JP2010144246A - Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby - Google Patents

Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby Download PDF

Info

Publication number
JP2010144246A
JP2010144246A JP2008326622A JP2008326622A JP2010144246A JP 2010144246 A JP2010144246 A JP 2010144246A JP 2008326622 A JP2008326622 A JP 2008326622A JP 2008326622 A JP2008326622 A JP 2008326622A JP 2010144246 A JP2010144246 A JP 2010144246A
Authority
JP
Japan
Prior art keywords
nickel
manganese
porous body
alloy
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008326622A
Other languages
Japanese (ja)
Inventor
Masataka Hakamada
昌高 袴田
Mamoru Mabuchi
馬渕  守
Takafumi Saito
尚文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008326622A priority Critical patent/JP2010144246A/en
Publication of JP2010144246A publication Critical patent/JP2010144246A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide methods for producing a micropore nickel porous body and a micropore nickel-copper alloy porous body, and to provide products obtained thereby. <P>SOLUTION: In the methods for producing the micropore nickel porous body and the micropore nickel-copper alloy porous body, starting alloy composed of nickel and manganese, and starting alloy composed of nickel, copper and manganese are heat-treated to produce solid-solution alloy of nickel and manganese, and solid-solution alloy of nickel, copper and manganese each containing no brittle intermetallic compound and easily subjected to plastic working, and, in the prescribed formed precursors or non-formed precursors of the solid-solution alloys, only manganese is selectively dissolved away in an aqueous solution to produce a micropore nickel porous body and a micropore nickel-copper porous body. The products are obtained by the methods. According to this invention, from the master alloys easily subjected to plastic working, the micropore nickel porous body and micropore nickel-copper alloy porous body can be produced and provided using an aqueous solution in the vicinity of neutrality without using a strong alkaline aqueous solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細孔ニッケル多孔質体並びにニッケル−銅合金多孔質体の製造方法、当該製造方法により得られる製品である微細孔ニッケル多孔質体並びにニッケル−銅合金多孔質体及びその部材に関するものであり、更に詳しくは、ニッケルとマンガン、並びにニッケルと銅とマンガンの固溶合金から、マンガンを水溶液中で選択的に溶解除去することにより、水酸化ナトリウム等の強いアルカリ性水溶液を使用することなく、簡便な方法で、しかも塑性加工した成形体から、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体を作製することを可能とする、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の製造方法及びその製品に関するものである。本発明は、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の新しい製造方法及びその製品に関する新技術・新製品を提供するものである。   The present invention relates to a microporous nickel porous body, a method for producing a nickel-copper alloy porous body, a microporous nickel porous body, a nickel-copper alloy porous body, and a member thereof, which are products obtained by the production method. More specifically, by selectively dissolving and removing manganese in an aqueous solution from a solid solution alloy of nickel and manganese and nickel, copper and manganese, without using a strong alkaline aqueous solution such as sodium hydroxide. , A microporous nickel porous body and a microporous nickel porous body, and a microporous nickel porous body, which can be produced from a molded body plastically processed by a simple method. The present invention relates to a method for producing a copper alloy porous body and a product thereof. The present invention provides a new manufacturing method of a microporous nickel porous body, a microporous nickel-copper alloy porous body, and a new technology and a new product related to the product.

微細孔ニッケル多孔質体は、例えば、有機合成における水素化反応の触媒や、燃料電池及びアルカリ2次電池の電極基板等に用いられている。触媒や電極では、触媒反応や電極反応は、それらの表面で生起するが、触媒や電極の表面は、微細な多孔質構造を持つことで表面積が増加するため、多孔質構造が微細であればある程、触媒・電極の反応特性は、飛躍的に向上する。   The microporous nickel porous body is used, for example, as a catalyst for a hydrogenation reaction in organic synthesis, an electrode substrate of a fuel cell, and an alkaline secondary battery. In catalysts and electrodes, catalytic reactions and electrode reactions occur on their surfaces. However, since the surface of the catalyst and electrodes has a fine porous structure, the surface area increases, so if the porous structure is fine The more the reaction characteristics of the catalyst / electrode are dramatically improved.

nmオーダーのナノポーラス(多孔質)構造を有する金属ニッケル多孔質体は、触媒や電極材料として有望であり、従来は、ニッケル−アルミニウム合金からアルミニウムを強アルカリにより溶脱して得られている。ニッケル−アルミニウム合金には、ニッケルとアルミニウムの種々の金属間化合物が含まれており、脆いため、例えば、微粉状に粉砕したのち、アルカリ処理に供し、粉末状のナノポーラスニッケルを得る。また、ニッケルは、銅と合金化することにより、触媒特性が大きく変化することが知られており、銅の添加量を調整することによって、触媒反応の選択や制御等を可能にし(非特許文献1参照)、また、ニッケルの触媒作用は添加元素によって変化・制御することができ、特に、ニッケルと全率で固溶する銅は、ニッケル触媒の性能改変に対して有望である。   A metallic nickel porous body having a nanoporous (porous) structure on the order of nm is promising as a catalyst or an electrode material, and conventionally obtained by leaching aluminum from a nickel-aluminum alloy with a strong alkali. The nickel-aluminum alloy contains various intermetallic compounds of nickel and aluminum and is brittle. For example, after being pulverized into a fine powder, it is subjected to an alkali treatment to obtain powdered nanoporous nickel. Nickel is known to change its catalytic properties greatly when alloyed with copper. By adjusting the amount of copper added, it is possible to select and control the catalytic reaction (non-patent document). 1), and the catalytic action of nickel can be changed and controlled by an additive element. In particular, copper which is solid-dissolved in a total ratio with nickel is promising for performance modification of the nickel catalyst.

従来製造されてきた微細孔ニッケル多孔質体の代表例として、ラネー(Raney)ニッケルが挙げられるが、このラネーニッケルは、ニッケルとアルミニウムを等量程度含む合金から、アルミニウムを水酸化ナトリウム水溶液等によるアルカリ洗浄によって取り除くことにより、残ったニッケルが、ナノメートルオーダーか、それ以下の多孔質構造を形成することを利用して作製される多孔質材料である(特許文献1、非特許文献2参照)。同様に、銅とアルミニウムを等量程度含む合金から、アルミニウムをアルカリ洗浄によって取り除くことにより、銅の多孔質体であるラネー銅を作製することができる(非特許文献3参照)。   Raney nickel is a typical example of a microporous nickel porous body that has been produced in the past. This Raney nickel is made from an alloy containing nickel and aluminum in an equivalent amount, and aluminum is converted to an alkali solution such as a sodium hydroxide aqueous solution. By removing by washing, the remaining nickel is a porous material produced by utilizing the formation of a porous structure of nanometer order or lower (see Patent Document 1 and Non-Patent Document 2). Similarly, Raney copper which is a porous body of copper can be produced by removing aluminum from an alloy containing copper and aluminum in equal amounts by alkali cleaning (see Non-Patent Document 3).

しかしながら、ニッケルとアルミニウムは、硬くて、脆い金属間化合物、例えば、AlNi、AlNi、AlNi、AlNi、AlNi等を必ず形成する。また、銅とアルミニウムも、同様に、金属間化合物を不可避に形成する。そのため、ニッケルとアルミニウムの合金、また、ニッケルと銅とアルミニウムの合金は、成形性に乏しく、圧延や、押し出し、鍛造といった塑性加工による成形は、技術的に困難、かつ不可能である。そのため、ラネーニッケルは、微粉末状に粉砕するか、溶射や塗布、スパッタリング等の高コストなプロセスにより、実機への導入が実施されている(例えば、特許文献2、3参照)。 However, nickel and aluminum always form hard and brittle intermetallic compounds such as Al 3 Ni, Al 3 Ni 2 , AlNi, Al 3 Ni 5 , AlNi 3 and the like. Similarly, copper and aluminum inevitably form intermetallic compounds. Therefore, nickel-aluminum alloys and nickel-copper-aluminum alloys have poor formability, and forming by plastic working such as rolling, extrusion, and forging is technically difficult and impossible. For this reason, Raney nickel has been introduced into actual machines by pulverizing it into a fine powder or by a high-cost process such as thermal spraying, coating, and sputtering (for example, see Patent Documents 2 and 3).

従来のラネーニッケルやラネーニッケル−銅から、微細孔ニッケル多孔質体を製造する方法においては、水酸化ナトリウム水溶液や水酸化カリウム水溶液といった強いアルカリ性の水溶液を用いることが必要とされる。そのため、当該方法は、例えば、それらの処理に用いる容器の材質が限られ、また、排水の中和処理にコストがかかる、といった問題点を有する。   In a conventional method for producing a microporous nickel porous body from Raney nickel or Raney nickel-copper, it is necessary to use a strong alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution. Therefore, the method has problems that, for example, the materials of the containers used for the treatment are limited, and the wastewater neutralization treatment is costly.

