JP2010144184A - Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint - Google Patents

Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint Download PDF

Info

Publication number
JP2010144184A
JP2010144184A JP2008319162A JP2008319162A JP2010144184A JP 2010144184 A JP2010144184 A JP 2010144184A JP 2008319162 A JP2008319162 A JP 2008319162A JP 2008319162 A JP2008319162 A JP 2008319162A JP 2010144184 A JP2010144184 A JP 2010144184A
Authority
JP
Japan
Prior art keywords
cobalt
chromium
treatment
alloy
biomedical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008319162A
Other languages
Japanese (ja)
Inventor
Takahiro Iwami
敬大 石水
Shigenobu Nanba
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kyocera Medical Corp
Original Assignee
Kobe Steel Ltd
Kyocera Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kyocera Medical Corp filed Critical Kobe Steel Ltd
Priority to JP2008319162A priority Critical patent/JP2010144184A/en
Publication of JP2010144184A publication Critical patent/JP2010144184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biomedical cast substrate of a cobalt-chromium-based alloy, of which the surface can be uniformly and sufficiently hardened when the substrate has been subjected to diffusion hardening treatment such as carburizing treatment and nitriding treatment, and to provide a biomedical sliding alloy member which is obtained by subjecting the cast substrate of the cobalt-chromium-based alloy to the diffusion hardening treatment such as the carburizing treatment and the nitriding treatment and stably shows excellent wear resistance. <P>SOLUTION: The biomedical cast substrate of the cobalt-chromium-based alloy superior in diffusion hardening treatability is a biomedical cast substrate formed from a cobalt-chromium-based alloy; and includes 0.1 mass% or more nitrogen (N) and has a metallurgical structure in which an fcc (face centered cubic lattice) phase occupies 50% or more by a volume fraction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、拡散硬化処理性に優れた生体用コバルト・クロム基合金鋳造基材、生体用摺動合金部材および人工関節に関するものであり、例えば浸炭処理、窒化処理等の拡散硬化処理により基材表面の均一な硬化を図ることのできる(本発明では、この様な特性を「拡散硬化処理性に優れた」という)生体用コバルト・クロム基合金鋳造基材、該コバルト・クロム基合金鋳造基材に上記浸炭処理、窒化処理等の拡散硬化処理を施して得られる、優れた耐摩耗性を安定して発揮する生体用摺動合金部材、および該生体用摺動合金部材を用いた人工関節に関するものである。   The present invention relates to a biomedical cobalt-chromium based alloy cast base material, a biocompatible sliding alloy member, and an artificial joint, which are excellent in diffusion hardenability. For example, the base material is obtained by a diffusion hardening process such as carburizing or nitriding. Uniform surface hardening (in the present invention, such a characteristic is said to be “excellent in diffusion hardening process”), a cobalt-chromium alloy casting base for living body, and the cobalt-chromium alloy casting base A sliding alloy member for a living body that stably exhibits excellent wear resistance obtained by subjecting the material to diffusion hardening treatment such as carburizing treatment and nitriding treatment, and an artificial joint using the sliding alloy member for living body It is about.

コバルト・クロム基合金は、生体用金属材料の中でも生体適合性、強度、耐摩耗性、耐食性に優れているため、古くから人工股関節等の人工関節の摺動部材、インプラント部材等に用いられている。例えば特許文献1には、成分組成を規定したコバルト−クロム−モリブデン合金が示されている。また特許文献2には、塑性加工性を向上させることを目的に、成分組成およびγ相量を規定したCo基合金の製造方法が示されている。   Cobalt-chromium-based alloys are excellent in biocompatibility, strength, wear resistance, and corrosion resistance among biomaterials, and have long been used for sliding members of artificial joints such as artificial hip joints and implant members. Yes. For example, Patent Document 1 discloses a cobalt-chromium-molybdenum alloy having a defined component composition. Patent Document 2 discloses a method for producing a Co-based alloy in which the component composition and the amount of γ phase are defined for the purpose of improving plastic workability.

この様なコバルト・クロム基合金を、特に生体用摺動部材に用いる場合、その表面が摩耗しやすいことから、表面硬化のための処理として、例えば浸炭処理、窒化処理等が一般に行われている。例えば特許文献3、特許文献4には、コバルト・クロム基合金材料に浸炭処理を施す方法、およびそれによって達成される特性(耐食性を低下させずに表面硬度と耐摩耗性を向上させる等)が示されている。   When such a cobalt-chromium-based alloy is used for a living body sliding member in particular, since the surface is easily worn, for example, carburizing treatment, nitriding treatment, etc. are generally performed as a treatment for surface hardening. . For example, Patent Document 3 and Patent Document 4 include a method of carburizing a cobalt-chromium-based alloy material, and characteristics achieved thereby (such as improving surface hardness and wear resistance without reducing corrosion resistance). It is shown.

また特許文献5には、Co−Cr−Mo合金を含む金属材料に対し、拡散硬化処理を施すことが開示されており、具体的には、内部酸化法や内部窒化法、窒素、酸素または炭素を使用する付加的な隙間的拡散強化法により、合金表面の強化と硬化を図った旨が記載されている。
特開昭54−10224号公報 特開2008−111177号公報 特表2005−524772号公報 特開2007−277710号公報 特許第3471041号公報
Patent Document 5 discloses that a diffusion hardening treatment is performed on a metal material containing a Co—Cr—Mo alloy. Specifically, an internal oxidation method, an internal nitridation method, nitrogen, oxygen, or carbon is disclosed. It is described that the surface of the alloy was strengthened and hardened by an additional interstitial diffusion strengthening method using the above.
Japanese Patent Laid-Open No. 54-10224 JP 2008-1111177 A JP-T-2005-524772 JP 2007-277710 A Japanese Patent No. 3471401

しかしコバルト・クロム基合金からなる基材は、その製造方法、添加元素量、熱処理等によってミクロ組織(以下、金属組織、または単に組織ということがある)が大きく変化し、結果として特性も大きく変化する。その中でも特に、代表的な基材の製造方法である金属を溶かして型に流し込み、凝固させることによって得られる鋳放し状態のものは、組織が非常に不均一な状態(溶融金属が凝固する過程で生じる元素濃度の偏り(偏析)が存在する状態をいう。以下同じ)となっている。   However, the base material made of a cobalt-chromium alloy has a large change in microstructure (hereinafter sometimes referred to as a metal structure or simply a structure) due to its manufacturing method, amount of added elements, heat treatment, etc., and as a result, the characteristics also change greatly. To do. Among them, in particular, the as-cast state obtained by melting the metal, which is a representative substrate manufacturing method, pouring into a mold and solidifying it, has a very uneven structure (the process of solidifying the molten metal) This means a state in which there is a deviation (segregation) in the element concentration that occurs in the above.

上記不均一な状態の組織を均一にする方法として、鋳放し状態の合金を高温で長時間熱処理することが挙げられる。一方、近年では、人工関節の代表的な摺動部材の組み合わせとして、コバルト・クロム基合金摺動部材とコバルト・クロム基合金摺動部材を組み合わせる場合があるが、この様な組み合わせの場合、該コバルト・クロム基合金中の炭素量を高め、炭素と金属の化合物である炭化物をより多く分散させることにより、耐摩耗性が高められる知見が得られている。よって、該炭化物が消失してしまう高温での熱処理を行わない場合が多い。   An example of a method for making the structure in the non-uniform state uniform is to heat-treat the as-cast alloy at a high temperature for a long time. On the other hand, in recent years, as a typical combination of sliding members of artificial joints, there are cases where a cobalt-chromium based alloy sliding member and a cobalt-chromium based alloy sliding member are combined. It has been found that the wear resistance is improved by increasing the amount of carbon in the cobalt-chromium-based alloy and dispersing more carbide, which is a compound of carbon and metal. Therefore, heat treatment at a high temperature at which the carbide disappears is often not performed.

