JP2010142059A - Permanent magnet rotary electric machine - Google Patents

Permanent magnet rotary electric machine Download PDF

Info

Publication number
JP2010142059A
JP2010142059A JP2008317955A JP2008317955A JP2010142059A JP 2010142059 A JP2010142059 A JP 2010142059A JP 2008317955 A JP2008317955 A JP 2008317955A JP 2008317955 A JP2008317955 A JP 2008317955A JP 2010142059 A JP2010142059 A JP 2010142059A
Authority
JP
Japan
Prior art keywords
short
rotor
conductive
iron core
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008317955A
Other languages
Japanese (ja)
Other versions
JP5175704B2 (en
Inventor
Yutaka Hashiba
豊 橋場
Kazuto Sakai
和人 堺
Norio Takahashi
則雄 高橋
Kazuaki Yuki
和明 結城
Masanori Shin
政憲 新
Yusuke Matsuoka
佑将 松岡
Tadashi Tokumasu
正 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008317955A priority Critical patent/JP5175704B2/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to PCT/JP2009/006899 priority patent/WO2010070888A1/en
Priority to CN200980150361.1A priority patent/CN102246399B/en
Priority to EP09833196.0A priority patent/EP2372885B1/en
Priority to US13/139,889 priority patent/US8796898B2/en
Publication of JP2010142059A publication Critical patent/JP2010142059A/en
Application granted granted Critical
Publication of JP5175704B2 publication Critical patent/JP5175704B2/en
Priority to US14/296,238 priority patent/US9496774B2/en
Priority to US14/296,177 priority patent/US9490684B2/en
Priority to US14/296,116 priority patent/US9373992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To assemble short circuit coils around a permanent magnet by an easy method in a permanent magnet rotary electric machine including a rotor core having a skew structure. <P>SOLUTION: According to a skew angle, conductive bars 31a, 32a and 31b, 32b are provided on both sides of a conductive plate 30 in such a manner that the conductive bars stagger in the peripheral direction of a rotor on the front and rear faces of the conductive plate 30. While the conductive bars 31a to 32b provided on both sides are inserted into short circuit coil insertion holes 22a, 22b, the conductive plate 30 is pinched between iron cores 20a, 20b. By short-circuiting the ends of the conductive bars 31a and 32a and the ends of the conductive bars 31b and 32b, short circuit connections 33a, 33b are formed. In the iron core 20a, a short circuit coil consisting of the conductive plate 30, conductive bar 31a, short circuit connection 33a, and conductive bar 32a in this order is formed, and in the iron core 20b, a short circuit coil consisting of the conductive plate 30, conductive bar 31b, short circuit connection 33b, and conductive bar 32b in this order is formed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転子内部に短絡コイルを内蔵した永久磁石式回転電機とその製造方法に関するものであって、特に、回転子の鉄心にスキューを形成した永久磁石式回転電機に係る。   The present invention relates to a permanent magnet type rotating electrical machine having a short-circuit coil incorporated in a rotor and a manufacturing method thereof, and more particularly to a permanent magnet type rotating electrical machine in which a skew is formed in an iron core of a rotor.

回転子内に永久磁石を内蔵した永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。   In a permanent magnet type rotating electrical machine in which a permanent magnet is built in a rotor, the interlinkage magnetic flux of the permanent magnet is always generated with a constant strength, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation. When the induced voltage by the permanent magnet is applied to the electronic component of the inverter and exceeds its withstand voltage, the electronic component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage, but in that case, the output and efficiency in the low speed region of the permanent magnet type rotating electrical machine are reduced.

そこで、回転子内に、固定子巻線のd軸電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置し、電源電圧の最大電圧以上となる高速回転域では、可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、全鎖交磁束量を調整する技術が提案されている。(特許文献1、特許文献2参照)   Therefore, a permanent magnet having a low coercive force (hereinafter referred to as a variable magnetic force magnet) in which the magnetic flux density is irreversibly changed by a magnetic field generated by the d-axis current of the stator winding, and a variable magnetic force magnet are included in the rotor. In a high-speed rotation range where a high coercivity permanent magnet (hereinafter referred to as a fixed magnet) having a coercive force more than double is placed and the maximum voltage of the power supply voltage is exceeded, the total flux linkage by the variable magnet and the fixed magnet is Techniques have been proposed for adjusting the total flux linkage so as to reduce. (See Patent Document 1 and Patent Document 2)

なお、永久磁石の磁束量は、保磁力と磁化方向厚の積によって決定されるため、実際に回転子鉄心内に可変磁力磁石と固定磁力磁石とを組み込む場合には、可変磁力磁石としては保磁力と磁化方向厚の積が小の永久磁石を、固定磁力磁石としては保磁力と磁化方向厚の積が大の永久磁石を使用する。また、一般に、可変磁力磁石としては、アルニコ磁石やサマリウムコバルト磁石(サマコバ磁石)、フェライト磁石を使用し、固定磁力磁石としてはネオジム磁石(NdFeB磁石)を使用する。   Since the amount of magnetic flux of the permanent magnet is determined by the product of the coercive force and the magnetization direction thickness, when the variable magnetic magnet and the fixed magnetic magnet are actually incorporated in the rotor core, the permanent magnet is maintained as the variable magnetic magnet. A permanent magnet having a small product of magnetic force and magnetization direction thickness is used, and a permanent magnet having a large product of coercive force and magnetization direction thickness is used as the fixed magnet. In general, an alnico magnet, a samarium cobalt magnet (Samacoba magnet) or a ferrite magnet is used as the variable magnetic magnet, and a neodymium magnet (NdFeB magnet) is used as the fixed magnetic magnet.

ところで、この種の永久磁石式回転電機において、高速回転域でいったん減磁した可変磁力磁石を増磁する場合に、可変磁力磁石に近接配置した固定磁力磁石の磁界が、d軸電流が作る増磁用の磁界の妨げとなり、その分増磁のためのd軸電流(磁化電流)が増大する現象がある。このような現象に対応するため、本発明者等は、固定磁力磁石の近傍に短絡コイルを配置し、この短絡コイルを貫通するd軸電流による磁界によって短絡コイルに誘導電流を発生させ、その誘導電流により前記固定磁力磁石により発生する磁界を打ち消すことにより、増磁時のd軸電流の増加を押さえた永久磁石式回転電機を提案した(特願2008−162203)。   By the way, in this type of permanent magnet type rotating electrical machine, when the variable magnetic magnet once demagnetized in the high speed rotation range is increased, the magnetic field of the fixed magnetic magnet arranged close to the variable magnetic magnet is increased by the d-axis current. There is a phenomenon in which the magnetic field for magnetism is hindered and the d-axis current (magnetization current) for magnetizing is increased accordingly. In order to deal with such a phenomenon, the present inventors have arranged a short-circuited coil in the vicinity of the fixed magnetic magnet, and generated an induced current in the short-circuited coil by a magnetic field generated by a d-axis current that passes through the short-circuited coil. There has been proposed a permanent magnet type rotating electrical machine that suppresses an increase in d-axis current at the time of magnetizing by canceling out the magnetic field generated by the fixed magnet with current (Japanese Patent Application No. 2008-162203).

特開2006−280195号公報JP 2006-280195 A 特開2008−48514号公報JP 2008-48514 A

ところで、前記の短絡コイルは、回転子鉄心内に配置した永久磁石の周囲に設ける必要があるため、如何にして簡単な手法で鉄心内に組み込むかが検討されている。例えば、短絡コイルと永久磁石とを密着して配置する場合には、永久磁石の周囲に短絡コイルを巻き付けた後、永久磁石とコイルとを鉄心内に開口させた永久磁石装着スペースにはめ込むことができる。しかし、永久磁石と短絡コイルとが離れ、両者の間に鉄心部分が存在すると、細いコイル挿入孔に、1本ずつ短絡コイルを挿入していかねばならず、その組立は甚だ困難になる。   By the way, since it is necessary to provide the short-circuit coil around a permanent magnet disposed in the rotor core, it has been studied how to incorporate the short-circuit coil into the core by a simple method. For example, when the short-circuit coil and the permanent magnet are arranged in close contact with each other, after the short-circuit coil is wound around the permanent magnet, the permanent magnet and the coil may be fitted into the permanent magnet mounting space opened in the iron core. it can. However, if the permanent magnet and the short-circuiting coil are separated from each other and an iron core portion exists between them, it is necessary to insert the short-circuiting coil one by one into the thin coil insertion hole, and the assembly becomes extremely difficult.

特に、この種の永久磁石式回転電機、特に、小型・高出力化を要求されるハイブリッド車両用の永久磁石式回転電機では、限られた空間内での高トルク、高出力が要求され、それに伴い、トルクリップル、振動、騒音の減少が要求されている。そのため、回転子積層鉄心をブロック状にして、それらを円周方向にずらしたスキュー構造が採用される。このようなスキュー構造とした永久磁石式回転電機において、回転子鉄心内に組み込まれた永久磁石の周囲に、更に、前記のような短絡コイルを設けることは、極めて面倒な作業であった。   In particular, this type of permanent magnet type rotating electrical machine, particularly a permanent magnet type rotating electrical machine for hybrid vehicles that is required to have a small size and high output, requires high torque and high output in a limited space. Accordingly, reduction of torque ripple, vibration and noise is required. For this reason, a skew structure is adopted in which the rotor laminated iron core is formed in a block shape and shifted in the circumferential direction. In the permanent magnet type rotating electrical machine having such a skew structure, it is extremely troublesome to provide the short-circuit coil as described above around the permanent magnet incorporated in the rotor core.

本発明は前記のような従来技術の問題点を解決するために提案されたものであって、その目的は、スキュー構造の回転子鉄心を有する永久磁石式回転電機において、短絡コイルを永久磁石の周囲に簡単な手法で組み込むことを可能とした永久磁石式回転電機及びその製造方法を提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and an object of the present invention is to provide a short-circuit coil for a permanent magnet in a permanent magnet type rotating electrical machine having a skew-structured rotor core. It is an object of the present invention to provide a permanent magnet type rotating electrical machine that can be incorporated in the surroundings by a simple method and a manufacturing method thereof.

前記の目的を達成するために、本発明の永久磁石式回転電機は、回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設け、各鉄心部の短絡コイルを、各鉄心部のスキュー角度に応じて回転子の周方向にずれた角度で配置すると共に、各鉄心部の短絡コイルを鉄心の境界部において段差部をもって接続することを特徴とする。   In order to achieve the above object, the permanent magnet type rotating electrical machine of the present invention divides the rotor core into two or more in the axial direction, skews the magnetic pole positions of the divided core portions in the circumferential direction, Each core part is provided with a conductive short-circuit coil in which a short-circuit current flows due to the magnetic flux generated during magnetization when the permanent magnet is magnetized, and the short-circuit coil of each core part is set according to the skew angle of each core part. It arrange | positions with the angle shifted | deviated to the circumferential direction of the rotor, and connects the short circuit coil of each iron core part with a level | step-difference part in the boundary part of an iron core, It is characterized by the above-mentioned.