また、前述のとおり、ラネーニッケルは、塑性加工による成形が技術的に困難、かつ不可能な状況である。しかし、出発合金の前駆体を、塑性加工により希望する形状に成形したのち、合金成分を選択的に溶解除去することにより多孔質化することができれば、塑性加工により成形可能な範囲で、自在な形状を有する微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体を作製することができ、それにより、触媒装置や電池等への応用が簡単になると考えられる。   Further, as described above, Raney nickel is technically difficult and impossible to form by plastic working. However, if the precursor of the starting alloy is formed into a desired shape by plastic working and can be made porous by selectively dissolving and removing the alloy components, it is flexible as long as it can be formed by plastic working. It is considered that a microporous nickel porous body and a microporous nickel-copper alloy porous body having a shape can be produced, thereby simplifying application to a catalyst device, a battery, and the like.

しかし、実際には、従来法では、微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体を製造するには、水酸化ナトリウム溶液や水酸化カリウム水溶液等の強いアルカリ性水溶液を用いることが必要であり、また、出発合金の塑性加工による成形は、技術的に困難、かつ不可能であった。そこで、当技術分野においては、水酸化ナトリウム等の強いアルカリ性水溶液を用いる必要がなく、しかも自由な形状を有する微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体を簡便な手法で作製することが可能な新しい微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の製造技術を開発することが強く要請されていた。   However, in practice, in the conventional method, a strong alkaline aqueous solution such as a sodium hydroxide solution or a potassium hydroxide aqueous solution is used to produce a microporous nickel porous body and a microporous nickel-copper alloy porous body. It was necessary and it was technically difficult and impossible to form the starting alloy by plastic working. Therefore, in this technical field, there is no need to use a strong alkaline aqueous solution such as sodium hydroxide, and a microporous nickel porous body and a microporous nickel-copper alloy porous body having a free shape are produced by a simple method. There has been a strong demand to develop a new microporous nickel porous body that can be produced and a technology for producing a microporous nickel-copper alloy porous body.

米国特許第1,628,190号明細書US Pat. No. 1,628,190 特公昭58−46553号公報Japanese Patent Publication No. 58-46553 特開平1−242148号公報JP-A-1-242148 M.H.Youn,J.G.Seo,P.Kim,J.J.Kim,H.I.Lee,I.K.Song,J.Power Sources,vol.162(2006)pp.1270−1274M.M. H. Youn, J .; G. Seo, P.M. Kim, J. et al. J. et al. Kim, H .; I. Lee, I.D. K. Song, J .; Power Sources, vol. 162 (2006) pp. 1270-1274 J.Freel,W.J.M.Pieters,R.B.Anderson,J.Catal.,vol.14(1969)pp.247−256J. et al. Freeel, W.M. J. et al. M.M. Pieters, R.A. B. Anderson, J.M. Catal. , Vol. 14 (1969) pp. 1 247-256 A.J.Smith,P.R.Munroe,T.Tran,M.S.Wainwright,J.Mater.Sci.,vol.36(2001)pp.3519−3524A. J. et al. Smith, P.M. R. Munroe, T.M. Tran, M.M. S. Wainwright, J.M. Mater. Sci. , Vol. 36 (2001) pp. 3519-3524

このような状況の中で、本発明者らは、上記従来技術に鑑みて、水酸化ナトリウム等の強いアルカリ性水溶液を用いることなく、しかも出発合金を塑性加工により希望する形状に成形したのち、可溶性分を溶解除去することにより多孔質化することを可能とする新しい微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の作製方法を開発することを目標として鋭意研究を積み重ねた結果、ニッケルとマンガン、並びにニッケルと銅とマンガンの固溶合金を前駆体として用いて、当該固溶合金の状態でマンガンを水溶液中で選択的に溶解除去することが可能であり、それにより所期の目的を達成し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。   Under such circumstances, in view of the above prior art, the present inventors formed a starting alloy into a desired shape by plastic working without using a strong alkaline aqueous solution such as sodium hydroxide, and then soluble. As a result of intensive research with the goal of developing a new microporous nickel porous body that can be made porous by dissolving and removing components and a method for producing a microporous nickel-copper alloy porous body, Using a solid solution alloy of nickel and manganese and nickel, copper and manganese as a precursor, manganese can be selectively dissolved and removed in an aqueous solution in the state of the solid solution alloy. The inventors have found that the object can be achieved, and have further researched to complete the present invention.

本発明は、以上のような事情に鑑みてなされたものであって、水酸化ナトリウム等の強いアルカリ性水溶液を用いることなく、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体を製造する方法を提供することを目的とするものである。また、本発明は、塑性加工可能な出発合金の成形体から、微細孔ニッケル多孔質体を製造する方法を提供することを目的とするものである。更に、本発明は、上記製造方法により作製してなる微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体、及びそれらの部材を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and produces a microporous nickel porous body and a microporous nickel-copper alloy porous body without using a strong alkaline aqueous solution such as sodium hydroxide. It is an object to provide a method for doing this. Another object of the present invention is to provide a method for producing a microporous nickel porous body from a molded body of a starting alloy that can be plastically processed. Furthermore, this invention aims at providing the microporous nickel porous body produced by the said manufacturing method, a microporous nickel-copper alloy porous body, and those members.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)強いアルカリ性水溶液による活性化処理をすることなく、微細孔ニッケル多孔質体を製造する方法であって、出発合金としてニッケルとマンガンの固溶合金を用いて、当該固溶合金の所定の成形又は非成形前駆体から、マンガンを水溶液中で選択的に溶解除去することにより、微細孔ニッケル多孔質体を製造することを特徴とする微細孔ニッケル多孔質体の製造方法。
(2)ニッケルの原子組成比が40%以下の組成であるニッケルとマンガンの固溶合金を用いる、前記(1)に記載の微細孔ニッケル多孔質体の製造方法。
(3)720〜1020℃で熱処理を受け、ニッケルとマンガンが面心立方構造を有して単一相を形成した、当該ニッケルとマンガンの固溶合金を用いる、前記(1)又は(2)に記載の微細孔ニッケル多孔質体の製造方法。
(4)ニッケルとマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンをpH4.5〜8.5の中性を示す水溶液中で選択的に溶解除去する、前記(1)から(3)のいずれか1項に記載の微細孔ニッケル多孔質体の製造方法。
(5)ニッケルとマンガンの固溶合金を、圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工して成形した成形体から、マンガンを水溶液中で選択的に溶解除去する、前記(1)から(4)のいずれか1項に記載の微細孔ニッケル多孔質体の製造方法。
(6)ニッケルとマンガンが面心立方構造を有して単一相を形成した、当該ニッケルとマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンが選択的に溶解除去された微細孔構造を有することを特徴とする微細孔ニッケル多孔質体。
(7)圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工されたニッケルとマンガンの固溶合金の成形体から、マンガンが選択的に溶解除去された微細孔構造を有する、前記(6)に記載の微細孔ニッケル多孔質体。
(8)ニッケルとマンガンの固溶合金のニッケルの原子組成比が40%以下の組成である、前記(6)に記載の微細孔ニッケル多孔質体。
(9)前記(6)から(8)のいずれかに記載の微細孔ニッケル多孔質体を構成要素として含むことを特徴とする微細孔ニッケル多孔質体部材。
(10)部材が、触媒、又は電極である、前記(9)に記載の微細孔ニッケル多孔質体部材。
(11)強いアルカリ性水溶液による活性化処理をすることなく、微細孔ニッケル−銅合金多孔質体を製造する方法であって、出発合金としてニッケルと銅とマンガンの固溶合金を用いて、当該固溶合金の所定の成形又は非成形前駆体から、マンガンを水溶液中で選択的に溶解除去することにより、微細孔ニッケル−銅合金多孔質体を製造することを特徴とする微細孔ニッケル−銅合金多孔質体の製造方法。
(12)ニッケルと銅の原子組成比の和が40%以下の組成であるニッケルと銅とマンガンの固溶合金を用いる、前記(11)に記載の微細孔ニッケル−銅合金多孔質体の製造方法。
(13)720〜1020℃で熱処理を受け、ニッケルと銅とマンガンが面心立方構造を有して単一相を形成した、当該ニッケルと銅とマンガンの固溶合金を用いる、前記(11)又は(12)に記載の微細孔ニッケル−銅合金多孔質体の製造方法。
(14)ニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンをpH4.5〜8.5の中性を示す水溶液中で選択的に溶解除去する、前記(11)から(13)のいずれか1項に記載の微細孔ニッケル−銅合金多孔質体の製造方法。
(15)ニッケルと銅とマンガンの固溶合金を、圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工して成形した成形体から、マンガンを水溶液中で選択的に溶解除去する、前記(11)から(14)のいずれか1項に記載の微細孔ニッケル−銅合金多孔質体の製造方法。
(16)ニッケルと銅とマンガンが面心立方構造を有して単一相を形成した、当該ニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンが選択的に溶解除去された微細孔構造を有することを特徴とする微細孔ニッケル−銅合金多孔質体。
(17)圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工されたニッケルと銅とマンガンの固溶合金の成形体から、マンガンが選択的に溶解除去された微細孔構造を有する、前記(16)に記載の微細孔ニッケル−銅合金多孔質体。
(18)ニッケルと銅とマンガンの固溶合金の、ニッケルと銅の原子組成比の和が40%以下の組成である、前記(16)に記載の微細孔ニッケル−銅合金多孔質体。
(19)前記(16)から(18)のいずれかに記載の微細孔ニッケル−銅合金多孔質体を構成要素として含むことを特徴とする微細孔ニッケル−銅合金多孔質体部材。
(20)部材が、触媒、又は電極である、前記(19)に記載の微細孔ニッケル−銅合金多孔質体部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing a microporous nickel porous body without performing an activation treatment with a strong alkaline aqueous solution, and using a solid solution alloy of nickel and manganese as a starting alloy, A method for producing a microporous nickel porous body, comprising producing a microporous nickel porous body by selectively dissolving and removing manganese in an aqueous solution from a molded or non-molded precursor.
(2) The method for producing a microporous nickel porous body according to (1) above, wherein a solid solution alloy of nickel and manganese having a composition in which the atomic composition ratio of nickel is 40% or less is used.
(3) The heat treatment is performed at 720 to 1020 ° C., and the solid solution alloy of nickel and manganese in which nickel and manganese have a face-centered cubic structure to form a single phase is used (1) or (2) The manufacturing method of the microporous nickel porous body described in 2.
(4) From the above (1), manganese is selectively dissolved and removed in an aqueous solution showing neutrality of pH 4.5 to 8.5 from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel and manganese. The method for producing a microporous nickel porous material according to any one of (3).
(5) Manganese is selectively dissolved and removed in an aqueous solution from a compact formed by forming a solid solution alloy of nickel and manganese into a desired shape by rolling, extruding, or plastic working including pressing. The manufacturing method of the microporous nickel porous body according to any one of (1) to (4).
(6) Manganese was selectively dissolved and removed from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel and manganese in which nickel and manganese have a face-centered cubic structure to form a single phase. A microporous nickel porous body having a microporous structure.
(7) A fine pore structure in which manganese is selectively dissolved and removed from a solid solution alloy of nickel and manganese plastically processed into an arbitrary shape by a method of plastic processing including rolling, extrusion, or pressing. The microporous nickel porous body according to the above (6).
(8) The microporous nickel porous body according to (6), wherein the atomic composition ratio of nickel in the solid solution alloy of nickel and manganese is 40% or less.
(9) A microporous nickel porous body member comprising the microporous nickel porous body according to any one of (6) to (8) as a constituent element.
(10) The microporous nickel porous member according to (9), wherein the member is a catalyst or an electrode.
(11) A method for producing a microporous nickel-copper alloy porous body without performing an activation treatment with a strong alkaline aqueous solution, wherein a solid solution alloy of nickel, copper and manganese is used as a starting alloy. A microporous nickel-copper alloy porous body is produced by selectively dissolving and removing manganese in an aqueous solution from a predetermined molded or non-molded precursor of a molten alloy. A method for producing a porous body.
(12) Production of a microporous nickel-copper alloy porous body according to the above (11) using a solid solution alloy of nickel, copper and manganese having a composition in which the sum of atomic composition ratios of nickel and copper is 40% or less Method.
(13) The heat treatment is performed at 720 to 1020 ° C., and the solid solution alloy of nickel, copper, and manganese in which nickel, copper, and manganese have a face-centered cubic structure to form a single phase is used (11) Or the manufacturing method of the microporous nickel-copper alloy porous body as described in (12).
(14) The manganese is selectively dissolved and removed in an aqueous solution having a neutrality of pH 4.5 to 8.5 from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel, copper, and manganese. The manufacturing method of the microporous nickel-copper alloy porous body of any one of (13) to (13).
(15) From a molded body formed by plastic processing of a solid solution alloy of nickel, copper, and manganese into an arbitrary shape by a method of plastic processing including rolling, extrusion, or pressing, manganese is selectively contained in an aqueous solution. The method for producing a microporous nickel-copper alloy porous body according to any one of (11) to (14), wherein the porous body is dissolved and removed.
(16) Manganese is selectively produced from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel, copper, and manganese in which nickel, copper, and manganese have a face-centered cubic structure to form a single phase. A microporous nickel-copper alloy porous body having a microporous structure dissolved and removed.
(17) Fine pores in which manganese is selectively dissolved and removed from a solid solution alloy of nickel, copper, and manganese plastically processed into an arbitrary shape by a method of plastic processing including rolling, extrusion, or pressing. The microporous nickel-copper alloy porous body according to (16), which has a structure.
(18) The microporous nickel-copper alloy porous body according to (16), wherein the solid solution alloy of nickel, copper, and manganese has a composition in which the sum of atomic composition ratios of nickel and copper is 40% or less.
(19) A microporous nickel-copper alloy porous body member comprising the microporous nickel-copper alloy porous body according to any one of (16) to (18) as a constituent element.
(20) The microporous nickel-copper alloy porous body member according to (19), wherein the member is a catalyst or an electrode.

