JP2010142866A - Method for surface treatment of metal component - Google Patents

Method for surface treatment of metal component Download PDF

Info

Publication number
JP2010142866A
JP2010142866A JP2008325816A JP2008325816A JP2010142866A JP 2010142866 A JP2010142866 A JP 2010142866A JP 2008325816 A JP2008325816 A JP 2008325816A JP 2008325816 A JP2008325816 A JP 2008325816A JP 2010142866 A JP2010142866 A JP 2010142866A
Authority
JP
Japan
Prior art keywords
metal
surface treatment
powder
alloy material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008325816A
Other languages
Japanese (ja)
Other versions
JP5524479B2 (en
Inventor
Mikio Yoneyama
三樹男 米山
Yoshihiro Tatsumi
佳宏 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Fuji Corp
Original Assignee
Osaka Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Fuji Corp filed Critical Osaka Fuji Corp
Priority to JP2008325816A priority Critical patent/JP5524479B2/en
Publication of JP2010142866A publication Critical patent/JP2010142866A/en
Application granted granted Critical
Publication of JP5524479B2 publication Critical patent/JP5524479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for surface treatment of a metal component capable of improving the corrosion resistance against a liquid molten zinc alloy and a liquid molten aluminum alloy. <P>SOLUTION: In the method for surface treatment of the metal component, metal powder with W and Mo added to powder consisting of a cobalt-based alloy material is cladded by welding on a surface of a base metal 35 by the plasma powder welding to form a lining layer 36. A Co-Cr-Fe alloy material and an alloy material consisting mainly of Co-Cr can be favorably used for the cobalt-based alloy material. A metal oxide film can be effectively formed by executing the scaling treatment of a surface of the lining layer 36. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属部品の表面処理方法、特に、溶融金属中での耐腐食性を要求される金属部品の表面処理方法に関する。   The present invention relates to a surface treatment method for metal parts, and more particularly, to a surface treatment method for metal parts that require corrosion resistance in molten metal.

従来より、溶融亜鉛合金めっき液中あるいは溶融アルミニウム合金めっき液中に配置されるシンクロールや、アルミダイキャストに際して溶融アルミニウムを金型に供給するスリーブには高度な耐腐食性が要求されていた。そこで、本願出願人は、特許文献1に記載されているように、アルミニウム合金めっき浴中での耐腐食性、耐摩耗性に優れた金属部品の表面処理方法を開発した。
特許第3291128号公報
Conventionally, a high degree of corrosion resistance has been required for a sink roll disposed in a molten zinc alloy plating solution or a molten aluminum alloy plating solution and a sleeve for supplying molten aluminum to a mold during aluminum die casting. Therefore, the applicant of the present application has developed a surface treatment method for metal parts having excellent corrosion resistance and wear resistance in an aluminum alloy plating bath, as described in Patent Document 1.
Japanese Patent No. 3291128

本発明の目的は、溶融亜鉛合金液や溶融アルミニウム合金液に対する耐腐食性をさらに改善した金属部品の表面処理方法を提供することにある。   An object of the present invention is to provide a surface treatment method for metal parts, which further improves the corrosion resistance against molten zinc alloy liquid and molten aluminum alloy liquid.

前記目的を達成するため、本発明の一形態である金属部品の表面処理方法は、
金属部品の表面に、コバルト基合金材料からなる粉末にW,Moを加えた金属粉末を、プラズマ粉体溶接にて肉盛りし、ライニング層を形成することを特徴とする。さらに、前記ライニング層の表面をスケーリング処理して金属酸化膜を形成してもよい。コバルト基合金材料としては、Co−Cr−Fe合金材料又はCo−Crを主成分とする合金材料を好適に使用することができる。
In order to achieve the above object, a surface treatment method for a metal part according to one aspect of the present invention comprises:
A metal powder obtained by adding W and Mo to a powder made of a cobalt-based alloy material on the surface of a metal part is built up by plasma powder welding to form a lining layer. Further, the surface of the lining layer may be scaled to form a metal oxide film. As the cobalt-based alloy material, a Co—Cr—Fe alloy material or an alloy material mainly composed of Co—Cr can be preferably used.