上記の通り、耐摩耗性向上のため高温の熱処理を行わない傾向にあるが、該高温での熱処理を行わないままでは、組織の不均一な基材に対し、浸炭処理、窒化処理等の拡散硬化処理を施すことなる。しかし組織の不均一な基材に対して拡散硬化処理を施すと、同一処理面で、局所的な硬化不足が生じたり、硬化処理層の厚さ方向で固溶元素(例えば浸炭処理における炭素)が再現性のない元素濃度分布を示すなどして、耐摩耗性にバラツキが生じやすい、といった問題がある。   As described above, there is a tendency not to perform high-temperature heat treatment to improve wear resistance, but without performing heat treatment at the high temperature, diffusion such as carburizing treatment, nitriding treatment, etc., on a substrate having a non-uniform structure. A curing process is performed. However, if diffusion hardening treatment is applied to a substrate with a non-uniform structure, local hardening may occur on the same treated surface, or solid solution elements (for example, carbon in carburizing treatment) in the thickness direction of the hardening treatment layer. However, there is a problem that the wear resistance tends to vary due to, for example, an element concentration distribution with no reproducibility.

本発明はこの様な事情に鑑みてなされたものであって、その目的は、拡散硬化処理を施した場合に、基材表面の均一な硬化を十分に図ることのできる生体用コバルト・クロム基合金鋳造基材、該コバルト・クロム基合金鋳造基材に上記拡散硬化処理を施して得られる、優れた耐摩耗性を安定して発揮する生体用摺動合金部材、および該生体用摺動合金部材を用いて得られる信頼性の高い人工関節を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to provide a bio-cobalt-chromium group that can sufficiently achieve uniform curing of the substrate surface when subjected to diffusion hardening treatment. Alloy casting base material, sliding alloy member for living body which is obtained by subjecting the cobalt-chromium based alloy casting base material to the above diffusion hardening treatment, and which exhibits excellent wear resistance stably, and the sliding alloy for living body An object of the present invention is to provide a highly reliable artificial joint obtained by using a member.

本発明に係る生体用コバルト・クロム基合金鋳造基材とは、コバルト・クロム基合金からなる生体用鋳造基材であって、窒素(N)を0.1質量%以上含むと共に、金属組織におけるfcc(面心立方格子)相の体積分率が50%(金属組織において、%は体積%を示す。以下同じ)以上であるところに特徴を有している。   The living body cobalt-chromium based alloy casting base material according to the present invention is a living body casting base material made of a cobalt-chromium base alloy, containing 0.1% by mass or more of nitrogen (N), and in a metal structure. It is characterized in that the volume fraction of the fcc (face centered cubic lattice) phase is 50% or more (in the metal structure,% indicates volume%, the same applies hereinafter).

前記コバルト・クロム基合金の前記N量は、上限が0.25質量%であることが好ましく、かつN以外の元素の含有量は、ASTM F75−07に規定の範囲内にあることが好ましい。   The upper limit of the N content of the cobalt-chromium-based alloy is preferably 0.25% by mass, and the content of elements other than N is preferably within the range specified in ASTM F75-07.

本発明のコバルト・クロム基合金鋳造基材は、前記金属組織の平均結晶粒径が1000μm以上のものでもある。   The cobalt-chromium based alloy cast base material of the present invention is also one having an average crystal grain size of the metal structure of 1000 μm or more.

本発明には、前記コバルト・クロム基合金鋳造基材であって鋳放し状態のものに、拡散硬化処理(例えば浸炭処理)を施して得られる生体用摺動合金部材も含まれる。更には、摺動面を構成する2つの摺動部材がコバルト・クロム基合金摺動部材からなる人工関節であって、前記コバルト・クロム基合金摺動部材の少なくとも1つが、前記生体用摺動合金部材である点に特徴を有する人工関節も含まれる。   The present invention also includes living body sliding alloy members obtained by subjecting the above-described cobalt-chromium-based alloy cast base material to an as-cast state by diffusion hardening treatment (for example, carburization treatment). Further, the two sliding members constituting the sliding surface are artificial joints made of a cobalt-chromium based alloy sliding member, and at least one of the cobalt-chromium based alloy sliding members is the living body sliding An artificial joint characterized in that it is an alloy member is also included.

本発明によれば、組織が不均一となりやすい鋳放し状態のコバルト・クロム基合金鋳造基材を拡散硬化処理に供した場合であっても、該拡散硬化処理により均一な硬化層の形成された生体用摺動合金部材を得ることができる。その結果、高強度かつ優れた耐摩耗性、更には優れた耐食性を安定して発揮し続ける生体用摺動合金部材、および該生体用摺動合金部材を用いて得られる信頼性の高い人工関節等を提供できる。   According to the present invention, a uniform hardened layer is formed by the diffusion hardening process even when the as-cast cobalt-chromium base alloy casting base material, which is likely to have a non-uniform structure, is subjected to the diffusion hardening process. A sliding alloy member for a living body can be obtained. As a result, a sliding alloy member for a living body that continues to exhibit high strength, excellent wear resistance, and further excellent corrosion resistance, and a highly reliable artificial joint obtained by using the sliding alloy member for living body Etc. can be provided.

本発明者は、特に、拡散硬化処理により、局所的な硬化不足のない均一な硬化層を得ることのできる生体用コバルト・クロム基合金鋳造基材を実現すべく鋭意研究を行った。その結果、該コバルト・クロム基合金鋳造基材の金属組織を、結晶構造がfcc(面心立方格子)である相(fcc相、γ相ともいう)が一定量以上占める組織とすればよいことを見出した。以下、本発明について詳述する。尚、下記では、拡散硬化処理の代表例として浸炭処理を行った場合について述べているが、本発明はこれに限定されず、後述する通り、拡散硬化処理として、窒化処理やホウ化処理、酸化処理等を行った場合についても、本発明の技術的範囲に含まれる。   The present inventor has intensively studied to realize a cobalt-chromium based alloy casting base material for biomedical use capable of obtaining a uniform hardened layer without local shortage of hardening, in particular, by diffusion hardening treatment. As a result, the metal structure of the cobalt-chromium based alloy cast base material may be a structure in which a phase (also referred to as fcc phase or γ phase) having a crystal structure of fcc (face-centered cubic lattice) occupies a certain amount or more. I found. Hereinafter, the present invention will be described in detail. In the following, a case where carburizing treatment is performed as a representative example of diffusion hardening treatment is described. However, the present invention is not limited to this, and as will be described later, as diffusion hardening treatment, nitriding treatment, boride treatment, oxidation treatment is performed. The case where processing is performed is also included in the technical scope of the present invention.

まず本発明者は、局所的な硬化不足の発生が金属組織に起因しているのではと考え、種々の金属組織のコバルト・クロム基合金鋳造基材(鋳放し状態)を作製し、後述する実施例に示す方法で、浸炭処理を行った後、浸炭処理材の同一面内において、複数箇所のビッカース硬度(以下、単に硬度ということがある)を測定した。測定は、ビッカース硬度測定装置を用い、荷重50gfとして、1個の試料につき任意の10箇所を測定した。   First, the present inventor considers that the occurrence of local insufficiency is caused by the metal structure, and produces cobalt-chromium based alloy cast base materials (as cast) having various metal structures, which will be described later. After carburizing by the method shown in the examples, Vickers hardness (hereinafter sometimes simply referred to as hardness) at a plurality of locations was measured in the same plane of the carburized material. The measurement was carried out using a Vickers hardness measuring apparatus and measuring 10 arbitrary points per sample with a load of 50 gf.