次に、本発明について更に詳細に説明する。
本発明は、強いアルカリ性水溶液による活性化処理をすることなく、微細孔ニッケル多孔質体を製造する方法であって、出発合金としてニッケルとマンガンの固溶合金を用いて、当該固溶合金の所定の成形又は非成形前駆体から、マンガンを水溶液中で選択的に溶解除去することにより、微細孔ニッケル多孔質体を製造することを特徴とするものであり、また、出発合金としてニッケルと銅とマンガンの固溶合金を用いて、当該固溶合金の所定の成形又は非成形前駆体から、マンガンを水溶液中で選択的に溶解除去することにより、微細孔ニッケル−銅合金多孔質体を製造することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for producing a microporous nickel porous body without performing an activation treatment with a strong alkaline aqueous solution, and using a solid solution alloy of nickel and manganese as a starting alloy, A microporous nickel porous body is produced by selectively dissolving and removing manganese in an aqueous solution from a molded or non-molded precursor, and nickel and copper are used as starting alloys. Using a solid solution alloy of manganese, a porous microporous nickel-copper alloy body is produced by selectively dissolving and removing manganese in an aqueous solution from a predetermined shaped or non-formed precursor of the solid solution alloy. It is characterized by this.

また、本発明は、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体であって、ニッケルとマンガン、並びにニッケルと銅とマンガンが面心立方構造を有して単一相を形成した、当該ニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンが選択的に溶解除去された微細孔構造を有することを特徴とするものである。   The present invention also relates to a microporous nickel porous body and a microporous nickel-copper alloy porous body, wherein nickel and manganese, and nickel, copper and manganese have a face-centered cubic structure to form a single phase. Further, it has a microporous structure in which manganese is selectively dissolved and removed from a predetermined formed or non-formed precursor of the solid solution alloy of nickel and manganese and the solid solution alloy of nickel, copper and manganese. Is.

本発明者らは、上述の目的を達成すべく、中性に近い溶液を用い、また、塑性加工が可能な出発合金から微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の製造を可能とする、新しい手法について鋭意検討を重ねた結果、出発合金として、ニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体を用いること、また、所定の温度範囲で熱処理することで、金属間化合物相等の生成を抑え、出発材の塑性加工性を良好にして、中性に近い水溶液中でマンガンを選択的に溶解除去することにより、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体を作製することに成功した。   In order to achieve the above-mentioned object, the present inventors use a solution close to neutrality, and manufacture a microporous nickel porous body and a microporous nickel-copper alloy porous body from a starting alloy capable of plastic working. As a result of intensive studies on a new method that makes it possible to use, as a starting alloy, use a solid solution alloy of nickel and manganese and a predetermined formed or non-formed precursor of a solid solution alloy of nickel, copper and manganese, and By performing heat treatment in a predetermined temperature range, the formation of intermetallic compound phases, etc. is suppressed, the plastic workability of the starting material is improved, and manganese is selectively dissolved and removed in an aqueous solution close to neutrality. A porous nickel porous body and a microporous nickel-copper alloy porous body have been successfully produced.

本発明では、ナノポーラスニッケル、及びナノポーラスニッケル−銅合金の出発原料としてニッケルとマンガン、並びにニッケルと銅とマンガンの単相固溶合金を用いる。マンガンは、中性溶液中でも容易に溶解するため、例えば、中性(pH4.5−8)溶液中での処理によりマンガンが溶脱し(脱合金化)、また、適切な熱処理により金属間化合物の形成を抑え、出発原料の塑性加工性を確保することが可能となる。   In the present invention, nickel and manganese, and a single-phase solid solution alloy of nickel, copper, and manganese are used as starting materials for nanoporous nickel and nanoporous nickel-copper alloy. Manganese easily dissolves even in neutral solutions. For example, manganese is leached (dealloyed) by treatment in a neutral (pH 4.5-8) solution, and intermetallic compounds are removed by appropriate heat treatment. It is possible to suppress the formation and ensure the plastic workability of the starting material.