以上の表面処理を施した金属部品は、溶融亜鉛合金液や溶融アルミニウム合金液に対して体積減や板厚減をほとんど生じることがなく、耐腐食性が極めて良好である実験結果を示した。   The metal parts subjected to the surface treatment described above showed experimental results with very good corrosion resistance with almost no volume reduction or thickness reduction with respect to the molten zinc alloy liquid or molten aluminum alloy liquid.

以下、本発明に係る金属部品の表面処理方法の実施例について添付図面を参照して説明する。   Embodiments of a surface treatment method for metal parts according to the present invention will be described below with reference to the accompanying drawings.

(金属部品、図1及び図2参照)
図1に、アルミダイキャストのための金型10と、金型10に溶融アルミニウム合金を供給するためのスリーブ15を示す。金型10は固定型10aと可動型10bとからなり、矢印A方向に型締めされる。スリーブ15は一般的にSKD61に窒化処理を施したものが使用されている。スリーブ15には開口15aから溶融アルミニウム合金が流し込まれ、溶融アルミニウム合金はプランジャ16にて金型10のキャビティに供給される。
(Refer to metal parts, Fig. 1 and Fig. 2)
FIG. 1 shows a mold 10 for aluminum die casting and a sleeve 15 for supplying molten aluminum alloy to the mold 10. The mold 10 includes a fixed mold 10a and a movable mold 10b, and is clamped in the direction of arrow A. The sleeve 15 is generally made by nitriding the SKD 61. Molten aluminum alloy is poured into the sleeve 15 from the opening 15 a, and the molten aluminum alloy is supplied to the cavity of the mold 10 by the plunger 16.

スリーブ15においては、溶融アルミニウム合金の流し込みを繰り返すことにより、特に開口15aの下部であるB領域に、溶損、ヒートクラックが発生したり、焼付きなどの問題を生じている。そこで、少なくとも領域Bあるいはスリーブ15の全内周部分に以下に説明する本発明に係る表面処理を施すこととした。   In the sleeve 15, by repeatedly pouring the molten aluminum alloy, problems such as melting and heat cracking or seizure occur, particularly in the B region below the opening 15 a. Therefore, at least the region B or the entire inner peripheral portion of the sleeve 15 is subjected to the surface treatment according to the present invention described below.

図2に、シンクロール20を示す。一般に、鋼板に亜鉛合金めっきを施すには、鋼板をスナウトから溶融亜鉛合金めっき浴槽に投入し、めっき浴中で搬送した後にスナップロールによって浴槽から引き上げている。シンクロール20は、例えばSUS316Lからなり、鋼板をめっき浴中で搬送するための部材である。このようなシンクロール20やスナップロールにあっては溶融亜鉛合金めっき液に対する耐腐食性が要求され、以下に説明する本発明に係る表面処理を施すこととした。シンクロール20に対しては、ロール表面部分に加えて、軸部分21やその軸受けにも本発明に係る表面処理を施すことが好ましい。   FIG. 2 shows the sink roll 20. In general, in order to apply zinc alloy plating to a steel plate, the steel plate is put into a hot dip zinc alloy plating bath from a snout, and after being conveyed in a plating bath, it is pulled up from the bath by a snap roll. The sink roll 20 is made of SUS316L, for example, and is a member for transporting the steel plate in the plating bath. Such a sink roll 20 and a snap roll are required to have corrosion resistance against a hot dip zinc alloy plating solution, and the surface treatment according to the present invention described below is performed. In addition to the roll surface portion, the sink roll 20 is preferably subjected to the surface treatment according to the present invention on the shaft portion 21 and its bearing.

