JP2010143042A - Method of detecting coating state of releasing agent for nanoprint mold and pattern forming method - Google Patents

Method of detecting coating state of releasing agent for nanoprint mold and pattern forming method Download PDF

Info

Publication number
JP2010143042A
JP2010143042A JP2008321900A JP2008321900A JP2010143042A JP 2010143042 A JP2010143042 A JP 2010143042A JP 2008321900 A JP2008321900 A JP 2008321900A JP 2008321900 A JP2008321900 A JP 2008321900A JP 2010143042 A JP2010143042 A JP 2010143042A
Authority
JP
Japan
Prior art keywords
mold
release agent
pattern
force
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008321900A
Other languages
Japanese (ja)
Other versions
JP5315973B2 (en
Inventor
Koji Yoshida
幸司 吉田
Sho Hatakeyama
翔 畠山
Makoto Abe
真 阿部
Masaaki Kurihara
栗原  正彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008321900A priority Critical patent/JP5315973B2/en
Publication of JP2010143042A publication Critical patent/JP2010143042A/en
Application granted granted Critical
Publication of JP5315973B2 publication Critical patent/JP5315973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of detecting coating state of releasing agent for nanoprint mold capable of quickly and conveniently determining whether a mold surface including the bottom surface of recessed part pattern of a fine rugged pattern is uniformly covered with a releasing agent having such a sufficient amount as to impart an releasing operation to the mold surface, with respect to the method of microscopically detecting the coating state of the releasing agent formed on the nanoprint mold surface, and to provide a pattern forming method using the method of detecting coating state of releasing agent for nanoprint mold. <P>SOLUTION: In the method of detecting coating state of releasing agent for a nanoprint mold which has the rugged pattern on the surface thereof and is formed by applying the releasing agent on the rugged pattern, an adhesive force between an probe and the releasing agent on the rugged pattern surface is measured from a curve of the force operating between the probe tip of a cantilever and the rugged pattern formed by applying the releasing agent in a measurement area of the rugged pattern formed by applying the releasing agent by using the cantilever of a scanning type probe microscope and the coating state of the releasing agent is estimated by the adhesive force. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノインプリントに用いるモールドの凹凸パターン表面に塗布された離型剤の塗布状態を評価するナノインプリント用モールドの離型剤塗布状態の検査方法およびナノインプリント用モールド表面の離型剤の塗布状態を評価する検査工程を有するパターン形成方法に関する。   The present invention relates to a method for inspecting a mold release agent application state of a mold for nanoimprint and an application state of the mold release agent on the surface of the mold for nanoimprint. The present invention relates to a pattern forming method having an inspection process to be evaluated.

近年、特に半導体デバイスについては、微細化の一層の進展により高速動作、低消費電力動作が求められ、また、システムLSIという名で呼ばれる機能の統合化などの高い技術が求められている。このような中、半導体デバイスのパターンを作製する要となるリソグラフィ技術は、パターンの微細化が進むにつれ、露光装置などが極めて高価になってきており、また、それに用いるマスク価格も高価になっている。   In recent years, especially for semiconductor devices, high-speed operation and low power consumption operation are required due to further progress in miniaturization, and high technology such as integration of functions called system LSIs is required. Under such circumstances, the lithography technology that is necessary for producing the pattern of the semiconductor device has become very expensive as the exposure apparatus and the like as the pattern becomes finer, and the price of the mask used therefor also becomes expensive. Yes.

これに対して、1995年Princeton大学のChouらによって提案されたナノインプリント法は装置価格や使用材料などが安価でありながら、10nm程度の高解像度を有する微細パターン形成技術として注目されている(非特許文献1、特許文献1参照)。   On the other hand, the nanoimprint method proposed by Chou et al. At Princeton University in 1995 is attracting attention as a fine pattern forming technology having a high resolution of about 10 nm, although the apparatus price and materials used are low (non-patent) Reference 1 and Patent Reference 1).

ナノインプリント法は、予め表面にナノメートルサイズの凹凸パターンを形成したモールド(テンプレート、スタンパ、金型とも呼ばれる)を、被加工材表面に塗布形成された樹脂に押し付けて力学的に変形させて微細パターンを精密に転写し、パターン形成された樹脂をレジストマスクとして被加工材を加工する技術である。一度モールドを作製すれば、ナノ構造が簡単に繰り返して成型できるため高いスループットが得られて経済的であるとともに、有害な廃棄物が少ないナノ加工技術であるため、近年、半導体デバイスに限らず、さまざまな分野への応用が期待されている。   In the nanoimprint method, a fine pattern is formed by pressing a mold (also called a template, stamper, or mold) with a nanometer-size uneven pattern on the surface in advance against the resin that is formed on the surface of the workpiece. Is a technique for processing a workpiece using a resin with a pattern formed as a resist mask. Once the mold is made, the nanostructure can be easily and repeatedly molded, resulting in high throughput and economics, and because it is a nano-processing technology with little harmful waste, not only semiconductor devices in recent years, Application to various fields is expected.

このようなナノインプリント法には、熱可塑性樹脂を用いて熱により凹凸パターンを転写する熱ナノインプリント法や、光硬化性樹脂を用いて光により凹凸パターンを転写する光ナノインプリント法(例えば、特許文献2参照)などが知られている。   In such a nanoimprint method, a thermal nanoimprint method in which a concavo-convex pattern is transferred by heat using a thermoplastic resin, or a photo nanoimprint method in which a concavo-convex pattern is transferred by light using a photocurable resin (see, for example, Patent Document 2) ) Etc. are known.

ナノインプリント法で用いられるモールドには、パターン寸法の安定性、耐薬品性、加工特性などが求められる。光ナノインプリント法の場合を例に取ると、一般的には石英ガラスが用いられている。しかし、石英ガラスなどによるモールドはパターン転写材料である樹脂との離型性が低く、転写パターンを形成した樹脂からモールドを剥離する際に樹脂がモールド側に密着してしまうため、樹脂の凹凸パターンに欠けを生じ、パターン精度が低下しやすいという問題があった。このため、離型性を向上させる方法として、モールドの凹凸パターン表面にフッ素樹脂などの離型剤の薄膜を塗布形成する方法が提案されている。   Molds used in the nanoimprint method are required to have pattern dimension stability, chemical resistance, processing characteristics, and the like. Taking the case of the optical nanoimprint method as an example, quartz glass is generally used. However, a mold made of quartz glass or the like has low releasability from the resin that is the pattern transfer material, and the resin adheres to the mold side when the mold is peeled off from the resin on which the transfer pattern is formed. There was a problem that the pattern accuracy was liable to be reduced. For this reason, as a method for improving the releasability, a method of applying and forming a thin film of a release agent such as a fluororesin on the surface of the concavo-convex pattern of the mold has been proposed.

