JP2010144712A - Wind power motor for thermal power generation - Google Patents

Wind power motor for thermal power generation Download PDF

Info

Publication number
JP2010144712A
JP2010144712A JP2008336316A JP2008336316A JP2010144712A JP 2010144712 A JP2010144712 A JP 2010144712A JP 2008336316 A JP2008336316 A JP 2008336316A JP 2008336316 A JP2008336316 A JP 2008336316A JP 2010144712 A JP2010144712 A JP 2010144712A
Authority
JP
Japan
Prior art keywords
wind
windmill
container
make
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008336316A
Other languages
Japanese (ja)
Inventor
Isao Wakeshima
功 分島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008336316A priority Critical patent/JP2010144712A/en
Publication of JP2010144712A publication Critical patent/JP2010144712A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a conventional method of controlling posture of a windmill by sensing a flow of wind wherein it is necessary to operate the windmill to control the posture thereof and, as a result, there is a limitation to enlarge dimension of the windmill. <P>SOLUTION: This wind power motor for thermal power generation is formed by generating wind, which blows in a fixed direction, and housing a windmill in a fixed double-container freely to rotate so that the wind can blow down from a blow-in port provided in an upper part to a blow-out port provided in a lower part. The blow-out wind is inhaled and ejected into the air by a suction unit using natural wind energy to improve efficiency of the windmill, and coupling to a field shaft of a synchronous generator is performed under the windmill for power generation. The generated electricity is converted to the heat energy as a power source of an electric boiler, a water supply pre-heater and an over-heater, and turns a steam turbine to turn a generating turbine to generate electricity at 50 Hz and 60 Hz. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

風のエネルギーを可能な限り取り込んで機械エネルギーに変換できる風車を作る.
その風車で風のエネルギーを機械エネルギーとして取り出す、その機械エネルギーを立て型の同期発電機を用いて電気エネルギーに変換する、この電気エネルギーは風車が大きくて電気エネルギーの質として完全なものでないため電気ボイラー、給水予熱器、過熱器の電源にして、熱エネルギーに変換、蒸気タービンを回転させ、上質の電気エネルギーに再変換して、変圧器で超高圧にして長距離送電をする。儒要地で順次降圧、電流容量を増加して、儒要に供給する。
Create a windmill that can capture wind energy as much as possible and convert it into mechanical energy.
Wind energy is extracted as mechanical energy by the windmill, and the mechanical energy is converted into electrical energy using a vertical synchronous generator. This electrical energy is large because the windmill is large and the quality of the electrical energy is not perfect. The boiler, feed water preheater, and superheater are used as the power source, converted into thermal energy, the steam turbine is rotated, reconverted into high-quality electrical energy, and the transformer is used for ultra-high voltage for long-distance transmission. Step-by-step and increase the current capacity at critical points to supply to the key points.

今迄の風力発電は、センサーで風の向きを感知して、風の吹く方向に風車を制御していた、そのためセンサー及び風車の制御機構が必要であった.
その為大型にするのには、限界にきていた、従って受風面積も大きくできなかっため、単機の出力も限界にきていた、風車どうしが車結できない、後から吹く風を前から吹く風と同時に利用出来ないから出力を充分にあげられない。
熱エネルギーとして取り出すには、小さすぎる.
半導体を用いて加工するには超高圧にできない.
従って長距離送電は不可能であった。
Until now, wind power generation sensed the direction of the wind with a sensor and controlled the windmill in the direction of the wind, so a sensor and a windmill control mechanism were required.
Therefore, to reach a large size, it was at the limit, so the wind receiving area could not be increased, so the output of the single machine was also at the limit, the windmills could not be connected, blow the wind blowing from the front Since it cannot be used simultaneously with the wind, the output cannot be increased sufficiently.
It is too small to extract as thermal energy.
Ultra high pressure is not possible for processing using semiconductors.
Therefore, long-distance transmission was impossible.