前記のような構成を有する本発明の永久磁石式回転電機では、スキュー構造の回転子鉄心の鉄心部に対して、そのスキュー角度だけずれた構造の短絡コイルを組み込むことが可能になる。その結果、スキューした鉄心部に対する短絡コイルの組み込み作業が簡単になり、短絡コイルを有する永久磁石式回転電機を容易に得ることができる。   In the permanent magnet type rotating electrical machine of the present invention having the above-described configuration, it is possible to incorporate a short-circuit coil having a structure shifted by the skew angle with respect to the iron core portion of the rotor core having the skew structure. As a result, the operation of assembling the short-circuit coil into the skewed iron core is simplified, and a permanent magnet type rotating electrical machine having the short-circuit coil can be easily obtained.

(1)第1実施形態
以下、本発明の第1実施形態を図1〜図5に従って具体的に説明する。図1は本実施形態の永久磁石式回転電機の回転軸と直交する方向の断面図で、減磁時の磁束の方向を示す図、図2は同じく増磁時の磁束の方向を示す図である。図3は本実施形態の永久磁石式回転電機の組立途中の状態を示す分解斜視図、図4は同じく回転軸と平行な方向の断面図、図5は同じく完成状態の断面図である。
(1) 1st Embodiment Hereinafter, 1st Embodiment of this invention is described concretely according to FIGS. FIG. 1 is a cross-sectional view in a direction orthogonal to the rotation axis of the permanent magnet type rotating electrical machine of the present embodiment, showing the direction of magnetic flux at the time of demagnetization, and FIG. is there. 3 is an exploded perspective view showing a state in the middle of the assembly of the permanent magnet type rotating electrical machine of the present embodiment, FIG. 4 is a sectional view in the direction parallel to the rotation axis, and FIG. 5 is a sectional view in the completed state.

(1−1)永久磁石式回転電機の構成
本発明の第1の実施形態の回転子1は、図1に示すように回転子鉄心2、可変磁力磁石3、固定磁力磁石4から構成される。回転子鉄心2は珪素鋼板を積層して構成し、前記の永久磁石は回転子鉄心2内に埋め込む。回転子鉄心2内を通過する磁束が可変磁力磁石3と固定磁力磁石4の厚さ方向に通過するように、可変磁力磁石3と固定磁力磁石4の端部に磁気障壁となる空洞5を設ける。
(1-1) Configuration of Permanent Magnet Type Rotating Electric Machine The rotor 1 according to the first embodiment of the present invention includes a rotor core 2, a variable magnetic magnet 3, and a fixed magnetic magnet 4 as shown in FIG. . The rotor core 2 is formed by laminating silicon steel plates, and the permanent magnet is embedded in the rotor core 2. A cavity 5 serving as a magnetic barrier is provided at the ends of the variable magnetic magnet 3 and the fixed magnetic magnet 4 so that the magnetic flux passing through the rotor core 2 passes in the thickness direction of the variable magnetic magnet 3 and the fixed magnetic magnet 4. .

本実施形態では、可変磁力磁石3はフェライト磁石またはアルニコ磁石とし、この実施形態ではフェライト磁石を使用した。固定磁力磁石4は、NdFeB磁石を使用した。この可変磁力磁石の保磁力は280kA/mとし、固定磁力磁石の保磁力は1000kA/mとする。可変磁力磁石3は磁極中央のd軸に沿って回転子鉄心2内に配置し、その磁化方向はほぼ周方向である。固定磁力磁石4は磁化方向がd軸方向に対して所定の角度を持つように、前記可変磁力磁石3の両側の回転子鉄心2内に配置する。   In this embodiment, the variable magnetic force magnet 3 is a ferrite magnet or an alnico magnet. In this embodiment, a ferrite magnet is used. The fixed magnetic magnet 4 was an NdFeB magnet. The coercive force of this variable magnetic magnet is 280 kA / m, and the coercive force of the fixed magnetic magnet is 1000 kA / m. The variable magnetic force magnet 3 is disposed in the rotor core 2 along the d-axis at the center of the magnetic pole, and the magnetization direction is substantially the circumferential direction. The fixed magnetic magnet 4 is disposed in the rotor core 2 on both sides of the variable magnetic magnet 3 so that the magnetization direction has a predetermined angle with respect to the d-axis direction.

前記回転子鉄心2内に埋め込まれた固定磁力磁石4を取り囲むように、短絡コイル8を設ける。この短絡コイル8は、リング状の導電性部材から構成し、回転子鉄心2内に設けた空洞5の縁の部分にはめ込むように装着する。なお、後述する他の実施形態のように回転子の鉄心の穴に高温で溶けた導電性物質を流し込んで鋳造して製作することも可能である。   A short-circuit coil 8 is provided so as to surround the fixed magnetic magnet 4 embedded in the rotor core 2. The short-circuit coil 8 is composed of a ring-shaped conductive member and is mounted so as to be fitted into the edge portion of the cavity 5 provided in the rotor core 2. It is also possible to manufacture by casting a conductive material melted at a high temperature into a hole in the iron core of the rotor as in other embodiments described later.

この短絡コイル8は、電機子巻線にd軸電流を通電させた場合に発生する磁束で、短絡電流が発生するものである。そのため、この短絡コイル8は、可変磁力磁石3を除いた固定磁力磁石4の磁路部分に設ける。その場合、固定磁力磁石4の磁化方向を中心軸として、固定磁力磁石4周囲に短絡コイル8を設ける。   The short-circuit coil 8 is a magnetic flux generated when a d-axis current is passed through the armature winding and generates a short-circuit current. Therefore, the short-circuit coil 8 is provided in the magnetic path portion of the fixed magnetic magnet 4 excluding the variable magnetic magnet 3. In this case, a short-circuit coil 8 is provided around the fixed magnetic magnet 4 with the magnetization direction of the fixed magnetic magnet 4 as the central axis.

本実施形態では、この短絡コイル8は、固定磁力磁石4の上下にそれぞれ設けられているが、上下いずれか一方でも良い。また、短絡コイル8を固定磁力磁石の上下の面(磁化方向と直行する方向)と平行に設けたが、短絡コイルの対角線方向に1本あるいはX字状に2本設けることもできる。さらに、固定磁力磁石の表面に密着して設ける以外に、図示のように固定磁力磁石、及び固定磁力磁石と可変磁力磁石との間のブリッジ部分6を取り囲むように設けることもできる。   In the present embodiment, the short-circuit coils 8 are respectively provided above and below the fixed magnetic force magnet 4, but may be either one above or below. Further, although the short-circuit coil 8 is provided in parallel with the upper and lower surfaces (direction perpendicular to the magnetization direction) of the fixed magnetic magnet, one or two X-shaped can be provided in the diagonal direction of the short-circuit coil. Further, in addition to being provided in close contact with the surface of the fixed magnetic magnet, it may be provided so as to surround the fixed magnetic magnet and the bridge portion 6 between the fixed magnetic magnet and the variable magnetic magnet as illustrated.

短絡コイル8は、可変磁力磁石3の磁化が変化する程度の短絡電流が1秒以内に流れ、その後1秒以内にその短絡電流を50%以上減衰させるものであることが好ましい。また、短絡コイル8のインダクタンス値と抵抗値を、可変磁力磁石3の磁化が変化する程度の短絡電流が流れるような値とすると、効率が良い。   It is preferable that the short-circuit coil 8 has a short-circuit current that changes the magnetization of the variable magnetic force magnet 3 within 1 second, and then attenuates the short-circuit current by 50% or more within 1 second. Further, if the inductance value and the resistance value of the short-circuiting coil 8 are set to such values that a short-circuit current that changes the magnetization of the variable magnetic force magnet 3 flows, the efficiency is good.

前記回転子2の外周には、エアギャップ9を介して固定子10を設ける。この固定子10は、電機子鉄心11と電機子巻線12とを有する。この電機子巻線12に流れる磁化電流により、短絡コイル8には誘導電流が誘起され、その誘導電流によって短絡コイル8を貫通する磁束が形成される。   A stator 10 is provided on the outer periphery of the rotor 2 through an air gap 9. The stator 10 has an armature core 11 and an armature winding 12. An induced current is induced in the short circuit coil 8 by the magnetizing current flowing through the armature winding 12, and a magnetic flux penetrating the short circuit coil 8 is formed by the induced current.

また、この電機子巻線12に流れる磁化電流により、可変磁力磁石3の磁化方向が可逆的に変化する。すなわち、可変磁力磁石と固定磁力磁石に対しては、永久磁石式回転電機の運転時において、d軸電流による磁界で永久磁石3を磁化させて可変磁力磁石3の磁束量を不可逆的に変化させる。その場合、可変磁力磁石3を磁化するd軸電流を流すと同時にq軸電流により回転電機のトルクを制御する。   Further, the magnetization direction of the variable magnetic force magnet 3 reversibly changes due to the magnetization current flowing through the armature winding 12. That is, for the variable magnetic magnet and the fixed magnetic magnet, the permanent magnet 3 is magnetized by a magnetic field generated by the d-axis current during operation of the permanent magnet type rotating electric machine, and the amount of magnetic flux of the variable magnetic magnet 3 is irreversibly changed. . In that case, the d-axis current for magnetizing the variable magnetic force magnet 3 is supplied, and at the same time, the torque of the rotating electrical machine is controlled by the q-axis current.

また、d軸電流で生じる磁束により、電流(q軸電流とd軸電流とを合成した全電流)と可変磁力磁石と固定磁力磁石とで生じる電機子巻線の鎖交磁束量(回転電機の全電流によって電機子巻線に生じる磁束と、回転子側の可変磁力磁石と固定磁力磁石とによって生じる磁束とから構成される電機子巻線全体の鎖交磁束量)をほぼ可逆的に変化させる。   In addition, the magnetic flux generated by the d-axis current causes the amount of interlinkage magnetic flux of the armature windings (of the rotating electric machine) The amount of interlinkage magnetic flux in the entire armature winding composed of the magnetic flux generated in the armature winding by the total current and the magnetic flux generated by the variable magnetic magnet and the fixed magnetic magnet on the rotor side is reversibly changed. .