その結果、同一面内において硬度がばらついた試料と、硬度のバラツキがほとんど生じなかった試料があることが分かった。そこで、同一面内において硬度がばらついた(以下、この様に、同一面内において生じた硬度のバラツキを「硬度ムラ」ということがある)試料(後述する実施例のNo.2)と、上記硬度ムラがほとんど生じなかった試料(後述する実施例のNo.7)を対象に、硬度ムラの状態や発生原因について調べた。   As a result, it was found that there were samples in which the hardness varied in the same plane and samples in which the hardness variation hardly occurred. Therefore, the hardness varies in the same plane (hereinafter, the variation in hardness generated in the same plane may be referred to as “hardness unevenness”) (No. 2 in Examples described later), and the above The state of hardness unevenness and the cause of occurrence were examined for a sample (No. 7 in Examples described later) in which the hardness unevenness hardly occurred.

まず、硬度ムラが生じた試料(No.2)について、同一面内で測定した上記複数箇所のビッカース硬度を、比較的高い硬度と比較的低い硬度に分けた結果、表1に示す通り、比較的高い硬度は、鋳造後から存在している析出物(炭化物)の周囲を測定したものであり、一方、比較的低い硬度は、該析出物から離れた領域を測定したものであることがわかった。このことは、図1として示すNo.2のビッカース圧痕写真(光学顕微鏡写真、圧痕が小さいほど硬さが硬いことを示している)において、析出物の周囲とそれ以外の領域でビッカース圧痕の大きさが相違していることからも確認できる。尚、No.7で測定したビッカース硬度を、析出物(炭化物)の周囲とそれ以外の領域(該析出物から離れた領域)に分けた結果も表1に併記している。また、No.7のビッカース圧痕写真を図2に示すが、これら表1および図2から、No.7については、測定箇所に関係なく硬度がほぼ一定であることがわかる。   First, with respect to the sample (No. 2) in which the hardness unevenness occurred, the Vickers hardness measured in the same plane was divided into a relatively high hardness and a relatively low hardness. It can be seen that the high hardness is measured around the precipitate (carbide) existing after casting, while the relatively low hardness is measured in a region away from the precipitate. It was. This is because No. 1 shown in FIG. It is also confirmed from the Vickers indentation photo of No. 2 (optical micrograph, indicating that the smaller the indentation, the harder the hardness), the Vickers indentation size is different between the periphery of the precipitate and the other areas. it can. No. Table 1 also shows the results of dividing the Vickers hardness measured in 7 into the periphery of the precipitate (carbide) and the other region (region away from the precipitate). No. The Vickers impression photograph of No. 7 is shown in FIG. For No. 7, it can be seen that the hardness is almost constant regardless of the measurement location.

更に、上記硬度ムラの発生原因をつきとめるため、上記No.2の金属組織を調べた。具体的には、電子線後方散乱回折(Electron Back Scattering Pattern、EBSP)法により浸炭処理前のNo.2の基材の結晶方位解析を実施した。その結果を図3に示す。図3(a)の青色領域がfcc相の領域を示しており、図3(b)の赤色領域がhcp相(六方最密格子、ε相ともいう)の領域を示している。この図3から、不定形の析出物の周囲がfcc相の領域となっており、析出物から離れた領域はhcp相となっていることがわかる。   Furthermore, in order to find out the cause of the occurrence of the hardness unevenness, Two metallographic structures were examined. Specifically, No. before carburizing treatment is performed by an electron back scattering pattern (EBSP) method. The crystal orientation analysis of the base material of 2 was implemented. The result is shown in FIG. The blue region in FIG. 3A indicates the fcc phase region, and the red region in FIG. 3B indicates the hcp phase (also referred to as a hexagonal close-packed lattice or ε phase) region. From FIG. 3, it can be seen that the periphery of the amorphous precipitate is an fcc phase region, and the region away from the precipitate is an hcp phase.

この図3に示された組織と、前記図1に示したビッカースの圧痕写真から、浸炭処理前の組織において、fcc相である析出物の周囲は、浸炭処理後の硬さが硬いが、析出物から離れたhcp相である領域は、浸炭処理後の硬さが上記析出物の周囲よりも低くなっていることがわかる。   From the structure shown in FIG. 3 and the Vickers indentation photograph shown in FIG. 1, in the structure before carburizing treatment, the periphery of the precipitate that is the fcc phase is hard after carburizing treatment. It can be seen that the hardness after the carburizing treatment is lower in the region of the hcp phase away from the object than the surroundings of the precipitate.

尚、ビッカース硬さ(ビッカースの圧痕)が測定箇所によらずほぼ一定であるNo.7の、EBSPによる結晶方位解析結果を図4に示す。図4において、緑色、青緑色および青色の部分は、fcc相の領域を示している。この図4から、No.7については、浸炭処理前の組織が、ほとんどfcc相で占められた組織となっていることがわかる。   It should be noted that the Vickers hardness (Vickers indentation) is almost constant regardless of the measurement location. 7 shows the result of the crystal orientation analysis by EBSP. In FIG. 4, green, blue-green, and blue portions indicate fcc phase regions. From FIG. As for No. 7, it can be seen that the structure before the carburizing treatment is almost occupied by the fcc phase.

硬度ムラが、浸炭処理により生じるものか(浸炭処理前についてはどうか)についても調べた。即ち、上記No.2およびNo.7のそれぞれの浸炭処理前の基材について、上記の通り、ビッカース硬度を測定すると共にビッカース圧痕の写真を撮影した。その結果を表2と図5に示す。   It was also examined whether the hardness unevenness was caused by the carburizing process (before the carburizing process). That is, the above-mentioned No. 2 and no. About each base material before carburizing treatment of No. 7, as above-mentioned, while measuring the Vickers hardness, the photograph of the Vickers impression was photographed. The results are shown in Table 2 and FIG.

この表2と図5から、浸炭処理前は、No.2およびNo.7のどちらにおいても、同一面内の硬さはほぼ均一であり、硬度ムラは、浸炭処理を施すことによって生じることがわかる。   From Table 2 and FIG. 2 and no. In both cases, the hardness in the same plane is almost uniform, and it can be seen that the hardness unevenness is caused by performing the carburizing process.

これらの結果から、浸炭処理前の基材の組織に占めるhcp相の割合がfcc相よりも著しく多いと、浸炭処理後の上記hcp相領域の硬さが低くなるため、硬度ムラが著しくなるが、浸炭処理前の基材の組織に占めるfcc相の割合を高くすれば、浸炭処理を施したときに、硬さの高い領域を多く確保でき、かつ硬度ムラを抑制できることを見出した。   From these results, when the proportion of the hcp phase in the structure of the base material before the carburizing treatment is significantly larger than that of the fcc phase, the hardness of the hcp phase region after the carburizing treatment becomes low, and thus the hardness unevenness becomes remarkable. It has been found that if the proportion of the fcc phase in the structure of the base material before carburizing is increased, a large area of high hardness can be secured and hardness unevenness can be suppressed when carburizing is performed.