Figure 2010144712
Figure 2010144712

(1)電気ボイラーに関連する文献 (2)蒸気タービンに関連する文献 (3)同期発電気に関連する文献 (4)変圧器に関連する文献 (5)吸収式冷凍機に関連する文献(1) Documents related to electric boilers (2) Documents related to steam turbines (3) Documents related to synchronous power generation (4) Documents related to transformers (5) Documents related to absorption refrigerators

発明が解決しょうとする課題Problems to be solved by the invention

(1)一定方向一定風量の風を作る
(2)風車を二重容器に入れ固定し、中で回転可能にする.
(3)風車容器上部の吹き入れ口から、風を吹き込むと、風車が回転しているうちに下部の吹き出し口に風がおりてこられるようにする.
(4)風車の受風面積を大きくする.
(5)風車に吹きつけて、エネルギーの減少した風を大気中に放出できるようにする.
(6)風車から得た機械エネルギーを電気エネルギーに変換する.(7)風車心棒を太くし、力のモーメントを大きくし、出力を大きくする
(8)、(6)の電気エネルギーを熱エネルギーに変換したあとで、電気エネルギーに再変換して、電力の質の向上をする.
(8)昇圧して、長距離送電して儒要地で配電する.
(1) Create a wind with a constant airflow in a certain direction (2) Put the windmill in a double container and fix it so that it can rotate inside.
(3) When the wind is blown from the inlet at the top of the windmill container, the wind will come to the outlet at the bottom while the windmill is rotating.
(4) Increase the wind-receiving area of the wind turbine.
(5) Blow the windmill to release the reduced energy wind into the atmosphere.
(6) Convert mechanical energy obtained from the windmill into electrical energy. (7) Thicken the windmill mandrel, increase the moment of force, and increase the output (8) After converting the electrical energy of (6) and (6) into thermal energy, reconvert it into electrical energy to improve the quality of the power Improve.
(8) Increase the pressure, transmit power over long distances, and distribute power in remote areas.

発明が解決しようとする手段1Means 1 to be Solved by the Invention

二重にした風車容器を風通しのよい高所に固定する、その二重容器の中に大型の風車を入れて、容器の上、下、の中心にベアリングをつけ、回転可能にする.(図3)
容器上部に16ヶ所、中の容器上部にも16ヶ所の風の吹き入口を作り、吹き入れた風が中の羽根に効果的に吹きつけられるようにする.(図1)
風車容器の下側は16ヶ所の出口が、中の容器、外の容器、ともつけられ上の風路の断面積より下の風路の断面積の方を広くする(図4)
この出口はそれぞれ4系統16条式の吸い取り器につなげる、(図6)

Figure 2010144712
に上の吹き入れ口から下の出口に降りてくるようになっている。(図2)A double windmill container is fixed at a well-ventilated high place. A large windmill is placed in the double container, and bearings are attached to the center of the top, bottom, and bottom of the container to make it rotatable. (Figure 3)
Create 16 wind inlets in the upper part of the container and 16 in the upper part of the inner container so that the blown air can be effectively blown to the inner blades. (Figure 1)
At the lower side of the windmill vessel, 16 outlets are attached to the inner vessel and the outer vessel, and the cross-sectional area of the lower air passage is wider than the cross-sectional area of the upper air passage (Fig. 4).
These outlets are connected to 4 lines and 16 strips of suckers (Fig. 6).
Figure 2010144712
From the upper inlet to the lower outlet. (Figure 2)

発明の課題を解決するための手段2Means 2 for Solving the Problems of the Invention

風量制御フック付器全方向吹きつけ1方向吹き出し器を作り、風向風量を一定範囲の風にする.(図8)(図10)
風の入口の受風面積を広くして、一方向吹き出し口の風を弱くも少なくもさせない.(図14)(図15)
反対側から吹く風は、Uターンさせて、羽根に吹きつける、右の風、左の風は、Uターンの風路、正面の風路のどちらかに入れ利用する、出口前で風量制御用フックをつけ誘導層に、にがせます(図8)(図10)
(0026)
平面型風車は風車自体が大きいので風量制御フック付全方向吹き入れ、1方向吹き出し器を上げたり左右にずらせたりできません、そのためUターンの風を利用するためには、高さを高くして、吹き入れた風は風車の羽根の位置迄誘導するようにして吹きつけます.(図12)(図13)
Airflow control hook with omnidirectional blower Make a one-way blower and make the wind direction airflow within a certain range. (FIG. 8) (FIG. 10)
The wind receiving area at the wind inlet is widened so that the wind at the one-way outlet is weaker or lesser. (FIG. 14) (FIG. 15)
The wind blown from the opposite side is U-turned and blown to the blades. The right wind and the left wind are used in either the U-turn wind path or the front wind path. A hook is attached and the induction layer is peeled off (Fig. 8) (Fig. 10)
(0026)
Since the windmill itself is large, the flat type windmill cannot be blown in all directions with an airflow control hook, and the one-way blower cannot be raised or shifted left and right. Therefore, in order to use the U-turn wind, the height must be increased, The blown wind is blown to the windmill blade position. (FIG. 12) (FIG. 13)