特に、本実施形態では、瞬時の大きなd軸電流による磁界で可変磁力磁石3を不可逆変化させる。この状態で不可逆減磁がほとんど生じないか、僅かの不可逆減磁が生じる範囲のd軸電流を連続的に流して運転する。このときのd軸電流は電流位相を進めて端子電圧を調整するように作用する。すなわち、大きなd軸電流で可変用磁石3の極性を反転させ、電流位相を進める運転制御方法を行う。このようにd軸電流で可変用磁石3の極性を反転させているので、端子電圧を低下させるような負のd軸電流を流しても、可変用磁石3にとっては減磁界ではなく増磁界となる。すなわち、負のd軸電流で可変用磁石3は減磁することなく、端子電圧の大きさを調整することができる。   In particular, in the present embodiment, the variable magnetic force magnet 3 is irreversibly changed by a magnetic field generated by an instantaneous large d-axis current. In this state, operation is carried out by continuously supplying a d-axis current in a range where little or no irreversible demagnetization occurs. The d-axis current at this time acts to adjust the terminal voltage by advancing the current phase. That is, an operation control method is performed in which the polarity of the variable magnet 3 is reversed with a large d-axis current to advance the current phase. As described above, since the polarity of the variable magnet 3 is reversed by the d-axis current, even if a negative d-axis current that reduces the terminal voltage is supplied, the variable magnet 3 is not demagnetized but increased. Become. That is, the magnitude of the terminal voltage can be adjusted without demagnetizing the variable magnet 3 with a negative d-axis current.

(1−2)減磁及び増磁作用
次に、前記のような構成を有する本実施形態の永久磁石式回転電機における増磁時と減磁時の作用について説明する。なお、各図中に、電機子巻線12や短絡コイル8によって発生した磁力の方向を矢印により示す。
(1-2) Demagnetization and magnetizing action Next, the action at the time of magnetizing and demagnetizing in the permanent magnet type rotating electrical machine of the present embodiment having the above-described configuration will be described. In each figure, the direction of the magnetic force generated by the armature winding 12 or the short-circuit coil 8 is indicated by an arrow.

本実施形態では、固定子10の電機子巻線12に通電時間が0.1ms〜100ms程度の極短時間となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界Aを作用させる(図1参照)。永久磁石を磁化するための磁界Aを形成するパルス電流は、固定子10の電機子巻線12のd軸電流成分とする。   In the present embodiment, a magnetic field is formed by applying a pulsed current having an energization time of about 0.1 ms to 100 ms to the armature winding 12 of the stator 10, and the magnetic field A is applied to the variable magnetic force magnet 3. Act (see FIG. 1). The pulse current that forms the magnetic field A for magnetizing the permanent magnet is the d-axis current component of the armature winding 12 of the stator 10.

2種類の永久磁石の厚みはほぼ同等するとd軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変る。永久磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線12にパルス的に通電する。負のd軸電流によって変化した磁石内の磁界Aが−280kA/mになったとすると、可変磁力磁石3の保磁力が280kA/mなので可変磁力磁石3の磁力は不可逆的に大幅に低下する。   If the thicknesses of the two types of permanent magnets are substantially equal, the change in the magnetization state of the permanent magnet due to the applied magnetic field due to the d-axis current varies depending on the magnitude of the coercive force. A negative d-axis current that generates a magnetic field in the direction opposite to the magnetization direction of the permanent magnet is pulsed through the armature winding 12. If the magnetic field A in the magnet changed by the negative d-axis current becomes −280 kA / m, the coercive force of the variable magnetic magnet 3 is 280 kA / m, so that the magnetic force of the variable magnetic magnet 3 significantly decreases irreversibly.

一方、固定磁力磁石4の保磁力が1000kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。さらに−280kA/mよりも大きな逆磁界をかけると可変磁力磁石3は逆方向に磁化して極性は反転する。この場合、可変磁力磁石3の磁束と固定磁力磁石4の磁束は打ち消しあうので永久磁石の全鎖交磁束は最小になる。   On the other hand, since the coercive force of the fixed magnetic magnet 4 is 1000 kA / m, the magnetic force does not decrease irreversibly. As a result, when the pulsed d-axis current becomes zero, only the variable magnetic force magnet 3 is demagnetized, and the amount of interlinkage magnetic flux by the entire magnet can be reduced. Further, when a reverse magnetic field greater than -280 kA / m is applied, the variable magnetic force magnet 3 is magnetized in the reverse direction and the polarity is reversed. In this case, since the magnetic flux of the variable magnetic magnet 3 and the magnetic flux of the fixed magnetic magnet 4 cancel each other, the total interlinkage magnetic flux of the permanent magnet is minimized.

この場合、固定磁力磁石4によって生じる磁界の磁力の方向は、図1のBに示すように、固定磁力磁石4から可変磁力磁石3の方向となるので、前記電機子巻線12による磁界の磁力の方向と一致するため、可変磁力磁石3の減磁させる方向に強い磁力が作用する。同時に、短絡コイル8には、電機子巻線12の磁界Aを打ち消すような誘導電流が発生し、その誘導電流によって図1矢印Cで示すような磁力の方向を有する磁界が発生する。この短絡コイル8による磁力Cも、可変磁力磁石3の磁化方向を逆方向に向けるように作用する。これらより、可変磁力磁石3の減磁及び極性の反転が効率的に行われる。すなわち、短絡コイル8に誘起された誘導電流により発生した磁界Cの磁力の方向は、可変磁力磁石3を貫通する部分においては、磁化電流による磁界Aの方向と一致するので、減磁方向の磁化も効果的に行われる   In this case, the direction of the magnetic force of the magnetic field generated by the fixed magnetic force magnet 4 is from the fixed magnetic force magnet 4 to the variable magnetic force magnet 3 as shown in FIG. Therefore, a strong magnetic force acts in the demagnetizing direction of the variable magnetic force magnet 3. At the same time, an induced current that cancels the magnetic field A of the armature winding 12 is generated in the short-circuit coil 8, and a magnetic field having a magnetic force direction as indicated by an arrow C in FIG. 1 is generated by the induced current. The magnetic force C generated by the short-circuit coil 8 also acts so as to direct the magnetization direction of the variable magnetic force magnet 3 in the reverse direction. Thus, demagnetization and polarity inversion of the variable magnetic force magnet 3 are efficiently performed. That is, the direction of the magnetic force of the magnetic field C generated by the induced current induced in the short-circuit coil 8 coincides with the direction of the magnetic field A by the magnetizing current in the portion penetrating the variable magnetic force magnet 3, so that the magnetization in the demagnetizing direction Is also done effectively

つぎに、永久磁石の全鎖交磁束を増加させて最大に復元させる過程(増磁過程)を説明する。減磁完了の状態では、図2に示すように、可変磁力磁石3の極性は反転しており、反転した磁化とは逆方向(図1に示す初期の磁化方向)の磁界を発生する正のd軸電流を電機子巻線12に通電する。反転した逆極性の可変磁力磁石3の磁力は前記磁界が増すに連れて減少し、0になる。さらに正のd軸電流による磁界を増加させると極性は反転して初期の極性の方向に磁化される。ほぼ完全な着磁に必要な磁界である350kA/mをかけると、可変磁力磁石3は着磁されてほぼ最大に磁力を発生する。   Next, a process of increasing the total interlinkage magnetic flux of the permanent magnet and restoring it to the maximum (magnetization process) will be described. In the demagnetization completed state, as shown in FIG. 2, the polarity of the variable magnetic force magnet 3 is reversed, and a positive magnetic field that generates a magnetic field in a direction opposite to the reversed magnetization (the initial magnetization direction shown in FIG. 1) is generated. A d-axis current is passed through the armature winding 12. The magnetic force of the reversed reversed polarity variable magnetic magnet 3 decreases as the magnetic field increases and becomes zero. When the magnetic field due to the positive d-axis current is further increased, the polarity is reversed and magnetized in the direction of the initial polarity. When 350 kA / m, which is a magnetic field necessary for almost complete magnetization, is applied, the variable magnetic force magnet 3 is magnetized and generates a magnetic force almost at its maximum.

この場合、減磁時と同様に、d軸電流は連続通電で増加させる必要はなく、目標の磁力にする電流を瞬間的なパルス電流を流せばよい。一方、固定磁力磁石4の保磁力が1000kA/mなので、d軸電流による磁界が作用しても固定磁力磁石4の磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になると可変磁力磁石3のみが増磁した状態となり、全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。   In this case, as in the case of demagnetization, it is not necessary to increase the d-axis current by continuous energization, and an instantaneous pulse current may be used as the current to achieve the target magnetic force. On the other hand, since the coercive force of the fixed magnetic magnet 4 is 1000 kA / m, the magnetic force of the fixed magnetic magnet 4 does not change irreversibly even when a magnetic field due to the d-axis current acts. As a result, when the pulsed positive d-axis current becomes 0, only the variable magnetic force magnet 3 is magnetized, and the amount of flux linkage by the entire magnet can be increased. This makes it possible to return to the original maximum flux linkage.

以上のようにd軸電流による瞬時的な磁界を可変磁力磁石3と固定磁力磁石4に作用させることにより、可変磁力磁石3の磁力を不可逆的に変化させて、永久磁石の全鎖交磁束量を任意に変化させることが可能となる。   As described above, by applying an instantaneous magnetic field due to the d-axis current to the variable magnetic magnet 3 and the fixed magnetic magnet 4, the magnetic force of the variable magnetic magnet 3 is irreversibly changed, and the total interlinkage magnetic flux of the permanent magnet Can be arbitrarily changed.

(1−3)短絡コイル8の作用
つぎに、短絡コイル8の作用について述べる。可変磁力磁石3と固定磁力磁石4は回転子鉄心2内に埋め込まれて磁気回路を構成しているので、前記d軸電流による磁界は可変磁力磁石3のみでなく、固定磁力磁石4にも作用する。本来、前記d軸電流による磁界は可変磁力磁石3の磁化を変化させるために行う。そこで、前記d軸電流による磁界が固定磁力磁石4に作用しないようにし、可変磁力磁石3に集中するようにすればよい。
(1-3) Action of Short-Coil Coil 8 Next, the action of the short-circuit coil 8 will be described. Since the variable magnetic magnet 3 and the fixed magnetic magnet 4 are embedded in the rotor core 2 to form a magnetic circuit, the magnetic field due to the d-axis current acts not only on the variable magnetic magnet 3 but also on the fixed magnetic magnet 4. To do. Originally, the magnetic field generated by the d-axis current is used to change the magnetization of the variable magnetic force magnet 3. Therefore, the magnetic field due to the d-axis current may be prevented from acting on the fixed magnetic magnet 4 and concentrated on the variable magnetic magnet 3.