しかし、モールドを連続使用してインプリントする場合、塗布された離型剤が凹凸パターン表面から徐々に失われ、その結果、転写時に樹脂がモールドに付着し、正確なパターン転写ができなくなるという問題があった。もしも離型剤の塗布状態が良好でない場合には、離形剤の再塗布が必要となる。   However, when imprinting using a mold continuously, the applied release agent is gradually lost from the surface of the concavo-convex pattern, and as a result, the resin adheres to the mold during transfer, and accurate pattern transfer cannot be performed. was there. If the application state of the release agent is not good, it is necessary to re-apply the release agent.

このため、離型剤がモールドの表面を十分に被覆しているかどうかという離型剤の塗布状態の情報を得ることは、インプリントされる製品の品質・歩留・生産性を左右する上で極めて重要である。モールド表面に存在する離型剤の塗布状態を評価する検査方法としては、いくつかの方法が提案されている。一般的には表面分析による方法、あるいは離型剤塗布表面の接触角を測定する方法がある。また、離型剤に蛍光物質などの標識となる物質を含有させて、所定の検出方法で離型剤濃度を測定する方法がある(特許文献3、特許文献4参照)。
S.Y.Chou et.al.,Science,vol.272,p.85−87,April,1996 特表2004−504718号公報 特開2002−93748号公報 特開2007−69217号公報 特開2007−296823号公報
For this reason, obtaining information on the application state of the release agent, such as whether the release agent sufficiently covers the mold surface, affects the quality, yield, and productivity of the imprinted product. Very important. Several methods have been proposed as an inspection method for evaluating the application state of the release agent present on the mold surface. In general, there are a method based on surface analysis and a method for measuring the contact angle of the release agent coating surface. In addition, there is a method in which a release agent is made to contain a labeling substance such as a fluorescent substance and the release agent concentration is measured by a predetermined detection method (see Patent Document 3 and Patent Document 4).
S. Y. Chou et. al. , Science, vol. 272, p. 85-87, April, 1996. JP-T-2004-504718 JP 2002-93748 A JP 2007-69217 A JP 2007-296823 A

しかしながら、表面分析による方法は、一般に使用する表面分析装置が大型で高価であり、測定分析に多大の時間を必要とし、通常の製造工程で使用するには適しないという問題があった。接触角を測定する方法は、水の蒸気圧の関係で、ミクロンメータ以下の水滴を作ることができず、ミクロンメータ以下のナノインプリントのパターン領域では接触角の計測ができないという問題があった。標識となる物質を用いて離型剤濃度を測定する方法は、例えば、可視光照射による発光強度測定では、可視光の波長がパターン寸法よりも大きくなり、測定対象とする数10nmオーダのパターンに対して分解能が無いという問題があり、紫外線やさらに短波長の放射線照射では離型剤や標識となる物質自体が化学反応を起こして変質してしまう危険性があった。また、パターンが微細なのでパターン寸法(CD:Critical Design)を制御するためにも離型剤の厚さはせいぜい数nm程度にとどまり、数nmの厚さの離型剤では発光強度が弱くなり、発光検出感度が低下してしまうという問題があった。   However, the surface analysis method has a problem that a generally used surface analysis apparatus is large and expensive, requires a lot of time for measurement analysis, and is not suitable for use in a normal manufacturing process. The method of measuring the contact angle has a problem in that it cannot produce water droplets of micrometer or less due to the vapor pressure of water, and the contact angle cannot be measured in a nanoimprint pattern region of micrometer or less. The method of measuring the release agent concentration using a labeling substance is, for example, in the measurement of emission intensity by visible light irradiation, the wavelength of visible light is larger than the pattern dimension, and the pattern to be measured is in the order of several tens of nm. On the other hand, there is a problem in that there is no resolution, and there has been a risk that the release agent and the substance that becomes the label itself may undergo chemical reaction and change in quality when irradiated with ultraviolet rays or even shorter wavelengths. In addition, since the pattern is fine, the thickness of the release agent is limited to about several nanometers in order to control the pattern dimension (CD: Critical Design), and the emission intensity becomes weaker with a release agent having a thickness of several nanometers. There was a problem that the light emission detection sensitivity was lowered.

そこで、本発明は、上記の問題点に鑑みてなされたものである。すなわち、本発明の目的は、ナノインプリント用モールド表面に形成した離型剤の塗布状態を微視的に検査する方法であって、微細な凹凸パターンの凹部底面を含め、モールド表面が離型作用を受けるに十分な量の離型剤で均一に被覆されているか否かを迅速かつ簡便に知ることができる検査方法および離型剤の塗布状態を評価する検査工程を有するパターン形成方法を提供することである。   Therefore, the present invention has been made in view of the above problems. That is, an object of the present invention is a method of microscopically inspecting the application state of a release agent formed on the surface of a nanoimprint mold, and the mold surface including a bottom surface of a concave portion of a fine uneven pattern has a releasing action. To provide an inspection method capable of quickly and easily knowing whether or not a uniform amount of a release agent is uniformly coated and a pattern formation method having an inspection step for evaluating the application state of the release agent It is.

上記の課題を解決するために、請求項1の発明に係るナノインプリント用モールドの離型剤の塗布状態の検査方法は、表面に凹凸パターンを有し、前記凹凸パターン上に離型剤が塗布形成されたナノインプリント用モールドの離型剤の塗布状態の検査方法であって、走査型プローブ顕微鏡のカンチレバーを用いて、前記離型剤が塗布形成された凹凸パターンの測定領域において、前記カンチレバーの探針先端と前記離型剤が塗布形成された凹凸パターンとの間に働くフォースカーブから前記探針と前記凹凸パターン表面の離型剤との間の付着力を計測し、前記付着力より前記離型剤の塗布状態を評価することを特徴とするものである。   In order to solve the above problems, the method for inspecting the application state of the mold release agent of the nanoimprint mold according to the invention of claim 1 has a concavo-convex pattern on the surface, and the mold release agent is applied and formed on the concavo-convex pattern. A method for inspecting the applied state of a release agent of a mold for nanoimprinting, wherein the cantilever probe is used in a measurement region of a concavo-convex pattern in which the release agent is applied and formed using a cantilever of a scanning probe microscope. The adhesion force between the probe and the mold release agent on the surface of the concavo-convex pattern is measured from a force curve that acts between the tip and the concavo-convex pattern on which the mold release agent is applied, and the mold release is determined from the adhesion force. The application state of the agent is evaluated.

