで被冷却水を供給できるためである。
ただし、圧縮機2は停止後、すぐに再起動させることが好ましくないために、一旦停止した後には所定の時間(例えば3分間)のインターバル時間をおく(S13A)。
When the outside air dry bulb temperature DB is lowered, cooling by the refrigerant water circuit 65 becomes possible again. Therefore, when the set temperature T 0 is compared with the outside air dry bulb temperature DB and the difference is equal to or higher than the predetermined chiller stop temperature T Coff (S10A), the intermediate temperature Tc adds the predetermined temperature T21 to the set temperature T0. If it is smaller than the above value (S10B), the compressor 2 is stopped (S11A to S12A) after confirming whether it has been operated for a predetermined time (for example, 2 minutes). That is, even if the compressor 2 is not operated, the water to be cooled can be supplied only by free cooling by the radiator 61.
However, since it is not preferable to restart the compressor 2 immediately after being stopped, an interval time of a predetermined time (for example, 3 minutes) is set after the stop (S13A).

したがって、冷媒水回路65の冷却能力最大までは冷凍回路10は運転させる必要がないので省エネルギで温度制御された被冷却水を供給することができる。   Therefore, since the refrigeration circuit 10 does not need to be operated until the cooling capacity of the refrigerant water circuit 65 is maximized, it is possible to supply water to be cooled whose temperature is controlled with energy saving.

本発明の冷却装置の第一実施例の概念模式図である。It is a conceptual schematic diagram of the 1st Example of the cooling device of this invention. 本発明の冷却装置の第一実施例の主制御フローチャートである。It is a main control flowchart of the first embodiment of the cooling device of the present invention. 本発明の一部を構成するラジエータ回路の冷却制御のフローチャートである。It is a flowchart of the cooling control of the radiator circuit which comprises a part of this invention. ラジエータ回路における低温度差制御を説明する概念図である。It is a conceptual diagram explaining the low temperature difference control in a radiator circuit. 本発明の一部を構成する冷凍回路の冷却制御のフローチャートである。It is a flowchart of the cooling control of the refrigeration circuit which comprises a part of this invention. 本発明の一部を構成する圧縮機の冷却制御を説明する概念図である。It is a conceptual diagram explaining the cooling control of the compressor which comprises a part of this invention. 冷凍回路を構成する開閉弁の制御のフローチャートである。It is a flowchart of control of the on-off valve which comprises a refrigerating circuit. 本発明の冷却装置の第二実施例の主制御フローチャートである。It is a main control flowchart of the second embodiment of the cooling device of the present invention.

符号の説明Explanation of symbols

1:冷却装置、
2:圧縮機、21:バイパス回路、23:開閉弁、
3:凝縮器、31:凝縮器ファン、
4:電子膨張弁、
5:蒸発器、51:入口温度検出器、53:出口温度検出器、
6:熱交換器、61:ラジエータ、63:循環ポンプ、65:冷媒水回路、67:ラジエータファン、
10:冷凍回路、11:出口圧力検出器、
90:主ポンプ、91:循環回路、93:貯水タンク、95:純水器、
1: cooling device,
2: compressor, 21: bypass circuit, 23: on-off valve,
3: Condenser, 31: Condenser fan,
4: Electronic expansion valve,
5: Evaporator, 51: Inlet temperature detector, 53: Outlet temperature detector,
6: heat exchanger, 61: radiator, 63: circulation pump, 65: refrigerant water circuit, 67: radiator fan,
10: refrigeration circuit, 11: outlet pressure detector,
90: main pump, 91: circulation circuit, 93: water storage tank, 95: deionizer

Claims (6)