本実施形態では、固定磁力磁石4の周囲に短絡コイル8を配置している。この場合、短絡コイル8は、固定磁力磁石4の磁化方向を中心軸として配置する。図2に示す、可変磁力磁石3の増磁方向の磁化を行う場合、前記d軸電流による磁界Aが固定磁力磁石4に作用すると、前記磁界Aを打ち消すような誘導電流が短絡コイル8に流れる。したがって、固定磁力磁石4中には、前記d軸電流による磁界Aと短絡電流による磁界Cが作用し両者が打ち消し合うために、磁界の増減はほとんど生じない。   In the present embodiment, a short circuit coil 8 is arranged around the fixed magnetic magnet 4. In this case, the short-circuit coil 8 is arranged with the magnetization direction of the fixed magnetic magnet 4 as the central axis. When the magnetization of the variable magnetic force magnet 3 shown in FIG. 2 is performed in the magnetizing direction, when the magnetic field A due to the d-axis current acts on the fixed magnetic force magnet 4, an induced current that cancels the magnetic field A flows to the short-circuit coil 8. . Accordingly, in the fixed magnetic force magnet 4, the magnetic field A caused by the d-axis current and the magnetic field C caused by the short-circuit current act and cancel each other, so that the magnetic field hardly increases or decreases.

さらに、短絡電流による磁界Cは可変磁力磁石3にも作用し、d軸電流による磁界Aと同方向になる。したがって、可変磁力磁石3を磁化させる磁界Aが強まり、少ないd軸電流で可変磁力磁石3を磁化できることになる。また、この短絡コイル8による磁界Cの磁力の方向は、固定磁力磁石4によって生じる磁界Bの磁力の方向と反対なので、この磁界Bの磁力を打ち消す方向にも作用する。よって少ない磁化電流により、可変磁力磁石3を効果的に増磁することができる。   Further, the magnetic field C caused by the short-circuit current also acts on the variable magnetic force magnet 3 and is in the same direction as the magnetic field A caused by the d-axis current. Accordingly, the magnetic field A for magnetizing the variable magnetic force magnet 3 is strengthened, and the variable magnetic force magnet 3 can be magnetized with a small d-axis current. Further, since the direction of the magnetic force of the magnetic field C by the short-circuit coil 8 is opposite to the direction of the magnetic force of the magnetic field B generated by the fixed magnetic force magnet 4, it also acts in the direction of canceling out the magnetic force of the magnetic field B. Therefore, the variable magnetic force magnet 3 can be effectively magnetized with a small magnetization current.

このとき、固定磁力磁石4は短絡コイル8により前記d軸電流の影響を受けなく、磁束の増加はほとんど生じないので、d軸電流による電機子鉄心11の磁気飽和も緩和できる。すなわち、電機子鉄心11は、d軸電流によって発生する磁界Aが電機子巻線12間に形成された磁路を通過することにより、その部分の磁気飽和が生じる可能性がある。しかし、本実施形態では、短絡コイル8の磁界Cのうち、電機子鉄心11の磁路を通過する部分が、d軸電流による磁界Aと逆方向に作用するので、電機子鉄心11の磁路が磁気飽和することが緩和される。   At this time, the fixed magnetic magnet 4 is not affected by the d-axis current due to the short-circuit coil 8, and the magnetic flux hardly increases, so that the magnetic saturation of the armature core 11 due to the d-axis current can be reduced. That is, in the armature core 11, when the magnetic field A generated by the d-axis current passes through the magnetic path formed between the armature windings 12, there is a possibility that magnetic saturation of that portion occurs. However, in this embodiment, the portion of the magnetic field C of the short-circuit coil 8 that passes through the magnetic path of the armature core 11 acts in the opposite direction to the magnetic field A caused by the d-axis current. Is mitigated from magnetic saturation.

(1−4)永久磁石式回転電機の製造方法
前記のような構成を有する本実施形態の永久磁石式回転電機は、次のようにして製造される。図3において、符号20は本実施形態の永久磁石式回転電機の回転子を示すものであって、この回転子20はその軸方向中央部から2分割されており、第1の鉄心部20aと、第2の鉄心部20bとから構成される。この各鉄心部20a,20bには、図1及び図2において説明したように、固定磁力磁石及び可変磁力磁石の装着孔、磁気障壁となる空洞部、短絡コイルの挿入孔22a,22bが、回転子の軸と平行に鉄心部を貫通するように形成されている。
(1-4) Manufacturing method of permanent magnet type rotating electrical machine The permanent magnet type rotating electrical machine of the present embodiment having the above-described configuration is manufactured as follows. In FIG. 3, reference numeral 20 denotes a rotor of the permanent magnet type rotating electric machine according to the present embodiment, and this rotor 20 is divided into two parts from the central part in the axial direction, and the first iron core part 20 a and And the second iron core portion 20b. As described with reference to FIGS. 1 and 2, the iron core portions 20 a and 20 b have rotation holes for a fixed magnetic magnet and a variable magnetic magnet, a cavity serving as a magnetic barrier, and insertion holes 22 a and 22 b for a short-circuit coil. It is formed so as to penetrate the iron core portion in parallel with the child axis.

各鉄心部20a,20bの間には、鉄心部と同一外径の導電性の板30が配設されている。この導電性の板30は、前記短絡コイルと同様な銅、アルミなどの導電性の材料によって構成される。導電性の板30の表面には、一方の鉄心部20a内において短絡コイルの一部を構成する一対の導電性バー31a,32aが、また導電性の板30の裏面には、他方の鉄心部20b内において短絡コイルの一部を構成する一対の導電性バー31b,32bの一端が溶接、ろう付けなどの手段で固定されている。この導電性バー31a〜32bは、各鉄心部20a,20bの回転軸方向の寸法よりも、短絡コイルの回転子周方向の長さの1/2だけ長いものであって、各鉄心部の内側(回転子中心側)からこの導電性バー31a〜32bを短絡コイル装着孔22に挿入した場合に、その先端部が各鉄心部の外側(回転子の外側面)に突出する寸法である。   Between each iron core part 20a, 20b, the electroconductive board 30 of the same outer diameter as an iron core part is arrange | positioned. The conductive plate 30 is made of a conductive material such as copper or aluminum similar to the short-circuit coil. A pair of conductive bars 31a and 32a constituting a part of the short-circuited coil in one iron core portion 20a is provided on the surface of the conductive plate 30, and the other iron core portion is provided on the back surface of the conductive plate 30. One end of a pair of conductive bars 31b and 32b constituting a part of the short-circuit coil in 20b is fixed by means such as welding or brazing. The conductive bars 31a to 32b are longer than the length of each iron core portion 20a, 20b in the rotation axis direction by a half of the length of the short-circuit coil in the rotor circumferential direction. When the conductive bars 31a to 32b are inserted into the short-circuiting coil mounting hole 22 from the rotor center side), the leading end of the conductive bars 31a to 32b protrudes to the outside of each iron core (the outer surface of the rotor).

この導電性バー31a,30bは、導電性の板30の両面に設けられているが、導電性の板30の表面と裏面とでは、その配設位置が異なっている。すなわち、本実施形態の永久磁石式回転電機は、回転子の鉄心部20a,20bがスキュー構造を採用しているため、回転子の左右の鉄心部20a,20bでは、可変磁力磁石や固定磁力磁石、あるいはその周囲に配置される短絡コイルの位置が、回転子の円周方向にずれている。従って、スキュー角度に合わせて、導電性の板30の両面に設けられた導電性バー31a,32aと31b,32bも、導電性の板30の表面と裏面とで回転子の周方向にずれた位置に設けられている。同様に、これらの導電性バー31a〜32bを挿入する短絡コイル挿入孔22a,22bもスキュー角度ずれた位置に設けられている。   The conductive bars 31 a and 30 b are provided on both surfaces of the conductive plate 30, but the positions of the conductive bars 31 a and 30 b are different between the front surface and the back surface of the conductive plate 30. That is, in the permanent magnet type rotating electrical machine of the present embodiment, the rotor core portions 20a and 20b adopt a skew structure, so that the left and right iron core portions 20a and 20b of the rotor have variable magnetic magnets and fixed magnetic magnets. Or the position of the short circuit coil arrange | positioned around it has shifted | deviated to the circumferential direction of the rotor. Therefore, the conductive bars 31a, 32a and 31b, 32b provided on both surfaces of the conductive plate 30 are also shifted in the circumferential direction of the rotor between the front and back surfaces of the conductive plate 30 in accordance with the skew angle. In the position. Similarly, short-circuiting coil insertion holes 22a and 22b for inserting these conductive bars 31a to 32b are also provided at positions shifted by skew angles.

なお、図では、短絡コイル挿入孔22a,22b及び導電性バー31a〜32bの一部のみを示しているが、この挿入孔及び導電性バーの数は、磁極数、各磁極に設ける永久磁石数、また、各永久磁石に設ける短絡コイル数に応じて設定される。   In the figure, only a part of the short-circuit coil insertion holes 22a and 22b and the conductive bars 31a to 32b are shown. The number of the insertion holes and the conductive bars is the number of magnetic poles and the number of permanent magnets provided in each magnetic pole. Also, it is set according to the number of short-circuit coils provided in each permanent magnet.

このような構成を有する導電性の板30を、その両面の導電性バー31a〜32bを短絡コイル挿入孔22a,22bに挿入した状態で、左右の鉄心部20a,20bに挟持させることで、本実施形態の回転子20が構成される。この場合、回転子の左右の鉄心部20a,20bがスキューしており、磁極を構成する可変磁力磁石や固定磁力磁石の位置が周方向にずれていても、導電性の板30に設けた導電性バー31a〜32bも導電性の板の表面と裏面でスキュー角度ずれた位置にあるので、左右の鉄心部20a,20bで導電性の板30を挟持するように結合することで、鉄心の適切な位置(固定磁力磁石を取り囲む位置)に導電性バーを挿入することができる。   The conductive plate 30 having such a configuration is sandwiched between the left and right iron core portions 20a and 20b in a state where the conductive bars 31a to 32b on both sides thereof are inserted into the short-circuiting coil insertion holes 22a and 22b. The rotor 20 of the embodiment is configured. In this case, the left and right iron core portions 20a and 20b of the rotor are skewed, and even if the positions of the variable magnetic magnets and the fixed magnetic magnets constituting the magnetic poles are shifted in the circumferential direction, the conductive provided on the conductive plate 30 Since the conductive bars 31a to 32b are also at positions shifted by skew angles between the front and back surfaces of the conductive plate, the right and left iron core portions 20a and 20b are coupled so as to sandwich the conductive plate 30 so that the appropriate iron core is obtained. The conductive bar can be inserted at a proper position (position surrounding the fixed magnetic magnet).