発明を解決しょうとする手段3Means 3 to solve the invention

風量制御フックつき全方向吹き入れ1方向吹き出し器を作り1定方向1定風量の人工の風を作る(図8)(図10)
入口の受風面積を広くしてあるから吹き出し出口まで弱くも、少なくもならないようになる.(図14)(図15)
風車を大型化するためには風車を高所に固定した二重の容器の中に入れ容器の上、下、にベアリングつけて風を吹きつけると回転可能な状態にする(図3)(図7)

Figure 2010144712
の羽根に吹きつけ、有効な角度で羽根から吸い出すための、風路になる.(図1)
風車軸を太くして、羽根に大きなトルクが働くようにするためです。(図1)
風車が等速でないことは誘導される電力が均質でない、ため、電気ボイラー、給水予熱器、過熱器の電源にして、熱エネルギーに変換、蒸気タービンを回して上質の電力に再変換する
変圧器で昇圧して都界の需要地に送電.(図28)Make an omnidirectional one-way blower with airflow control hook and make artificial wind with one constant direction and one constant amount of air (Fig. 8) (Fig. 10)
Since the wind receiving area at the entrance is widened, it will not be too small even if it is weak to the outlet. (FIG. 14) (FIG. 15)
To increase the size of the windmill, place it in a double container with the windmill fixed at a high place. 7)
Figure 2010144712
It becomes a wind path for blowing on the blades of the wings and sucking them out from the wings at an effective angle. (Figure 1)
This is to make the wind turbine shaft thick so that a large torque acts on the blades. (Figure 1)
Since the induced power is not homogeneous because the windmill is not constant speed, it is used as a power source for electric boilers, feed water preheaters, and superheaters to convert to heat energy, and turn the steam turbine to reconvert to high quality power The voltage is boosted and transmitted to demand areas in the city. (Fig. 28)

発明が解決しょうとする手段4Means 4 for the Invention to Solve

平面型風車用風量制御フック付全方向吹き入れ1方向吹き出し器を作って、自然の風を一定方向一定風量の風にする、入口の受風面を広くしてあるので出口まで弱くも少なくもならない.(図8)(図10)(図12)(図13)(図14)(図15)
風車、風車容器、吸いとり器、とも大型なので現場で製作設置することになる.
風車が大きく、表面積が広いので風車が完全に等速度になりにくい.その為、電気ボイラー、給水予熱器加熱器で、熱エネルギーに変換、蒸気タービンを回転させ、電気エネルギーに再変換して、電力の質の向上をはかる.〔図27〕〔図28〕
A one-way blower with an airflow control hook for a flat-type windmill is created to make natural wind in a constant direction and a constant amount of airflow. It must not. (FIG. 8) (FIG. 10) (FIG. 12) (FIG. 13) (FIG. 14) (FIG. 15)
Since the windmill, windmill container and sucker are all large, they will be manufactured and installed on site.
Since the windmill is large and has a large surface area, it is difficult for the windmill to be completely uniform. Therefore, the electric boiler and feed water preheater heater convert to heat energy, rotate the steam turbine and reconvert to electric energy to improve the quality of electric power. [FIG. 27] [FIG. 28]