請求項2の発明に係るナノインプリント用モールドの離型剤の塗布状態の検査方法は、表面に凹凸パターンを有し、前記凹凸パターン上に離型剤が塗布形成されたナノインプリント用モールドの離型剤の塗布状態の検査方法であって、走査型プローブ顕微鏡のカンチレバーを用いて、前記離型剤が塗布形成された凹凸パターンの測定領域において、前記カンチレバーの探針先端と前記離型剤が塗布形成された凹凸パターンとの間に働くフォースカーブから前記探針と前記凹凸パターン表面の離型剤との間の付着力および摩擦力を計測し、前記付着力および摩擦力より前記離型剤の塗布状態を評価することを特徴とするものである。   The method for inspecting the application state of the mold release agent of the nanoimprint mold according to the invention of claim 2 has a concavo-convex pattern on the surface, and the mold release agent for the nanoimprint mold in which the mold release agent is applied and formed on the concavo-convex pattern. The cantilever probe tip and the release agent are applied and formed in the measurement region of the concavo-convex pattern where the release agent is applied and formed using a cantilever of a scanning probe microscope. The adhesion force and the friction force between the probe and the release agent on the surface of the uneven pattern are measured from a force curve that acts between the uneven pattern and the release agent is applied from the adhesion force and the friction force. It is characterized by evaluating the state.

請求項3の発明に係るナノインプリント用モールドの離型剤の塗布状態の検査方法は、請求項1または請求項2に記載のナノインプリント用モールドの離型剤の塗布状態の検査方法において、前記探針の径が前記凹凸パターンの凹部寸法より小さく、前記探針が前記凹部の底面まで届く形状を有し、前記凹凸パターンの凹部寸法が数10ナノメートルオーダであることを特徴とするものである。   The method for inspecting the application state of the release agent for the nanoimprint mold according to the invention of claim 3 is the method for inspecting the application state of the release agent for the mold for nanoimprint according to claim 1 or 2, wherein The diameter of the concave / convex pattern is smaller than the concave dimension of the concave / convex pattern, the probe has a shape reaching the bottom of the concave section, and the concave / convex pattern of the concave / convex pattern is on the order of several tens of nanometers.

請求項4の発明に係るパターン形成方法は、表面に凹凸パターンを有し、前記凹凸パターン上に離型剤が塗布形成されたナノインプリント用モールドを被転写体に押し付けることで前記凹凸パターンを前記被転写体に転写するパターン形成方法であって、前記凹凸パターンを転写する前に、請求項1または請求項2に記載の検査方法により、前記ナノインプリント用モールド表面の離型剤の塗布状態を評価する検査工程を有することを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a pattern forming method comprising: pressing a nanoimprint mold having a concavo-convex pattern on a surface thereof and having a release agent applied and formed on the concavo-convex pattern against the transfer target; A pattern forming method for transferring to a transfer body, wherein the application state of a release agent on the surface of the nanoimprint mold is evaluated by the inspection method according to claim 1 or 2 before transferring the concavo-convex pattern. It has an inspection process.

本発明のナノインプリント用モールドの離型剤の塗布状態の検査方法によれば、微細な先端径の探針を搭載した走査型プローブ顕微鏡を用いたフォースカーブによる付着力の計測により、数10ナノメートルオーダの凹凸パターンを有するナノインプリント用モールド表面に形成した離型剤の塗布状態を、微視的に検査することが可能となる。さらに、パターン寸法より小さい径の探針を用い、付着力の計測をすることにより、凹部パターンの底面まで、離型剤の微視的付着力の強度や塗布の均一性などの塗布状態を定量的に評価し検査することが可能となる。本発明の検査方法によれば、モールド表面に塗布された離型剤の寿命のモニタリングができ、工程管理が容易になり、ナノインプリントにおける転写品質が向上するという効果を奏する。また、転写樹脂残りや異物が付着したモールドを洗浄し、離型剤を再塗布した場合の塗布状態を定量的に評価し検査することが可能となる。   According to the method for inspecting the application state of the mold release agent of the nanoimprint mold according to the present invention, the adhesion force is measured by a force curve using a scanning probe microscope equipped with a probe having a fine tip diameter. It is possible to microscopically inspect the application state of the release agent formed on the surface of the nanoimprint mold having an order uneven pattern. In addition, by measuring the adhesive force using a probe with a smaller diameter than the pattern size, the application state such as the strength of the microscopic adhesive force of the release agent and the uniformity of application can be quantified up to the bottom of the concave pattern. Can be evaluated and inspected. According to the inspection method of the present invention, the life of the release agent applied to the mold surface can be monitored, process management is facilitated, and the transfer quality in nanoimprinting is improved. In addition, it is possible to quantitatively evaluate and inspect the application state when the mold with the transfer resin residue or foreign matter attached is washed and the release agent is applied again.

本発明のパターン形成方法によれば、凹凸パターンを転写する前に、ナノインプリント用モールド表面の離型剤の塗布状態を評価する上記の検査方法を用いる工程を有することにより、離型剤の塗布状態を管理し、インプリントされる製品の品質・歩留・生産性を向上させることができる。   According to the pattern forming method of the present invention, the application state of the release agent is provided by using the above-described inspection method for evaluating the application state of the release agent on the nanoimprint mold surface before transferring the uneven pattern. Can improve the quality, yield, and productivity of imprinted products.

以下、図面に基づいて、本発明の最良の実施形態について詳細に説明する。   Hereinafter, the best embodiment of the present invention will be described in detail with reference to the drawings.

本発明では、走査型プローブ顕微鏡のカンチレバーを用いて付着力を計測することにより、従来の検査方法では測定ができなかった微細なパターン領域に設けられた離型剤の塗布状態を検査するものである。
図1は、本発明の付着力の測定の原理を示す説明用模式図である。
In the present invention, the adhesive force is measured using a cantilever of a scanning probe microscope, thereby inspecting the application state of a release agent provided in a fine pattern region that cannot be measured by a conventional inspection method. is there.
FIG. 1 is a schematic diagram for explanation showing the principle of measurement of adhesion force according to the present invention.

(フォースカーブと付着力)
図1に示すように、試料表面とカンチレバー構造を有する微小な探針とを徐々に近づけていき(図1のAからB)、探針と試料間の距離が数nm〜数十nmまで近づくと、両者の間にファンデルワールス力などの表面間力が働き、はじめに引力が作用し、次に斥力が作用する。さらに押し上げて、カンチレバーが上へたわんだ後(図1のC)、反対に離していくと、吸着力が作用して下へのたわみが発生する(図1のD)。そのたわみによる力が吸着力を超えたとき(図1のE)、カンチレバーは水平な位置に戻る(図1のF)。
(Force curve and adhesion)
As shown in FIG. 1, the sample surface and a small probe having a cantilever structure are gradually brought closer (A to B in FIG. 1), and the distance between the probe and the sample approaches several nanometers to several tens of nanometers. Then, inter-surface forces such as van der Waals force act between them, attractive force acts first, and then repulsive force acts. When the cantilever is further pushed up and deflected upward (C in FIG. 1), when it is released in the opposite direction, the attractive force acts to cause downward deflection (D in FIG. 1). When the force due to the deflection exceeds the adsorption force (E in FIG. 1), the cantilever returns to the horizontal position (F in FIG. 1).