左右の鉄心部20a,20bにより導電性の板30を挟持すると、回転子20軸方向端面には導電性バー31a〜32bの先端が突出する。そこで、この突出した導電性バー31aと32aの先端、及び導電性バー31bと32bの先端同士を、溶接やろう付けなどの手段で短絡接続して、短絡接続部33a,33bを形成する。その結果、一方の鉄心部20a内には、導電性の板30−導電性バー31a−短絡接続部33a−導電性バー32aから成る短絡コイルが形成され、他方の鉄心部20b内には、導電性の板30−導電性バー31b−短絡接続部33b−導電性バー32bから成る短絡コイルが形成される。この短絡接続部33a,33bの外側は、絶縁材料または導電性バーよりも電気抵抗が大きな部材から成る端板34a,34bによって被覆する。   When the conductive plate 30 is sandwiched between the left and right iron core portions 20a and 20b, the tips of the conductive bars 31a to 32b protrude from the end surface of the rotor 20 in the axial direction. Therefore, the protruding ends of the conductive bars 31a and 32a and the ends of the conductive bars 31b and 32b are short-circuited by means such as welding or brazing to form the short-circuit connection portions 33a and 33b. As a result, a short-circuit coil composed of a conductive plate 30-conductive bar 31a-short-circuit connection portion 33a-conductive bar 32a is formed in one iron core portion 20a, and a conductive wire is formed in the other iron core portion 20b. A short-circuiting coil is formed of conductive plate 30-conductive bar 31b-short-circuit connection portion 33b-conductive bar 32b. The outsides of the short-circuit connection portions 33a and 33b are covered with end plates 34a and 34b made of a member having an electric resistance larger than that of an insulating material or a conductive bar.

なお、前記のようにして導電性バー31a〜32bの先端同士を接続して短絡接続部33a,33bを形成する代わりに、別途用意した導電性の部材によって導電性バー導電性バー31a〜32bの先端を短絡させることもできる。   Instead of connecting the tips of the conductive bars 31a to 32b as described above to form the short-circuit connection portions 33a and 33b, the conductive bars 31a to 32b are made of conductive bars prepared separately. The tip can also be short-circuited.

前記のような構成を有する第1実施形態によれば、導電性の板20の両面に導電性バー31a〜32bを形成しておき、これを左右の鉄心部20a,20bにはめ込むという簡単な作業で、スキュー構造の鉄心内に短絡コイルを配置することができる。特に、短絡コイルを永久磁石とその周囲のブリッジ部とを取り囲むように設ける場合、従来の手法では、鉄心内に貫通した短絡コイル挿入孔内に、コイルを1本ずつ通して行く必要があり、その作業が繁雑であった。しかし、本実施形態では、左右の鉄心部で導電性の板を挟持する場合に、導電性の板に設けた導電性バーを鉄心部の挿入孔内に一括して挿入することで、鉄心内に設けるすべての短絡コイルを一挙に鉄心内に組み込むことができる。その結果、短絡コイルの組み込み作業が、従来技術に比較して格段に向上する。   According to the first embodiment having the above-described configuration, the simple work of forming the conductive bars 31a to 32b on both surfaces of the conductive plate 20 and fitting them into the left and right iron core portions 20a and 20b. Thus, the short-circuit coil can be arranged in the iron core having the skew structure. In particular, when the short-circuit coil is provided so as to surround the permanent magnet and the surrounding bridge portion, in the conventional method, it is necessary to pass the coils one by one into the short-circuit coil insertion hole penetrating the iron core, The work was complicated. However, in this embodiment, when the conductive plate is sandwiched between the left and right iron core portions, the conductive bars provided on the conductive plate are collectively inserted into the insertion holes of the iron core portion, thereby All the short-circuit coils provided in can be incorporated into the iron core at once. As a result, the assembling work of the short-circuit coil is significantly improved as compared with the prior art.

また、回転子の中央部では、すべての短絡コイルの一部を導電性の板30によって共用することで、コイルの結線作業や組み込み作業の簡略化が可能となる。特に、スキュー構造の回転子であっても、導電性の板30に固定する導電性バー31a〜32bの位置を変更するだけで、スキュー角度や磁極の位置に柔軟に対応することができる。   Further, by sharing a part of all the short-circuited coils with the conductive plate 30 in the central portion of the rotor, it is possible to simplify coil connection work and assembly work. In particular, even with a rotor having a skew structure, it is possible to flexibly cope with the skew angle and the position of the magnetic poles only by changing the positions of the conductive bars 31a to 32b fixed to the conductive plate 30.

(2)第2実施形態
この第2実施形態は、第1実施形態のような導電性の板を使用することなく、個々の導電性バーごとにスキュー角度に応じた段差部を設けることにより、左右の鉄心部20a,20b内を貫通する短絡コイルを得るものである。すなわち、図6は、第2実施形態における各短絡コイルを形成する一対の導電性バー41,42を示す平面図、図7は、この導電性バー41,42によって形成された短絡コイルを有する回転子の断面図である。
(2) Second Embodiment In this second embodiment, without using the conductive plate as in the first embodiment, by providing a step portion corresponding to the skew angle for each conductive bar, A short-circuit coil that penetrates the left and right iron core portions 20a and 20b is obtained. That is, FIG. 6 is a plan view showing a pair of conductive bars 41 and 42 forming each short-circuited coil in the second embodiment, and FIG. 7 is a rotation having a short-circuited coil formed by the conductive bars 41 and 42. It is sectional drawing of a child.

この導電性バー41,42は、中央の段差部43によって一体化された左右の鉄心挿入部41a〜42bを備えている。この鉄心挿入部41a〜42bは、各鉄心部20a,20bの回転軸方向の寸法よりも、短絡コイルの回転子周方向の長さの1/2だけ長いものであって、各鉄心部の内側(回転子中心側)からこの鉄心挿入部41a〜42bを短絡コイル装着孔に挿入した場合に、その先端部が各鉄心部の外側(回転子の外側面)に突出する寸法である。   The conductive bars 41 and 42 include left and right iron core insertion portions 41 a to 42 b integrated by a central step portion 43. The iron core insertion portions 41a to 42b are longer than the length of each iron core portion 20a, 20b in the rotation axis direction by a half of the length of the short-circuit coil in the rotor circumferential direction. When the iron core insertion portions 41a to 42b are inserted into the short-circuiting coil mounting holes from the rotor center side), the tip ends thereof project outside the iron core portions (outer surfaces of the rotor).

第2実施形態において、回転子20が一定のスキュー角度を有する左右の鉄心部20a,20bから構成されている。また、左右の鉄心部20a,20bに、可変磁力磁石や固定磁力磁石の装着孔、磁気障壁となる空洞部、及び短絡コイル挿入孔が、スキュー角度分だけずれた位置に設けられている点は、第1実施形態と同様である。   In the second embodiment, the rotor 20 is composed of left and right iron core portions 20a and 20b having a constant skew angle. In addition, the left and right iron core portions 20a and 20b are provided with variable magnetic magnets and fixed magnetic magnet mounting holes, a cavity serving as a magnetic barrier, and a short-circuit coil insertion hole at positions shifted by a skew angle. This is the same as in the first embodiment.

一方、左右の鉄心部20a,20bには、第1実施形態の導電性の板に代えて、スペーサ円板44が設けられている。このスペーサ円板44は、鉄心部20a,20bと同様に珪素鋼板によって構成されている。すなわち、このスペーサ円板44は、短絡コイルの一部を構成するものではないので、第1実施形態のような導電性は不要であり、銅やアルミなどの材料で構成する必要はない。このスペーサ円板44には、前記導電性バー41,42の段差部43が入り込む空間部45が形成されている。   On the other hand, the left and right iron core portions 20a and 20b are provided with spacer disks 44 instead of the conductive plates of the first embodiment. The spacer disk 44 is formed of a silicon steel plate, similar to the iron core portions 20a and 20b. That is, since the spacer disk 44 does not constitute a part of the short-circuited coil, the conductivity as in the first embodiment is not necessary, and it is not necessary to constitute the material with a material such as copper or aluminum. The spacer disk 44 is formed with a space 45 into which the stepped portion 43 of the conductive bars 41 and 42 is inserted.

なお、この一対の導電性バー41,42とその段差部43が入り込む空間部45は、各短絡コイルごとに設けられている。従って、磁極ごとに1個あるいは複数個の短絡コイルを設ける場合、その数に応じて、一対の導電性バー41,42と空間部45を用意する。   The pair of conductive bars 41 and 42 and the space 45 into which the stepped portion 43 enters are provided for each short-circuited coil. Accordingly, when one or a plurality of short-circuit coils are provided for each magnetic pole, a pair of conductive bars 41 and 42 and a space portion 45 are prepared according to the number.

このような構成を有する第2実施形態では、導電性バー41,42の一方の端部(例えば、鉄心挿入部41a,42a)を、回転子の分割された鉄心部20aの短絡コイル挿入孔内に差し込み、次いで、スペーサ円板44をその空間部45に導電性バー41,42の段差部43が位置するように鉄心部20aに重ね合わせる。更に、スペーサ円板44から突出している導電性バー41,42の反対側の鉄心挿入部41b,42bが短絡コイル挿入孔に入り込むようにして、スペーサ円板44に反対側の鉄心部20bを重ね合わせる。その後、鉄心部20a,20bの軸方向端部より突出した導電性バー41,42の先端部を折り曲げて接続し、短絡接続部46a,46bを形成することで、短絡コイルを構成する。   In 2nd Embodiment which has such a structure, one edge part (For example, iron core insertion part 41a, 42a) of the electroconductive bar 41,42 is made into the short circuit coil insertion hole of the iron core part 20a where the rotor was divided | segmented. Then, the spacer disk 44 is overlaid on the iron core portion 20a so that the step portions 43 of the conductive bars 41 and 42 are positioned in the space portion 45. Further, the iron core insertion portions 41b and 42b on the opposite side of the conductive bars 41 and 42 protruding from the spacer disk 44 are inserted into the short-circuiting coil insertion hole, and the iron core portion 20b on the opposite side is overlapped with the spacer disk 44. Match. Thereafter, the ends of the conductive bars 41 and 42 protruding from the axial ends of the iron core portions 20a and 20b are bent and connected to form the short-circuit connection portions 46a and 46b, thereby forming a short-circuit coil.

なお、この場合、別途用意した部材で、導電性バー41,42の先端を短絡させても良い。また、第1実施形態のように、中央のスペーサ円板44に各短絡コイルを構成する多数の導電性バー41,42をセットしておき、その両側から左右の鉄心部20a,20bを装着することも可能である。   In this case, the tips of the conductive bars 41 and 42 may be short-circuited with a separately prepared member. Further, as in the first embodiment, a large number of conductive bars 41 and 42 constituting each short-circuited coil are set on the central spacer disk 44, and the left and right iron core portions 20a and 20b are mounted from both sides thereof. It is also possible.