そこで本発明者は、浸炭処理前の基材の組織において、浸炭処理後に高硬度となるfcc相をどの程度確保すればよいかについて検討した。具体的には、後述する実施例の表3に示す通り成分組成を変化させて、上記fcc相の体積分率の異なる種々のコバルト・クロム基合金鋳造基材を作製し、各基材の硬度ムラを調べた。その結果、浸炭処理前の基材の組織に占めるfcc相の体積分率を50%以上とすれば、浸炭処理後、炭化物の有無や存在位置に関係なく、ビッカース硬度が同一面内でほぼ一定となり、局所的な硬化不足のない均一な硬化層が得られることがわかった。   Therefore, the present inventor examined how much fcc phase that should have high hardness after carburizing treatment should be secured in the base material structure before carburizing treatment. Specifically, as shown in Table 3 of Examples described later, various cobalt-chromium based alloy cast base materials having different volume fractions of the fcc phase were prepared by changing the component composition, and the hardness of each base material I checked for unevenness. As a result, if the volume fraction of the fcc phase occupying the structure of the base material before carburizing is 50% or more, the Vickers hardness is almost constant within the same plane after carburizing regardless of the presence or location of carbides. Thus, it was found that a uniform cured layer without local curing deficiency was obtained.

硬度の面内均一性は、上記fcc相の割合が多くなるほど高くなることから、fcc相の体積分率が、好ましくは60%以上、より好ましくは70%以上占めるものがよい。一方、後述する通り、ASTM F75−07においてN含有量の上限が、強度・延性バランスを確保する観点から0.25質量%に規定されていることを考慮すると、上記fcc相の体積分率の上限は85%程度となる。   Since the in-plane uniformity of hardness increases as the proportion of the fcc phase increases, the volume fraction of the fcc phase is preferably 60% or more, more preferably 70% or more. On the other hand, considering the fact that the upper limit of N content in ASTM F75-07 is defined as 0.25% by mass from the viewpoint of securing the strength / ductility balance, as described later, the volume fraction of the fcc phase is The upper limit is about 85%.

尚、本発明では、上記の通り基材の組織に占めるfcc相の割合を50%以上とすればよく、本発明には、基材の製造過程等で必然的に残存し得るその他の組織が存在する場合も含みうる。具体的には、上記hcp相や、炭化物、窒化物、炭窒化物、金属間化合物等の析出物などが含まれうる。   In the present invention, as described above, the ratio of the fcc phase in the base material structure may be 50% or more. In the present invention, there are other structures that may inevitably remain in the manufacturing process of the base material. It may include the case where it exists. Specifically, the hcp phase, precipitates such as carbides, nitrides, carbonitrides, and intermetallic compounds may be included.

次に本発明者は、上記fcc相が50%以上占める組織を得るための具体的方法について検討を行った。尚、上述した通り、高温の熱処理を施すと組織の均一化を図ることが可能であるが、炭化物が消失して基材の耐摩耗性が低下する等の不具合が生じることから、本発明では、製造条件よりも特に成分組成に着目して検討を行った。   Next, the present inventor examined a specific method for obtaining a structure in which the fcc phase accounts for 50% or more. As described above, it is possible to make the structure uniform by performing a heat treatment at a high temperature. However, in the present invention, since the carbides disappear and the wear resistance of the base material is deteriorated, The investigation was conducted with a particular focus on the component composition rather than the production conditions.

まず、後述する実施例の表3に示す通り、成分組成が種々のコバルト・クロム基合金鋳造基材を作製し、各基材の金属組織に占めるfcc相の割合を後述する実施例に示す方法で測定し、各成分元素と該fcc相の割合との関係について調べた。その結果、種々の成分元素のうち、Nの含有量がfcc相の割合と相関があることを見出した。   First, as shown in Table 3 of Examples described later, a cobalt-chromium based alloy cast base material having various component compositions is prepared, and the proportion of the fcc phase in the metal structure of each base material is shown in the Examples described later. The relationship between each component element and the ratio of the fcc phase was examined. As a result, it has been found that among various component elements, the N content is correlated with the proportion of the fcc phase.

図6は、上記コバルト・クロム基合金鋳造基材のN量(窒素含有量)とfcc相の体積分率を整理して得たグラフである(尚、グラフ中の付記番号は、後述する実施例の表3のNo.を示す。後述する図7、図9についても同じ)。この図6より、前記基材のN量とfcc相の体積分率の間には相関があり、N量が少ないとfcc相が極端に少なくなること、およびNを0.1質量%以上含有させることによって、50%以上のfcc相を安定して確保できることを見出した。   FIG. 6 is a graph obtained by rearranging the N content (nitrogen content) and the volume fraction of the fcc phase of the cobalt-chromium base alloy cast base material (note that the additional numbers in the graph are those described later) No. in Table 3 of the example is shown, and the same applies to FIGS. From FIG. 6, there is a correlation between the amount of N in the base material and the volume fraction of the fcc phase. When the amount of N is small, the fcc phase is extremely reduced, and N is contained by 0.1 mass% or more. As a result, it was found that 50% or more of the fcc phase can be stably secured.

尚、参考までに、N以外の成分としてCの含有量(炭素含有量)とfcc相の体積分率の関係を示したグラフを図7に示す。この図7から明らかな通り、前記基材のC量とfcc相の体積分率との間には相関が全くみられないことがわかる。   For reference, a graph showing the relationship between the content of C (carbon content) as a component other than N and the volume fraction of the fcc phase is shown in FIG. As is apparent from FIG. 7, it can be seen that there is no correlation between the C content of the base material and the volume fraction of the fcc phase.

本発明では、この様にコバルト・クロム基合金鋳造基材におけるN量を0.1%以上とすることによって、鋳造したままの状態(鋳放し状態)であっても、コバルト・クロム基合金鋳造基材を構成する代表的な結晶構造であるfcc相とhcp相の2種の割合を、fcc相:50%以上の安定した組織に制御することができ、結果として、浸炭処理等の拡散硬化処理を施したときに、再現性の高い、硬度の均一な硬化層が得られる点に特徴がある。   In the present invention, by setting the N content in the cobalt-chromium base alloy cast base material to 0.1% or more in this way, even in the as-cast state (as-cast state), the cobalt-chromium base alloy casting is performed. The ratio of two types of fcc phase and hcp phase, which are typical crystal structures constituting the base material, can be controlled to a stable structure of fcc phase: 50% or more. As a result, diffusion hardening such as carburizing treatment It is characterized in that a cured layer with high reproducibility and uniform hardness can be obtained when the treatment is performed.

金属組織に占めるfcc相の体積分率を、前述の通り、好ましくは60%以上と高めて硬度のより均一な硬化層を拡散硬化処理で得るには、N量を0.15質量%以上とすることが好ましい。また、fcc相の体積分率を、より好ましくは70%以上と高めて硬度の一層均一な硬化層を拡散硬化処理で得るには、N量を0.20質量%以上とすることがより好ましい。   In order to increase the volume fraction of the fcc phase in the metal structure, preferably 60% or more as described above, and to obtain a hardened layer having a more uniform hardness by diffusion hardening treatment, the N amount is 0.15% by mass or more. It is preferable to do. Further, in order to increase the volume fraction of the fcc phase, more preferably 70% or more and to obtain a hardened layer having a more uniform hardness by diffusion hardening treatment, the N content is more preferably 0.20% by mass or more. .

尚、特許文献1や特許文献2にN量を規定した旨記載があるが、その効果は強度、延性および耐食性の向上、または塑性加工性の向上にとどまっており、拡散硬化処理による硬度の面内均一化を図った旨の知見はない。   Although Patent Document 1 and Patent Document 2 describe that the N amount is specified, the effect is limited to improvement in strength, ductility and corrosion resistance, or plastic workability. There is no knowledge that homogenization was achieved.

本発明では、成分組成において、特にN量を上記の通り一定以上とする必要があるが、N量の上限、およびその他の元素の含有量については、従来より用いられている生体用コバルト・クロム基合金の範囲内とすればよい。例えば、ASTM F75−07で規定の通り、N量の上限を0.25質量%とすると共に、その他の元素の含有量を決定することが挙げられる。具体的には、Cr:27.00〜30.00質量%、Mo:5.00〜7.00質量%、Ni:0.50質量%以下、Fe:0.75質量%以下、C:0.35質量%以下、N:0.1〜0.25質量%、Si:1.00質量%以下、およびMn:1.00質量%以下を含み、残部Coおよび不可避的不純物からなるものが挙げられる。尚、上記C量の下限は、基材中に炭化物を形成させる観点から、0.15質量%とすることが好ましい。   In the present invention, in the component composition, it is necessary to make the amount of N not less than a certain value as described above. However, the upper limit of the amount of N and the contents of other elements are conventionally used for biomedical cobalt / chromium. It may be within the range of the base alloy. For example, as specified in ASTM F75-07, the upper limit of the N amount is set to 0.25% by mass, and the content of other elements is determined. Specifically, Cr: 27.00 to 30.00 mass%, Mo: 5.00 to 7.00 mass%, Ni: 0.50 mass% or less, Fe: 0.75 mass% or less, C: 0 .35% by mass or less, N: 0.1 to 0.25% by mass, Si: 1.00% by mass or less, and Mn: 1.00% by mass or less, including the balance Co and inevitable impurities. It is done. In addition, it is preferable that the minimum of the said C amount shall be 0.15 mass% from a viewpoint of forming a carbide | carbonized_material in a base material.

上記コバルト・クロム基合金鋳造基材の製造方法は特に限定されず、例えば、成分を調整したコバルト・クロム基合金を溶製後、例えばニアネットシェイプ鋳造、即ち、例えば人工関節の骨頭型等の鋳型に流しこんで、鋳造したまま(鋳放し状態)の基材を得ることが挙げられる。上記の通り、コバルト・クロム基合金鋳造基材中のN量を高めるには、溶製時に窒素ガスを導入することや、CrN、CrN、FeCrN、Si、MnNなどの窒化物を添加すること等が挙げられる。鋳造後は、表面の欠陥や荒れを削るため表面を多少研削してもよい。 The method for producing the cobalt-chromium based alloy cast base material is not particularly limited. For example, after melting a component of the cobalt-chromium based alloy, for example, near net shape casting, that is, for example, a bone head type of an artificial joint Pour into a mold to obtain a base material as cast (as cast). As described above, in order to increase the amount of N in the cobalt-chromium based alloy cast base material, nitrogen gas is introduced at the time of melting, or nitrides such as Cr 2 N, CrN, FeCrN, Si 3 N 4 , MnN, etc. And the like. After casting, the surface may be somewhat ground to remove surface defects and roughness.

鍛造後に熱処理を施さず鋳放し状態のコバルト・クロム基合金鋳造基材を拡散硬化処理に供することで、金属組織中の炭化物を消失させることなく維持でき、結果として優れた耐摩耗性を確保できる。上記基材に熱処理(特に1000℃以上の温度での加熱)を施すと、炭化物が消失するため好ましくない。   By subjecting the as-cast cobalt-chromium base alloy cast base material to diffusion hardening treatment without heat treatment after forging, it can be maintained without losing carbides in the metal structure, and as a result, excellent wear resistance can be secured. . If the base material is subjected to heat treatment (particularly heating at a temperature of 1000 ° C. or more), the carbides are lost, which is not preferable.

前記鋳放し状態のコバルト・クロム基合金鋳造基材を用い、拡散硬化処理を施すことにより人工関節等を構成する生体用摺動合金部材が得られる。拡散硬化処理としては、上記浸炭処理の他に、窒化処理やホウ化処理、酸化処理等が挙げられ、いずれの処理においても浸炭処理と同様の効果を得ることができる。例えば基材(または、後述するような活性化処理を施した基材)を処理炉内に配置し、炉内に炭素源、窒素源等を含む混合ガスを導入し、一般的に採用されている温度で処理を行うことができる。   A living body sliding alloy member constituting an artificial joint or the like can be obtained by subjecting the as-cast cobalt-chromium base alloy cast base material to diffusion hardening treatment. Examples of the diffusion hardening treatment include nitriding treatment, boriding treatment, oxidation treatment, and the like in addition to the above carburizing treatment. In any treatment, the same effect as the carburizing treatment can be obtained. For example, a base material (or a base material subjected to activation treatment as described later) is placed in a processing furnace, and a mixed gas containing a carbon source, a nitrogen source, etc. is introduced into the furnace, and is generally adopted. The treatment can be performed at a certain temperature.

例えば浸炭処理方法としては、下記の条件で行うことが挙げられる。即ち、浸炭処理は、基材の温度(浸炭温度)を450〜550℃にして行うことが挙げられる。この温度範囲であると、炭素は、基材の表面に固溶化するが、炭化クロムを形成しにくいので好ましい。浸炭温度が450℃未満であると、炭素の固溶化が進まず、望ましい表面硬度を有する固溶化層が形成されないので好ましくない。また、550℃より高い温度であると、炭化クロムの生成が促進されるので好ましくない。   For example, as a carburizing method, performing on the following conditions is mentioned. That is, the carburizing treatment may be performed at a base material temperature (carburizing temperature) of 450 to 550 ° C. Within this temperature range, carbon is preferable because it forms a solid solution on the surface of the substrate but hardly forms chromium carbide. When the carburizing temperature is less than 450 ° C., carbon does not progress in solid solution, and a solid solution layer having a desired surface hardness is not formed. Moreover, since the production | generation of chromium carbide is accelerated | stimulated as it is temperature higher than 550 degreeC, it is unpreferable.

浸炭処理における炭素源には、例えばCOやCO、CH、C、C、C10の1種類または2種類以上を使用できる。上記炭素源と例えばHの混合ガスを不活性ガスで希釈して処理炉内に導入することが挙げられる。不活性ガスには、N、Ar、Heを使用できる。浸炭処理の時間は、処理温度と固溶化層の厚みとの関係によって調節することができるが、通常は1〜50時間行われ、最も一般的には10〜35時間行われる。 As the carbon source in the carburizing treatment, for example, one or more of CO, CO 2 , CH 4 , C 2 H 6 , C 3 H 8 , and C 4 H 10 can be used. For example, a mixed gas of the carbon source and, for example, H 2 is diluted with an inert gas and introduced into the processing furnace. N 2 , Ar, and He can be used as the inert gas. The time for the carburizing treatment can be adjusted according to the relationship between the treatment temperature and the thickness of the solid solution layer, but it is usually performed for 1 to 50 hours, and most commonly for 10 to 35 hours.

上記拡散硬化処理前には、基材表面に形成された不動態膜を除去するため、活性化処理を行ってもよい。基材中のクロムは、空気中の酸素と反応して不動態膜を形成する。この不動態膜は、浸炭処理を行う際に炭素の基材表面への侵入を阻害しやすい。よって活性化処理により不動態膜を除去することで、十分に浸炭させることができる。該活性化処理は、ガスを用いた方法や、液体を用いた方法で行うことができる。   Before the diffusion hardening treatment, an activation treatment may be performed in order to remove the passive film formed on the substrate surface. Chromium in the substrate reacts with oxygen in the air to form a passive film. This passive film tends to inhibit the penetration of carbon into the substrate surface when carburizing. Therefore, carburization can be sufficiently performed by removing the passive film by the activation treatment. The activation treatment can be performed by a method using gas or a method using liquid.