カンチレバーのたわみは、カンチレバーの背面に当てられたレーザ光の反射角の変化により光センサーで検出され、カンチレバーの振れ量が測定される。試料と探針間の距離の制御(Z方向)はピエゾスキャナーにより行われる。カンチレバーの振れ量とカンチレバーのバネ定数から、フックの法則F=kx(kはカンチレバーのバネ定数〔N/m〕、xはカンチレバーの振れ量〔m〕)により付着力Fが得られる。図1では、横軸に試料と探針間の距離(Distance)、縦軸に表面間に働く力(Force:F)をとり、カンチレバーの振れは、フォースカーブ(フォースディスタンスカーブとも呼ばれる)として図1にプロットされている(図1の実線)。そのフォースカーブから、付着力(Adhesive force)を読み取ることができる。   The deflection of the cantilever is detected by an optical sensor based on a change in the reflection angle of the laser beam applied to the back surface of the cantilever, and the amount of deflection of the cantilever is measured. Control of the distance between the sample and the probe (Z direction) is performed by a piezo scanner. From the cantilever deflection and the cantilever spring constant, the hook force F = kx (k is the cantilever spring constant [N / m], x is the cantilever deflection [m]) and the adhesion force F is obtained. In FIG. 1, the horizontal axis represents the distance between the sample and the probe (Distance), and the vertical axis represents the force acting between the surfaces (Force: F). The cantilever deflection is shown as a force curve (also called a force distance curve). 1 is plotted (solid line in FIG. 1). The adhesive force can be read from the force curve.

上記のように、走査型プローブ顕微鏡は、所定のバネ定数を有する弾性体からなる100μm〜2000μm長のカンチレバーの自由端部に鋭く尖った探針を設けており、この探針を試料に近づけて、探針先端と試料表面の原子間にファンデルワールス力などの引力を作用させ、これにより生じるカンチレバーの変位から試料の局所的な形状や物性を測定する装置である。   As described above, the scanning probe microscope is provided with a sharply pointed probe at the free end of a 100 μm to 2000 μm long cantilever made of an elastic body having a predetermined spring constant, and the probe is brought close to the sample. In this device, an attractive force such as van der Waals force is applied between the probe tip and the sample surface, and the local shape and physical properties of the sample are measured from the displacement of the cantilever.

本発明において、付着力の測定に用いる走査型プローブ顕微鏡としては、片持ち梁の一端に探針を設けたカンチレバーと称するプローブで試料表面を走査し、試料表面のパターンの寸法や形状を計測する顕微鏡が用いられ、原子間力顕微鏡(Atomic Force Microsccope;以後、AFMと記す)が最も好ましい。以下の説明では、AFMを用いた場合を例にして、本発明の検査方法およびパターン形成方法について述べる。   In the present invention, as a scanning probe microscope used for measuring the adhesion force, the surface of the sample is scanned with a probe called a cantilever provided with a probe at one end of the cantilever, and the size and shape of the pattern on the sample surface are measured. A microscope is used, and an atomic force microscope (hereinafter referred to as AFM) is most preferable. In the following description, the inspection method and pattern formation method of the present invention will be described by taking the case of using AFM as an example.

本発明で用いるカンチレバーの探針の材質、形状としては、従来用いられている材質、形状の探針が適用できる。すなわち、探針の材質としては、シリコン、窒化シリコン、酸化シリコン、炭化シリコンなどが用いられる。また、上記の材料表面にメチル基などを修飾したものも用いることができる。さらに上記の材料表面に導電性を付与するために、一例として金、チタンなどの金属、あるいはカーボンなどを被覆したものが用いられる。探針の形状としては、ピラミッド型の四角錐、円錐などの先端を尖鋭化させた形状が用いられ、例えば四角錐の場合、先端部の頂角は70度前後、曲率半径は約数10nm程度である。さらに本発明において、図2に示すように、石英製モールド21などの微細な凹凸パターンの凹部底面などに塗布形成された離型剤22の塗布状態を計測する場合には、探針23が高密度カーボンなどで作製され、径が数nmで凹部パターン寸法(CD)より小さく、長さが数100nmの細長い探針を用いることにより計測することができる。   As the material and shape of the cantilever probe used in the present invention, conventionally used materials and shapes can be applied. That is, silicon, silicon nitride, silicon oxide, silicon carbide, or the like is used as the probe material. Moreover, what modified the methyl group etc. on the surface of said material can also be used. Further, in order to impart conductivity to the material surface, for example, a material coated with a metal such as gold or titanium, or carbon is used. As the shape of the probe, a shape having a sharpened tip such as a pyramid-shaped quadrangular pyramid or cone is used. For example, in the case of a quadrangular pyramid, the apex angle of the tip is about 70 degrees and the radius of curvature is about several tens of nm. It is. Furthermore, in the present invention, as shown in FIG. 2, when measuring the application state of the release agent 22 applied and formed on the bottom surface of a concave portion of a fine concavo-convex pattern such as a quartz mold 21, the probe 23 is high. It can be measured by using a long and narrow probe having a diameter of several nanometers and smaller than the concave pattern dimension (CD) and a length of several hundred nanometers.

次に、カンチレバーの探針とモールドとの間に働く付着力についてさらに説明する。図3は、微細な凹凸パターンを有する石英製モールドの表面に、離型剤の一例として市販されているフッ素含有シラン化合物であるオプツールDSX(ダイキン工業社製)を塗布形成し、カンチレバーの探針先端と離型剤を塗布したモールドとの間に働く付着力を測定するフォースカーブを示す図である。図3の横軸はモールドと探針間の距離(nm)、縦軸はモールドと探針との間に働く力(nN)を示す。図3におけるフォースカーブにおいて、点線が探針をモールドに接近させる状態(Approach)、実線が探針をモールドから離す状態(Retract)を示し、矢印で示される値が離型剤を塗布したモールドにおける付着力である。   Next, the adhesion force acting between the cantilever probe and the mold will be further described. FIG. 3 shows a cantilever probe in which Optool DSX (manufactured by Daikin Industries), which is a fluorine-containing silane compound that is commercially available as an example of a mold release agent, is applied to the surface of a quartz mold having a fine uneven pattern. It is a figure which shows the force curve which measures the adhesive force which acts between the front-end | tip and the mold which apply | coated the mold release agent. The horizontal axis in FIG. 3 indicates the distance (nm) between the mold and the probe, and the vertical axis indicates the force (nN) acting between the mold and the probe. In the force curve in FIG. 3, the dotted line indicates the state in which the probe approaches the mold (Approach), the solid line indicates the state in which the probe is separated from the mold (Retract), and the value indicated by the arrow is in the mold to which the release agent is applied. Adhesive strength.