その後、第1実施形態のように、短絡接続部46a,46bの外側を、絶縁材料あるいは導電性バーよりも電気抵抗が大きな部材から成る端板48a,48bによって被覆する。なお、絶縁材料の端板48a,48bの代わりに、端板として珪素鋼板を使用する場合には、図示のように短絡接続部の外側に絶縁部材47a,47bを設ける。   Thereafter, as in the first embodiment, the outer sides of the short-circuit connection portions 46a and 46b are covered with end plates 48a and 48b made of a member having an electric resistance larger than that of an insulating material or a conductive bar. In addition, when using a silicon steel plate as an end plate instead of the end plates 48a and 48b made of an insulating material, insulating members 47a and 47b are provided outside the short-circuit connection portion as illustrated.

以上のような第2実施形態では、左右の鉄心部20a,20b内を貫通した導電性バー41,42と、鉄心部20a,20bの軸方向端面において形成された短絡接続部46a,46bとにより、回転子鉄心内には、スペーサ円板44部分においてスキュー分屈曲した1本の短絡コイルが形成され、回転子鉄心内でスキュー角度ずれた位置に配置された各鉄心部20a,20b内の永久磁石の周囲に短絡コイルを配置することができる。   In the second embodiment as described above, the conductive bars 41 and 42 penetrating through the left and right iron core portions 20a and 20b and the short-circuit connection portions 46a and 46b formed on the axial end surfaces of the iron core portions 20a and 20b. In the rotor core, one short-circuited coil bent by a skew is formed in the spacer disk 44, and the permanent cores 20a and 20b disposed in the rotor core are disposed at positions shifted by skew angles. A short-circuit coil can be placed around the magnet.

特に、第2実施形態では、中央に導電性の板を使用することがないので、短絡コイルを形成する個々の導電性バーと導電性の板との溶接やろう付けなどの接合作業が不要となり、その製造作業が簡単になる。また、回転子の中央に導電性の板が存在せず、スペーサ円板として鉄心部と同質の珪素鋼板を使用することが可能になるので、磁気特性も優れている。   In particular, in the second embodiment, there is no need to use a conductive plate in the center, so that it is not necessary to perform joining work such as welding and brazing between the individual conductive bars forming the short-circuited coil and the conductive plate. , Making the manufacturing work easier. In addition, there is no conductive plate in the center of the rotor, and a silicon steel plate having the same quality as the iron core can be used as the spacer disk, so that the magnetic characteristics are also excellent.

(3)第3実施形態
この第3実施形態は、短絡コイルを溶融した導電性材料を回転子鉄心の導電性部材注入孔に流し込んで、導電性材料が固化したときに短絡コイルを形成するものである。以下、図8の断面図により、第3実施形態を説明する。
(3) Third Embodiment In this third embodiment, a conductive material obtained by melting a short circuit coil is poured into a conductive member injection hole of a rotor core, and a short circuit coil is formed when the conductive material is solidified. It is. The third embodiment will be described below with reference to the cross-sectional view of FIG.

この第3実施形態においては、左右の鉄心部20a,20bの間にスペーサ円板51を配置すると共に、鉄心部20a,20bの軸方向端部には端板52a,52bを配置する。各鉄心部20a,20b内には、短絡コイルの位置に合わせて導電材料注入孔53a,53bが回転子の軸方向と平行に形成されている。この場合、左右の鉄心部20a,20bの導電部材注入孔53a,53bの位置は、鉄心部20a,20bのスキュー角度だけずれた位置に形成されている。   In the third embodiment, a spacer disk 51 is disposed between the left and right iron core portions 20a and 20b, and end plates 52a and 52b are disposed at axial ends of the iron core portions 20a and 20b. In each iron core part 20a, 20b, conductive material injection holes 53a, 53b are formed in parallel with the axial direction of the rotor in accordance with the position of the short circuit coil. In this case, the positions of the conductive member injection holes 53a and 53b of the left and right iron core portions 20a and 20b are formed at positions shifted by the skew angle of the iron core portions 20a and 20b.

中央のスペーサ円板51には、左右鉄心部に形成した導電部材注入孔53a,53bの鉄心中央側の開口部と連通する空間部54が形成されている。また、左右の端板52a,52bには、導電部材注入孔53a,53bの鉄心端部側の開口部と連通する短絡接続部55a,55bが設けられている。一方の端板(図では、端板52a)には、この短絡接続部55aと連通する導電材料の注入口56が設けられている。   The central spacer disc 51 is formed with a space portion 54 that communicates with the opening portion on the iron core center side of the conductive member injection holes 53a and 53b formed in the left and right iron core portions. The left and right end plates 52a and 52b are provided with short-circuit connection portions 55a and 55b communicating with the opening on the iron core end side of the conductive member injection holes 53a and 53b. One end plate (in the figure, end plate 52a) is provided with an injection port 56 of a conductive material communicating with the short-circuit connection portion 55a.

このような構成を有する第3実施形態では、左右の鉄心部20a,20b、スペーサ円板51及び左右の端板52a,52bを一体に密着固定した状態で、注入口56から溶融した銅、アルミなどの導電材料を注入する。すると、この導電材料が、導電材料注入孔53a,53b、空間部54及び短絡接続部55a,55b内に流入し、それが固化することにより、回転子鉄心内にスキュー角度ずれた構造の短絡コイルが形成される。   In the third embodiment having such a configuration, the left and right iron core portions 20a and 20b, the spacer disc 51, and the left and right end plates 52a and 52b are integrally and firmly fixed, and the molten copper and aluminum from the injection port 56 are used. Inject a conductive material. Then, the conductive material flows into the conductive material injection holes 53a and 53b, the space portion 54, and the short-circuit connection portions 55a and 55b, and solidifies, whereby the short-circuit coil having a structure in which the skew angle is shifted in the rotor core. Is formed.

この第3実施形態によれば、鉄心内に個々の導電性バーを挿入する手間がなくなり、一挙に複雑な形状をした多数の短絡コイルを形成することができる。   According to the third embodiment, there is no need to insert individual conductive bars in the iron core, and a large number of short-circuited coils having a complicated shape can be formed all at once.

(4)第4実施形態
第4実施形態は、直線状の導電性バーを左右の鉄心部に挿入しておき、左右の鉄心部をそれぞれ逆方向にスキューする角度だけひねりを加えることにより、鉄心中央部でスキュー角度分ずれた形状の短絡コイルを形成するものである。図9は、そのひねりを加える前の断面図、図10はひねりを加えた結果得られたスキュー角度分の段差を有する短絡コイルの断面図である。
(4) Fourth Embodiment In the fourth embodiment, a linear conductive bar is inserted into the left and right iron cores, and the left and right iron cores are twisted by angles that respectively skew in the opposite directions, thereby providing an iron core. A short-circuited coil having a shape shifted by a skew angle at the center is formed. FIG. 9 is a cross-sectional view before the twist is added, and FIG. 10 is a cross-sectional view of the short-circuit coil having a step corresponding to the skew angle obtained as a result of the twist.

第4実施形態においては、左右の鉄心部20a,20bがスペース板61を介して積層されている。このスペース板61には、短絡コイルの形成時に、スキュー角度に応じた段差部が入り込むことのできる空間部62が設けられている。また、左右の鉄心部20a,20bには、それぞれ一対の短絡コイルの挿入孔63a,63bが、回転子の軸方向と平行に設けられている。この場合、各挿入孔63a,63bは、スペース板61の空間部62に開口しており、各鉄心のスキュー前の状態では、一直線上に配置されている。この短絡コイルの挿入孔63a,63bには、U字形をした導電性バー64の2本の足がそれぞれが挿入されている。   In the fourth embodiment, the left and right iron core portions 20 a and 20 b are stacked via the space plate 61. The space plate 61 is provided with a space portion 62 into which a step portion corresponding to the skew angle can enter when the short-circuit coil is formed. The left and right iron core portions 20a and 20b are provided with a pair of short-circuit coil insertion holes 63a and 63b, respectively, in parallel with the axial direction of the rotor. In this case, each insertion hole 63a, 63b is open to the space 62 of the space plate 61, and is arranged in a straight line in a state before each iron core is skewed. Two legs of a U-shaped conductive bar 64 are inserted into the insertion holes 63a and 63b of the short-circuit coil.

この図9に示すように、左右の鉄心部20a,20bとスペース板61を重ね合わせた状態で、短絡コイル挿入孔63a,63bに導電性バー64を挿入し、左右の鉄心部に対して、そのスキュー角度分のひねりを加える。すると、図10に示すように、導電性バー64は、鉄心中央のスペース板61部分において屈曲し、そこにスキュー角度に応じた段差部65が形成される。その後、回転子鉄心の一方の端面に露出しているU字形の導電性バー64の足の部分の先端同士を溶接やろう付けなどで接合することで、一方の短絡接続部66aを形成する。なお、U字形の連結部分が他方の短絡接続部66bとなる。   As shown in FIG. 9, with the left and right iron core portions 20a, 20b and the space plate 61 overlapped, the conductive bar 64 is inserted into the short-circuiting coil insertion holes 63a, 63b, and the left and right iron core portions are Add a twist for the skew angle. Then, as shown in FIG. 10, the conductive bar 64 bends at the space plate 61 at the center of the iron core, and a stepped portion 65 corresponding to the skew angle is formed there. Thereafter, the ends of the leg portions of the U-shaped conductive bar 64 exposed on one end face of the rotor core are joined together by welding or brazing to form one short-circuit connection portion 66a. The U-shaped connecting portion is the other short-circuit connection portion 66b.

以上のような構成を有する第4実施形態によれば、直線状に配置された挿入孔63a,63bにU字形の導電性バー64を挿入し、鉄心部にひねりを加えるだけで、鉄心内部で段差が付いた短絡コイルを簡単に作製することができる。特に、鉄心の一方向から導電性バー64を挿入するだけでよいので、導電性バーの両側にそれぞれ鉄心部をはめ込む技術に比較して、製造工程が簡単になる。また、導電性バーも単なるU字形でよいので、加工も簡単であり、スキュー角度も鉄心部のひねり量によって決まるため、導電性バー自体はスキュー角度を考慮する必要がなく、どのようなスキュー角度の回転電機に対しても適用可能である。   According to the fourth embodiment having the above-described configuration, the U-shaped conductive bar 64 is inserted into the insertion holes 63a and 63b arranged in a straight line, and a twist is applied to the iron core portion. A short-circuited coil with a step can be easily produced. In particular, since it is only necessary to insert the conductive bar 64 from one direction of the iron core, the manufacturing process is simplified compared to a technique in which the iron core portion is fitted on both sides of the conductive bar. In addition, since the conductive bar can be simply U-shaped, it is easy to process, and the skew angle is determined by the amount of twist in the iron core, so the conductive bar itself does not need to consider the skew angle. The present invention can also be applied to other rotating electric machines.