供給すべき被冷却水流動回路に熱交換器を設け、前記熱交換器と、外気が通過可能なラジエータと、循環ポンプとの冷媒水回路を構成し、前記ラジエータに外気を導入するためのラジエータファンを有する冷却装置において、
前記熱交換器における被冷却水の入口側に温度検出器を設け、前記温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて、前記冷媒水回路の流量制御を行うことを特徴とする冷却装置。
A radiator for providing a heat exchanger in a cooling water flow circuit to be supplied, constituting a refrigerant water circuit of the heat exchanger, a radiator through which outside air can pass, and a circulation pump, and introducing outside air into the radiator In a cooling device having a fan,
A temperature detector is provided on the inlet side of the water to be cooled in the heat exchanger, and the flow rate control of the refrigerant water circuit is performed based on a deviation between the temperature of the water to be cooled detected by the temperature detector and the required set temperature. A cooling device characterized by performing.
前記循環ポンプにインバータ制御装置を設け、前記冷媒水回路の流量制御を行うことを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein an inverter control device is provided in the circulation pump to control a flow rate of the refrigerant water circuit. 前記ラジエータファンの回転数はインバータ制御にて制御され、前記ラジエータファンの回転数を、前記熱交換器における被冷却水の入口側に設けた前記温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて制御することを特徴とする請求項1又は2に記載の冷却装置。 The number of rotations of the radiator fan is controlled by inverter control, and the number of rotations of the radiator fan is determined by the temperature of the water to be cooled detected by the temperature detector provided on the inlet side of the water to be cooled in the heat exchanger. The cooling device according to claim 1, wherein the cooling device is controlled based on a required deviation of the set temperature. 前記熱交換器の下流側にインバータ制御可能な圧縮機と、凝縮器と、膨張弁と、蒸発器とからり、前記蒸発器で冷媒と被冷却水との熱交換を行なうチラーユニットを設け、前記蒸発器における被冷却水の入口側に設けた温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて、前記圧縮機をインバータ制御することを特徴とする請求項1乃至3のいずれかに記載の冷却装置。 A compressor capable of inverter control, a condenser, an expansion valve, and an evaporator are provided downstream of the heat exchanger, and a chiller unit that performs heat exchange between the refrigerant and the water to be cooled in the evaporator is provided. The compressor is controlled by an inverter based on a deviation between a temperature of water to be cooled detected by a temperature detector provided on an inlet side of the water to be cooled in the evaporator and a required set temperature. Item 4. The cooling device according to any one of Items 1 to 3. 前記膨張弁は開度調整可能な電子膨張弁であり、前記蒸発器における被冷却水の出口側に蒸発器出口温度検出器を設け、前記蒸発器出口温度検出器で検出される蒸発器出口温度と要求された設定温度の偏差に基づいて、前記電子膨張弁の開度を調整制御することを特徴とする請求項4に記載の冷却装置。 The expansion valve is an electronic expansion valve whose opening degree can be adjusted, an evaporator outlet temperature detector is provided on the outlet side of the water to be cooled in the evaporator, and the evaporator outlet temperature detected by the evaporator outlet temperature detector 5. The cooling device according to claim 4, wherein the opening degree of the electronic expansion valve is adjusted and controlled based on the required deviation of the set temperature. 前記圧縮機の入口と出口とを連通するバイパス回路と、該バイパス回路に設けた開閉弁とを備え、
前記圧縮機がインバータ制御可能な周波数領域では、前記蒸発器における被冷却水の入口側に設けた温度検出器で検出される被冷却水の温度と要求された設定温度の偏差に基づいて、前記圧縮機をインバータ制御するとともに、
前記圧縮機がインバータ制御不可能な低周波数領域では、前記開閉弁を開となし、前記蒸発器出口温度検出器で検出される蒸発器出口温度と要求された設定温度の偏差に基づいて、前記電子膨張弁の開度を調整制御することを特徴とする請求項5に記載の冷却装置。
A bypass circuit communicating the inlet and the outlet of the compressor, and an on-off valve provided in the bypass circuit,
In the frequency region where the compressor can be controlled by an inverter, based on the deviation between the temperature of the cooling water detected by the temperature detector provided on the inlet side of the cooling water in the evaporator and the required set temperature, Inverter control of the compressor,
In the low frequency region where the compressor cannot be controlled by the inverter, the on-off valve is opened, and based on the deviation between the evaporator outlet temperature detected by the evaporator outlet temperature detector and the required set temperature, 6. The cooling device according to claim 5, wherein the opening degree of the electronic expansion valve is adjusted and controlled.
JP2008323829A 2008-12-19 2008-12-19 Cooling system Active JP5459578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323829A JP5459578B2 (en) 2008-12-19 2008-12-19 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323829A JP5459578B2 (en) 2008-12-19 2008-12-19 Cooling system

Publications (2)

Publication Number Publication Date
JP2010145036A true JP2010145036A (en) 2010-07-01
JP5459578B2 JP5459578B2 (en) 2014-04-02

Family

ID=42565645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323829A Active JP5459578B2 (en) 2008-12-19 2008-12-19 Cooling system

Country Status (1)