一方、比較のために、図4に、表面に離型剤を塗布していない石英製モールドにおけるカンチレバーの探針先端とモールドとの間に働く付着力を測定するフォースカーブを示す。図4におけるフォースカーブにおいて、図3と同様に、点線が探針をモールドに接近させる状態(Approach)、実線がモールドから離す状態(Retract)を示し、矢印で示される値が離型剤を塗布したモールドにおける付着力である。図3の離型剤を塗布した場合に比べ、図4に示す離型剤を塗布していない場合の付着力は約5倍程度の高い値を示している。付着力がより高いということは、モールドを用いてインプリントしたときに、樹脂がモールドに密着してしまい、樹脂の凹凸パターンに欠けなどの不良を生じ易いことを示している。   On the other hand, for comparison, FIG. 4 shows a force curve for measuring the adhesion force acting between the tip of the cantilever probe tip and the mold in a quartz mold in which a release agent is not applied to the surface. In the force curve in FIG. 4, as in FIG. 3, the dotted line indicates the state in which the probe approaches the mold (Approach), the solid line indicates the state in which the probe is released (Retract), and the value indicated by the arrow indicates that the release agent is applied. It is the adhesive force in the mold. Compared to the case where the release agent shown in FIG. 3 is applied, the adhesive force when the release agent shown in FIG. 4 is not applied is about five times as high. Higher adhesion indicates that when imprinting is performed using a mold, the resin is in close contact with the mold and defects such as chipping are likely to occur in the uneven pattern of the resin.

(離型剤の塗布方法)
本発明において、離型剤としては、樹脂の離型性を高めるために表面エネルギーの小さい疎水性のフッ素樹脂など、従来公知の離型剤が適用できる。
次に、離型剤の塗布方法による付着力の相違について説明する。本発明における離型剤の塗布方法としては、従来公知の方法が用いられ、離型剤を所定の溶媒に溶解して離型剤溶液とし、その溶液中にモールドを浸漬した後に乾燥して離型剤をモールド表面に形成する方法、離型剤溶液をスピンコート法でモールド上に塗布形成する方法、密閉した容器中にモールドを静置し、気相状態にした離型剤をモールド上に成膜する気相成長法などが用いられる。本発明においては、上記のいずれの方法も用いることができ、モールド上に離型剤の薄膜を形成する上記の各方法をまとめて離型剤塗布方法と称する。
(Method of applying release agent)
In the present invention, as the release agent, a conventionally known release agent such as a hydrophobic fluororesin having a small surface energy can be applied in order to improve the release property of the resin.
Next, the difference in adhesive force depending on the application method of the release agent will be described. As a method for applying the release agent in the present invention, a conventionally known method is used. The release agent is dissolved in a predetermined solvent to form a release agent solution, and the mold is immersed in the solution, and then dried and released. A method of forming a mold on the mold surface, a method of applying and forming a release agent solution on the mold by spin coating, a mold that is placed in a sealed container and put in a gas phase state on the mold A vapor deposition method for forming a film is used. In the present invention, any of the above methods can be used, and the above methods for forming a release agent thin film on a mold are collectively referred to as a release agent coating method.

図5は、石英モールド表面に離型剤オプツールDSXを、スピンコート法で塗布形成した場合(図5(b))と気相成長法(図5(c))で塗布形成した場合、および比較として離型剤を設けていない石英モールドの場合(図5(a))における付着力の上限値・下限値、ばらつき(ドット)、平均値(x方向の長い直線)を示す図である。図4に示されるように、離型剤を設けていない石英モールド(図5(a))の付着力が平均値で15nNを超えているのに対し、離型剤を塗布形成したモールド(図5(b)、図5(c))の付着力はいずれも5nN以下と低い値を示す。   FIG. 5 shows the case where the release agent OPTOOL DSX is applied and formed on the quartz mold surface by spin coating (FIG. 5B), the case where it is applied by vapor deposition (FIG. 5C), and a comparison. 6 is a diagram showing the upper limit value / lower limit value of adhesive force, variation (dots), and average value (long line in the x direction) in the case of a quartz mold not provided with a release agent (FIG. 5A). As shown in FIG. 4, the adhesive force of the quartz mold without the release agent (FIG. 5A) exceeds 15 nN on average, whereas the mold (FIG. 5) is formed by applying the release agent. 5 (b) and FIG. 5 (c)) both show a low value of 5 nN or less.

さらに、離型剤をスピンコート法で塗布形成した場合(図5(b))に比べ、気相成長法(図5(c))で塗布形成した場合の付着力は前者の1/2程度(2.5nN)と低下しており、離型層形成方法の違いによる微小な差異を計測できることが分かる。   Furthermore, compared to the case where the release agent is applied and formed by spin coating (FIG. 5B), the adhesive force when applied by vapor deposition (FIG. 5C) is about ½ of the former. (2.5 nN), which indicates that a minute difference due to a difference in the release layer forming method can be measured.

(摩擦力)
本発明のナノインプリント用モールドの離型剤の塗布状態の検査方法においては、カンチレバーの探針先端と離型剤が塗布形成された凹凸パターンとの間に働く付着力に加えて摩擦力をも計測し、付着力と摩擦力より離型剤の塗布状態を評価するのも好ましい形態である。
(Frictional force)
In the method for inspecting the application state of the mold release agent of the nanoimprint mold of the present invention, the friction force is also measured in addition to the adhesion force acting between the tip of the cantilever probe and the uneven pattern on which the mold release agent is applied and formed. It is also a preferable form to evaluate the application state of the release agent from the adhesive force and the frictional force.

図6は、離型剤62を塗布形成したナノインプリント用モールドの61を基板63上の被転写材料の樹脂64に押し圧した後、引き離したときに働く力を説明するための部分断面模式図である。このとき、樹脂とモールドの間には付着力Pと摩擦力Qが働く。摩擦力を求めることにより、モールドの凹凸パターンの凹部側面の情報を間接的に得ることができ、また、離型層の均一性を評価することができる。付着力に加えて摩擦力を計測することによって、付着力だけの場合よりも広い情報を得ることができる。   FIG. 6 is a partial cross-sectional schematic diagram for explaining the force acting when the nanoimprint mold 61 coated with the release agent 62 is pressed against the transfer material resin 64 on the substrate 63 and then separated. is there. At this time, an adhesion force P and a friction force Q act between the resin and the mold. By obtaining the frictional force, information on the side surface of the concave portion of the concave / convex pattern of the mold can be obtained indirectly, and the uniformity of the release layer can be evaluated. By measuring the frictional force in addition to the adhesive force, wider information can be obtained than in the case of the adhesive force alone.