(1)長距離送電ができるようになる
(2)化石燃料消費を少なくできる即ちCO欲制ができる(非常の場合は必要である体制にしてをく)
(3)電気料金を安価にできる.
(4)可動部分が露出しないので、鳥類に対する被害がなくなる.
給湯のサービスができるとともに、吸収式冷凍機の熱源にして、冷水の供給にも役立つ即ち、冷水、温水のサービスができる
(1) Long-distance power transmission becomes possible (2) Fossil fuel consumption can be reduced, that is, CO 2 greedy system can be created (in the case of emergency, make it a necessary system)
(3) Electricity charges can be reduced.
(4) Since moving parts are not exposed, damage to birds is eliminated.
Along with providing hot water supply services, it can also be used as a heat source for absorption refrigerators and also for supplying cold water.

産業上の利用の可能性Industrial applicability

(1)地域冷暖房の熱源に利用できる.
(2)温水プールの熱源に利用できる.
(3)工場で必要な電源に使える.
(4)老人ホームで必要な熱源を電気式に変えられる.
(1) It can be used as a heat source for district heating and cooling.
(2) Can be used as a heat source for heated pools.
(3) It can be used for the power source required at the factory.
(4) The heat source required for nursing homes can be changed to electric.

この風車は風の強い山頂又は風の強い海岸線であればどこでも、どんな組合せでもかまいましん単機の出力が大きくなっているからです、風車発電気から、良質な水、豊富な水がある所迄送電して、電気ボイラー給水予熱器過熱器迄送電し蒸気タービンで発電機をまわして、電気の質の向上をはかり変圧器で昇圧して都界の消費地に送電できるスペースさえあればよいのです.This windmill can be used in any combination of windy mountain peaks or windy coastlines. The output of a single machine is large. From windmill power generation to high-quality water and abundant water. It only needs to have enough space to transmit power to the electric boiler feed water preheater superheater, rotate the generator with a steam turbine, improve the quality of electricity, boost the voltage with a transformer, and transmit it to the city's consumption areas is.

風車の入った二重容器に16ヶ所に平面型用風量制御フックつき全方向吹き入れ1方向吹き出し器I型、II型を取り付けた全平面図 軸が太いので中心からの距離が長いため力のモーメントが大きいので回転力が大きく、出力が大きくなる.