本発明は、ニッケルとマンガンの固溶合金、並びにニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンを水溶液中で選択的に溶解除去することによって、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体を製造する方法、当該方法により得られた微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体及びそれらの部材の点に特徴を有するものである。本発明では、出発合金のニッケルとマンガンの固溶合金において、ニッケルの原子組成比が固溶合金組成に対して0超〜40%以下の組成であることが好ましく、また、ニッケルと銅とマンガンの固溶合金において、ニッケルと銅の原子組成比の和が固溶合金組成に対して0超〜40%以下の組成であることが好ましい。   The present invention relates to a microporous nickel by selectively dissolving and removing manganese in an aqueous solution from a predetermined solution of a solid solution alloy of nickel and manganese, and a solid solution alloy of nickel, copper and manganese. Features of porous body and method for producing microporous nickel-copper alloy porous body, microporous nickel porous body, microporous nickel-copper alloy porous body and members thereof obtained by the method Is. In the present invention, in the solid solution alloy of nickel and manganese as a starting alloy, the atomic composition ratio of nickel is preferably a composition of more than 0 to 40% or less with respect to the solid solution alloy composition. In the solid solution alloy, it is preferable that the sum of the atomic composition ratios of nickel and copper is greater than 0 to 40% or less of the solid solution alloy composition.

本発明では、ニッケルとマンガンの固溶合金並びニッケルと銅とマンガンの固溶合金が、720〜1020℃で熱処理を受け、ニッケルとマンガン、並びにニッケルと銅とマンガンが面心立方構造を有して単一相を形成した、当該ニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金を用いること、ニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンを選択的に溶解除去する水溶液が、pH4.5〜8.5の中性を示す水溶液であること、が好ましい。   In the present invention, a solid solution alloy of nickel and manganese and a solid solution alloy of nickel, copper and manganese are subjected to heat treatment at 720 to 1020 ° C., and nickel and manganese, and nickel, copper and manganese have a face-centered cubic structure. The solid solution of nickel and manganese and the solid solution of nickel, copper, and manganese, and the solid solution of nickel, manganese, and the solid solution of nickel, copper, and manganese The aqueous solution that selectively dissolves and removes manganese from the molded or non-molded precursor is preferably an aqueous solution that exhibits neutrality at pH 4.5 to 8.5.

本発明では、ニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金を、圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工して成形した成形体から、マンガンが水溶液中で選択的に溶解除去される。本発明において、マンガンを水溶液中で選択的に溶解除去する水溶液とは、強いアルカリ性水溶液又は強い酸性水溶液を含まない、pH4.0〜9.0、好ましくは、pH4.5〜8.5の中性付近の水溶液を意味するものとして定義される。   In the present invention, a solid solution alloy of nickel and manganese and a solid solution alloy of nickel, copper, and manganese are formed by plastic forming into any shape by a method of plastic working including rolling, extruding, or pressing. , Manganese is selectively dissolved and removed in an aqueous solution. In the present invention, the aqueous solution that selectively dissolves and removes manganese in an aqueous solution is a pH 4.0 to 9.0, preferably a pH 4.5 to 8.5 that does not include a strong alkaline aqueous solution or a strong acidic aqueous solution. Defined as meaning aqueous solution near the nature.

本発明では、圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工してなるニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金の成形体から、マンガンが水溶液中で選択的に溶解除去されることで形成される微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体であり、ニッケルとマンガンの固溶合金のニッケルの原子組成比が40%以下の組成であること、並びにニッケルと銅とマンガンの固溶合金のニッケルと銅の原子組成比の和が40%以下の組成であること、が好適である。   In the present invention, from a solid solution alloy of nickel and manganese and a solid solution alloy of nickel, copper and manganese formed by plastic working to any shape by a method of plastic working including rolling, extrusion, or pressing, manganese Is a microporous nickel porous body and a microporous nickel-copper alloy porous body formed by selective dissolution and removal in an aqueous solution, and the atomic composition ratio of nickel in the solid solution alloy of nickel and manganese is 40 It is preferable that the composition is not more than% and that the sum of the atomic composition ratios of nickel and copper of the solid solution alloy of nickel, copper and manganese is not more than 40%.

本発明の微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の製造方法では、ニッケルとマンガンの固溶合金並びニッケルと銅とマンガンの固溶合金が出発合金として用いられるが、これにより、出発原料の塑性加工性が良好な前駆体を利用することが可能となる。本発明では、ニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金の状態で、マンガンが、中性溶液中でも容易に溶解できることに着目し、マンガンを中性に近い水溶液中で選択的に溶解除去することにより所望の微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体を作製する。   In the method for producing a microporous nickel porous body and a microporous nickel-copper alloy porous body of the present invention, a solid solution alloy of nickel and manganese and a solid solution alloy of nickel, copper and manganese are used as starting alloys. This makes it possible to use a precursor having good plastic workability as a starting material. In the present invention, focusing on the fact that manganese can be easily dissolved in a neutral solution in the state of a solid solution alloy of nickel and manganese and a solid solution alloy of nickel, copper and manganese, manganese is selected in an aqueous solution close to neutrality. The desired microporous nickel porous body and the microporous nickel-copper alloy porous body are prepared by dissolving and removing them.

本発明では、マンガンを選択的に溶解除去することにより、残ったニッケルが、ナノメートルオーダーか、それ以下の微細孔を有する多孔質構造を形成する。本発明において、ナノメートルオーダーの微細孔を有する多孔質構造を得るためには、用いる固溶合金におけるニッケルの原子組成比、並びにニッケルと銅の原子組成比の和は、40%以下であることが好ましく、塑性加工性を良好にするためには、720〜1020℃で熱処理したものを用いることが好ましい。   In the present invention, manganese is selectively dissolved and removed, whereby the remaining nickel forms a porous structure having micropores on the order of nanometers or less. In the present invention, in order to obtain a porous structure having nanometer-order micropores, the atomic composition ratio of nickel and the sum of the atomic composition ratios of nickel and copper in the solid solution alloy to be used should be 40% or less. In order to improve the plastic workability, it is preferable to use a material heat treated at 720 to 1020 ° C.

すなわち、本発明の微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の製造方法では、ニッケルとマンガンを含む出発合金を、面心立方構造を有する単一相が安定な温度まで加熱保持することで、金属間化合物相の生成を抑え、理想的には、面心立方構造を有するニッケルとマンガン並びにニッケルと銅とマンガンの単一相のみとすることにより、塑性加工性を良好にする。   That is, in the method for producing a microporous nickel porous body and a microporous nickel-copper alloy porous body of the present invention, a starting alloy containing nickel and manganese is heated to a temperature at which a single phase having a face-centered cubic structure is stable. By holding, it suppresses the formation of intermetallic compound phases, and ideally, it has only a single phase of nickel and manganese having a face-centered cubic structure and nickel, copper and manganese, thereby improving plastic workability. To do.

出発原料のニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金は、例えば、ニッケルの原子組成比、並びにニッケルと銅の原子組成比の和が40%以下の適宜の組成となるように、ニッケル及びマンガン原料、並びにニッケル並び銅及びマンガン原料をアーク溶解炉等で溶解・凝固させることにより調製することができる。本発明では、出発合金として、上記ニッケルとマンガンの固溶合金、並びにニッケルと銅とマンガンの固溶合金を使用し、このニッケルとマンガンの固溶合金を、720〜1020℃の温度範囲の適宜の温度条件で一定時間保持後、冷却する。   The nickel-manganese solid solution alloy and the nickel-copper-manganese solid solution alloy as starting materials have appropriate compositions in which, for example, the atomic composition ratio of nickel and the sum of the atomic composition ratios of nickel and copper are 40% or less. Thus, it can prepare by melt | dissolving and solidifying nickel and a manganese raw material, and nickel and copper and a manganese raw material with an arc melting furnace. In the present invention, the nickel-manganese solid solution alloy and the nickel-copper-manganese solid solution alloy are used as the starting alloy, and the nickel-manganese solid solution alloy is suitably used in a temperature range of 720 to 920 ° C. After cooling for a certain period of time under the temperature condition, cool.

次に、このようにして作製した適宜の形状のインゴットを圧延、押出し、又はプレス手段等により任意の形状に塑性加工処理して成形することで、適宜の形態の成形体を作製する。このように、出発合金を塑性加工に供し、それにより、所望の形状に成形した成形体を作製する。   Next, the ingot of an appropriate shape produced in this manner is rolled, extruded, or plastically processed into an arbitrary shape by a pressing means or the like, and formed into an appropriate shape. In this way, the starting alloy is subjected to plastic working, thereby producing a molded body formed into a desired shape.

次に、上記圧延、押出し、又はプレス等の工程により作製した圧延、押出し、又はプレス体等を、例えば、硫酸アンモニウム水溶液等の溶液に浸漬し、三極式の電極化学セルを用いて、約pH4.0〜9.0、好ましくは約pH4.5〜8.5の範囲の中性付近で、所定の時間だけ電位印加を行った後、蒸留水により十分に洗浄した後、乾燥して、マンガンを水溶液中で選択的に溶解除去した微細孔多孔質体を作製する。本発明では、上記硫酸アンモニウム水溶液の他に、例えば、クエン酸、希薄酢酸等の有機酸溶液が用いられるが、これらと同効のものであれば同様に使用することができる。   Next, the rolling, extruding, or pressing body produced by the above rolling, extruding, or pressing process is immersed in a solution such as an aqueous ammonium sulfate solution, and the pH is about 4 using a tripolar electrode chemical cell. In the vicinity of neutrality in the range of about 0.0 to 9.0, preferably about pH 4.5 to 8.5, after applying a potential for a predetermined period of time, it is thoroughly washed with distilled water, dried, and manganese Is prepared by selectively dissolving and removing the solution in an aqueous solution. In the present invention, an organic acid solution such as citric acid or dilute acetic acid is used in addition to the aqueous ammonium sulfate solution, but any of those having the same effect can be used.