本発明の第1実施形態を示す回転子と固定子の部分断面図で、可変磁力磁石の減磁時を示す。It is a fragmentary sectional view of the rotor and stator which show 1st Embodiment of this invention, and shows the time of demagnetization of a variable magnetic force magnet. 本発明の第1実施形態を示す回転子と固定子の部分断面図で、可変磁力磁石の増磁時を示す。It is a fragmentary sectional view of the rotor and stator which show 1st Embodiment of this invention, and shows the time of magnetizing of a variable magnetic force magnet. 本発明の第1実施形態の回転子の組立途中の状態を示す分解斜視図。The disassembled perspective view which shows the state in the middle of the assembly of the rotor of 1st Embodiment of this invention. 本発明の第1実施形態を示す回転軸と平行な方向の断面図で、鉄心の組立途中の状態を示す。It is sectional drawing of the direction parallel to the rotating shaft which shows 1st Embodiment of this invention, and shows the state in the middle of the assembly of an iron core. 本発明の第1実施形態を示す回転軸と平行な方向の断面図で、鉄心の完成状態を示す。It is sectional drawing of the direction parallel to the rotating shaft which shows 1st Embodiment of this invention, and the completion state of an iron core is shown. 本発明の第2実施形態における導電性バーの平面図。The top view of the electroconductive bar in 2nd Embodiment of this invention. 本発明の第2実施形態を示す回転軸と平行な方向の断面図で、鉄心の完成状態を示す。It is sectional drawing of the direction parallel to the rotating shaft which shows 2nd Embodiment of this invention, and the completion state of an iron core is shown. 本発明の第3の実施形態を示す回転子の断面図で、鉄心の完成状態を示す。It is sectional drawing of the rotor which shows the 3rd Embodiment of this invention, and the completion state of an iron core is shown. 本発明の第4の実施形態を示す回転子の断面図で、鉄心の組立途中の状態を示す。It is sectional drawing of the rotor which shows the 4th Embodiment of this invention, and shows the state in the middle of the assembly of an iron core. 本発明の第4の実施形態を示す回転子の断面図で、鉄心の完成状態を示す。It is sectional drawing of the rotor which shows the 4th Embodiment of this invention, and the completion state of an iron core is shown.

符号の説明Explanation of symbols

1…回転子
2…回転子鉄心
3…保持力と磁化方向厚さの積が小さい永久磁石(可変磁力磁石)
4…保持力と磁化方向厚さの積が大きい永久磁石(固定磁力磁石)
5…永久磁石端の空洞
6…ブリッジ部
9…エアギャップ
10…固定子
11…電機子鉄心
12…電機子巻線
20a,20b…鉄心部
22a,22b,63a,63b…短絡コイル挿入孔
30…導電性の板
31a〜32b,41,42,64…導電性バー
41a〜42b…鉄心挿入部
43,65…段差部
44,51,61…スペーサ円板
45,54,62…空間部
52a,52b…端板
53a,53b…導電部材注入孔
55a,55b,66a,66b…短絡接続部
56…注入口
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor core 3 ... Permanent magnet (variable magnetic force magnet) with small product of coercive force and magnetization direction thickness
4. Permanent magnet with a large product of coercive force and magnetization direction thickness (fixed magnet)
5 ... Cavity 6 at the end of the permanent magnet 6 ... Bridge part 9 ... Air gap 10 ... Stator 11 ... Armature core 12 ... Armature windings 20a, 20b ... Iron core parts 22a, 22b, 63a, 63b ... Short-circuit coil insertion hole 30 ... Conductive plates 31a to 32b, 41, 42, 64 ... conductive bars 41a to 42b ... iron core insertion portions 43, 65 ... step portions 44, 51, 61 ... spacer disks 45, 54, 62 ... space portions 52a, 52b ... end plates 53a, 53b ... conductive member injection holes 55a, 55b, 66a, 66b ... short-circuit connection part 56 ... injection port

Claims (11)