Country Link
JP (1) JP5459578B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721875B1 (en) * 2014-02-24 2015-05-20 伸和コントロールズ株式会社 Chiller device
JP2016205742A (en) * 2015-04-27 2016-12-08 ヤマト科学株式会社 Cooling system
CN107401864A (en) * 2017-09-08 2017-11-28 珠海格力电器股份有限公司 Antifreeze cooling system and antifreeze cooling control method
WO2019087882A1 (en) * 2017-10-30 2019-05-09 伸和コントロールズ株式会社 Liquid temperature adjustment apparatus and temperature adjustment method using same
WO2019230463A1 (en) * 2018-05-28 2019-12-05 キヤノンセミコンダクターエクィップメント株式会社 Cooling device, exposure device equipped with cooling device, and industrial machine equipped with cooling device
JPWO2020035946A1 (en) * 2018-08-17 2021-02-25 三菱電機株式会社 Heat source machine and free cooling unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021447A (en) * 2001-07-10 2003-01-24 Mitsubishi Electric Corp Water cooled type electric apparatus
JP2008309393A (en) * 2007-06-14 2008-12-25 Toyo Eng Works Ltd Cooling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021447A (en) * 2001-07-10 2003-01-24 Mitsubishi Electric Corp Water cooled type electric apparatus
JP2008309393A (en) * 2007-06-14 2008-12-25 Toyo Eng Works Ltd Cooling system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125669A1 (en) * 2014-02-24 2015-08-27 伸和コントロールズ株式会社 Chiller device
JP2015158305A (en) * 2014-02-24 2015-09-03 伸和コントロールズ株式会社 Chiller device
US9739514B2 (en) 2014-02-24 2017-08-22 Shinwa Controls Co., Ltd Chiller apparatus with freezing cycle for cooling and refrigerant cycle for heating
JP5721875B1 (en) * 2014-02-24 2015-05-20 伸和コントロールズ株式会社 Chiller device
JP2016205742A (en) * 2015-04-27 2016-12-08 ヤマト科学株式会社 Cooling system
CN107401864B (en) * 2017-09-08 2023-09-19 珠海格力电器股份有限公司 Anti-freezing cooling system and anti-freezing cooling control method
CN107401864A (en) * 2017-09-08 2017-11-28 珠海格力电器股份有限公司 Antifreeze cooling system and antifreeze cooling control method
WO2019087882A1 (en) * 2017-10-30 2019-05-09 伸和コントロールズ株式会社 Liquid temperature adjustment apparatus and temperature adjustment method using same
US20210116150A1 (en) * 2017-10-30 2021-04-22 Shinwa Controls Co., Ltd Liquid temperature adjustment apparatus and temperature adjustment method using the same
US11598565B2 (en) 2018-05-28 2023-03-07 Canon Semiconductor Equipment Inc. Cooling apparatus having multiple evaporators for cooling objects having different amounts of heat generation, exposure apparatus including cooling apparatus, and industrial apparatus including cooling apparatus
WO2019230463A1 (en) * 2018-05-28 2019-12-05 キヤノンセミコンダクターエクィップメント株式会社 Cooling device, exposure device equipped with cooling device, and industrial machine equipped with cooling device
JPWO2020035946A1 (en) * 2018-08-17 2021-02-25 三菱電機株式会社 Heat source machine and free cooling unit
JP2021167721A (en) * 2018-08-17 2021-10-21 三菱電機株式会社 Free cooling unit
JP7158539B2 (en) 2018-08-17 2022-10-21 三菱電機株式会社 Heat source machine

Also Published As

Publication number Publication date
JP5459578B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5459578B2 (en) Cooling system
JP6141526B2 (en) Motor housing temperature control system
KR101109730B1 (en) Chiller apparatus for semiconductor process and Method for controlling temperature in the same
EP2428742B1 (en) Air conditioning device
JP5401286B2 (en) Vacuum processing apparatus and plasma processing apparatus having temperature control function of sample stage
US20060225876A1 (en) Constant temperature controller
JP2006194518A (en) Refrigerating device
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
WO2017163296A1 (en) Refrigeration device
TWI794317B (en) Liquid temperature adjustment device and temperature adjustment method using the same
JP2010145035A (en) Cooling device
JP2006308273A (en) Cooling device
JP2011052913A (en) Pump circulation amount control temperature control device
JP4678310B2 (en) Coolant circulation device
KR100826926B1 (en) Water Cooling Type Air Conditioner and Control Method thereof
JP4871800B2 (en) Chiller device
JP2006200814A (en) Freezer
JP2006038386A (en) Cooling device
JP4269616B2 (en) Control method and apparatus for supercooled water production apparatus
JP6795840B2 (en) A method for controlling the temperature of the heat medium for temperature control, and a device for supplying the heat medium for temperature control using the method.
CN116147102A (en) Management device and heat source system
JP2009192186A (en) Refrigeration system
JP3651370B2 (en) Refrigeration equipment
JP2806090B2 (en) Operation control device for refrigeration equipment
JP6989788B2 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140102

R150 Certificate of patent or registration of utility model

Ref document number: 5459578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350