図1に、ニッケル−マンガンの2元系状態図を示す。図1に示すニッケル−マンガンの2元系状態図によれば、ニッケルの含有量が多孔質化を保証するのに充分な程少ない40%(原子組成比)以下の範囲では、720〜1020℃の温度範囲において、ニッケルとマンガンが面心立方構造を有する単一相を形成する。本発明で微細孔ニッケル多孔質体を製造する際には、このニッケルとマンガンを面心立方構造を有する単一相の形で利用することが重要である。   FIG. 1 shows a nickel-manganese binary phase diagram. According to the binary phase diagram of nickel-manganese shown in FIG. 1, the content of nickel is 720-1020 ° C. in the range of 40% (atomic composition ratio) or less, which is sufficiently low to guarantee porosity. In the temperature range, nickel and manganese form a single phase having a face-centered cubic structure. When producing a microporous nickel porous body in the present invention, it is important to use nickel and manganese in the form of a single phase having a face-centered cubic structure.

上記720〜1020℃の温度範囲については、720℃以下の温度では、熱力学的平衡が達成される程、長時間保持すると、ε相やη相、η′相等の種々の金属間化合物相、あるいはβマンガン相等の脆い相が生成する可能性がある。また、1020℃以上の温度では、ニッケルとマンガンの固溶合金が溶融してしまう可能性がある。従って、本発明では、ニッケルとマンガンを含む出発原料を、720〜1020℃の温度範囲で一定時間保持する。それにより、脆い相の生成を極力抑制し、それにより、塑性加工性を良好にすることが可能となる。   With respect to the temperature range of 720 to 1020 ° C., at a temperature of 720 ° C. or less, when the thermodynamic equilibrium is achieved for a long time, various intermetallic compound phases such as ε phase, η phase, and η ′ phase, Alternatively, a brittle phase such as a β-manganese phase may be generated. Further, at a temperature of 1020 ° C. or higher, there is a possibility that a solid solution alloy of nickel and manganese is melted. Therefore, in this invention, the starting raw material containing nickel and manganese is hold | maintained for a fixed time in the temperature range of 720-1020 degreeC. Thereby, formation of a brittle phase is suppressed as much as possible, and thereby plastic workability can be improved.

図2に、ニッケル−銅−マンガンの状態図の例を示す。図2に例示されるニッケル−銅−マンガンの状態図によれば、ニッケルと銅とマンガンが、広い温度−組成域において面心立方構造を有する単一相を形成する。本発明で微細孔ニッケル−銅合金多孔質体を製造する際には、このニッケルと銅とマンガンを面心立方構造を有する単一相の形で利用することが重要である。   FIG. 2 shows an example of a phase diagram of nickel-copper-manganese. According to the phase diagram of nickel-copper-manganese illustrated in FIG. 2, nickel, copper, and manganese form a single phase having a face-centered cubic structure in a wide temperature-composition range. When producing a microporous nickel-copper alloy porous body in the present invention, it is important to use nickel, copper and manganese in the form of a single phase having a face-centered cubic structure.

また、本発明の微細孔ニッケル多孔質体の製造方法では、ニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金の状態において、マンガンを中性溶液中でも容易に溶解させることができ、それにより、マンガンを選択的に除去できることに着目し、上記の方法で作製されたニッケルとマンガンの固溶合金並びにニッケルと銅とマンガンの固溶合金に対し、好適には、pH4.5〜8.5の中性を示す水溶液中でマンガンを除去する。これにより、水酸化ナトリウム等の強いアルカリ性水溶液を用いず、かつマンガンのみを選択的に除去することで、簡便な手法で、効率的に、微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体を製造することが可能となる。   In the method for producing a microporous nickel porous body of the present invention, manganese can be easily dissolved even in a neutral solution in a solid solution alloy of nickel and manganese and a solid solution alloy of nickel, copper and manganese. In view of this, it is possible to selectively remove manganese, and for the solid solution alloy of nickel and manganese and the solid solution alloy of nickel, copper and manganese produced by the above method, preferably, pH 4.5 ~ Remove manganese in an aqueous solution showing a neutrality of 8.5. This eliminates the use of a strong alkaline aqueous solution such as sodium hydroxide and selectively removes only manganese, thereby efficiently and easily using a porous microporous nickel body and a porous microporous nickel-copper alloy. It becomes possible to manufacture a mass.

すなわち、従来法では、例えば、ラネーニッケル合金等から微細孔ニッケル多孔質体を製造するためには、その製造過程で、水酸化ナトリウム水溶液や水酸化カリウム水溶液等の強いアルカリ性水溶液を用いる必要がある。   That is, in the conventional method, for example, in order to produce a microporous nickel porous body from a Raney nickel alloy or the like, it is necessary to use a strong alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution in the production process.

また、ラネーニッケル合金の場合、出発合金に対する成形加工は、学術的かつ技術的に困難であり、しかも、アルカリ性水溶液による活性化処理に用いる容器の材質が制限され、また、環境負荷が問題になる等、その対策に高コストが必要とされていた。   In the case of Raney nickel alloy, the forming process for the starting alloy is academically and technically difficult, the material of the container used for the activation treatment with the alkaline aqueous solution is limited, and the environmental load becomes a problem. Therefore, high cost was required for the countermeasure.

これに対して、本発明は、水酸化ナトリウム等の強いアルカリ性水溶液を用いる必要がなく、しかも、前駆体の出発合金を圧延、押出し、又はプレス等の塑性加工の手段による塑性加工に供して、任意の形態に成形した適宜の成形体から、その形状を安定に維持した微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体を作製し、提供することを可能にするものとして有用である。   In contrast, the present invention does not require the use of a strong alkaline aqueous solution such as sodium hydroxide, and the precursor alloy of the precursor is subjected to plastic working by means of plastic working such as rolling, extruding, or pressing, It is useful as one that makes it possible to produce and provide a microporous nickel porous body and a microporous nickel-copper alloy porous body that stably maintain the shape from an appropriate molded body molded into an arbitrary form. is there.

本発明の部材については、ニッケルは、有機合成における水素化反応や酸化反応等の触媒として用いられ、例えば、本発明のナノポーラスニッケルをマイクロ化学反応装置等に導入し、高性能化が期待される。塑性加工によりニッケル−マンガンのワイヤを作製し、そのワイヤをマイクロ化学反応装置組み立て時に配置したうえで、最後にマンガンを除去してナノポーラス化すれば、ニッケルナノポーラス網を持つマイクロ流路を簡単に導入できる。   Regarding the member of the present invention, nickel is used as a catalyst for hydrogenation reaction and oxidation reaction in organic synthesis. For example, the nanoporous nickel of the present invention is introduced into a microchemical reaction apparatus and the like, and high performance is expected. . If a nickel-manganese wire is made by plastic processing, and the wire is placed at the time of assembling the microchemical reaction apparatus, and finally the manganese is removed to make it nanoporous, a microchannel with a nickel nanoporous network can be easily introduced. it can.

また、例えば、溶融炭酸塩型燃料電池や固体酸化物型燃料電池においては、ニッケルが電極として用いられるが、ナノ多孔質化により表面積が増大し、性能が飛躍的にアップする可能性がある。この場合にも、塑性加工可能であることから、電極製造のプロセスの簡略化・低コスト化が期待される。   In addition, for example, in molten carbonate fuel cells and solid oxide fuel cells, nickel is used as an electrode. However, the surface area increases due to nanoporosity, and the performance may be dramatically improved. Also in this case, since plastic working is possible, simplification and cost reduction of the electrode manufacturing process are expected.