Figure 2010144712
風車の二重容器図 容器を強固にするとともに、風を中の風車の羽根に吹きつける角度を鋭角にするのがねらいである.(図1)参照 入口の吹き込む断面積に比べ出口の断面積を広くして、風が通りぬけやすくし.た. 風車底面の平面図、風が出ていきやすい方向にしてある. 風車から出た風が4本16條の吸い取り器に吸い取られる、構造 風車機構の全体立面図の単線図 平面型用風量風量制御フック付き全方向吹き入れ1方向吹き出し器1型の1階の平面図. 平面型用風量制御フック付全方向吹き入れ1方向吹き出し器1型の2階の平面図.1階の風の誘導と、風量制御時と停止時の1階のバイパス. 平面型用風量制御フック付全方向吹き入れ1方向吹き出し器2型、1階平面図、風車軸に正面の風、Uターンの風、共高い所から入った風を風車、羽根の位置迄誘導する、(図12)、(図13)、その風を羽根に鋭角に吹きつける.(図1) 平面型用風量制御フック付全方向吹き入れ、1方向吹き出し器、2型2階、風量制御時、停止時の1階の風のバイパス風路. 平面型用風量制御フック付全方向吹き入れ1方向吹き出し器断面図. 平面型用風量制御用フック付全方向吹き入れ1方向吹き出し器2型断面図 平面型用風量制御フック付全方向吹き入れ1方向吹き出し器1型の風の吹き入れ口の表面積(南側東側、が点線で囲れた部分)(北側、西側は実線で囲まれた部)出口は、図中の長方形部分、(Uターンの風は南口、東口からの風)正面の風は北口、西口からの風 平面型用風量制御フック付、全方向吹き入れ、1方向吹き出し器2型の風の吹き入れ口の表面積(北側西側が点線で囲まれた部分)(南側、東側が実線で囲れた部分)出口は図中長方形部分(正面の風は南口、東口からの風)(Uターンの風は北口、西口からの風) 平面型用風量制御フック付全方向吹き入れ1方向吹き出し器1型内のX方向(風車外部方向から内部に向け)吹く風の風の進路 平面型用風量制御フック付 全方向吹き入れ1方向吹き出し器1型のY方向(風車の屋根を越え、内部に入ってUターンをする)風の進路 平面型用風量制御フック付全方向吹き入れ1方向吹き出し器2型X方向の風(風車外部から内部に向けて吹く風)の風車の羽根に向けて吹く風の進行方向 平面型用風量制御フック付全方向吹き入れ1方向吹き出し器2型Y方向の風(風車の屋根を越え吹入れてUターンをする風)の進路方向 吸い取り器入口側からみた全体図 吸い取り器、風量制御用ゲートが1/4開いた図 吸い取り器、風量制御用ゲートが3/4開いた図 吸い取り器、吸い取り口(1)の図 吸い取り器、吸い取り口(2)の図 吸い取り器 吸い取り口(3)の図 吸い取り器、吸い取り口(4)の図 風車発電機から送電さた、配線図、給水加熱器、ボイラー過熱器迄、点線が蒸気の流れ、実線が給水の流れ. 電気ボイラーで蒸気タービンを回転させ、発電気を運転して、発電し、変電所で超高圧にして、送電する図タービンをまわした蒸気は復水器で冷却水で真空度を高めタービンの回転高率をあげるとともに復水を再じんからさせて使用する. Full plan view with unidirectional blower type I and type II fitted with flat type air flow control hooks at 16 locations in a double container containing a windmill. Since the shaft is thick, the distance from the center is long. Since the moment is large, the rotational force is large and the output is large.
Figure 2010144712
Double-container diagram of the windmill The aim is to make the container strong and make the angle at which the wind blows against the blades of the windmill inside. See (Figure 1) Compared with the cross-sectional area where the inlet blows, the cross-sectional area of the outlet is widened to make it easier for the wind to pass. It was. A plan view of the bottom of the windmill, and the direction in which the wind tends to come out. A structure in which the wind from the windmill is sucked up by four 16 mm suckers Single-line diagram of the whole elevation of the windmill mechanism Plane view of the first floor of the omnidirectional blow-in one-way blower type 1 with a flat-type air flow control hook. Plan view of the second floor of an omnidirectional blow-in unidirectional blower 1 type with a flat-type air volume control hook. 1st floor wind induction and 1st floor bypass during air flow control and stop. Flat type air flow control hook with omnidirectional blow type 1 direction blower 2 type, 1st floor plan view, wind in front of windmill axis, U-turn wind, winds from high places are guided to windmill and blade position (Fig. 12), (Fig. 13), blow the wind on the blades at an acute angle. (Figure 1) Flat air flow control hook with omnidirectional blow-in, one-way blower, 2nd floor, 2nd floor, air flow control, 1st floor wind bypass when stopping. Cross section of unidirectional blower with omnidirectional blower with flat air flow control hook. Flat type air volume control hook with omnidirectional blow-in unidirectional blower 2 mold cross section Flat airflow control hook-equipped omnidirectional blow-in one-way blower 1 type wind blower surface area (parts surrounded by dotted lines on the south east side) (parts surrounded by solid lines on the north and west sides) outlet Is the rectangular part in the figure, (U-turn wind is from the south and east exits) Front wind is from the north and west exits Flat type air volume control hook with omnidirectional blowing, surface area of unidirectional blower type 2 wind blowing inlet (part surrounded by dotted line on the west side on the north side) (part surrounded by solid line on the south side and east side) Exit is rectangular in the figure (front wind is from the south and east exits) (U-turn wind is from the north and west exits) Flow direction of wind blowing in the X direction (from the outside of the windmill to the inside) Flat air flow control hook with omnidirectional one-way blower Type 1 Y direction (over the windmill roof, enter the inside and make a U-turn) Directional flow of wind blown toward the blades of the wind turbine in the omnidirectional blow-in unidirectional blower 2 type X direction wind (wind blowing from outside to inside) Directional direction of wind in the Y direction (wind that blows over the roof of the windmill and makes a U-turn) Overall view from sucker inlet side Figure with sucker and air flow control gate open 1/4 Figure of sucker and air flow control gate opened 3/4 Drawing of sucker and sucker (1) Figure of sucker and sucker (2) Figure of sucker mouth (3) Drawing of sucker and sucker (4) The dotted line shows the flow of steam and the solid line shows the flow of water supply from the wind turbine generator to the wiring diagram, feed water heater, and boiler superheater. The steam that rotates the steam turbine with an electric boiler, generates electricity, generates electricity, generates ultra-high pressure at the substation, and turns the steam around the turbine to transmit power. Increase the rate and use the condensate again.