(表面処理の金属材料)
本発明に係る表面処理方法は、前記SKD61やSUS316Lなどを母材として、その表面に、コバルト基合金材料からなる粉末にW,Moを加えた金属粉末をプラズマ粉体溶接にて肉盛りし、ライニング層を形成する。得られたライニング層の表面をバーナで加熱するスケーリング処理し、金属酸化膜を形成してもよい。スケーリング処理で形成されるのは、Co,W,Moなどの酸化膜であり、保護層として機能する。
(Metallic material for surface treatment)
The surface treatment method according to the present invention uses the SKD61, SUS316L or the like as a base material, and on the surface thereof, a metal powder obtained by adding W and Mo to a powder made of a cobalt base alloy material is built up by plasma powder welding, A lining layer is formed. The surface of the obtained lining layer may be scaled by heating with a burner to form a metal oxide film. What is formed by the scaling process is an oxide film such as Co, W, or Mo, which functions as a protective layer.

以下に示す浸漬実験のため、金属粉末の第1例として、35vol%のCo−Cr合金に60vol%のW及び5vol%のMoを加えて#100〜250の混合粉末としたものを用意した。金属粉末の第2例として、35vol%のCo−Cr−Fe合金(Co:50vol%、Cr:30vol%、Fe:20vol%)に60vol%のW及び5vol%のMoを加えて#100〜250の混合粉末としたものを用意した。なお、Wは約30〜80vol%の範囲で加えることができ、Moは約1〜20vol%の範囲で加えることができる。   For the immersion experiment shown below, as a first example of metal powder, a mixed powder of # 100 to 250 was prepared by adding 60 vol% W and 5 vol% Mo to a 35 vol% Co—Cr alloy. As a second example of the metal powder, by adding 60 vol% W and 5 vol% Mo to a 35 vol% Co—Cr—Fe alloy (Co: 50 vol%, Cr: 30 vol%, Fe: 20 vol%) # 100 to 250 A mixed powder was prepared. In addition, W can be added in the range of about 30-80 vol%, and Mo can be added in the range of about 1-20 vol%.

(プラズマ粉体溶接法、図3参照)
ここで、プラズマ粉体溶接法について説明する。プラズマ粉体溶接法は、図3に示すように、溶接トーチ30の中心孔31にタングステン電極32を設け、中心孔31にアルゴンガスを供給してガスプラズマを発生させる。溶接トーチ30の先端からはパイロットアークPa及びメインアークMaが噴出する。同時に、溶接トーチ30の粉末供給孔33から前記金属粉末を供給する。この金属粉末はメインアークMaによって溶融し、母材35の表面に容着し、ライニング層36が形成される。また、溶接トーチ30のガス供給孔34からはシールドガス(通常、アルゴンガス)が供給される。
(Plasma powder welding method, see Fig. 3)
Here, the plasma powder welding method will be described. In the plasma powder welding method, as shown in FIG. 3, a tungsten electrode 32 is provided in the center hole 31 of the welding torch 30, and argon gas is supplied to the center hole 31 to generate gas plasma. A pilot arc Pa and a main arc Ma are ejected from the tip of the welding torch 30. At the same time, the metal powder is supplied from the powder supply hole 33 of the welding torch 30. This metal powder is melted by the main arc Ma, and is adhered to the surface of the base material 35 to form a lining layer 36. A shield gas (usually argon gas) is supplied from the gas supply hole 34 of the welding torch 30.

このようなプラズマ粉体溶接法は、他の溶接法(被覆アーク溶接、ディグ溶接、ミグ溶接、サブマージ溶接、ガス溶接)と比較して、以下の特徴を有している。
(1)母材への溶け込み深さが小さく、希釈率は通常5%以下である。従って、1層で目標の化学成分の肉盛り金属が得られる。
(2)肉盛り材料として粉末を用いるため、材料をワイヤやロッドに形成する必要がなく、一般金属の各種炭化物を主成分とする超硬複合合金の肉盛りも容易に行うことができ、炭化物含有量の調整も自由である。
(3)アルゴンガス中での自動溶接であるため、ブローホールなどの欠陥が少ない。
(4)溶融溶接であるため、母材との結合は冶金結合であり、剥離などの問題はない。
Such a plasma powder welding method has the following characteristics as compared with other welding methods (covered arc welding, dig welding, MIG welding, submerged welding, gas welding).
(1) The penetration depth into the base material is small, and the dilution rate is usually 5% or less. Therefore, a build-up metal having a target chemical component can be obtained in one layer.
(2) Since powder is used as the build-up material, it is not necessary to form the material into wires or rods, and it is possible to easily build up a cemented carbide composite alloy mainly composed of various carbides of general metals. The content can be adjusted freely.
(3) Since it is automatic welding in argon gas, there are few defects such as blow holes.
(4) Since it is fusion welding, the bond with the base material is a metallurgical bond, and there is no problem such as peeling.