図7は、離型剤を塗布形成したモールド表面に働く摩擦力を示す説明図である。摩擦力の起源は、付着力、すなわち分子間力と雰囲気物質の凝縮力の和にあるものと考えられ、両者に相関があることを示すものである。図8は、石英モールド表面に離型剤を塗布形成したときの離型剤の付着力(白丸)および摩擦力(黒丸)を示す図であり、縦軸右に付着力(nN)、縦軸左に摩擦力(mV)を示す。図8は、石英モールド表面に離型剤オプツールDSXを、スピンコート法で塗布形成した場合と気相成長法で塗布形成した場合、および比較として離型剤を設けていない石英モールドのみの場合における付着力、摩擦力を示す図である。図8に示されるように、離型剤を設けていない石英モールドの摩擦力は平均値で約20mVであるのに対し、離型剤を塗布形成したモールドの摩擦力はいずれも4mV以下である。また、付着力と摩擦力は相関があることが分かる。   FIG. 7 is an explanatory diagram showing the frictional force acting on the mold surface on which a release agent is applied and formed. The origin of the frictional force is thought to be the sum of the adhesion force, that is, the intermolecular force and the condensing force of the atmospheric substance, indicating that there is a correlation between the two. FIG. 8 is a diagram showing the adhesion (white circle) and frictional force (black circle) of the release agent when the release agent is applied and formed on the surface of the quartz mold. The frictional force (mV) is shown on the left. FIG. 8 shows the case in which the release agent OPTOOL DSX is applied and formed on the surface of the quartz mold by the spin coat method and the vapor phase growth method, and in the case of only the quartz mold without the release agent as a comparison. It is a figure which shows adhesive force and frictional force. As shown in FIG. 8, the frictional force of the quartz mold without the release agent is about 20 mV on average, whereas the frictional force of the mold formed by applying the release agent is 4 mV or less. . It can also be seen that the adhesion force and the friction force are correlated.

上記のように、走査型プローブ顕微鏡のカンチレバーの探針先端は極めて小さいので、数10ナノメータの微小領域で計測したフォースカーブから付着力、あるいは付着力と摩擦力を求めることにより、微小領域における離型剤塗布状態を評価し検査することが可能となり、所定の付着力あるいは付着力と摩擦力を設定することにより、モールドの離型剤塗布状態を管理することが可能となる。
以下、実施例により、本発明を詳細に説明する。
As described above, the tip of the cantilever tip of the scanning probe microscope is extremely small, and by obtaining the adhesion force, or adhesion force and friction force from the force curve measured in the micro area of several tens of nanometers, the separation in the micro area is obtained. The mold application state can be evaluated and inspected, and the mold release agent application state of the mold can be managed by setting a predetermined adhesion force or adhesion force and friction force.
Hereinafter, the present invention will be described in detail by way of examples.

(実施例1)
試料として、ハーフピッチ2μmのライン/スペースの凹凸パターンが一主面上に形成された石英ガラス製のナノインプリント用モールドを用いた。このモールドのパターン側全面に気相成長法で離型剤(オプツールDSX:ダイキン工業社製)を成膜し、モールド表面に離型剤を塗布形成した。
Example 1
As a sample, a nanoimprint mold made of quartz glass in which a concavo-convex pattern of lines / spaces with a half pitch of 2 μm was formed on one main surface was used. A mold release agent (OPTOOL DSX: manufactured by Daikin Industries, Ltd.) was formed on the entire pattern side of the mold by vapor phase growth, and the mold release agent was applied and formed on the mold surface.

次に、走査型プローブ顕微鏡としてAFM(SPA400/SPI4000:エスアイアイ・ナノテクノロジー社製)を用い、カンチレバーには材質が窒化シリコンで先端の曲率半径10nmの探針を使用して、離型剤を塗布形成した凹凸パターンの凸部と凹部について、カンチレバーの探針と離型剤の間に働く付着力を計測した。ナノインプリント前の付着力は凸部と凹部の両者でほとんど差異はなく、平均1.2nNであった。   Next, AFM (SPA400 / SPI4000: manufactured by SII Nano Technology) is used as a scanning probe microscope, and a cantilever is made of silicon nitride and a tip having a radius of curvature of 10 nm is used as a release agent. The adhesion force acting between the cantilever probe and the release agent was measured for the convex and concave portions of the concavo-convex pattern formed by coating. The adhesion before nanoimprinting was almost the same between the convex part and the concave part, and the average was 1.2 nN.

次に、モールドの凹凸パターン上に気相法で塗布形成した離型剤の耐久性を評価するために、図9に示されるように、インプリント回数と付着力の関係を求めた。UVナノインプリントの手法を用い、UV硬化樹脂としてPAK-01(東洋合成社製)を使用した。転写領域は、半径約2cmの円である。図9に示すように、インプリント回数が20回まではインプリント回数に応じて付着力は増加し、20回で1.5nNとなり、20回を超えて100回までは、付着力は20回までのときに比べて緩やかに増加する傾向を示した。
UVナノインプリント回数が20回および100回の時の、付着力の面内分布を評価した結果を図10に示す。中心付近の変化に比べて、周辺部分の付着力が低下していることが分かる。このように、離型性の劣化について、その位置依存性を評価することができた。
Next, in order to evaluate the durability of the release agent applied and formed on the concavo-convex pattern of the mold by a vapor phase method, the relationship between the number of imprints and the adhesive force was determined as shown in FIG. Using a UV nanoimprint technique, PAK-01 (manufactured by Toyo Gosei Co., Ltd.) was used as a UV curable resin. The transfer area is a circle with a radius of about 2 cm. As shown in FIG. 9, the adhesive force increases according to the number of imprints up to 20 times, and becomes 1.5 nN at 20 times, and the adhesive force is 20 times from 20 times to 100 times. It showed a tendency to increase more slowly than before.
FIG. 10 shows the results of evaluating the in-plane distribution of the adhesive force when the number of UV nanoimprints is 20 times and 100 times. It can be seen that the adhesion force in the peripheral portion is lower than that in the vicinity of the center. Thus, it was possible to evaluate the position dependency of the deterioration of the releasability.