保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させた永久磁石式回転電機において、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設け、
各鉄心部の短絡コイルを、各鉄心部のスキュー角度に応じて回転子の周方向にずれた角度で配置すると共に、各鉄心部の短絡コイルを鉄心の境界部において段差部をもって接続することを特徴とする永久磁石式回転電機。
A magnetic pole is formed by using two or more kinds of permanent magnets having different products of coercive force and magnetization direction thickness, and a plurality of the magnetic poles are arranged in the rotor core to form a rotor. A stator is disposed in the diameter via an air gap, an armature core and an armature winding are provided on the stator, and at least one of permanent magnets constituting the magnetic pole of the rotor by a magnetic field generated by the armature winding. In the permanent magnet type rotating electrical machine with magnetized pieces,
The rotor core is divided into two or more in the axial direction, the magnetic pole positions of the divided cores are skewed in the circumferential direction, and magnetic flux generated during magnetization when magnetizing a permanent magnet in each core By providing a conductive short-circuit coil through which a short-circuit current flows,
The short-circuiting coil of each iron core part is arranged at an angle shifted in the circumferential direction of the rotor according to the skew angle of each iron core part, and the short-circuiting coil of each iron core part is connected with a step at the boundary part of the iron core. A permanent magnet type rotating electrical machine.
前記短絡コイルを、
各鉄心部の境界部に配置された導電性の板と、
この導電性の板の表裏両面のスキュー角度に相当した分だけ回転子の周方向にずれた場所から、各鉄心部に向かって回転子の軸方向に突出した導電性バーと、
この導電性バーの先端を鉄心部の軸方向端部で接続する短絡接続部とから構成することを特徴とする請求項1に記載の永久磁石式回転電機。
The shorting coil,
A conductive plate arranged at the boundary of each iron core,
A conductive bar protruding in the axial direction of the rotor toward each iron core from a location shifted in the circumferential direction of the rotor by an amount corresponding to the skew angle of the front and back surfaces of the conductive plate,
2. The permanent magnet type rotating electric machine according to claim 1, wherein the permanent bar type rotating electric machine is constituted by a short-circuit connecting portion that connects an end of the conductive bar at an axial end portion of the iron core portion.
前記短絡コイルを、中央部でスキューに相当する長さ分だけ段差部を有する一対の導電性バーと、この導電性バーを鉄心部の軸方向端部で接続する短絡接続部とから構成し、
前記鉄心部の境界にスペース板を配置し、このスペース板に前記導電性バーの段差部が入る空間部を形成することを特徴とする請求項1に記載の永久磁石式回転電機。
The short-circuiting coil is composed of a pair of conductive bars having a stepped portion corresponding to the length corresponding to the skew at the center portion, and a short-circuit connecting portion connecting the conductive bars at the axial ends of the iron core portion,
The permanent magnet type rotating electrical machine according to claim 1, wherein a space plate is disposed at a boundary of the iron core portion, and a space portion into which the step portion of the conductive bar enters is formed in the space plate.
前記短絡コイルを、中央部でスキューに相当する長さ分だけ段差部を有する一対の導電性部材注入孔と、鉄心部の軸方向端部で接続する短絡接続部と、前記鉄心部の境界に配置されたスペース板に形成された空間部に、溶融した導電性材料を流し込んで固化することにより形成することを特徴とする請求項3に記載の永久磁石式回転電機。   A pair of conductive member injection holes each having a step portion corresponding to a length corresponding to a skew at a central portion, a short-circuit connection portion connected at an axial end portion of the iron core portion, and a boundary between the iron core portions. 4. The permanent magnet type rotating electrical machine according to claim 3, wherein the permanent magnet type rotating electrical machine is formed by pouring a molten conductive material into a space portion formed in the disposed space plate and solidifying the space. 前記短絡接続部を、鉄心部の軸方向端部から突出した導電性バーの先端を折り曲げて短絡接続して構成することを特徴とする請求項2または請求項3に記載の永久磁石式回転電機。   4. The permanent magnet type rotating electrical machine according to claim 2, wherein the short-circuit connecting portion is configured by short-circuiting by bending a tip of a conductive bar protruding from an axial end portion of the iron core portion. . 前記回転子鉄心の軸方向外側に回転子鉄心を軸方向に挟み込んで押える端板を設け、この端板を回転子鉄心内に設けた導電性部材の抵抗率より大きな抵抗率の材料又は絶縁材料で構成することを特徴とする請求項1から請求項5のいずれか1項に記載の永久磁石式回転電機。   An end plate that sandwiches and presses the rotor core in the axial direction is provided outside the rotor core in the axial direction, and a material or insulating material having a resistivity greater than the resistivity of the conductive member provided in the rotor core. The permanent magnet type rotating electrical machine according to any one of claims 1 to 5, wherein 前記回転子鉄心の軸方向外側に回転子鉄心を軸方向に挟み込んで押える端板を設け、この端板の回転子鉄心内に設けた導電性部材と接触する箇所に絶縁処理を施したことを特徴とする請求項1から請求項6のいずれか1項に記載の永久磁石式回転電機。   An end plate is provided on the outer side of the rotor core in the axial direction so as to sandwich and press the rotor core in the axial direction, and an insulating treatment is applied to a portion of the end plate that contacts the conductive member provided in the rotor core. The permanent magnet type rotating electric machine according to any one of claims 1 to 6, wherein the permanent magnet type rotating electric machine is characterized. 保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
前記短絡コイルを、
分割した鉄心部の境界部に配置さる導電性の板の表裏両面に、鉄心部のスキュー角度に相当した分だけ回転子の周方向にずれた場所から、各鉄心部に向かって回転子の軸方向に突出した導電性バーを一体に設け、
前記分割した鉄心部を、その短絡コイル挿入孔内に前記導電性バーが入り込むようにして、回転子の軸方向から前記導電性の板に重ね合わせ、
各鉄心部の軸方向端面において前記導電性バーの先端を接続して短絡接続部を形成することにより、短絡コイルを構成することを特徴とする永久磁石式回転電機の製造方法。
A magnetic pole is formed by using two or more kinds of permanent magnets having different products of coercive force and magnetization direction thickness, and a plurality of the magnetic poles are arranged in the rotor core to form a rotor. A stator is disposed in the diameter via an air gap, an armature core and an armature winding are provided on the stator, and at least one of permanent magnets constituting the magnetic pole of the rotor by a magnetic field generated by the armature winding. Magnetize the pieces,
The rotor core is divided into two or more in the axial direction, the magnetic pole positions of the divided cores are skewed in the circumferential direction, and magnetic flux generated during magnetization when magnetizing a permanent magnet in each core In the manufacturing method of a permanent magnet type rotating electrical machine provided with a conductive short-circuit coil in which a short-circuit current flows by
The shorting coil,
On the front and back surfaces of the conductive plate placed at the boundary between the divided cores, the rotor shaft is moved from the location shifted in the circumferential direction of the rotor by an amount corresponding to the skew angle of the core toward each core. A conductive bar that protrudes in the direction is integrally provided,
The divided iron core is overlapped on the conductive plate from the axial direction of the rotor so that the conductive bar enters the short-circuiting coil insertion hole,
A manufacturing method of a permanent magnet type rotating electrical machine, wherein a short circuit coil is formed by connecting a tip of the conductive bar at an axial end face of each iron core to form a short circuit connection.
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
中央部でスキューに相当する長さ分だけ段差部を有する一対の導電性バーと、この導電性バーの段差部が入る空間部を有するスペース板を使用し、
前記分割された鉄心部の境界にスペース板を配置し、このスペース板の空間部に前記導電性バーの段差部を収容すると共に、一対の導電性バーを各鉄心部の短絡コイル挿入孔内に挿入し、
各鉄心部の軸方向端面において前記導電性バーの先端を接続して短絡接続部を形成することにより、短絡コイルを構成することを特徴とする永久磁石式回転電機の製造方法。
A magnetic pole is formed by using two or more kinds of permanent magnets having different products of coercive force and magnetization direction thickness, and a plurality of the magnetic poles are arranged in the rotor core to form a rotor. A stator is disposed in the diameter via an air gap, an armature core and an armature winding are provided on the stator, and at least one of permanent magnets constituting the magnetic pole of the rotor by a magnetic field generated by the armature winding. Magnetize the pieces,
The rotor core is divided into two or more in the axial direction, the magnetic pole positions of the divided cores are skewed in the circumferential direction, and magnetic flux generated during magnetization when magnetizing a permanent magnet in each core In the manufacturing method of a permanent magnet type rotating electrical machine provided with a conductive short-circuit coil in which a short-circuit current flows by
Using a pair of conductive bars having a stepped portion corresponding to the length corresponding to the skew at the center portion, and a space plate having a space portion into which the stepped portion of this conductive bar enters,
A space plate is arranged at the boundary of the divided iron core portions, and the step portions of the conductive bars are accommodated in the space portions of the space plates, and the pair of conductive bars are placed in the short-circuit coil insertion holes of the iron core portions. Insert,
A manufacturing method of a permanent magnet type rotating electrical machine, wherein a short circuit coil is formed by connecting a tip of the conductive bar at an axial end face of each iron core to form a short circuit connection.
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
分割された各鉄心部内にそれぞれ一対の導電性材料注入孔を、各鉄心部の一対の導電性部材注入孔をスキューに相当する長さ分だけずれた位置に形成すると共に、各鉄心部の中央部に各鉄心部の導電性材料注入孔を連通する空間部を有するスペース板を設け、各鉄心の軸方向端部には短絡接続部を有する端板を設け、
これら各鉄心部、スペース板及び端板を一体化した状態で、導電性材料注入孔、空間部及び短絡接続部内に溶融した導電性材料を注入し、
注入した導電性材料を固化することにより、短絡コイルを得ることを特徴とする永久磁石式回転電機の製造方法。
A magnetic pole is formed by using two or more kinds of permanent magnets having different products of coercive force and magnetization direction thickness, and a plurality of the magnetic poles are arranged in the rotor core to form a rotor. A stator is disposed in the diameter via an air gap, an armature core and an armature winding are provided on the stator, and at least one of permanent magnets constituting the magnetic pole of the rotor by a magnetic field generated by the armature winding. Magnetize the pieces,
The rotor core is divided into two or more in the axial direction, the magnetic pole positions of the divided cores are skewed in the circumferential direction, and magnetic flux generated during magnetization when magnetizing a permanent magnet in each core In the manufacturing method of a permanent magnet type rotating electrical machine provided with a conductive short-circuit coil in which a short-circuit current flows by
A pair of conductive material injection holes are formed in each of the divided iron core portions, and the pair of conductive member injection holes of each iron core portion are formed at positions shifted by a length corresponding to the skew, and the center of each iron core portion is formed. A space plate having a space portion communicating with the conductive material injection hole of each iron core portion is provided in the portion, and an end plate having a short-circuit connection portion is provided at an axial end portion of each iron core,
In a state where these iron cores, space plates and end plates are integrated, a conductive material injection hole, a space portion and a short-circuit connection portion are injected with a molten conductive material,
A method of manufacturing a permanent magnet type rotating electrical machine, characterized in that a short circuit coil is obtained by solidifying an injected conductive material.
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
前記軸方向に分割した各鉄心部に形成した短絡コイルの挿入孔の位置一致させ、各鉄心部の間に、鉄心部がスキューされた状態においても各回転子鉄心の短絡コイル挿入孔が連通するような空間を有するスペース板を配置し、
各鉄心部とスペース板が並んだ状態において、導電性バーを回転子の軸方向から挿入し、
その後、軸方向に分割した鉄心部をスキューする角度分だけひねることにより、各鉄心部の境界部においてスキュー角度分段差の付いた導電性バーを形成し、
各鉄心部の軸方向端面において前記導電性バーの先端を接続して短絡接続部を形成することにより、短絡コイルを構成することを特徴とする永久磁石式回転電機の製造方法。
A magnetic pole is formed by using two or more kinds of permanent magnets having different products of coercive force and magnetization direction thickness, and a plurality of the magnetic poles are arranged in the rotor core to form a rotor. A stator is disposed in the diameter via an air gap, an armature core and an armature winding are provided on the stator, and at least one of permanent magnets constituting the magnetic pole of the rotor by a magnetic field generated by the armature winding. Magnetize the pieces,
The rotor core is divided into two or more in the axial direction, the magnetic pole positions of the divided cores are skewed in the circumferential direction, and magnetic flux generated during magnetization when magnetizing a permanent magnet in each core In the manufacturing method of a permanent magnet type rotating electrical machine provided with a conductive short-circuit coil in which a short-circuit current flows by
The positions of the insertion holes of the short-circuit coils formed in the respective iron cores divided in the axial direction are aligned with each other, and the short-circuit coil insertion holes of the respective rotor cores communicate with each other even when the iron core is skewed. Place a space board with such a space,
In the state where each iron core and space plate are lined up, insert the conductive bar from the axial direction of the rotor,
After that, by twisting the core portion divided in the axial direction by an angle for skewing, a conductive bar having a step by a skew angle is formed at the boundary portion of each core portion,
A manufacturing method of a permanent magnet type rotating electrical machine, wherein a short circuit coil is formed by connecting a tip of the conductive bar at an axial end face of each iron core to form a short circuit connection.
JP2008317955A 2008-12-15 2008-12-15 Permanent magnet rotating electric machine Active JP5175704B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008317955A JP5175704B2 (en) 2008-12-15 2008-12-15 Permanent magnet rotating electric machine
CN200980150361.1A CN102246399B (en) 2008-12-15 2009-12-15 Permanent magnet type rotary electrical machine
EP09833196.0A EP2372885B1 (en) 2008-12-15 2009-12-15 Permanent magnet type rotary electrical machine
US13/139,889 US8796898B2 (en) 2008-12-15 2009-12-15 Permanent magnet electric motor
PCT/JP2009/006899 WO2010070888A1 (en) 2008-12-15 2009-12-15 Permanent magnet type rotary electrical machine
US14/296,238 US9496774B2 (en) 2008-12-15 2014-06-04 Permanent magnet electric motor
US14/296,177 US9490684B2 (en) 2008-12-15 2014-06-04 Permanent magnet electric motor
US14/296,116 US9373992B2 (en) 2008-12-15 2014-06-04 Permanent magnet electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317955A JP5175704B2 (en) 2008-12-15 2008-12-15 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2010142059A true JP2010142059A (en) 2010-06-24
JP5175704B2 JP5175704B2 (en) 2013-04-03

Family

ID=42351671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317955A Active JP5175704B2 (en) 2008-12-15 2008-12-15 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP5175704B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178902A (en) * 2011-02-25 2012-09-13 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary machine
JP2014011866A (en) * 2012-06-29 2014-01-20 Hitachi Ltd Rotary electric machine
CN113890231A (en) * 2020-07-01 2022-01-04 丰田自动车株式会社 Rotor of rotary machine and method for manufacturing rotor of rotary machine
CN113890231B (en) * 2020-07-01 2024-05-03 丰田自动车株式会社 Rotor of rotary machine and method for manufacturing rotor of rotary machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139905A (en) * 1976-05-17 1977-11-22 Hitachi Ltd Armature for commutator type rotary electric machine
JPH08182282A (en) * 1994-12-27 1996-07-12 Railway Technical Res Inst Permanent magnetic excitation synchronous motor for vehicle
JP2006060952A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Permanent magnet embedded motor
WO2008023413A1 (en) * 2006-08-23 2008-02-28 Kabushiki Kaisha Toshiba Permanent magnetic type electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139905A (en) * 1976-05-17 1977-11-22 Hitachi Ltd Armature for commutator type rotary electric machine
JPH08182282A (en) * 1994-12-27 1996-07-12 Railway Technical Res Inst Permanent magnetic excitation synchronous motor for vehicle
JP2006060952A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Permanent magnet embedded motor
WO2008023413A1 (en) * 2006-08-23 2008-02-28 Kabushiki Kaisha Toshiba Permanent magnetic type electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178902A (en) * 2011-02-25 2012-09-13 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary machine
JP2014011866A (en) * 2012-06-29 2014-01-20 Hitachi Ltd Rotary electric machine
CN113890231A (en) * 2020-07-01 2022-01-04 丰田自动车株式会社 Rotor of rotary machine and method for manufacturing rotor of rotary machine
CN113890231B (en) * 2020-07-01 2024-05-03 丰田自动车株式会社 Rotor of rotary machine and method for manufacturing rotor of rotary machine

Also Published As

Publication number Publication date
JP5175704B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2010070888A1 (en) Permanent magnet type rotary electrical machine
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5305887B2 (en) Permanent magnet rotating electric machine
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
WO2009104529A1 (en) Permanent magnet type dynamo electric machine, method for assembling permanent magnet type dynamo electric machine, method for disassembling permanent magnet type dynamo electric machine and permanent magnet motor drive system
JP5361260B2 (en) Permanent magnet rotary electric machine
JP5178488B2 (en) Permanent magnet rotating electric machine
JP5355055B2 (en) Permanent magnet rotating electric machine
JP2012175738A (en) Permanent magnet type rotary electric machine
KR101984411B1 (en) Rotary electric-machine rotor
JP5175704B2 (en) Permanent magnet rotating electric machine
JP5178487B2 (en) Permanent magnet rotating electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JP5455600B2 (en) Permanent magnet rotating electric machine
JP2013051760A (en) Permanent magnet type rotating electrical machine
JP2015095954A (en) Permanent magnet dynamo-electric machine
JP2012182947A (en) Rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

R151 Written notification of patent or utility model registration

Ref document number: 5175704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3