(浸漬試験結果、図4〜図7参照)
次に、SS400を母材として前記金属材料の第1例及び第2例を用いてそれぞれプラズマ粉体溶接法にてライニング層を形成して試験片とし、溶融亜鉛合金めっき浴中及び溶融アルミニウム合金めっき浴中へ浸漬した。試験片はライニング層を縦45mm、横15mm、厚さ5mmに切り出したものである。
(Immersion test results, see FIGS. 4 to 7)
Next, using SS400 as a base material, a lining layer is formed by plasma powder welding using the first and second examples of the metal material, respectively, and used as a test piece. It was immersed in a plating bath. The test piece is obtained by cutting a lining layer into a length of 45 mm, a width of 15 mm, and a thickness of 5 mm.

図4は、試験片を580℃のAl:55vol%−Zn:45vol%の溶融亜鉛合金めっき浴中へ7日間浸漬したときの体積減を示し、図5は同条件での板厚減を示す。図6は、試験片を650℃のAl:90vol%−Si:10vol%の溶融アルミニウム合金めっき浴中へ7日間浸漬したときの体積減を示し、図7は同条件での板厚減を示す。   FIG. 4 shows the volume reduction when the test piece was immersed in a hot zinc alloy plating bath of Al: 55 vol% -Zn: 45 vol% at 580 ° C. for 7 days, and FIG. 5 shows the plate thickness reduction under the same conditions. . FIG. 6 shows the volume reduction when the test piece is immersed in a 650 ° C. Al: 90 vol% -Si: 10 vol% molten aluminum alloy plating bath for 7 days, and FIG. 7 shows the plate thickness reduction under the same conditions. .

比較のために、従来例として、ステライトNo.1、No.6、No.21、SUS316Lのいずれも表面処理されていない試験片の浸漬結果も示す。さらに、特許文献1に記載されている表面処理を施した試験片の浸漬結果も示す。具体的には、Co−Cr−Fe合金材料からなる粉末をプラズマ粉体溶接法にて肉盛りした試験片、及び、Co−Cr−Fe合金材料にCr3−C2を加えた金属粉末をプラズマ粉体溶接法にて肉盛りした試験片の浸漬結果も示す。 For comparison, as a conventional example, Stellite No. 1, no. 6, no. No. 21 and SUS316L are also shown the results of immersion of test pieces that were not surface-treated. Furthermore, the immersion result of the test piece which performed the surface treatment described in patent document 1 is also shown. Specifically, a test piece obtained by depositing a powder made of a Co—Cr—Fe alloy material by a plasma powder welding method, and a metal powder obtained by adding Cr 3 —C 2 to a Co—Cr—Fe alloy material The result of immersion of the test piece built up by the plasma powder welding method is also shown.

図4〜図7に明らかなように、本発明例ではいずれも体積減、板厚減は0であり、すぐれた耐腐食性を示した。さらに、前記ライニング層の表面を酸素バーナーで少なくとも600℃で5分程度スケーリング処理した試験片にあってはより好ましい耐腐食性を示した。   As apparent from FIG. 4 to FIG. 7, in the examples of the present invention, the volume reduction and the plate thickness reduction were 0, indicating excellent corrosion resistance. Further, the test piece obtained by scaling the surface of the lining layer with an oxygen burner at least at 600 ° C. for about 5 minutes showed more preferable corrosion resistance.

(他の実施例)
なお、本発明に係る金属部品の表面処理方法は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
In addition, the surface treatment method for metal parts according to the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist thereof.

特に、プラズマ粉体溶接の材料であるCo−Cr−Fe合金材料は、Co:50vol%−Cr:30vol%−Fe:20vol%の組成以外に種々の組成のものを使用することができる。   In particular, as the Co—Cr—Fe alloy material, which is a material for plasma powder welding, materials having various compositions other than the composition of Co: 50 vol% —Cr: 30 vol% —Fe: 20 vol% can be used.

また、本発明は、前記実施例に示したスリーブやシンクロールのみでなく、溶融亜鉛合金液や溶融アルミニウム合金液に対する耐腐食性を要求される金属部品に幅広く適用することができる。   Further, the present invention can be widely applied not only to the sleeve and the sink roll shown in the above embodiment but also to metal parts that require corrosion resistance against molten zinc alloy liquid and molten aluminum alloy liquid.

本発明の実施対象となるアルミダイキャスト用スリーブと金型を示す断面図である。It is sectional drawing which shows the sleeve and metal mold | die for aluminum die casting used as the implementation object of this invention. 本発明の実施対象となるシンクロールを示す正面図である。It is a front view which shows the sink roll used as the implementation object of this invention. プラズマ粉体溶接法の説明図である。It is explanatory drawing of a plasma powder welding method. 亜鉛合金めっき浴中への浸漬試験結果を示すグラフであり、体積減を示す。It is a graph which shows the immersion test result in a zinc alloy plating bath, and shows volume reduction. 亜鉛合金めっき浴中への図4と同じ条件での浸漬試験結果を示すグラフであり、板厚減を示す。It is a graph which shows the immersion test result on the same conditions as FIG. 4 in a zinc alloy plating bath, and shows thickness reduction. アルミニウム合金めっき浴中への他の条件での浸漬試験結果を示すグラフであり、体積減を示す。It is a graph which shows the immersion test result in other conditions in an aluminum alloy plating bath, and shows volume reduction. アルミニウム合金めっき浴中への図6と同じ条件での浸漬試験結果を示すグラフであり、板厚減を示す。It is a graph which shows the immersion test result on the same conditions as FIG. 6 in the aluminum alloy plating bath, and shows thickness reduction.

符号の説明Explanation of symbols

15…スリーブ
20…シンクロール
30…溶接トーチ
35…母材
36…ライニング層
15 ... Sleeve 20 ... Sink roll 30 ... Welding torch 35 ... Base material 36 ... Lining layer

Claims (3)

金属部品の表面に、コバルト基合金材料からなる粉末にW,Moを加えた金属粉末を、プラズマ粉体溶接にて肉盛りし、ライニング層を形成することを特徴とする金属部品の表面処理方法。   A metal component surface treatment method characterized in that a metal powder obtained by adding W and Mo to a powder made of a cobalt-based alloy material on the surface of a metal component is built up by plasma powder welding to form a lining layer. . 前記コバルト基合金材料はCo−Cr−Fe合金材料又はCo−Crを主成分とする合金材料であることを特徴とする請求項1に記載の金属部品の表面処理方法。   2. The surface treatment method for a metal part according to claim 1, wherein the cobalt-based alloy material is a Co—Cr—Fe alloy material or an alloy material mainly composed of Co—Cr. 前記ライニング層の表面をスケーリング処理して金属酸化膜を形成することを特徴とする請求項1又は請求項2に記載の金属部品の表面処理方法。   3. The surface treatment method for a metal part according to claim 1, wherein a metal oxide film is formed by scaling the surface of the lining layer.
JP2008325816A 2008-12-22 2008-12-22 Surface treatment method for metal parts Active JP5524479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325816A JP5524479B2 (en) 2008-12-22 2008-12-22 Surface treatment method for metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325816A JP5524479B2 (en) 2008-12-22 2008-12-22 Surface treatment method for metal parts

Publications (2)