本発明により、次のような効果が奏される。
(1)本発明によれば、これまで、水酸化ナトリウム水溶液等の強いアルカリ性水溶液による処理によって作製されていた微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体を、強いアルカリ性水溶液による処理をすることなく、より安全に、かつ環境負荷を少なくして、微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体を製造し、提供することができる。
(2)強いアルカリ性水溶液による処理のための格別の設備が不要であり、装置全体を簡略化することができ、それにより、コストの低減が可能となる。
(3)本発明によれば、前駆体の出発合金を、塑性加工に供して、希望する形状、例えば、板、線、管、ボス等の単純形状から反応容器内壁等の複雑形状まで、任意の形状に成形したのち、マンガンを選択的に溶解除去することにより、微細多孔質化することで、その製品は、より複雑な形状を有する触媒装置や電池への微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の導入が実現可能となる。
(4)微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の成形の自由度が増すことにより、触媒装置や電池等の小型化、軽量化、高効率化等が可能である。
The present invention has the following effects.
(1) According to the present invention, a microporous nickel porous body and a microporous nickel-copper alloy porous body that have been produced by treatment with a strong alkaline aqueous solution such as an aqueous sodium hydroxide solution so far can be produced with a strong alkaline aqueous solution. Without treatment, the microporous nickel porous body and the microporous nickel-copper alloy porous body can be manufactured and provided more safely and with less environmental burden.
(2) Special equipment for treatment with a strong alkaline aqueous solution is not necessary, and the entire apparatus can be simplified, thereby reducing costs.
(3) According to the present invention, the starting alloy of the precursor is subjected to plastic working, and is arbitrarily selected from a desired shape, for example, a simple shape such as a plate, a wire, a tube, and a boss to a complex shape such as a reaction vessel inner wall. The product is made into a microporous by selectively dissolving and removing manganese, and the product can be made into a microporous nickel porous body and a microporous material for catalyst devices and batteries having more complicated shapes. Introduction of a porous nickel-copper alloy porous body can be realized.
(4) By increasing the degree of freedom in forming the microporous nickel porous body and the microporous nickel-copper alloy porous body, it is possible to reduce the size, weight, and efficiency of catalyst devices and batteries.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

本実施例においては、表1に示すニッケル−マンガン合金及びニッケル−銅−マンガン合金を、アーク溶解炉で溶解・凝固させることにより調製し、出発材料として、微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体を製造した。これらの出発材料を、表1に示す熱処理に供した後、速やかに水中に投入することで、急冷した。また、比較例として、ニッケルとアルミニウム組成からなるニッケル−アルミニウム合金をアーク溶解炉での溶解・凝固により調製し、表1に示す熱処理を行い、速やかに水中に投入し、急冷した(比較例1)。   In this example, a nickel-manganese alloy and a nickel-copper-manganese alloy shown in Table 1 were prepared by melting and solidifying them in an arc melting furnace. -A copper alloy porous body was produced. After these starting materials were subjected to the heat treatment shown in Table 1, they were rapidly cooled by being quickly put into water. Further, as a comparative example, a nickel-aluminum alloy having a nickel and aluminum composition was prepared by melting and solidifying in an arc melting furnace, subjected to the heat treatment shown in Table 1, rapidly put into water, and rapidly cooled (Comparative Example 1 ).

次いで、このようにして作製したボタン状のインゴットを、室温で、圧延に供した。図3に、実施例1のニッケルとマンガンの固溶合金の圧延板の写真を示す。図3に示すように、脆い材料を圧延した場合に見られるような、大きな割れは生じず、良好に圧延が可能であり、得られた圧延板も良好な状態であった。   Next, the button-shaped ingot produced in this way was subjected to rolling at room temperature. FIG. 3 shows a photograph of a rolled plate of a solid solution alloy of nickel and manganese of Example 1. As shown in FIG. 3, large cracks as observed when a brittle material was rolled did not occur, it was possible to roll well, and the obtained rolled plate was also in a good state.

一方、比較例1のニッケル−アルミニウム合金を圧延しようとした結果、図4に示すように、圧延しようとすると割れてしまい、全く圧延できなかった。表1に、各実施例及び比較例の合金の圧延性を示す。表1に示すように、ニッケル−マンガン合金及びニッケル−銅−マンガン合金では、0.5mmの厚さまで圧延が可能であったのに対し、比較例1のニッケル−アルミニウム合金は、圧延性に乏しい。表1では、注として、圧延性は、厚さ0.5mmまで大きな割れがなく圧延できた場合を○、割れてしまい全く圧延できなかった場合を×、で表記している。   On the other hand, as a result of trying to roll the nickel-aluminum alloy of Comparative Example 1, as shown in FIG. Table 1 shows the rolling properties of the alloys of the examples and comparative examples. As shown in Table 1, the nickel-manganese alloy and the nickel-copper-manganese alloy were able to be rolled to a thickness of 0.5 mm, whereas the nickel-aluminum alloy of Comparative Example 1 was poor in rollability. . In Table 1, as a note, the rollability is indicated by ◯ when the roll can be rolled without a large crack up to a thickness of 0.5 mm, and when the roll is broken and cannot be rolled at all.

次に、圧延により約0.4mmの厚さの板状にしたニッケルとマンガンの固溶合金、及びニッケルと銅とマンガンの固溶合金の圧延板を、1.15mol/L硫酸アンモニウム水溶液中に浸漬し、三極式の電気化学セルを用いて、−0.65V(飽和カロメル電極基準)の電位を42時間印加した。圧延板の組成は表2のとおりである。対極は、白金板とし、参照極は、飽和カロメル電極とした。   Next, a nickel-manganese solid solution alloy and a nickel-copper-manganese solid solution alloy rolled plate formed into a plate shape having a thickness of about 0.4 mm by rolling are immersed in a 1.15 mol / L ammonium sulfate aqueous solution. Then, a potential of −0.65 V (saturated calomel electrode reference) was applied for 42 hours using a tripolar electrochemical cell. The composition of the rolled plate is shown in Table 2. The counter electrode was a platinum plate and the reference electrode was a saturated calomel electrode.

電位印加の終了後、蒸留水により十分に洗浄したのち、真空乾燥し、走査電子顕微鏡により観察した。図5に、微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の走査電子顕微鏡写真を示す。図5に示すように、孔径や柱径が約15nmの微細多孔質構造が形成されていることが分かった。   After the potential application was completed, the sample was thoroughly washed with distilled water, vacuum-dried, and observed with a scanning electron microscope. FIG. 5 shows scanning electron micrographs of the microporous nickel porous body and the microporous nickel-copper alloy porous body. As shown in FIG. 5, it was found that a fine porous structure having a pore diameter and a column diameter of about 15 nm was formed.

また、電解質として用いた1.15mol/L硫酸アンモニウム水溶液のpHを測定した結果、pHは5.0であり、42時間の電位印加後のpHは8.0であった。これにより、本発明が、中性付近の水溶液で実施されたものであることが分かる。   As a result of measuring the pH of the 1.15 mol / L ammonium sulfate aqueous solution used as the electrolyte, the pH was 5.0, and the pH after potential application for 42 hours was 8.0. Thereby, it turns out that this invention is implemented with the aqueous solution near neutrality.

実施例1のニッケルとマンガンの固溶合金試料(圧延後)、及び所定の時間だけ電位を印加した後の試料について、X線回折分析(CuKα線源、電圧40kV、電流40mA)により、X線回折図形を測定した。図6に、ニッケルとマンガンの固溶合金の圧延材、及び所定の時間だけ電位を印加した試料のX線回折図形を示す。   X-ray diffraction analysis (CuKα ray source, voltage 40 kV, current 40 mA) of the solid solution alloy sample of nickel and manganese of Example 1 (after rolling) and the sample after applying a potential for a predetermined time were performed by X-ray. The diffraction pattern was measured. FIG. 6 shows an X-ray diffraction pattern of a rolled material of a solid solution alloy of nickel and manganese and a sample to which a potential is applied for a predetermined time.

図6から、出発材料のニッケルとマンガンの固溶合金を圧延した後のものでは、金属間化合物相に特徴的な多数のピークは見られず、ニッケルとマンガンの固溶合金の単相が主成分であることが分かる。また、溶解が進むにつれ、マンガンが除去され、1〜6時間でニッケルの単体が生成していることが分かる。   FIG. 6 shows that after rolling a solid solution alloy of nickel and manganese as a starting material, many peaks characteristic of the intermetallic compound phase are not observed, and the single phase of the solid solution alloy of nickel and manganese is mainly used. It turns out that it is an ingredient. Moreover, it turns out that manganese is removed and the simple substance of nickel is produced | generated in 1 to 6 hours as melt | dissolution progresses.

実施例1のニッケルとマンガンの固溶合金、及び実施例5、6、7のニッケルと銅とマンガンの固溶合金に42時間電位を印加した試料について、X線回折分析(CuKα線源、電圧40kV、電流40mA)により、X線回折図形を測定した。図7に、実施例1、5、6、7の固溶合金に42時間電位を印加した試料のX線回折図形を示す。   X-ray diffraction analysis (CuKα radiation source, voltage) of the sample in which a potential was applied to the solid solution alloy of nickel of Example 1 and the solid solution alloy of nickel, copper, and manganese of Examples 5, 6, and 7 for 42 hours. The X-ray diffraction pattern was measured at 40 kV and current of 40 mA. FIG. 7 shows an X-ray diffraction pattern of a sample in which a potential was applied to the solid solution alloys of Examples 1, 5, 6, and 7 for 42 hours.

ニッケルと銅とマンガンの固溶合金に電位を印加し、微細孔ニッケル−銅合金多孔質体とした試料では、純ニッケルと純銅の回折ピークの間の回折角において回折ピークが表れていることから、微細孔ニッケル−銅合金多孔質体においては、ニッケルと銅が単離しているのではなく、ニッケルと銅が原子オーダーで完全に固溶していることが分かる。   In a sample in which a potential was applied to a solid solution alloy of nickel, copper, and manganese to form a microporous nickel-copper alloy porous body, a diffraction peak appeared at a diffraction angle between the diffraction peaks of pure nickel and pure copper. It can be seen that in the microporous nickel-copper alloy porous body, nickel and copper are not isolated but nickel and copper are completely dissolved in atomic order.

以上詳述したように、本発明は、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体の製造方法、及びその微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体に係るものであり、本発明により、強いアルカリ性水溶液を用いることなしに、微細孔ニッケル多孔質体並びに微細孔ニッケル−銅合金多孔質体を製造することができる。本発明の微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の製造方法は、強いアルカリ性水溶液を使用しないため、排水処理の問題がなく、安全性の面を確保して、微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の製造過程をより簡略化し、コスト低減に繋げられる利点を有する。本発明によれば、ニッケルの微細多孔質化を、出発合金の塑性加工と組み合わせて実施することができる。また、本発明では、出発材の塑性加工が容易であるため、微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の成形と形状の自由度が増し、装置設計の自由度も増すことにより、触媒装置や電池等の小型化、軽量化、高効率化等が可能である。本発明は、より高性能な触媒装置や電極等の開発を可能とする微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の製造方法及びその製品を提供するものとして有用である。   As described above in detail, the present invention relates to a microporous nickel porous body, a method for producing a microporous nickel-copper alloy porous body, and a microporous nickel porous body and a microporous nickel-copper alloy porous body. Therefore, according to the present invention, a microporous nickel porous body and a microporous nickel-copper alloy porous body can be produced without using a strong alkaline aqueous solution. The method for producing the microporous nickel porous body and the microporous nickel-copper alloy porous body of the present invention does not use a strong alkaline aqueous solution, so there is no problem of wastewater treatment, ensuring a safety aspect, The manufacturing process of the nickel porous body and the microporous nickel-copper alloy porous body is further simplified, and the cost can be reduced. According to the present invention, the microporosity of nickel can be implemented in combination with the plastic processing of the starting alloy. In the present invention, since plastic processing of the starting material is easy, the degree of freedom in forming and shape of the microporous nickel porous body and the microporous nickel-copper alloy porous body is increased, and the degree of freedom in device design is also increased. As a result, it is possible to reduce the size, weight, and efficiency of the catalyst device and battery. INDUSTRIAL APPLICABILITY The present invention is useful as a method for producing a microporous nickel porous body, a microporous nickel-copper alloy porous body, and a product thereof that enable development of higher performance catalyst devices and electrodes.

ニッケル−マンガン2元系状態図を示す。A nickel-manganese binary system phase diagram is shown. ニッケル−銅−マンガン状態図を示す。A nickel-copper-manganese phase diagram is shown. 本発明の製造方法の一例として作製したニッケルとマンガンの固溶合金の圧延板の写真を示す。The photograph of the rolled sheet of the solid solution alloy of nickel and manganese produced as an example of the manufacturing method of this invention is shown. 比較例として作製したニッケルとアルミニウムの固溶合金が圧延できなかった状態の写真を示す。The photograph of the state which the solid solution alloy of nickel and aluminum produced as a comparative example was not able to be rolled is shown. 本発明の一例として作製した微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体の走査電子顕微鏡写真を示す。The scanning electron micrograph of the microporous nickel porous body produced as an example of this invention and a microporous nickel-copper alloy porous body is shown. 本発明の一例として作製したニッケルとマンガンの固溶合金の圧延材、及び所定の時間だけ電位を印加した試料のX線回折図形を示す。The rolling material of the solid solution alloy of nickel and manganese produced as an example of this invention, and the X-ray-diffraction figure of the sample which applied the electric potential only for predetermined time are shown. 本発明の一例として作製した微細孔ニッケル多孔質体及び微細孔ニッケル−銅合金多孔質体のX線回折図形を示す。The X-ray-diffraction figure of the microporous nickel porous body produced as an example of this invention and a microporous nickel-copper alloy porous body is shown.

Claims (20)

強いアルカリ性水溶液による活性化処理をすることなく、微細孔ニッケル多孔質体を製造する方法であって、出発合金としてニッケルとマンガンの固溶合金を用いて、当該固溶合金の所定の成形又は非成形前駆体から、マンガンを水溶液中で選択的に溶解除去することにより、微細孔ニッケル多孔質体を製造することを特徴とする微細孔ニッケル多孔質体の製造方法。   A method for producing a microporous nickel porous body without performing an activation treatment with a strong alkaline aqueous solution, using a solid solution alloy of nickel and manganese as a starting alloy, A method for producing a microporous nickel porous body, characterized in that a microporous nickel porous body is produced by selectively dissolving and removing manganese in an aqueous solution from a molding precursor. ニッケルの原子組成比が40%以下の組成であるニッケルとマンガンの固溶合金を用いる、請求項1に記載の微細孔ニッケル多孔質体の製造方法。   The manufacturing method of the microporous nickel porous body of Claim 1 using the solid solution alloy of nickel and manganese whose atomic composition ratio of nickel is 40% or less. 720〜1020℃で熱処理を受け、ニッケルとマンガンが面心立方構造を有して単一相を形成した、当該ニッケルとマンガンの固溶合金を用いる、請求項1又は2に記載の微細孔ニッケル多孔質体の製造方法。   The microporous nickel according to claim 1 or 2, wherein the nickel and manganese have a face-centered cubic structure and a single phase is formed, and the nickel and manganese solid solution alloy is used. A method for producing a porous body. ニッケルとマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンをpH4.5〜8.5の中性を示す水溶液中で選択的に溶解除去する、請求項1から3のいずれか1項に記載の微細孔ニッケル多孔質体の製造方法。   4. The manganese is selectively dissolved and removed in an aqueous solution having a neutral pH of 4.5 to 8.5 from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel and manganese. 2. A method for producing a microporous nickel porous material according to item 1. ニッケルとマンガンの固溶合金を、圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工して成形した成形体から、マンガンを水溶液中で選択的に溶解除去する、請求項1から4のいずれか1項に記載の微細孔ニッケル多孔質体の製造方法。   The manganese is selectively dissolved and removed in an aqueous solution from a molded body formed by plastic processing of a solid solution alloy of nickel and manganese into an arbitrary shape by a method of plastic processing including rolling, extrusion, or pressing. Item 5. The method for producing a microporous nickel porous material according to any one of Items 1 to 4. ニッケルとマンガンが面心立方構造を有して単一相を形成した、当該ニッケルとマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンが選択的に溶解除去された微細孔構造を有することを特徴とする微細孔ニッケル多孔質体。   A microporous structure in which manganese is selectively dissolved and removed from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel and manganese, in which nickel and manganese have a face-centered cubic structure to form a single phase. A microporous nickel porous body characterized by comprising: 圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工されたニッケルとマンガンの固溶合金の成形体から、マンガンが選択的に溶解除去された微細孔構造を有する、請求項6に記載の微細孔ニッケル多孔質体。   Claims have a microporous structure in which manganese is selectively dissolved and removed from a solid solution alloy of nickel and manganese plastically processed into an arbitrary shape by a method of plastic processing including rolling, extrusion, or pressing. Item 7. A microporous nickel porous material according to Item 6. ニッケルとマンガンの固溶合金のニッケルの原子組成比が40%以下の組成である、請求項6に記載の微細孔ニッケル多孔質体。   The microporous nickel porous body according to claim 6, wherein the atomic composition ratio of nickel in the solid solution alloy of nickel and manganese is a composition of 40% or less. 請求項6から8のいずれかに記載の微細孔ニッケル多孔質体を構成要素として含むことを特徴とする微細孔ニッケル多孔質体部材。   A microporous nickel porous body member comprising the microporous nickel porous body according to any one of claims 6 to 8 as a constituent element. 部材が、触媒、又は電極である、請求項9に記載の微細孔ニッケル多孔質体部材。   The microporous nickel porous body member according to claim 9, wherein the member is a catalyst or an electrode. 強いアルカリ性水溶液による活性化処理をすることなく、微細孔ニッケル−銅合金多孔質体を製造する方法であって、出発合金としてニッケルと銅とマンガンの固溶合金を用いて、当該固溶合金の所定の成形又は非成形前駆体から、マンガンを水溶液中で選択的に溶解除去することにより、微細孔ニッケル−銅合金多孔質体を製造することを特徴とする微細孔ニッケル−銅合金多孔質体の製造方法。   A method for producing a microporous nickel-copper alloy porous body without performing an activation treatment with a strong alkaline aqueous solution, and using a solid solution alloy of nickel, copper and manganese as a starting alloy, A microporous nickel-copper alloy porous body is produced by selectively dissolving and removing manganese in an aqueous solution from a predetermined molded or non-molded precursor. Manufacturing method. ニッケルと銅の原子組成比の和が40%以下の組成であるニッケルと銅とマンガンの固溶合金を用いる、請求項11に記載の微細孔ニッケル−銅合金多孔質体の製造方法。   The manufacturing method of the microporous nickel-copper alloy porous body of Claim 11 using the solid solution alloy of nickel, copper, and manganese whose sum of the atomic composition ratio of nickel and copper is 40% or less. 720〜1020℃で熱処理を受け、ニッケルと銅とマンガンが面心立方構造を有して単一相を形成した、当該ニッケルと銅とマンガンの固溶合金を用いる、請求項11又は12に記載の微細孔ニッケル−銅合金多孔質体の製造方法。   The heat treatment is performed at 720 to 1020 ° C, and the solid solution alloy of nickel, copper, and manganese in which nickel, copper, and manganese have a face-centered cubic structure to form a single phase is used. Of producing a microporous nickel-copper alloy porous body. ニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンをpH4.5〜8.5の中性を示す水溶液中で選択的に溶解除去する、請求項11から13のいずれか1項に記載の微細孔ニッケル−銅合金多孔質体の製造方法。   The manganese is selectively dissolved and removed in an aqueous solution having a neutral pH of 4.5 to 8.5 from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel, copper and manganese. The manufacturing method of the microporous nickel-copper alloy porous body of any one. ニッケルと銅とマンガンの固溶合金を、圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工して成形した成形体から、マンガンを水溶液中で選択的に溶解除去する、請求項11から14のいずれか1項に記載の微細孔ニッケル−銅合金多孔質体の製造方法。   Manganese is selectively dissolved and removed in an aqueous solution from a compact formed by forming a solid solution alloy of nickel, copper, and manganese into a desired shape by rolling, extruding, or plastic working including pressing. The method for producing a microporous nickel-copper alloy porous body according to any one of claims 11 to 14. ニッケルと銅とマンガンが面心立方構造を有して単一相を形成した、当該ニッケルと銅とマンガンの固溶合金の所定の成形又は非成形前駆体から、マンガンが選択的に溶解除去された微細孔構造を有することを特徴とする微細孔ニッケル−銅合金多孔質体。   Manganese is selectively dissolved and removed from a predetermined shaped or non-formed precursor of a solid solution alloy of nickel, copper, and manganese, in which nickel, copper, and manganese have a face-centered cubic structure to form a single phase. A microporous nickel-copper alloy porous body characterized by having a microporous structure. 圧延、押し出し、又はプレスを含む塑性加工の方法により、任意の形状に塑性加工されたニッケルと銅とマンガンの固溶合金の成形体から、マンガンが選択的に溶解除去された微細孔構造を有する、請求項16に記載の微細孔ニッケル−銅合金多孔質体。   It has a fine pore structure in which manganese is selectively dissolved and removed from a solid solution alloy of nickel, copper, and manganese plastically processed into an arbitrary shape by a method of plastic processing including rolling, extrusion, or pressing. The microporous nickel-copper alloy porous body according to claim 16. ニッケルと銅とマンガンの固溶合金の、ニッケルと銅の原子組成比の和が40%以下の組成である、請求項16に記載の微細孔ニッケル−銅合金多孔質体。   The microporous nickel-copper alloy porous body according to claim 16, wherein the solid solution alloy of nickel, copper and manganese has a composition in which the sum of the atomic composition ratios of nickel and copper is 40% or less. 請求項16から18のいずれかに記載の微細孔ニッケル−銅合金多孔質体を構成要素として含むことを特徴とする微細孔ニッケル−銅合金多孔質体部材。   A microporous nickel-copper alloy porous body member comprising the microporous nickel-copper alloy porous body according to any one of claims 16 to 18 as a constituent element. 部材が、触媒、又は電極である、請求項19に記載の微細孔ニッケル−銅合金多孔質体部材。   The microporous nickel-copper alloy porous body member according to claim 19, wherein the member is a catalyst or an electrode.
JP2008326622A 2008-12-22 2008-12-22 Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby Pending JP2010144246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326622A JP2010144246A (en) 2008-12-22 2008-12-22 Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326622A JP2010144246A (en) 2008-12-22 2008-12-22 Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby

Publications (1)

Publication Number Publication Date
JP2010144246A true JP2010144246A (en) 2010-07-01

Family

ID=42564961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326622A Pending JP2010144246A (en) 2008-12-22 2008-12-22 Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby

Country Status (1)

Country Link
JP (1) JP2010144246A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059082A (en) * 2013-09-20 2015-03-30 国立大学法人東北大学 Porous alloy compound, method for producing the same, and electric double-layer capacitor
JP2015085249A (en) * 2013-10-29 2015-05-07 国立大学法人東北大学 Porous nickel alloy compound, production method thereof and catalyst
JP2016169429A (en) * 2015-03-13 2016-09-23 国立大学法人東北大学 Porous metal and manufacturing method thereof, and power storage device
CN107381645A (en) * 2017-06-23 2017-11-24 中国工程物理研究院材料研究所 A kind of method that room temperature corrosion prepares alkaline oxygenated manganese nanotube
CN108359827A (en) * 2018-02-01 2018-08-03 上海交通大学 The preparation method of the porous antiferromagnetic marmems of MnNi
JP2019119928A (en) * 2017-12-29 2019-07-22 ツィンファ ユニバーシティ Manufacturing method of nano porous copper
KR20200048343A (en) * 2018-10-30 2020-05-08 영남대학교 산학협력단 Metal form, and method of menufacturing the same, and lithium secondary battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367609A (en) * 2001-06-11 2002-12-20 Matsushita Electric Ind Co Ltd Manufacturing method of hydrogen storage alloy electrode material
JP2007324120A (en) * 2006-06-01 2007-12-13 General Electric Co <Ge> Porous nickel film forming method, relating article, and component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367609A (en) * 2001-06-11 2002-12-20 Matsushita Electric Ind Co Ltd Manufacturing method of hydrogen storage alloy electrode material
JP2007324120A (en) * 2006-06-01 2007-12-13 General Electric Co <Ge> Porous nickel film forming method, relating article, and component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059082A (en) * 2013-09-20 2015-03-30 国立大学法人東北大学 Porous alloy compound, method for producing the same, and electric double-layer capacitor
JP2015085249A (en) * 2013-10-29 2015-05-07 国立大学法人東北大学 Porous nickel alloy compound, production method thereof and catalyst
JP2016169429A (en) * 2015-03-13 2016-09-23 国立大学法人東北大学 Porous metal and manufacturing method thereof, and power storage device
CN107381645A (en) * 2017-06-23 2017-11-24 中国工程物理研究院材料研究所 A kind of method that room temperature corrosion prepares alkaline oxygenated manganese nanotube
JP2019119928A (en) * 2017-12-29 2019-07-22 ツィンファ ユニバーシティ Manufacturing method of nano porous copper
CN108359827A (en) * 2018-02-01 2018-08-03 上海交通大学 The preparation method of the porous antiferromagnetic marmems of MnNi
KR20200048343A (en) * 2018-10-30 2020-05-08 영남대학교 산학협력단 Metal form, and method of menufacturing the same, and lithium secondary battery comprising the same
KR102178627B1 (en) * 2018-10-30 2020-11-16 영남대학교 산학협력단 Metal form, and method of menufacturing the same, and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
Juarez et al. Nanoporous metals with structural hierarchy: A review
Yu et al. Nanoporous metals by dealloying multicomponent metallic glasses
JP2010144246A (en) Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby
Wang et al. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation
Swain et al. Recent trends in template assisted 3D porous materials for electrochemical supercapacitors
Qiu et al. Hierarchical nanoporous metal/metal-oxide composite by dealloying metallic glass for high-performance energy storage
Jiang et al. Nanoarchitectonics of metallene materials for electrocatalysis
CN108767277B (en) Fe-Pd-based nano-porous material and preparation method thereof
KR101478286B1 (en) Manufacturing method of metal foam and metal foam manufactured thereby
CN106916988A (en) A kind of preparation method of nano porous metal film
Zhang et al. Entropy-stabilized multicomponent porous spinel nanowires of NiFeXO4 (X= Fe, Ni, Al, Mo, Co, Cr) for efficient and durable electrocatalytic oxygen evolution reaction in alkaline medium
Dan et al. Nanoporous palladium fabricated from an amorphous Pd42. 5Cu30Ni7. 5P20 precursor and its ethanol electro-oxidation performance
CN110146531B (en) Large-size bicontinuous porous foam bismuth and preparation method thereof
CN105543531A (en) Dealloying method for preparing micron nano-porous copper block body
Fu et al. pH-Controlled dealloying route to hierarchical bulk nanoporous zn derived from metastable alloy for hydrogen generation by hydrolysis of Zn in neutral water
Yadav et al. Nanorods to hexagonal nanosheets of CuO-doped manganese oxide nanostructures for higher electrochemical supercapacitor performance
Pang et al. Hierarchical nanoporous Pd 1 Ag 1 alloy enables efficient electrocatalytic nitrogen reduction under ambient conditions
Jo et al. Novel method of powder-based processing of copper nanofoams for their potential use in energy applications
Kunduraci Dealloying technique in the synthesis of lithium-ion battery anode materials
CN103938014A (en) Nano-porous Pd material prepared through quasi-crystal de-alloying and preparation process of nano-porous Pd material
CN113290242A (en) Micro-nano porous functional device, additive manufacturing method and application thereof
CN109023412A (en) A kind of nanoporous ambrose alloy/amorphous combination electrode material and preparation method thereof
Das et al. The versatility of the dynamic hydrogen bubble template derived copper foam on the emerging energy applications: progress and future prospects
Zhang et al. Nanoporous Ag–ZrO2 composites prepared by chemical dealloying for borohydride electro-oxidation
Mishra et al. Synthesis of fine skeletal structure on Al–Cu–Co decagonal quasicrystals for hydrogen production through steam reforming of methanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120312

A02 Decision of refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A02