ガスを用いた活性化処理としては、フッ化処理が挙げられる。フッ化処理は、加熱処理用の炉内にコバルト・クロム基合金鋳造基材を入れ、フッ素系ガス雰囲気中で200℃〜500℃に加熱して、10分〜180分の間、その温度を保持する。これにより、表面の酸化クロムが、フッ化クロムに置換される。   Examples of the activation treatment using gas include fluorination treatment. In the fluorination treatment, a cobalt-chromium-base alloy cast base material is placed in a furnace for heat treatment, heated to 200 ° C. to 500 ° C. in a fluorine-based gas atmosphere, and the temperature is set for 10 minutes to 180 minutes. Hold. Thereby, chromium oxide on the surface is replaced with chromium fluoride.

このフッ化処理に適したフッ素系ガスとしては、NF、BF、CF、HF、SF、C、WF、CHF、SiF、ClF等がある。これらのフッ素系ガスを、1種類で、または2種類以上を混合して使用する。通常は、これらのフッ素系ガスをNガス等の不活性ガスで希釈して使用される。 The fluorine-based gases suitable for this fluorination treatment, there is a NF 3, BF 3, CF 4 , HF, SF 6, C 2 F 6, WF 6, CHF 3, SiF 4, ClF 3 or the like. These fluorine-based gases are used alone or in combination of two or more. Usually, these fluorine-based gases are diluted with an inert gas such as N 2 gas.

液体を用いた活性化処理としては、酸性溶液に浸漬する方法が挙げられる。酸性溶液としては、塩酸、硝酸、過酸化水素、硫酸、フッ酸のいずれか1種類または2種類以上を混合した溶液を使用することができ、特に、塩酸と硝酸、塩酸と硝酸と過酸化水素、又は塩酸と過酸化水素を混合した溶液が好ましく、短時間で表面の酸化クロムの不動態膜を溶解することができる。   Examples of the activation treatment using a liquid include a method of immersing in an acidic solution. As the acidic solution, a solution in which one kind or a mixture of two or more kinds of hydrochloric acid, nitric acid, hydrogen peroxide, sulfuric acid and hydrofluoric acid can be used. In particular, hydrochloric acid and nitric acid, hydrochloric acid, nitric acid and hydrogen peroxide are used. Alternatively, a solution in which hydrochloric acid and hydrogen peroxide are mixed is preferable, and the passive film of chromium oxide on the surface can be dissolved in a short time.

上記拡散処理後は、表面の状態によって後処理を行う。後処理として、表面に付着した煤(浸炭処理の場合)を除去するための酸処理や、鏡面研磨等の表面研磨などがある。   After the diffusion treatment, post treatment is performed depending on the surface condition. As the post-treatment, there are acid treatment for removing soot (in the case of carburizing treatment) adhering to the surface, surface polishing such as mirror polishing, and the like.

上記拡散硬化処理等を施して得られる生体用摺動合金部材は、例えば、人工股関節、人工膝関節、人工肘関節等の人工関節の摺動部材として好適に用いられる。特には、摺動面を構成する2つの摺動部材がコバルト・クロム基合金摺動部材からなる人工関節であって、前記コバルト・クロム基合金摺動部材の少なくとも1つ(例えばヘッドおよび/またはステム)に、本発明の生体用摺動合金部材を採用すれば、本発明の効果が存分に発揮されるので好ましい。   The living body sliding alloy member obtained by performing the diffusion hardening treatment or the like is suitably used as a sliding member of an artificial joint such as an artificial hip joint, an artificial knee joint, or an artificial elbow joint. In particular, the two sliding members constituting the sliding surface are artificial joints made of a cobalt-chromium based alloy sliding member, and at least one of the cobalt-chromium based alloy sliding members (e.g., head and / or If the living body sliding alloy member of the present invention is employed for the stem, it is preferable because the effects of the present invention are fully exhibited.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表3に示す11種のコバルト・クロム基合金鋳造材(直径:15mm、長さ:150mmの棒材)を作製した。尚、鋳造材のN量およびC量は、溶解時の窒素分圧および黒鉛添加量により制御した。鋳造後、得られた棒材を厚さ約2mmの円盤状に切断した後、SiCペーパーを用いて湿式研磨を施し、コバルト・クロム基合金鋳造基材を得た。   Eleven types of cobalt-chromium-base alloy castings (bars having a diameter of 15 mm and a length of 150 mm) shown in Table 3 were produced. The N and C amounts of the cast material were controlled by the partial pressure of nitrogen during melting and the amount of graphite added. After casting, the obtained bar was cut into a disk shape having a thickness of about 2 mm, and then wet-polished using SiC paper to obtain a cobalt-chromium based alloy cast base material.

この様にして得られたコバルト・クロム基合金鋳造基材のN(窒素)量を、不活性ガス融解法を用いて測定した。またC(炭素)量を燃焼赤外線吸収法、Si量を吸光光度法、表3に示すその他の成分の含有量をICP分析法で測定した。また、上記コバルト・クロム基合金鋳造基材の平均結晶粒径(任意の1視野内における結晶粒の円相当直径の平均値)を確認するため、湿式研磨により観察面の鏡面仕上げを行った後、酸溶液中でエッチングを施し、マクロ組織観察を行った。代表的なマクロ組織写真(表3のNo.7のマクロ組織写真)を図8に示す。作製した鋳造基材は全て、この図8に示す通り平均結晶粒径が1000μm以上であることを確認した。   The amount of N (nitrogen) in the cobalt-chromium-based alloy cast base material thus obtained was measured using an inert gas melting method. Further, the C (carbon) amount was measured by a combustion infrared absorption method, the Si amount was measured by an absorptiometry, and the contents of other components shown in Table 3 were measured by an ICP analysis method. In addition, in order to confirm the average crystal grain size of the cobalt-chromium-base alloy cast base material (the average value of the equivalent circle diameter of crystal grains in an arbitrary field of view), the observation surface is mirror-finished by wet polishing. Etching was performed in an acid solution, and the macro structure was observed. A typical macro structure photograph (No. 7 macro structure photograph in Table 3) is shown in FIG. It was confirmed that all of the produced cast base materials had an average crystal grain size of 1000 μm or more as shown in FIG.

〈コバルト・クロム基合金鋳造基材(浸炭処理前)のfcc相の体積分率の測定〉
上記基材を用い、X線回折によりfcc相の体積分率を求めた。即ち、X線回折装置(リガク製 RINT1500)を用い、回転速度:60rpm、搖動角/周期:−45°〜45°/4secの条件でサンプルを回転および搖動させながら、ターゲット:Cu、ターゲット出力:40kV−200mA、スリット系:受光0.3mm、縦2mm、サンプリングステップ:0.02°、計測時間:8sec/ステップの条件下で2θ=45°〜53°の範囲を測定した。得られた回折ピークのうち、下記算出式(1)に示すピークの積分強度をそれぞれ求め、下記算出式(1)よりfcc相(γ相)の体積分率Vγを算出した。各基材のfcc相の体積分率(体積%)を表3に併記する。
<Measurement of volume fraction of fcc phase of cobalt-chromium base alloy cast base material (before carburizing treatment)>
Using the substrate, the volume fraction of the fcc phase was determined by X-ray diffraction. That is, using an X-ray diffractometer (Rigaku RINT1500), rotating and shaking the sample under the conditions of rotational speed: 60 rpm, peristaltic angle / period: -45 ° to 45 ° / 4 sec, target: Cu, target output: The range of 2θ = 45 ° to 53 ° was measured under the conditions of 40 kV-200 mA, slit system: light reception 0.3 mm, length 2 mm, sampling step: 0.02 °, measurement time: 8 sec / step. Among the obtained diffraction peaks, the integrated intensity of the peak shown in the following calculation formula (1) was obtained, and the volume fraction Vγ of the fcc phase (γ phase) was calculated from the following calculation formula (1). Table 3 shows the volume fraction (volume%) of the fcc phase of each substrate.

次に、上記基材に対して、活性化処理、浸炭処理を順次施した。具体的には、基材に対して、フッ化ガスによる活性化処理(NFガス雰囲気中にて、350℃で2時間保持)を施した後、ガス浸炭処理(CO+H混合ガス雰囲気にて、500℃で32時間保持)を施した。 Next, activation treatment and carburization treatment were sequentially performed on the substrate. Specifically, the substrate is subjected to activation treatment with a fluorinated gas (held in an NF 3 gas atmosphere at 350 ° C. for 2 hours), and then a gas carburizing treatment (in a CO + H 2 mixed gas atmosphere). , Held at 500 ° C. for 32 hours).

〈同一面内の硬度のバラツキについて〉
浸炭処理後の各試料の同一面内において、複数箇所のビッカース硬度を測定した。ビッカース硬度の測定は、ビッカース硬度測定装置を用い、荷重50gfで測定した。
<About hardness variation in the same plane>
The Vickers hardness at a plurality of locations was measured in the same plane of each sample after the carburizing treatment. Vickers hardness was measured with a load of 50 gf using a Vickers hardness measuring device.

その結果、No.1、3および4では、上記No.2と同様に、同一面内で硬度にバラツキが生じたのに対し、No.5、6、8〜11では、上記No.7と同様に、同一面内での硬度が測定箇所によらずほぼ一定であった。   As a result, no. 1, 3 and 4, the above No. As in the case of No. 2, the hardness was varied within the same plane, whereas no. In Nos. 5, 6, and 8 to 11, the above-mentioned No. 5 is used. Similar to 7, the hardness in the same plane was almost constant regardless of the measurement location.

〈浸炭処理層の炭素プロファイルのバラツキについて〉
上記浸炭処理により、均一な硬化層が安定して得られているかを確認すべく、各試料の浸炭処理後の炭素濃度分布を測定した。具体的には、グロー放電発光分光分析法(GDS)により測定した。グロー放電発光分析には、Jobin Ybon社製JY5000RF−PSS型GDS装置を用い、低電圧モード(40W)で、Ar圧775Paの真空下で測定した。
<Dispersion of carbon profile of carburized layer>
In order to confirm whether a uniform hardened layer was stably obtained by the carburizing treatment, the carbon concentration distribution after carburizing treatment of each sample was measured. Specifically, it was measured by glow discharge emission spectroscopy (GDS). For glow discharge emission analysis, a JY5000RF-PSS type GDS apparatus manufactured by Jobin Ybon was used, and measurement was performed in a low voltage mode (40 W) under a vacuum of Ar pressure of 775 Pa.

その結果を、浸炭処理層の炭素濃度分布を、前記図6においてN量が0.1質量%未満でかつfcc相の割合が50%を下回る領域(領域A)にある例(比較例)と、N量が0.1質量%以上でかつfcc相の割合が50%以上である領域(領域B)にある例(本発明例)に分けて図9に示す。   The carbon concentration distribution of the carburized layer is shown as an example (comparative example) in the region (region A) where the N content is less than 0.1% by mass and the proportion of the fcc phase is less than 50% in FIG. FIG. 9 shows an example (invention example) in the region (region B) in which the N amount is 0.1% by mass or more and the ratio of the fcc phase is 50% or more.

この図9より、いずれのコバルト・クロム基合金鋳造基材も、表面から約20μm付近まで炭素濃度が高いプロファイルを示していることがわかる。次に、そのプロファイルの詳細を比較すると、領域AにあるNo.1〜4のプロファイルは、試料間で大きなバラツキが認められた。これは、1試料の同一面内で測定箇所により硬さがばらついた結果、試料間においても硬さのバラツキが生じたものと思われる。これに対し、領域BにあるNo.5〜11は、成分組成によらず、表層付近の炭素プロファイルがほぼ一致し、均一な固溶分布状態となっていることがわかる。   From FIG. 9, it can be seen that any of the cobalt-chromium based alloy cast base materials shows a profile with a high carbon concentration from the surface to about 20 μm. Next, comparing the details of the profiles, No. In the profiles 1 to 4, large variations were observed between samples. This is probably because the hardness varies between samples as a result of variations in hardness depending on the measurement location in the same plane of one sample. On the other hand, No. 5 to 11 show that the carbon profiles in the vicinity of the surface layer are almost the same regardless of the component composition and are in a uniform solid solution distribution state.

図1は、浸炭処理後の基材(実施例におけるNo.2)表面のビッカース圧痕写真である。1 is a Vickers impression photograph of the surface of a base material (No. 2 in Examples) after carburizing treatment. 図2は、浸炭処理後の基材(実施例におけるNo.7)表面のビッカース圧痕写真である。FIG. 2 is a Vickers impression photograph of the surface of the base material (No. 7 in the example) after the carburizing treatment. 図3は、浸炭処理前の基材(実施例におけるNo.2)の電子線後方散乱回折(EBSP)法による結晶方位解析結果を示した写真である。FIG. 3 is a photograph showing a crystal orientation analysis result by electron beam backscatter diffraction (EBSP) method of a base material (No. 2 in the example) before carburizing treatment. 図4は、浸炭処理前の基材(実施例におけるNo.7)の電子線後方散乱回折(EBSP)法による結晶方位解析結果を示した写真である。FIG. 4 is a photograph showing a crystal orientation analysis result by an electron beam backscatter diffraction (EBSP) method of a base material (No. 7 in the example) before carburizing treatment. 図5は、浸炭処理前の基材(実施例におけるNo.2およびNo.7)表面のビッカース圧痕写真である。5 is a Vickers impression photograph of the surface of the base material (No. 2 and No. 7 in the example) before carburizing treatment. 図6は、基材の窒素含有量とfcc相の体積分率の関係を示したグラフである。FIG. 6 is a graph showing the relationship between the nitrogen content of the substrate and the volume fraction of the fcc phase. 図7は、基材の炭素含有量とfcc相の体積分率の関係を示したグラフである。FIG. 7 is a graph showing the relationship between the carbon content of the substrate and the volume fraction of the fcc phase. 図8は、本発明のコバルト・クロム基合金鋳造基材の代表的なマクロ組織写真である。FIG. 8 is a representative macrostructure photograph of the cobalt-chromium based alloy cast base material of the present invention. 図9は、浸炭処理層の炭素濃度分布を、領域Aにある例と領域Bにある例に分けて示した図である。FIG. 9 is a diagram showing the carbon concentration distribution of the carburized layer divided into an example in the region A and an example in the region B.

Claims (6)

コバルト・クロム基合金からなる生体用鋳造基材であって、窒素(N)を0.1質量%以上含むと共に、金属組織におけるfcc(面心立方格子)相の体積分率が50%以上であることを特徴とする拡散硬化処理性に優れた生体用コバルト・クロム基合金鋳造基材。   A casting base for living bodies made of a cobalt-chromium alloy, containing 0.1% by mass or more of nitrogen (N) and having a volume fraction of fcc (face-centered cubic lattice) phase in the metal structure of 50% or more. A bio-cobalt / chromium-base alloy cast base material excellent in diffusion hardening processability characterized by being. 前記コバルト・クロム基合金の前記N量の上限が0.25質量%であり、かつN以外の元素の含有量は、ASTM F75−07に規定の範囲内にある請求項1に記載の生体用コバルト・クロム基合金鋳造基材。   2. The biomedical device according to claim 1, wherein the upper limit of the N content of the cobalt-chromium-based alloy is 0.25 mass%, and the content of elements other than N is within the range specified in ASTM F75-07. Cobalt-chromium base alloy casting base material. 前記金属組織の平均結晶粒径が1000μm以上である請求項1または2に記載の生体用コバルト・クロム基合金鋳造基材。   3. The biomedical cobalt-chromium based alloy casting base material according to claim 1, wherein an average crystal grain size of the metal structure is 1000 μm or more. 請求項1〜3のいずれかに記載のコバルト・クロム基合金鋳造基材であって鋳放し状態のものに、拡散硬化処理を施して得られる生体用摺動合金部材。   A sliding alloy member for a living body obtained by subjecting the as-cast cobalt-chromium alloy cast base material according to any one of claims 1 to 3 to a diffusion hardening treatment. 前記拡散硬化処理が浸炭処理である請求項4に記載の生体用摺動合金部材。   The living body sliding alloy member according to claim 4, wherein the diffusion hardening process is a carburizing process. 摺動面を構成する2つの摺動部材がコバルト・クロム基合金摺動部材からなる人工関節であって、前記コバルト・クロム基合金摺動部材の少なくとも1つが、請求項4または5に記載の生体用摺動合金部材であることを特徴とする人工関節。   The two sliding members constituting the sliding surface are artificial joints made of a cobalt-chromium based alloy sliding member, and at least one of the cobalt-chromium based alloy sliding members is according to claim 4 or 5. An artificial joint which is a sliding alloy member for a living body.
JP2008319162A 2008-12-16 2008-12-16 Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint Pending JP2010144184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319162A JP2010144184A (en) 2008-12-16 2008-12-16 Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319162A JP2010144184A (en) 2008-12-16 2008-12-16 Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint

Publications (1)

Publication Number Publication Date
JP2010144184A true JP2010144184A (en) 2010-07-01

Family

ID=42564904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319162A Pending JP2010144184A (en) 2008-12-16 2008-12-16 Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint

Country Status (1)

Country Link
JP (1) JP2010144184A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155063A1 (en) * 2010-06-11 2011-12-15 日本メディカルマテリアル株式会社 Cast base for biomedical use formed of cobalt/chromium-based alloy and having excellent diffusion hardening treatability, sliding alloy member for biomedical use and artificial joint
WO2013136506A1 (en) * 2012-03-16 2013-09-19 国立大学法人東北大学 Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy
JPWO2013136506A1 (en) * 2012-03-16 2015-08-03 国立大学法人東北大学 Co-Cr-Mo alloy and method for producing Co-Cr-Mo alloy
JPWO2014069397A1 (en) * 2012-10-30 2016-09-08 日鍛バルブ株式会社 Engine valve
JP2020152975A (en) * 2019-03-20 2020-09-24 国立大学法人東北大学 NITROGEN-ADDED Co-Cr-Mo BASE ALLOY AND METHOD FOR PRODUCING Co-Cr-Mo BASE ALLOY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410224A (en) * 1977-06-23 1979-01-25 Howmedica Nitrogen containing cobalt cromium molibuden alloy
JP2005524772A (en) * 2002-04-29 2005-08-18 エーディー.サーフ.イーエヌジー.リミテッド Surface treatment method of cobalt-chromium alloy using plasma carburization
JP2007277710A (en) * 2006-03-15 2007-10-25 Japan Medical Materials Corp Cobalt-chromium base alloy material and method for manufacturing the same
JP2008111177A (en) * 2006-10-31 2008-05-15 Iwate Univ Co-BASED ALLOY FOR BIOMEDICAL APPLICATION HAVING EXCELLENT PLASTIC WORKABILITY, AND ITS MANUFACTURING METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410224A (en) * 1977-06-23 1979-01-25 Howmedica Nitrogen containing cobalt cromium molibuden alloy
JP2005524772A (en) * 2002-04-29 2005-08-18 エーディー.サーフ.イーエヌジー.リミテッド Surface treatment method of cobalt-chromium alloy using plasma carburization
JP2007277710A (en) * 2006-03-15 2007-10-25 Japan Medical Materials Corp Cobalt-chromium base alloy material and method for manufacturing the same
JP2008111177A (en) * 2006-10-31 2008-05-15 Iwate Univ Co-BASED ALLOY FOR BIOMEDICAL APPLICATION HAVING EXCELLENT PLASTIC WORKABILITY, AND ITS MANUFACTURING METHOD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155063A1 (en) * 2010-06-11 2011-12-15 日本メディカルマテリアル株式会社 Cast base for biomedical use formed of cobalt/chromium-based alloy and having excellent diffusion hardening treatability, sliding alloy member for biomedical use and artificial joint
WO2013136506A1 (en) * 2012-03-16 2013-09-19 国立大学法人東北大学 Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy
JPWO2013136506A1 (en) * 2012-03-16 2015-08-03 国立大学法人東北大学 Co-Cr-Mo alloy and method for producing Co-Cr-Mo alloy
JPWO2014069397A1 (en) * 2012-10-30 2016-09-08 日鍛バルブ株式会社 Engine valve
JP2020152975A (en) * 2019-03-20 2020-09-24 国立大学法人東北大学 NITROGEN-ADDED Co-Cr-Mo BASE ALLOY AND METHOD FOR PRODUCING Co-Cr-Mo BASE ALLOY
JP7457298B2 (en) 2019-03-20 2024-03-28 国立大学法人東北大学 Nitrogen-added Co-Cr-Mo based alloy and method for producing nitrogen-added Co-Cr-Mo based alloy

Similar Documents

Publication Publication Date Title
US20190136361A1 (en) Cast product having alumina barrier layer
JP6784960B2 (en) Martensitic stainless steel member
JP4254816B2 (en) Carburized parts
JP2010144184A (en) Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint
JP2007308772A (en) Carburized parts and manufacturing method therefor
JP6873987B2 (en) Laminated construction of metal matrix composites in situ
WO2011155063A1 (en) Cast base for biomedical use formed of cobalt/chromium-based alloy and having excellent diffusion hardening treatability, sliding alloy member for biomedical use and artificial joint
JP6735038B2 (en) Martensitic stainless steel thin plate and its manufacturing method, and thin part manufacturing method
JP6399213B2 (en) Case-hardened steel parts
JPH11124653A (en) Nitriding steel and nitrding treatment therefor
JP2006161141A (en) Carburized component and its production method
JP2008095190A (en) Hot-working tool steel having superior toughness and high-temperature strength, and production method therefor
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
JP6148995B2 (en) Forged parts for reduced-pressure high-temperature carburizing treatment and manufacturing method thereof
JP2009114488A (en) Steel for rolling member, rolling member and method for manufacturing rolling member
JP6005963B2 (en) Method for producing a cast product having an alumina barrier layer
KR20160022258A (en) Piercer plug for manufacturing a seamless pipe
JP2010001508A (en) Carburization heat treatment method and carburization source material
JP6953871B2 (en) Carburized parts and carburized nitride parts
JP5640224B2 (en) Cobalt / chromium base alloy base material for halogenation treatment, and halogenated material and surface hardening material using the same
CN116103556B (en) Face-centered cubic structure high-entropy alloy with excellent room temperature wear resistance and preparation method thereof
WO2024057705A1 (en) Stainless steel and manufacturing method therefor, and stainless steel product and manufacturing method therefor
JP3484408B2 (en) Jig for vacuum carburizing and heat-resistant alloy steel
JP2018154885A (en) Vacuum carburization and nitrification method of steel material
JP3503815B2 (en) Steel strip for metal belts with reduced surface roughness during solution treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128