Publication Number Publication Date
JP2010142866A true JP2010142866A (en) 2010-07-01
JP5524479B2 JP5524479B2 (en) 2014-06-18

Family

ID=42563837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325816A Active JP5524479B2 (en) 2008-12-22 2008-12-22 Surface treatment method for metal parts

Country Status (1)

Country Link
JP (1) JP5524479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002386A (en) * 2015-06-16 2017-01-05 株式会社ディ・ビー・シー・システム研究所 Molten metal treating device and producing method thereof, and protective film and producing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191758A (en) * 1988-01-28 1989-08-01 Toyota Motor Corp Co-based alloy for build-up welding
JP2001164397A (en) * 1999-12-10 2001-06-19 Mitsui Eng & Shipbuild Co Ltd Method for manufacturing high-temperature corrosion resistant material by molten salt electrodeposition method
JP2001314971A (en) * 2000-05-08 2001-11-13 Aiseihaado Kk Plasma powder welding method and welding powder used therefor
JP2007100217A (en) * 2006-10-27 2007-04-19 Sumitomo Metal Ind Ltd Roller for conveying hot material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191758A (en) * 1988-01-28 1989-08-01 Toyota Motor Corp Co-based alloy for build-up welding
JP2001164397A (en) * 1999-12-10 2001-06-19 Mitsui Eng & Shipbuild Co Ltd Method for manufacturing high-temperature corrosion resistant material by molten salt electrodeposition method
JP2001314971A (en) * 2000-05-08 2001-11-13 Aiseihaado Kk Plasma powder welding method and welding powder used therefor
JP2007100217A (en) * 2006-10-27 2007-04-19 Sumitomo Metal Ind Ltd Roller for conveying hot material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002386A (en) * 2015-06-16 2017-01-05 株式会社ディ・ビー・シー・システム研究所 Molten metal treating device and producing method thereof, and protective film and producing method thereof

Also Published As

Publication number Publication date
JP5524479B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
Sahoo et al. Microstructure and tribological behaviour of TiC-Ni-CaF2 composite coating produced by TIG cladding process
JP2010520810A (en) High melting point metal tool for friction stir welding
JP7018603B2 (en) Manufacturing method of clad layer
JP2008522039A (en) Weldable cobalt alloy with crack resistance
JP4517008B1 (en) High temperature material conveying member
Škamat et al. Pulsed laser processed NiCrFeCSiB/WC coating versus coatings obtained upon applying the conventional re-melting techniques: Evaluation of the microstructure, hardness and wear properties
JP6735497B2 (en) Method for producing intermetallic compound alloy, metal member and clad layer
AU2017208385B2 (en) Wear resistant coating
Pizzatto et al. Microstructure and wear behavior of NbC-reinforced Ni-based alloy composite coatings by laser cladding
JP5524479B2 (en) Surface treatment method for metal parts
JP5535280B2 (en) Method for strengthening welding tip and welding tip
JP3291116B2 (en) Composite surface treatment method for metal materials
Mutaşcu et al. Hardfacing of X2CrNiMoN22-5-3 duplex stainless steel with stellite alloy using pulsed TIG welding process
JP2006315059A (en) Copper-plated solid wire for arc welding
WO2010001859A1 (en) Member for conveying high-temperature material
Günther et al. Experimental approach to determine the impact of the droplet transfer mode on the degradation of fused tungsten carbides during GMAW
JP2002194477A (en) Member for molten nonferrous metal
US20170266719A1 (en) Hot-chamber die casting systems and methods
WO2012113019A1 (en) Method of forming durable working surfaces
JP2007118012A (en) Vertical upward welding method
JP5267912B2 (en) Plunger for molding machine
JP5227126B2 (en) Roll bearing structure in hot dipping bath and manufacturing method thereof
US20050067064A1 (en) Steel surface hardness using laser deposition and active gas shielding
Dwivedi et al. Surface modification by developing coating and cladding
JP2010037598A (en) Method for manufacturing member having wear resistant inner peripheral surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5524479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250