Figure 2010144712
Figure 2010144712

Claims (6)

平面型風車用風量制御フック付全方向吹き入れ1方向吹き出し器I型、風車軸に向って正面の風が右側Uターンの風が左側のもの底面は正方形で高さが長くなっている(図8)(図12)照照One-way blower type I with flat airflow control hook for wind turbine type, front wind is right U-turn toward the windmill axis, and the left bottom is square and the height is long (Fig. 8) (Fig. 12) 平面型風車用風量制御フック付全方向吹き入れ1方向吹き出し器II型風車軸に向って正面の風が左側、Uターンの風が右側のもの底面は正方形で高さが長くなっている.(図10)(図13)参照One-way blower with an airflow control hook for a flat type windmill One-way blower Type II windmill shaft has a frontal left side and a U-turn wind on the right side. (See Fig. 10) (Fig. 13) 平面型風車の円筒型容器は二重の容器になっている容器の強さを強くすること、風が風車の羽根に当る角度をを調整して、有効な角度で当てられるようにすることです、容器上部に16ヶ所の吹き入れ口を作り中側の容器にも16ヶ所の吹き入れ口を作る.下側にも16ヶ所づつの出口をつけて、上下とも風車に有効に風が入り、出ていけるようにする、の間を充てん部を設け、容器を補強する.
表面に平面型用風量制御用フック付全方向吹き入れ1方向吹き出し器を16ヶ所に取りつけて、風車内に吹き込ませる、容器の中心に上、下、ともベアリングを容器につけて、風車が回転可能にする.(図12)(図13)(図15)
The cylindrical container of a flat windmill is to increase the strength of the container that is a double container, and adjust the angle at which the wind hits the blades of the windmill so that it can be applied at an effective angle Make 16 inlets in the upper part of the container and make 16 inlets in the middle container. At the bottom, 16 outlets will be provided, and a filling section will be provided to reinforce the container so that wind can enter and exit the windmill effectively both at the top and bottom.
The wind turbine can be rotated by attaching bearings to the top and bottom of the container at the center of the container. . (FIG. 12) (FIG. 13) (FIG. 15)
Figure 2010144712
していくうちに、風が下部の出口に、おりてこられるようにし、出口の断面積は入口の断面積より広くして、吸い取り器に吸い出しやすくする.(図15)(図16)
Figure 2010144712
In the meantime, allow the wind to reach the lower outlet, and make the outlet cross-sectional area wider than the inlet cross-sectional area so that it can be easily sucked into the sucker. (FIG. 15) (FIG. 16)
1系統4條式吸い取り器4本を作る.入口と出口の断面積を広くし中間をせまくして風の通る早さを早くして途中で羽根から出て来た風を自然の風のエネルギーを利用して吸引放出する、下側にバイパス回路を設け、風量制御用ゲートを取りつけ、吸い取り量を制御可能にする.Make four 4 條 type suckers in one system. By widening the cross-sectional area of the inlet and outlet and making it the middle to speed up the speed of the wind, the wind that came out from the blades on the way is sucked and released using the energy of natural wind, bypassed to the lower side A circuit will be provided, and an air flow control gate will be installed to make it possible to control the amount of suction. 吸い取り器は、風車を中心にして引込めたり、つき出したりして、風車の回転方向に吸い取らせる、風車の下に回転界磁型発電機を置き風車軸とをカップリングして発電させる(図6)(図7)
平面型風車用風量制御フック付全方向吹き入れ1方向吹き出し器I型、II型で風の吹く方向風量を制御して、人工の風にして固定した二重の容器に入れた風車に風を16ヶ所から吹き込ませる
Figure 2010144712
回転しているうちに容器上部の吹き入れ口から下部の吹き出し口に降りてくるような構造にする.出口の断面積は入口断面積より広くして出ていきやすくする、吸い取り器にバイパスを設け、吸い取り量を制御可能にした吸い取り器で自然の風のエネルギーを利用して大気中に吸引放出して風車の回転効率を上げる
The sucker is retracted around the windmill and started to suck in the direction of rotation of the windmill. A rotating field generator is placed under the windmill and the windmill shaft is coupled to generate power ( (Fig. 6) (Fig. 7)
Airflow control hook for flat-type windmills, omnidirectional blow-in unidirectional blowers I and II control the direction of the wind blown and wind the windmill in a double container fixed as an artificial wind. Infuse from 16 locations
Figure 2010144712
While rotating, make the structure so that it comes down from the upper inlet to the lower outlet. The cross-sectional area of the outlet is wider than the cross-sectional area of the inlet, making it easier to get out.The sucker is provided with a bypass, and the suction amount can be controlled. Increase the rotational efficiency of the windmill
JP2008336316A 2008-12-18 2008-12-18 Wind power motor for thermal power generation Pending JP2010144712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008336316A JP2010144712A (en) 2008-12-18 2008-12-18 Wind power motor for thermal power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008336316A JP2010144712A (en) 2008-12-18 2008-12-18 Wind power motor for thermal power generation

Publications (1)

Publication Number Publication Date
JP2010144712A true JP2010144712A (en) 2010-07-01

Family

ID=42565381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008336316A Pending JP2010144712A (en) 2008-12-18 2008-12-18 Wind power motor for thermal power generation

Country Status (1)

Country Link
JP (1) JP2010144712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003021A1 (en) * 2010-07-01 2012-01-05 Twin Disc, Inc. Power generator using a wind turbine, a hydrodynamic retarder, and an organic rankine cycle drive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521251A (en) * 1975-06-23 1977-01-07 Setsuo Shigaki Wind strength generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521251A (en) * 1975-06-23 1977-01-07 Setsuo Shigaki Wind strength generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003021A1 (en) * 2010-07-01 2012-01-05 Twin Disc, Inc. Power generator using a wind turbine, a hydrodynamic retarder, and an organic rankine cycle drive

Similar Documents

Publication Publication Date Title
US8134252B2 (en) Converting wind energy to electrical energy
KR101515642B1 (en) Wind and updraft turbine
CN205744310U (en) Blade of wind-driven generator, blade de-icing device and wind power generating set
CN104806459B (en) Tower barrel-type wind power generation device
CN103994026B (en) Solar chimney power generation device
US8593008B2 (en) Variable vane vertical axis wind turbine
JP2009121451A (en) Wind power generation device
JP2010144712A (en) Wind power motor for thermal power generation
JP3167929U (en) Updraft power generator
US20090315333A1 (en) Production of electricity from low-temperature energy sources
CN207989238U (en) A kind of solar energy assisting natural wind power generation tower
CN101975145A (en) Solar and wind driven generator
CN201810495U (en) Solar wind driven generator
CN108301979A (en) A kind of solar energy assisting natural wind power generation tower
CN103527415B (en) Building distribution composite type wind power generating set
CN205272280U (en) Cement base concrete electrical heating maintenance system
LT2008072A (en) Vertical pipe power plant with a turbine therefor and building comprising this electricity generating system
WO2016008179A1 (en) Self-made wind power generation system
CN203892121U (en) Solar hot-wind power generating set
WO2012014241A2 (en) Structure for the electrical energy production fed by sun and wind source called sun turbine treelux (tst)
CN113958358A (en) Energy-saving tunnel ventilation system without electric energy
CN203362401U (en) Gentle breeze solar dual-power generator set
CN102322410A (en) Method of forming hot air by using solar energy to generate power
CN206770145U (en) A kind of photovoltaic water-raising system
CN109139399A (en) A kind of discarded cooling tower photo-thermal wind-powered electricity generation utilization system and method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402