(実施例2)
本実施例では、実施例1と同様にAFMを用い、実施例1で求めた付着力に加えて摩擦力も計測し、付着力と摩擦力より離型剤の塗布状態を評価した。図11は、インプリント回数と摩擦力の関係を示す。
(Example 2)
In this example, AFM was used in the same manner as in Example 1, and the friction force was measured in addition to the adhesion force obtained in Example 1, and the application state of the release agent was evaluated from the adhesion force and the friction force. FIG. 11 shows the relationship between the number of imprints and the frictional force.

図11に示すように、インプリント回数が20回まではインプリント回数に応じて摩擦力は増加し、20回を超えて100回まで、緩やかに増加する傾向を示した。   As shown in FIG. 11, the frictional force increased according to the number of imprints until the number of imprints was 20, and showed a tendency to gradually increase from 20 to 100 times.

図12に、AFMを用い、摩擦力を計測した結果と比較のための形状像を示す。凸部と凹部の両者でほとんど差異はなく、凸部と凹部に同等に離型層が形成されていることが分かる。   FIG. 12 shows a result of measuring the friction force using AFM and a shape image for comparison. There is almost no difference between the convex portion and the concave portion, and it can be seen that the release layer is formed equally on the convex portion and the concave portion.

本発明の付着力の測定の原理を示す説明用模式図である。It is an explanatory schematic diagram showing the principle of the measurement of adhesion force of the present invention. カンチレバーの探針により微細な凹凸パターンの凹部底面を計測する場合を示す断面模式図である。It is a cross-sectional schematic diagram which shows the case where the recessed part bottom face of a fine uneven | corrugated pattern is measured with the probe of a cantilever. カンチレバーの探針先端と離型剤を塗布したモールドとの間に働くフォースカーブを示す図である。It is a figure which shows the force curve which acts between the probe tip of a cantilever and the mold which apply | coated the mold release agent. 離型剤を塗布していない石英製モールドにおけるカンチレバーの探針先端とモールドとの間に働くフォースカーブを示す図である。It is a figure which shows the force curve which acts between the probe tip of a cantilever and the mold in the quartz mold which has not applied the mold release agent. モールドの表面状態および離型剤の塗布方法と付着力の関係を示す図である。It is a figure which shows the relationship between the surface state of a mold, the application | coating method of a mold release agent, and adhesive force. 離型剤を塗布形成したモールドを樹脂に押し圧した後、引き離したときに働く力を説明するための部分断面模式図である。It is a partial cross-sectional schematic diagram for demonstrating the force which acts when it presses and separates the mold which apply | coated and formed the mold release agent to resin. 離型剤を塗布形成したモールド表面に働く付着力と摩擦力を示す説明図である。It is explanatory drawing which shows the adhesive force and frictional force which act on the mold surface which apply | coated and formed the mold release agent. 石英モールド表面に離型剤を塗布形成したときの離型剤の付着力および摩擦力を示す図である。It is a figure which shows the adhesive force and frictional force of a mold release agent when a mold release agent is apply | coated and formed on the quartz mold surface. インプリント回数と離型剤を塗布したモールドの付着力の関係を示す図である。It is a figure which shows the relationship between the frequency | count of imprinting, and the adhesive force of the mold which apply | coated the mold release agent. UVナノインプリントにおいて繰り返し転写後の付着力の位置依存性を示す図である。It is a figure which shows the position dependence of the adhesive force after repeated transfer in UV nanoimprint. インプリント回数と離型剤を塗布したモールドの摩擦力の関係を示す図である。It is a figure which shows the relationship between the frequency | count of imprint, and the frictional force of the mold which apply | coated the mold release agent. AFMを用い摩擦力を計測したAFM摩擦力像と比較のためのAFM形状像を示す図である。It is a figure which shows the AFM shape image for comparison with the AFM frictional force image which measured the frictional force using AFM.

符号の説明Explanation of symbols

21 石英製モールド
22 離型剤
23 カンチレバーの探針
61 石英製モールド
62 離型剤
63 基板
64 樹脂
21 Quartz mold 22 Release agent 23 Cantilever probe 61 Quartz mold 62 Release agent 63 Substrate 64 Resin

Claims (4)

表面に凹凸パターンを有し、前記凹凸パターン上に離型剤が塗布形成されたナノインプリント用モールドの離型剤の塗布状態の検査方法であって、
走査型プローブ顕微鏡のカンチレバーを用いて、前記離型剤が塗布形成された凹凸パターンの測定領域において、前記カンチレバーの探針先端と前記離型剤が塗布形成された凹凸パターンとの間に働くフォースカーブから前記探針と前記凹凸パターン表面の離型剤との間の付着力を計測し、
前記付着力より前記離型剤の塗布状態を評価することを特徴とするナノインプリント用モールドの離型剤の塗布状態の検査方法。
A method for inspecting the application state of a mold release agent of a mold for nanoimprint, which has an uneven pattern on the surface, and a release agent is applied and formed on the uneven pattern,
Using a cantilever of a scanning probe microscope, a force acting between the tip of the probe tip of the cantilever and the concavo-convex pattern on which the release agent is applied and formed in the measurement region of the concavo-convex pattern on which the release agent is applied and formed. Measure the adhesive force between the probe and the mold release agent on the surface of the concavo-convex pattern from the curve,
The method for inspecting the application state of the release agent of the nanoimprint mold, wherein the application state of the release agent is evaluated from the adhesive force.
表面に凹凸パターンを有し、前記凹凸パターン上に離型剤が塗布形成されたナノインプリント用モールドの離型剤の塗布状態の検査方法であって、
走査型プローブ顕微鏡のカンチレバーを用いて、前記離型剤が塗布形成された凹凸パターンの測定領域において、前記カンチレバーの探針先端と前記離型剤が塗布形成された凹凸パターンとの間に働くフォースカーブから前記探針と前記凹凸パターン表面の離型剤との間の付着力および摩擦力を計測し、
前記付着力および摩擦力より前記離型剤の塗布状態を評価することを特徴とするナノインプリント用モールドの離型剤の塗布状態の検査方法。
A method for inspecting the application state of a mold release agent of a mold for nanoimprint, which has an uneven pattern on the surface, and a release agent is applied and formed on the uneven pattern,
Using a cantilever of a scanning probe microscope, a force acting between the tip of the probe tip of the cantilever and the concavo-convex pattern on which the release agent is applied and formed in the measurement region of the concavo-convex pattern on which the release agent is applied and formed. Measure the adhesion force and friction force between the probe and the mold release agent on the surface of the concavo-convex pattern from the curve,
A method for inspecting the application state of the release agent of the mold for nanoimprint, wherein the application state of the release agent is evaluated from the adhesive force and the frictional force.
前記探針の径が前記凹凸パターンの凹部寸法より小さく、前記探針が前記凹部の底面まで届く形状を有し、前記凹凸パターンの凹部寸法が数10ナノメートルオーダであることを特徴とする請求項1または請求項2に記載のナノインプリント用モールドの離型剤の塗布状態の検査方法。   The diameter of the probe is smaller than the concave dimension of the concave / convex pattern, the probe has a shape reaching the bottom surface of the concave section, and the concave dimension of the concave / convex pattern is on the order of several tens of nanometers. The inspection method of the application | coating state of the mold release agent of the mold for nanoimprints of Claim 1 or Claim 2. 表面に凹凸パターンを有し、前記凹凸パターン上に離型剤が塗布形成されたナノインプリント用モールドを被転写体に押し付けることで前記凹凸パターンを前記被転写体に転写するパターン形成方法であって、
前記凹凸パターンを転写する前に、請求項1または請求項2に記載の検査方法により、前記ナノインプリント用モールド表面の離型剤の塗布状態を評価する検査工程を有することを特徴とするパターン形成方法。
A pattern forming method for transferring the concavo-convex pattern to the transferred body by pressing a nanoimprint mold having a concavo-convex pattern on the surface and applying a release agent on the concavo-convex pattern to the transferred body,
3. A pattern forming method comprising an inspection step of evaluating the application state of a release agent on the surface of the nanoimprint mold by the inspection method according to claim 1 or 2 before transferring the uneven pattern. .
JP2008321900A 2008-12-18 2008-12-18 A mold release agent application state inspection method and pattern formation method for a nanoimprint mold. Expired - Fee Related JP5315973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321900A JP5315973B2 (en) 2008-12-18 2008-12-18 A mold release agent application state inspection method and pattern formation method for a nanoimprint mold.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321900A JP5315973B2 (en) 2008-12-18 2008-12-18 A mold release agent application state inspection method and pattern formation method for a nanoimprint mold.

Publications (2)

Publication Number Publication Date
JP2010143042A true JP2010143042A (en) 2010-07-01
JP5315973B2 JP5315973B2 (en) 2013-10-16

Family

ID=42563976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321900A Expired - Fee Related JP5315973B2 (en) 2008-12-18 2008-12-18 A mold release agent application state inspection method and pattern formation method for a nanoimprint mold.

Country Status (1)

Country Link
JP (1) JP5315973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018214A (en) * 2011-07-12 2013-01-31 Hitachi Industrial Equipment Systems Co Ltd Apparatus and method for transferring of pattern
JP2015043369A (en) * 2013-08-26 2015-03-05 大日本印刷株式会社 Film inspection method, imprint method, manufacturing method for pattern structure body, mold for imprint, transfer substrate for imprint, and imprint device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113741A (en) * 1993-10-18 1995-05-02 Ryoden Semiconductor Syst Eng Kk Adhesion measuring instrument, adhesion measuring method and manufacture of semiconductor
JPH0915137A (en) * 1995-07-03 1997-01-17 Nikon Corp Frictional force measuring apparatus and scanning frictional force microscope
JPH09304405A (en) * 1996-05-21 1997-11-28 Nikon Corp Composite type probe microscope
JP2007296823A (en) * 2006-05-08 2007-11-15 Hitachi Ltd Mold for pattern forming, method for releasing treatment of mold for pattern forming, and evaluation method of mold release agent concentration
JP2010045092A (en) * 2008-08-11 2010-02-25 Hyogo Prefecture Mold separating method and nano pattern forming method in nanoimprint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113741A (en) * 1993-10-18 1995-05-02 Ryoden Semiconductor Syst Eng Kk Adhesion measuring instrument, adhesion measuring method and manufacture of semiconductor
JPH0915137A (en) * 1995-07-03 1997-01-17 Nikon Corp Frictional force measuring apparatus and scanning frictional force microscope
JPH09304405A (en) * 1996-05-21 1997-11-28 Nikon Corp Composite type probe microscope
JP2007296823A (en) * 2006-05-08 2007-11-15 Hitachi Ltd Mold for pattern forming, method for releasing treatment of mold for pattern forming, and evaluation method of mold release agent concentration
JP2010045092A (en) * 2008-08-11 2010-02-25 Hyogo Prefecture Mold separating method and nano pattern forming method in nanoimprint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018214A (en) * 2011-07-12 2013-01-31 Hitachi Industrial Equipment Systems Co Ltd Apparatus and method for transferring of pattern
JP2015043369A (en) * 2013-08-26 2015-03-05 大日本印刷株式会社 Film inspection method, imprint method, manufacturing method for pattern structure body, mold for imprint, transfer substrate for imprint, and imprint device

Also Published As

Publication number Publication date
JP5315973B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
Lan et al. Nanoimprint lithography
US10168353B2 (en) Apparatus and methods for investigating a sample surface
US20060258163A1 (en) Methods of fabricating nano-scale and micro-scale mold for nano-imprint, and mold usage on nano-imprinting equipment
Wu et al. Nanoimprint lithography-the past, the present and the future
US20050258365A1 (en) Method and apparatus for measuring a surface profile of a sample
Cattoni et al. Soft UV nanoimprint lithography: a versatile tool for nanostructuration at the 20nm scale
JP2008116272A (en) Pattern inspection method and device
Si et al. Consecutive imprinting performance of large area UV nanoimprint lithography using Bi-layer soft stamps in ambient atmosphere
JP2009143089A (en) Mold for fine-structure transfer and its manufacturing method
JP5315973B2 (en) A mold release agent application state inspection method and pattern formation method for a nanoimprint mold.
Kim et al. Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area
Ferchichi et al. Fabrication of disposable flexible SERS substrates by nanoimprint
JP5732724B2 (en) Nanoimprint method
Peng et al. Continuous roller nanoimprinting: next generation lithography
Meng et al. Fabrication of large-sized two-dimensional ordered surface array with well-controlled structure via colloidal particle lithography
Asif et al. Comparison of UV-curable materials for high-resolution polymer nanoimprint stamps
JP2011119447A (en) Method for measuring release force of transfer material for nano imprint
JP6668714B2 (en) Injection mold release test method
Chen et al. Direct metal transfer lithography for fabricating wire-grid polarizer on flexible plastic substrate
EP2016462A1 (en) Device and method for obtaining a substrate structured on micrometric or nanometric scale
Potejana et al. Fabrication of metallic nano pillar arrays on substrate by sputter coating and direct imprinting processes
Landis Nanoimprint lithography
Azzaroni et al. Direct molding of nanopatterned polymeric films: Resolution and errors
JP6323071B2 (en) Surface condition inspection method, imprint mold manufacturing method, and imprint method
Wang et al. Recent Progress in Ultraviolet Nanoimprint Lithography and Its Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5315973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees