JP2010141954A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2010141954A
JP2010141954A JP2008313357A JP2008313357A JP2010141954A JP 2010141954 A JP2010141954 A JP 2010141954A JP 2008313357 A JP2008313357 A JP 2008313357A JP 2008313357 A JP2008313357 A JP 2008313357A JP 2010141954 A JP2010141954 A JP 2010141954A
Authority
JP
Japan
Prior art keywords
stator
rotor
motor
portions
salient poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008313357A
Other languages
Japanese (ja)
Inventor
Tsutomu Michioka
力 道岡
Akihisa Kima
明久 来間
Takehiko Nakamura
岳彦 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2008313357A priority Critical patent/JP2010141954A/en
Publication of JP2010141954A publication Critical patent/JP2010141954A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new structure that miniaturizes a motor by rapidly thinning a stator without marring its output property, in a motor of such structure that salient poles are formed in both the stator and a rotor inside it. <P>SOLUTION: The stator 2 is made of, for example, two pieces of stator parts 21 and 22 in its axial direction, and a rotor 3 is made of, for example, two pieces of rotor parts 31 and 32, in its axial direction. A coil 8 is wound so that each salient pole 6 at the inner perimetrical face of one stator part 21 may be excited into an N magnetic pole, and a coil 8 is wound so that each salient pole 6 in the other stator part 22 may be excited into an S magnetic pole. Both stator parts 31 and 32 are coupled with each other, being slid in its circumferential direction so that the salient pole 6 of other phase may be positioned between the salient poles 6 of the same phases when viewed from its axial direction, and both rotor parts 31 and 32 are coupled with each other, being slid in its circumferential direction, according to the slippage of both stator parts 21 and 22. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ステータおよびその内側のロータの両方に突極が形成された構造のモータに関し、詳しくは、その小型化に関する。   The present invention relates to a motor having a structure in which salient poles are formed on both a stator and a rotor inside the stator, and more particularly, to miniaturization thereof.

従来、電気自動車の駆動モータ等は、多くの場合、ステータの内部にロータを備え、ロータに永久磁石を設け、ステータに複数のコイルを巻回した構造に形成される。そして、ステータの各コイルの順次通電により発生する磁極とロータの永久磁石の磁極との関係に基づいてロータが回転する(例えば、特許文献1参照)。   Conventionally, a drive motor or the like of an electric vehicle is often formed in a structure in which a rotor is provided inside a stator, a permanent magnet is provided on the rotor, and a plurality of coils are wound around the stator. Then, the rotor rotates based on the relationship between the magnetic poles generated by sequentially energizing each coil of the stator and the magnetic poles of the permanent magnets of the rotor (see, for example, Patent Document 1).

しかしながら、上記のようにロータに永久磁石を設ける構造では低コスト化を図ることが容易でない。   However, it is not easy to reduce the cost in the structure in which the permanent magnet is provided on the rotor as described above.

そこで、近年は、スイッチドリラクタンスモータ等のロータに永久磁石を設けないようにしたモータが種々提案されている。これらのモータは、ステータおよびその内側のロータを軟磁性体(珪素鋼鈑等)で形成し、ステータの内周面に半径方向内向きの複数の突極対を円周方向に配置し、また、ロータの周面にも半径方向外向きの複数個の突極を円周方向に配設し、ステータの各突極に各相のコイルを順に集中巻きした構造であり、ロータに永久磁石を設けないことから、低コストであり、また、集中コイルで磁束を突極の磁極部分に集約するため、小型が可能になる。
特開2008−22593号公報
In recent years, various motors in which a permanent magnet is not provided in a rotor such as a switched reluctance motor have been proposed. In these motors, a stator and a rotor inside the stator are formed of a soft magnetic material (silicon steel plate or the like), a plurality of radially inward salient pole pairs are arranged in the circumferential direction on the inner peripheral surface of the stator, and In addition, a plurality of radially outward salient poles are arranged in the circumferential direction on the circumferential surface of the rotor, and each phase coil is wound around each of the salient poles of the stator in a concentrated manner. Since it is not provided, the cost is low, and the magnetic flux is concentrated on the magnetic pole portion of the salient pole by the concentrated coil, so that the size can be reduced.
JP 2008-22593 A

前記スイッチドリラクタンスモータ等のステータおよびその内側のロータの両方に突極が形成された構造の従来提案のモータは、ステータからロータを通ってステータに戻る磁路をほぼ軸断面の平面上にのみ形成するため、とくにステータは相当の厚みに形成する必要があり、ステータを薄くしてモータを一層小型化したいという要望に応えられない問題がある。なお、ステータを厚くすると、その分ステータの内径が小さくなって発生トルクが少なくなり、モータの出力特性を損ねる不都合が生じる。   The conventionally proposed motor having a structure in which salient poles are formed in both the stator and the inner rotor of the switched reluctance motor or the like has a magnetic path that returns from the stator to the stator through the rotor only on the plane of the axial section. In order to form, especially a stator needs to be formed in considerable thickness, and there exists a problem which cannot respond to the request of making a stator thinner by making a stator thin. When the stator is thickened, the inner diameter of the stator is reduced accordingly, the generated torque is reduced, and the output characteristics of the motor are impaired.

本発明は、ステータおよびその内側のロータの両方に突極が形成された構造のモータにおいて、出力特性を損ねることなくステータを飛躍的に薄くして小型化できる新規な構造を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a novel structure in which a stator can be remarkably thinned and miniaturized without impairing output characteristics in a motor having a structure in which salient poles are formed on both a stator and a rotor inside the stator. And

上記した目的を達成するために、本発明のモータは、軟磁性体のステータの内周面に半径方向内向きの複数の突極を円周方向に配置し、前記ステータの内側に同軸状に設けられた軟磁性体のロータの外周面に半径方向外向きの複数の突極を円周方向に配設し、前記ステータの各突極に各相のコイルを順に集中巻きした構造のモータであって、前記ステータは軸方向の複数個のステータ部により形成され、前記ロータは軸方向の複数個のロータ部により形成され、一方の前記ステータ部の内周面の各突極はN磁極に励磁されるようにコイルが巻回され、他方の前記ステータ部の各突極はS磁極に励磁されるようにコイルが巻回され、前記一方のステータ部と前記他方のステータ部とは軸方向からみたときに同じ相の突極間に他の相の突極が位置するように円周方向にずらして連結され、前記両ロータ部は前記両ステータ部のずれに合わせて円周方向にずらして連結されていることを特徴としている(請求項1)。   In order to achieve the above-described object, the motor of the present invention has a plurality of radially inwardly projecting poles arranged circumferentially on the inner peripheral surface of a soft magnetic stator and coaxially arranged inside the stator. A motor having a structure in which a plurality of radially outward salient poles are arranged in a circumferential direction on the outer peripheral surface of a provided soft magnetic rotor, and coils of each phase are sequentially concentrated around each salient pole of the stator. The stator is formed by a plurality of axial stator portions, the rotor is formed by a plurality of axial rotor portions, and each salient pole on the inner peripheral surface of one of the stator portions is an N magnetic pole. The coil is wound so that it is excited, and the coil is wound so that each salient pole of the other stator part is excited by the S magnetic pole, and the one stator part and the other stator part are in the axial direction. The salient poles of the other phases are located between the salient poles of the same phase Coupled shifted circumferentially so that the rotors unit is characterized by being connected by shifting in the circumferential direction in accordance with the deviation of the two stators portion (claim 1).

請求項1に係る本発明のモータの場合、(1)ステータが2個のステータ部をモータの軸方向に連結して形成され、ロータも2個のステータ部をモータの軸方向に連結して形成されるので、モータがいわゆるタンデム構造となる。また、一方のステータ部の突極はN磁極に励磁され、他方のステータ部の突極はS磁極に励磁される。モータを軸方向から見ると、等価的にステータの突極数(磁極数)が増えた状態になり、その分、ステータを周方向に横切る磁束は減少する。すなわち、一方のステータの励磁相のN磁極(突極)からロータを通って他方のステータの同じ励磁相のS磁極(突極)に至る磁路は、ステータ部およびロータ部の軸方向の長さがそれぞれを1個とする場合の2倍になるので周方向には断面積が概ね2倍になる。また、両ステータ部の励磁相の突極部分だけでなく両隣の非励磁の他の相のヨーク部分も磁路として使えるので、軸方向には概ね3倍になる。そのため、両ステータ部の磁路となるヨーク部分を使用できる範囲が軸方向および周方向に広がり、その分、両ステータヨーク部分は厚みを薄くすることができる。そして、両ステータヨーク部分の厚みを薄くすると、ステータの外径が小さくなってモータを小型化することができ、また、ステータの内径を大きくして発生するトルクを増大し、モータの出力特性を向上することができる。(2)両ステータ部は軸方向からみたときに同じ相の突極間に他の相の突極が存在するように突極配置を円周方向にずらして連結される。励磁相のN極の突極とS極の突極との間に非励磁の他の相の突極が存在するので、励磁相の突極間の漏れ磁束も抑制される。そのため、高速回転時の電流の立上りを損なう原因となるインダクタンスを小さくできるので、出力特性を向上することができる。   In the case of the motor according to the first aspect of the present invention, (1) the stator is formed by connecting two stator portions in the axial direction of the motor, and the rotor is also connected by connecting two stator portions in the axial direction of the motor. Since it is formed, the motor has a so-called tandem structure. In addition, the salient pole of one stator portion is excited to the N magnetic pole, and the salient pole of the other stator portion is excited to the S magnetic pole. When the motor is viewed from the axial direction, the number of salient poles (the number of magnetic poles) of the stator is equivalently increased, and the magnetic flux crossing the stator in the circumferential direction is reduced accordingly. That is, the magnetic path from the N magnetic pole (saliency pole) of the excitation phase of one stator through the rotor to the S magnetic pole (saliency pole) of the same excitation phase of the other stator is the axial length of the stator portion and the rotor portion. Is twice as large as the case where the number of each is one, so that the cross-sectional area is almost doubled in the circumferential direction. Further, since not only the salient pole part of the excitation phase of both stator parts but also the yoke part of the other non-excitation phase adjacent to each other can be used as a magnetic path, the axial direction is approximately tripled. For this reason, the range in which the yoke portions that serve as the magnetic paths of both stator portions can be used extends in the axial direction and the circumferential direction, and the thickness of both stator yoke portions can be reduced accordingly. If the thickness of both stator yoke portions is reduced, the outer diameter of the stator can be reduced to reduce the size of the motor, and the generated torque can be increased by increasing the inner diameter of the stator, thereby improving the output characteristics of the motor. Can be improved. (2) The two stator portions are connected by shifting the salient pole arrangement in the circumferential direction so that salient poles of other phases exist between salient poles of the same phase when viewed from the axial direction. Since there are non-excited salient poles of the other phases between the N-phase salient poles and the S-pole salient poles of the excitation phase, leakage magnetic flux between the salient poles of the excitation phase is also suppressed. As a result, the inductance that causes the rise of the current during high-speed rotation to be reduced can be reduced, and the output characteristics can be improved.

したがって、請求項1に係る本発明は、ステータおよびその内側のロータの両方に突極が形成された構造のモータにおいて、出力特性を損ねることなくステータの厚みを薄くして小型化することができる。   Therefore, according to the first aspect of the present invention, in a motor having a structure in which salient poles are formed on both the stator and the rotor inside the stator, the thickness of the stator can be reduced and the size can be reduced without impairing the output characteristics. .

つぎに、本発明をより詳細に説明するため、実施形態について、図1〜図10参照して詳述する。なお、それらの図面においては、モータ軸等は省略している。   Next, in order to describe the present invention in more detail, embodiments will be described in detail with reference to FIGS. In these drawings, the motor shaft and the like are omitted.

(第1の実施形態)
第1の実施形態について、図1〜図7を参照して説明する。
(First embodiment)
A first embodiment will be described with reference to FIGS.

図1は本実施形態のモータ1の概略の構成を示す透視斜視図である。図2は図1の軸方向(モータ軸αの方向)に連結された2個のユニット11、12を紙面左から見た断面を示し、(a)はユニット11の断面、(b)はユニット12の断面である。   FIG. 1 is a perspective view showing a schematic configuration of a motor 1 of the present embodiment. 2 shows a cross section of the two units 11 and 12 connected in the axial direction of FIG. 1 (the direction of the motor shaft α) as viewed from the left side of the drawing, (a) is a cross section of the unit 11, and (b) is a unit. 12 is a cross section of twelve.

図3はユニット11、12のステータ部21、22が形成するステータ2の斜視図、図4はユニット11、12のロータ部31、32が形成するロータ3の斜視図、図5〜図7はモータ1の磁路の説明図である。   3 is a perspective view of the stator 2 formed by the stator portions 21 and 22 of the units 11 and 12, FIG. 4 is a perspective view of the rotor 3 formed by the rotor portions 31 and 32 of the units 11 and 12, and FIGS. 3 is an explanatory diagram of a magnetic path of the motor 1. FIG.

図1に示すように、本実施形態のモータ1は2個のユニット11、12を軸方向に連結したタンデム構造に形成される。   As shown in FIG. 1, the motor 1 of this embodiment is formed in a tandem structure in which two units 11 and 12 are connected in the axial direction.

ユニット11、12は図3に示す円筒状のステータ部21、22の内側に図4に示すロータ部31、32を同軸状に設けた同一要素構成であり、ステータ部21、22は図1に示す環状の連結ヨーク4を介して連結され、モータ1のステータ2を形成する。ロータ部31、32も図4に示す同様の連結ヨーク5を介して連結され、モータ1のロータ3を形成する。なお、ステータ部21、22、ロータ部31、32および連結ヨーク4、5は、例えば軟磁性体である珪素鋼板等を軸方向に重ねた積層鋼板や、圧粉鉄心により形成されている。また、ステータ部21、22の連結、ロータ部31、32の連結に連結ヨーク4、5が介在するのは、ステータ部21、22の後述する各突極6に巻回されるコイル8の厚み等を考慮したものである。   The units 11 and 12 have the same element configuration in which the rotor parts 31 and 32 shown in FIG. 4 are coaxially provided inside the cylindrical stator parts 21 and 22 shown in FIG. 3, and the stator parts 21 and 22 are shown in FIG. A stator 2 of the motor 1 is formed by being connected via an annular connecting yoke 4 shown. The rotor portions 31 and 32 are also connected through the same connecting yoke 5 shown in FIG. 4 to form the rotor 3 of the motor 1. In addition, the stator parts 21 and 22, the rotor parts 31 and 32, and the connection yokes 4 and 5 are formed, for example by the laminated steel plate which laminated | stacked the silicon steel plate etc. which are soft magnetic bodies on the axial direction, and the dust core. Further, the connection yokes 4 and 5 are interposed in the connection of the stator portions 21 and 22 and the connection of the rotor portions 31 and 32 because the thickness of the coil 8 wound around each salient pole 6 described later of the stator portions 21 and 22. Etc. are taken into consideration.

つぎに、本実施形態においては、モータ1をステータ2およびロータ3の両方に突極が形成された構造であって、U、V、Wの3相駆動とするため、ステータ部21、22にはそれぞれ内周面に半径方向内向きの12個の突極6が一体に形成されて円周方向に30度の等間隔に配設されている。突極6は90度離れた対称位置の各4個が反時計回りにU、V、Wの順の3組の突極(磁極)を形成する。また、ロータ部31、32にはそれぞれ外周面に半径方向外向きの8個の突極7が一体に形成されて円周方向に45度の等間隔に配設されている。なお、ステータ部21、22の突極6よりロータ部31、32の突極7の個数が少ないのは、周知のスイッチドリラクタンスモータ等と同様、ステータ部21、22の突極6とロータ部31、32の突極7との位置関係をずらし、ステータ部21、22の突極6の励磁によってロータ部31、32を回転するためである。   Next, in the present embodiment, the motor 1 has a structure in which salient poles are formed on both the stator 2 and the rotor 3, and U, V, W three-phase driving is performed. Each of the twelve salient poles 6 inward in the radial direction is integrally formed on the inner peripheral surface and arranged at equal intervals of 30 degrees in the circumferential direction. Each of the four salient poles 6 at symmetrical positions 90 degrees apart forms three sets of salient poles (magnetic poles) in the order of U, V, and W counterclockwise. The rotor portions 31 and 32 are each formed with eight radially outward salient poles 7 integrally formed on the outer peripheral surface and arranged at equal intervals of 45 degrees in the circumferential direction. Note that the number of salient poles 7 of the rotor parts 31 and 32 is smaller than that of the salient poles 6 of the stator parts 21 and 22 as in the known switched reluctance motor. This is to shift the positional relationship between the salient poles 31 and 32 and the salient poles 7 and rotate the rotor parts 31 and 32 by exciting the salient poles 6 of the stator parts 21 and 22.

さらに、ステータ部21、22の各突極6は図2(a)、(b)に示すように、U、V、Wの各相のコイル8が順に集中巻きされている。ステータ部21、22の各突極6のコイル8は、ステータ部21の各突極6を全てN磁極に励磁し、ステータ部22の各突極6を全てS磁極に励磁するため、ステータ部21の各突極6のコイル8に対して、ステータ部22の各突極6のコイル8は逆巻きである。なお、図2(a)のU+、V+、W+はN磁極の励磁を示し、図2(b)のU−、V−、W−はS磁極の励磁を示す。   Furthermore, as shown in FIGS. 2A and 2B, the salient poles 6 of the stator portions 21 and 22 are each concentratedly wound in order with coils 8 of U, V, and W phases. The coils 8 of the salient poles 6 of the stator portions 21 and 22 excite all the salient poles 6 of the stator portion 21 to N magnetic poles, and excite all the salient poles 6 of the stator portion 22 to S magnetic poles. The coil 8 of each salient pole 6 of the stator portion 22 is reversely wound with respect to the coil 8 of each salient pole 6 of 21. Note that U +, V +, and W + in FIG. 2A indicate N magnetic pole excitation, and U−, V−, and W− in FIG. 2B indicate S magnetic pole excitation.

つぎに、ステータ部21を本発明の一方のステータ部、ステータ部22を本発明の他方のステータ部とすると、一方のステータ部21と他方のステータ部22とは、軸方向からみたときに同じ相の突極6間に他の相の突極6が位置するように円周方向にずらした状態に連結されている。ロータ部31、32も両ステータ部21、22のずれに合わせて円周方向に突極7の位置を同じ量だけずらして連結されている。ずらす量は、突極6の配置間隔を1ピッチとすると、例えば、m/2ピッチ(mはモータ1の相数)であり、m=3の本実施例の場合、ステータ部21、22は、円周方向に図1の矢印線a、図2(b)の矢印線bに示す45度(=30×3/2)ずれて連結され、ロータ部31、32も、円周方向に図2(b)の矢印線bに示す45度ずれて連結されている。   Next, when the stator portion 21 is one stator portion of the present invention and the stator portion 22 is the other stator portion of the present invention, the one stator portion 21 and the other stator portion 22 are the same when viewed from the axial direction. The phase salient poles 6 are connected so as to be shifted in the circumferential direction so that the salient poles 6 of the other phases are located between the salient poles 6 of the phase. The rotor portions 31 and 32 are also connected by shifting the position of the salient pole 7 by the same amount in the circumferential direction in accordance with the displacement of both the stator portions 21 and 22. The amount of shift is, for example, m / 2 pitch (m is the number of phases of the motor 1), where the arrangement interval of the salient poles 6 is 1. In the case of this embodiment where m = 3, the stator portions 21 and 22 are 1 are connected to each other by shifting by 45 degrees (= 30 × 3/2) indicated by an arrow line a in FIG. 1 and an arrow line b in FIG. 2B, and the rotor portions 31 and 32 are also illustrated in the circumferential direction. They are connected with a shift of 45 degrees as indicated by the arrow b in FIG.

なお、前記のずらす量が明瞭になるように、図2(a)、(b)においては、ステータ部21、22のU相の特定の突極6に「6u」を付番し、ロータ部31、32の対応する突極7に「7x」を付番している。そして、本実施形態の場合、ロータ部31、32の突極7が45度の間隔であるため、図2(a)、(b)の比較からも明らかなように、ロータ部31、32が45度(=30×3/2)ずれて連結されても、見た目にはロータ部31とロータ部32は突極7の配置が同じになるが、突極7の個数等によっては、ロータ部31とロータ部32の突極7の配置が突極6、6uのようにずれる。   2A and 2B, “6u” is assigned to the specific salient pole 6 of the U phase of the stator portions 21 and 22 so that the amount of shifting becomes clear. “7x” is assigned to the salient poles 7 corresponding to 31 and 32. In the case of the present embodiment, since the salient poles 7 of the rotor portions 31 and 32 are at an interval of 45 degrees, as apparent from the comparison between FIGS. 2 (a) and 2 (b), the rotor portions 31 and 32 are Even if they are connected by being shifted by 45 degrees (= 30 × 3/2), the arrangement of the salient poles 7 is the same in the rotor part 31 and the rotor part 32, but depending on the number of the salient poles 7 and the like, the rotor part 31 and the arrangement of the salient poles 7 of the rotor part 32 are shifted like salient poles 6 and 6u.

そして、ステータ部21、22の各相の対の突極6のコイル8が相順に通電されることにより、ステータ部21、22の同相の対の突極6は、ステータ部21のものがN磁極、ステータ部22のものがS磁極に励磁される。さらに、ステータ部21のN磁極、ステータ部22のS磁極の磁力がそれらの近傍のロータ部31、32の突極7に加わる。これらの動作の相順のくり返しによりロータ3が回転する。   Then, when the coils 8 of the salient poles 6 of each phase pair of the stator portions 21 and 22 are energized in phase order, the salient poles 6 of the same phase pair of the stator portions 21 and 22 are N of the stator portion 21. The magnetic pole and stator portion 22 are excited to the S magnetic pole. Further, the magnetic forces of the N magnetic pole of the stator portion 21 and the S magnetic pole of the stator portion 22 are applied to the salient poles 7 of the rotor portions 31 and 32 in the vicinity thereof. The rotor 3 is rotated by repeating the phase sequence of these operations.

この場合、モータ1のステータ2が2個のステータ部21、22をモータ1の軸方向に連結して形成され、ロータ3も2個のステータ部21、22をモータ1の軸方向に連結して形成されるので、モータ1はいわゆるタンデム構造となる。また、ステータ部21の突極6が全てN磁極に励磁され、ステータ部22の突極6が全てS磁極に励磁される構成であるため、図5の破線矢印に示すように、ステータ部21の励磁相のN磁極(突極6)からロータ部31、32(図5では省略)を通ってステータ部22の同じ励磁相のS磁極(突極6)に至る磁路は、周知のスイッチドリラクタンスモータのように、例えばステータ部21の各相の突極6の軸方向の一端側をN磁極、他端側をS磁極に励磁し、ユニット11によって形成される構成のモータの場合に比して、周方向には断面積が概ね2倍以上に伸びる。また、図6の実線矢印c0、c1、c2に示すように、ステータ部21、22の励磁相の突極部分(実線矢印c0)だけでなく両隣の非励磁の他の相のヨーク部分(実線矢印c1、c2)も磁路として使えるので、軸方向には断面積が概ね3倍になる。なお、図6の(u+)、(v+)、(w+)はN磁極のU、V、Wの各相を示す。   In this case, the stator 2 of the motor 1 is formed by connecting the two stator portions 21 and 22 in the axial direction of the motor 1, and the rotor 3 also connects the two stator portions 21 and 22 in the axial direction of the motor 1. Therefore, the motor 1 has a so-called tandem structure. Further, since all the salient poles 6 of the stator portion 21 are excited to the N magnetic pole and all the salient poles 6 of the stator portion 22 are excited to the S magnetic pole, the stator portion 21 is indicated by the broken line arrow in FIG. The magnetic path from the N magnetic pole (saliency pole 6) of the excitation phase through the rotor parts 31 and 32 (not shown in FIG. 5) to the S magnetic pole (saliency pole 6) of the same excitation phase of the stator part 22 is a known switch. As in the case of a reluctance motor, for example, in the case of a motor formed by the unit 11 by exciting one end side of the salient pole 6 of each phase of the stator portion 21 with an N magnetic pole and the other end with an S magnetic pole. In comparison, the cross-sectional area in the circumferential direction extends approximately twice or more. Further, as shown by solid line arrows c0, c1, and c2 in FIG. 6, not only the salient pole part of the excitation phase of the stator portions 21 and 22 (solid line arrow c0) but also the yoke part of the other non-excitation phase adjacent to both sides (solid line). Since the arrows c1 and c2) can also be used as magnetic paths, the sectional area in the axial direction is almost tripled. Note that (u +), (v +), and (w +) in FIG. 6 indicate the U, V, and W phases of the N magnetic pole.

そのため、ステータ部21、22の磁路となるヨーク部分を使用できる範囲が軸方向および周方向に広がり、その分、両ステータ部21、22のヨーク部分の厚みを薄くすることができる。そして、両ステータ部21、22のヨーク部分の厚みを薄くすると、ステータ2の外径が小さくなってモータ11を小型化することができ、また、ステータ2の内径を大きくして発生するトルクを増大し、モータ1の出力特性を向上することができる。   Therefore, the range in which the yoke portion that becomes the magnetic path of the stator portions 21 and 22 can be used extends in the axial direction and the circumferential direction, and accordingly, the thickness of the yoke portions of both the stator portions 21 and 22 can be reduced. When the thickness of the yoke portions of both the stator portions 21 and 22 is reduced, the outer diameter of the stator 2 is reduced and the motor 11 can be reduced in size, and the torque generated by increasing the inner diameter of the stator 2 is increased. The output characteristics of the motor 1 can be improved.

さらに、ステータ部21、22を軸方向からみると、図7に示すようにステータ部21の突極6とステータ部22の突極6とが交互にずれて重なり、突極数が2倍に増えた状態になる。このとき、励磁されたN磁極の突極6とS磁極の突極6との間に例えば図7の実線丸印で囲んだ非励磁の他の2相の突極6が存在するので、ステータ2を円周方向に横切る図7の破線d等の磁束が減少し、また、図7の破線e等の励磁相の磁極(突極6)間の漏れ磁束(歯端間の漏れ磁束)が抑制される。そのため、高速回転時の電流の立下りを損なう原因となるインダクタンスを小さくできるので出力特性を向上することができる。なお、図7の(u+)、(v+)、(w+)はステータ部21のN磁極のU、V、Wの各相、(u−)、(v−)、(w−)はステータ部22のS磁極のU、V、Wの各相を示す。   Further, when the stator parts 21 and 22 are viewed from the axial direction, as shown in FIG. 7, the salient poles 6 of the stator part 21 and the salient poles 6 of the stator part 22 are alternately shifted and overlapped, and the number of salient poles is doubled. Increased state. At this time, there are other non-excited two-phase salient poles 6 surrounded by a solid circle in FIG. 7 between the magnetized salient poles 6 of the N magnetic poles and the S poles of the S magnetic poles. The magnetic flux such as the broken line d in FIG. 7 that crosses 2 in the circumferential direction decreases, and the leakage magnetic flux between the magnetic poles (the salient poles 6) of the excitation phase such as the broken line e in FIG. It is suppressed. As a result, the inductance that causes the current fall during high-speed rotation to be impaired can be reduced, and the output characteristics can be improved. 7, (u +), (v +), and (w +) are the U, V, and W phases of the N magnetic pole of the stator portion 21, and (u−), (v−), and (w−) are the stator portions. The respective phases of U, V, and W of 22 S magnetic poles are shown.

したがって、ステータ2およびその内側のロータ3の両方に突極6、7が形成された構造のモータ1を、その出力特性を損ねることなくステータ2の厚みを薄くして小型化することができる。   Therefore, the motor 1 having a structure in which the salient poles 6 and 7 are formed on both the stator 2 and the rotor 3 inside thereof can be reduced in size by reducing the thickness of the stator 2 without impairing its output characteristics.

(第2の実施形態)
第2の実施形態について、図8、図9を参照して説明する。図8はモータ1の本実施形態のロータ部31を軸方向から見た断面図、図9は本実施形態のステータ部21の一部を軸方向から見た断面図である。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. FIG. 8 is a cross-sectional view of the rotor 31 of the present embodiment of the motor 1 viewed from the axial direction, and FIG. 9 is a cross-sectional view of a portion of the stator 21 of the present embodiment viewed from the axial direction.

本実施形態が第1の実施形態と異なる点は、少なくともモータ1のロータ部31、32が、積層方向が軸方向に直交する積層鋼板により形成され、積層鋼板で形成されたロータ部31、32において、図8に示すように、各突起7が形成されるヨーク部分の内周面側(回転軸側)に、スリット状の開口部9aを形成し、開口部9aに、積層方向が軸方向に平行な積層鋼板または、圧粉鉄心の磁性コア10aを挿入した点である。   This embodiment is different from the first embodiment in that at least the rotor portions 31 and 32 of the motor 1 are formed of laminated steel plates whose lamination direction is orthogonal to the axial direction, and the rotor portions 31 and 32 formed of laminated steel plates. 8, a slit-like opening 9a is formed on the inner peripheral surface side (rotating shaft side) of the yoke portion where each projection 7 is formed, and the stacking direction is axial in the opening 9a. Are laminated steel plates or magnetic cores 10a of powdered iron cores.

この場合、ロータ部31、32は、積層鋼板の積層方向に平行な円周方向には磁束をよく通すが、積層鋼板の積層方向に直交する回転軸方向には磁気抵抗が大きく、磁束の通りがそれ程よくないため、図6の矢印線c0〜c1の磁路を通る磁束が少なくなるおそれがあるが、磁性コア10aを挿入すると、軸方向に平行な積層鋼板または、圧粉鉄心により、磁気抵抗が小さくなって軸方向の磁束の通りがよくなり、矢印線c0〜c1の十分な磁路を確保することができる。   In this case, the rotor parts 31 and 32 pass a magnetic flux well in the circumferential direction parallel to the laminating direction of the laminated steel sheets, but the magnetic resistance is large in the rotation axis direction orthogonal to the laminating direction of the laminated steel sheets, and the magnetic flux However, if the magnetic core 10a is inserted, the magnetic flux may be reduced by the laminated steel plate or the dust core parallel to the axial direction when the magnetic core 10a is inserted. The resistance is reduced, the magnetic flux in the axial direction is improved, and a sufficient magnetic path of the arrow lines c0 to c1 can be secured.

なお、開口部9aがロータ部31、32の内周側に開放しているのは、仮にロータ部31、32に、磁性コア10aを挿入した開口部9aを、その開口分部を塞ぐように埋め込むと、渦電流が発生するからである。   Note that the opening 9a is open to the inner peripheral side of the rotor parts 31 and 32, so that the opening part 9a in which the magnetic core 10a is inserted into the rotor parts 31 and 32 is closed. This is because an eddy current is generated when embedded.

また、図8からも明らかなように開口部9aは突起7の高さLaの半分より内周側に形成することが好ましい。それより外周側まで開口部9aを形成して磁性コア10aを挿入すると、ステータ部21、22で磁束が十分に広がらなくなるおそれがあるからである。   As is clear from FIG. 8, the opening 9 a is preferably formed on the inner peripheral side from half the height La of the protrusion 7. This is because if the opening 9a is formed further to the outer peripheral side and the magnetic core 10a is inserted, the stator portions 21 and 22 may not sufficiently spread the magnetic flux.

そして、ステータ部21、22についても、積層方向が軸方向に直交する積層鋼板により形成される場合は、図9のステータ部21の一部の切断面に示すように、各突起6が形成されるヨーク部分の外周面側に、スリット状の開口部9bを形成し、開口部9bに、積層方向が軸方向に平行な積層鋼板または、圧粉鉄心の磁性コア10bを挿入すればよい。このとき、磁束が十分に広がるように、開口部9bは突極6の半分の高さLb/2の位置より外周面側に形成することが好ましい。   Further, when the stator portions 21 and 22 are also formed of laminated steel plates whose lamination direction is orthogonal to the axial direction, each projection 6 is formed as shown in a part of the cut surface of the stator portion 21 in FIG. A slit-shaped opening 9b may be formed on the outer peripheral surface side of the yoke portion, and a laminated steel plate or a magnetic core 10b of a dust core may be inserted into the opening 9b. At this time, the opening 9b is preferably formed on the outer peripheral surface side from the position of the half height Lb / 2 of the salient pole 6 so that the magnetic flux spreads sufficiently.

以上のように、本実施形態においては、(1)モータ1の少なくともロータ部31、32を積層方向が軸方向に直交する積層鋼板により形成した場合に、積層方向が軸方向に平行な積層鋼板又は圧粉鉄心の磁性コア10aをロータ部31、32に組み込むことにより、ロータ部31、32の積層鋼板による軸方向の磁束の通りの悪さを、磁性コア10aにより改善し、モータ1の出力効率の低下を防止できる。なお、ステータ部21、22についても積層方向が軸方向に平行な積層鋼板又は圧粉鉄心の磁性コア10bをステータ部21、22に組み込むことにより、同様の効果が得られる。(2)磁性コア10aが挿入される開口部9aを、突起部7の高さLaの半分La/2より内周側に形成し、磁性コア10bが挿入される開口部9bを、突起部6の高さLbの半分Lb/2より外周側に形成したため、ステータ部21、22での磁路の円周方向の広がりを妨げることがない。(3)開口部9a、9bがロータ部31、32の内周側、ステータ部21、22の外周側に開放して設けられるため、渦電流の発生を防止して効率の低下を防ぐことができる。   As described above, in the present embodiment, (1) when at least the rotor portions 31 and 32 of the motor 1 are formed of laminated steel plates whose lamination direction is orthogonal to the axial direction, the laminated steel plates whose lamination direction is parallel to the axial direction. Alternatively, by incorporating the magnetic core 10a of the dust core into the rotor portions 31 and 32, the magnetic core 10a improves the poor magnetic flux caused by the laminated steel plates of the rotor portions 31 and 32, and the output efficiency of the motor 1 is improved. Can be prevented. In addition, the same effect is acquired also about the stator parts 21 and 22 by incorporating in the stator parts 21 and 22 the magnetic core 10b of the laminated steel plate or dust core whose lamination direction is parallel to an axial direction. (2) The opening 9a in which the magnetic core 10a is inserted is formed on the inner peripheral side from the half La / 2 of the height La of the protrusion 7, and the opening 9b in which the magnetic core 10b is inserted is formed in the protrusion 6 Since it is formed on the outer peripheral side from half Lb / 2 of the height Lb, the spread of the magnetic path in the stator portions 21 and 22 in the circumferential direction is not hindered. (3) Since the openings 9a and 9b are provided open to the inner peripheral side of the rotor portions 31 and 32 and the outer peripheral side of the stator portions 21 and 22, it is possible to prevent the generation of eddy currents and prevent a decrease in efficiency. it can.

したがって、ロータ部31、32やステータ部21、22を積層鋼板で形成した場合の磁束の減少に伴うモータ1の出力効率の低下を防止することができる。   Therefore, it is possible to prevent the output efficiency of the motor 1 from being lowered due to a decrease in magnetic flux when the rotor portions 31 and 32 and the stator portions 21 and 22 are formed of laminated steel plates.

(第3の実施形態)
第3の実施形態について、図10を参照して説明する。図10はステータ部21、22の一部の平面図である。
(Third embodiment)
A third embodiment will be described with reference to FIG. FIG. 10 is a plan view of a part of the stator portions 21 and 22.

本実施形態においては、図1のモータ1の端子構造およびステータ部21、22のコイル8の巻き方等を改善する。   In the present embodiment, the terminal structure of the motor 1 of FIG. 1 and the winding method of the coil 8 of the stator portions 21 and 22 are improved.

モータ1においては、ステータ部21、22それぞれから、突極6に巻回されるコイル8の2端子(巻き始めの端子と巻き終わりの端子)が3相分(合計6端子)引き出される。そして、両ステータ部21、22の各相の全端子(合計12端子)を、例えばステータ部21に集約して引き出すとすれば、端子数が多く(12端子)、大型の結線部品(バスリング等)が必要になる。しかも、エナメル線等の引き回も長くなる。そのため、モータ1が大型化する。   In the motor 1, two terminals (a winding start terminal and a winding end terminal) of the coil 8 wound around the salient pole 6 are drawn out from the stator portions 21 and 22 for three phases (a total of six terminals). Then, if all the terminals (total 12 terminals) of each phase of both stator parts 21 and 22 are gathered and pulled out to the stator part 21, for example, the number of terminals is large (12 terminals), and a large wiring component (bus ring) Etc.) is required. In addition, the enamel wire and the like are also routed longer. Therefore, the motor 1 is increased in size.

また、モータ1をさらに小型化するため、各突極6、7のコイル8は緩み等なく巻回することが望ましく、しかも、コイル8間の渡り部分の絶縁の確保や小型化も望まれる。   Further, in order to further reduce the size of the motor 1, it is desirable that the coils 8 of the salient poles 6 and 7 are wound without loosening, and it is also desired to ensure insulation at the transition portion between the coils 8 and to reduce the size.

そこで、本実施形態においては、(1)図10に示すように、モータ1のステータ部21、22の各相の突極6に巻回されたコイル8のエナメル線等の端子81を、それぞれの軸方向の外側に振り分けて配置する。このようにすることで、例えば、一方のステータ部21の軸方向の外側に全ての端子81を配置する場合に比して、他方のステータ部22の各相の突極6に巻回されたコイル8のエナメル線等をステータ部21側まで引き出さなくてよく、その分エナメル線等の取り回しの長さが短くなり、取り回しのスペースも少なくなり、さらには、結線部品も小型化する。しかも、エナメル線等を取り回すための絶縁材(絶縁スリーブやガイド等)が少なくなる。したがって、モータ1の一層の小型化を図ることができる。   Therefore, in the present embodiment, (1) as shown in FIG. 10, terminals 81 such as enamel wires of the coil 8 wound around the salient poles 6 of the respective phases of the stator portions 21 and 22 of the motor 1 are respectively provided. It distributes and arranges on the outside in the axial direction. By doing in this way, it was wound by the salient pole 6 of each phase of the other stator part 22, compared with the case where all the terminals 81 are arranged outside the axial direction of one stator part 21, for example. The enameled wire or the like of the coil 8 does not have to be pulled out to the stator portion 21 side, and the length of the enameled wire is shortened, the space for handling is reduced, and the connecting parts are further downsized. In addition, there are fewer insulating materials (insulating sleeves, guides, etc.) for routing enameled wires and the like. Therefore, the motor 1 can be further miniaturized.

また、本実施形態においては、以下の(2)〜(4)の少なくともいずれか1つを実施する。   Moreover, in this embodiment, at least any one of the following (2)-(4) is implemented.

(2)ステータ部21とステータ部22の同相に励磁される突極6のコイルは、1本のエナメル線等を、途中で切断することなく、ステータ部21からステータ部22またはその逆に引き渡して両部21、22の突極6に巻回して形成する。このようにすると、例えば、ステータ部21の突極6に巻回したエナメル線等と、ステータ部22の突極6に巻回したエナメル線等とを繋ぐ場合に必要な接続部材を省略できる。   (2) The coil of the salient pole 6 excited in the same phase of the stator portion 21 and the stator portion 22 delivers one enameled wire or the like from the stator portion 21 to the stator portion 22 or vice versa without cutting halfway. And wound around the salient poles 6 of both portions 21 and 22. If it does in this way, a connection member required when connecting the enameled wire etc. which were wound around salient pole 6 of stator part 21, and the enameled wire etc. which were wound on salient pole 6 of stator part 22 can be omitted, for example.

(3)ステータ部21とステータ部22の同相に励磁される突極6のコイルを1本のエナメル線等で形成する場合、ステータ部21側が巻き始め側でステータ部22側が巻き終わり側であれば、巻き始め側(ステータ部21側)のコイル8と、巻き終り側(ステータ部22側)のコイル8の巻き方向は、図10に示すように、巻き始め側のコイル8の巻き終り部と、巻き終り側のコイル8の巻き始め部とが、それぞれのコイル8のモータ1の内側の対面する端面部になるように、巻き始め側のコイル8の巻き終り部と、巻き終り側のコイル8の巻き始め部を図中の矢印線8s、8eのように設定する。このようにすると、巻き始め側のコイル8および巻き終り側のコイル8が緊張した状態を保って巻回され、両コイル8が緩みによって崩れたりすることなく巻回される。   (3) When the coil of the salient pole 6 excited in the same phase of the stator portion 21 and the stator portion 22 is formed by a single enameled wire or the like, the stator portion 21 side should be the winding start side and the stator portion 22 side should be the winding end side. For example, the winding direction of the coil 8 on the winding start side (stator portion 21 side) and the coil 8 on the winding end side (stator portion 22 side) are as shown in FIG. And the winding start portion of the coil 8 on the winding start side and the winding end portion of the coil 8 on the winding start side so that the winding start portion of the coil 8 on the winding end side is an end surface portion facing the inside of the motor 1 of each coil 8. The winding start portion of the coil 8 is set as indicated by the arrow lines 8s and 8e in the drawing. In this way, the coil 8 on the winding start side and the coil 8 on the winding end side are wound in a tensioned state, and both the coils 8 are wound without being broken by looseness.

(4)ステータ部21のコイル8からステータ部22のコイル8への渡り部分にはエナメル線等を絶縁保護する渡り線ガイド部11を設け、渡り線ガイド部11を両ステータ部部21、22のコイル8のボビン等に固定する。このようにすることで、渡り部分の絶縁を確保することができ、また、ステータ部21のコイル8とステータ部22のコイル8とが別々のエナメル線等で巻回されて渡り部分で繋がれるようなときにもコイル8の緩みによる崩れ等を防止できる。   (4) A crossover guide portion 11 for insulating and protecting an enameled wire or the like is provided at the crossover portion from the coil 8 of the stator portion 21 to the coil 8 of the stator portion 22, and the crossover guide portion 11 is connected to both the stator portions 21 and 22. The coil 8 is fixed to the bobbin or the like. By doing in this way, the insulation of a transition part can be ensured, and the coil 8 of the stator part 21 and the coil 8 of the stator part 22 are wound by separate enamel wires etc., and are connected by the transition part. Even in such a case, the collapse due to the looseness of the coil 8 can be prevented.

さらに、上記(4)を実施する際、必要に応じてつぎの(5)も実施する。   Furthermore, when the above (4) is performed, the following (5) is also performed as necessary.

(5)渡り線ガイド部11はステータ部21のコイル8とステータ部22のコイル8との直線的な最短の渡り部を形成するように、図10に示す斜めに傾けて配置することが好ましい。このようにすると、他相の渡り線ガイド部11との干渉等も生じることがない。   (5) The connecting wire guide portion 11 is preferably arranged to be inclined obliquely as shown in FIG. 10 so as to form a linear shortest connecting portion between the coil 8 of the stator portion 21 and the coil 8 of the stator portion 22. . If it does in this way, interference with the crossover guide part 11 of another phase will not arise.

したがって、本実施形態の場合は、モータ1の端子構造およびステータ部21、22のコイル8の巻き方等を改善し、一層の小型化や絶縁性の向上等図ることができる。   Therefore, in the case of this embodiment, the terminal structure of the motor 1 and the winding method of the coils 8 of the stator portions 21 and 22 can be improved, and further miniaturization and improvement of insulation can be achieved.

そして、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、モータ1は4相以上の多相駆動される構成であってもよいのは勿論である。またステータ部21、22の突極6の個数および、ロータ部31、32の突極7の個数は、上記実施形態のものに限るものではない。さらに、ステータ部21、22の連結のずれ量はm/2ピッチに限るものではない。また、ロータ部とステータ部の数は、軸方向に2個でなくても3個以上でもよい。   The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit thereof. For example, the motor 1 has four or more phases. Of course, it may be a multi-phase driven configuration. Further, the number of salient poles 6 of the stator portions 21 and 22 and the number of salient poles 7 of the rotor portions 31 and 32 are not limited to those of the above embodiment. Furthermore, the amount of shift in the connection between the stator portions 21 and 22 is not limited to m / 2 pitch. Further, the number of rotor portions and stator portions may not be two in the axial direction but may be three or more.

そして、本発明は、ステータおよびその内側のロータの両方に突極が形成された構造の種々のモータに適用することができ、そのモータの用途も電気自動車の駆動モータ等に限るものではない。   The present invention can be applied to various motors having a structure in which salient poles are formed on both the stator and the inner rotor, and the use of the motor is not limited to a drive motor of an electric vehicle.

本発明の第1の実施形態のモータの一部を省略した透視斜視図である。It is a see-through | perspective perspective view which abbreviate | omitted a part of motor of the 1st Embodiment of this invention. 図1のモータの軸方向に垂直な断面を示し、(a)は一方のユニット側の断面図、(b)は他方のユニット側の断面図である。FIG. 2 shows a cross section perpendicular to the axial direction of the motor of FIG. 1, (a) is a cross-sectional view on one unit side, and (b) is a cross-sectional view on the other unit side. 図1のステータ部の斜視図である。It is a perspective view of the stator part of FIG. 図1のロータ部の斜視図である。It is a perspective view of the rotor part of FIG. 図1のモータの磁路の説明図である。It is explanatory drawing of the magnetic path of the motor of FIG. 図1のモータのステータ部の磁路の説明図である。It is explanatory drawing of the magnetic path of the stator part of the motor of FIG. 図1のモータの漏れ磁束等の説明図である。It is explanatory drawing, such as a leakage magnetic flux of the motor of FIG. 第2の実施形態のロータ部の断面図である。It is sectional drawing of the rotor part of 2nd Embodiment. 第2の実施形態のステータ部の一部の断面図である。FIG. 6 is a partial cross-sectional view of a stator portion of a second embodiment. 第3の実施形態の要部の平面図である。It is a top view of the principal part of 3rd Embodiment.

符号の説明Explanation of symbols

1 モータ
2 ステータ
3 ロータ
6、7 突極
8 コイル
21、22 ステータ部
31、32 ロータ部
DESCRIPTION OF SYMBOLS 1 Motor 2 Stator 3 Rotor 6, 7 Salient pole 8 Coil 21, 22 Stator part 31, 32 Rotor part

Claims (1)

軟磁性体のステータの内周面に半径方向内向きの複数の突極を円周方向に配置し、
前記ステータの内側に同軸状に設けられた軟磁性体のロータの外周面に半径方向外向きの複数の突極を円周方向に配設し、
前記ステータの各突極に各相のコイルを順に集中巻きした構造のモータであって、
前記ステータは軸方向の複数個のステータ部により形成され、
前記ロータは軸方向の複数個のロータ部により形成され、
一方の前記ステータ部の内周面の各突極はN磁極に励磁されるようにコイルが巻回され、
他方の前記ステータ部の各突極はS磁極に励磁されるようにコイルが巻回され、
前記一方のステータ部と前記他方のステータ部とは軸方向からみたときに同じ相の突極間に他の相の突極が位置するように円周方向にずらして連結され、
前記両ロータ部は前記両ステータ部のずれに合わせて円周方向にずらして連結されていることを特徴とするモータ。
A plurality of radially inward salient poles are arranged in the circumferential direction on the inner peripheral surface of the soft magnetic stator,
A plurality of radially outward salient poles are disposed in the circumferential direction on the outer peripheral surface of a soft magnetic rotor provided coaxially inside the stator,
A motor having a structure in which coils of each phase are concentrated and wound in order on each salient pole of the stator,
The stator is formed of a plurality of axial stator portions,
The rotor is formed by a plurality of axial rotor portions,
A coil is wound so that each salient pole on the inner peripheral surface of one stator portion is excited by the N magnetic pole,
A coil is wound so that each salient pole of the other stator portion is excited by an S magnetic pole,
The one stator part and the other stator part are connected to each other in a circumferential direction so that salient poles of the other phase are located between salient poles of the same phase when viewed from the axial direction,
The both rotor portions are connected to each other by shifting in the circumferential direction in accordance with the shift between the both stator portions.
JP2008313357A 2008-12-09 2008-12-09 Motor Withdrawn JP2010141954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313357A JP2010141954A (en) 2008-12-09 2008-12-09 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313357A JP2010141954A (en) 2008-12-09 2008-12-09 Motor

Publications (1)

Publication Number Publication Date
JP2010141954A true JP2010141954A (en) 2010-06-24

Family

ID=42351579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313357A Withdrawn JP2010141954A (en) 2008-12-09 2008-12-09 Motor

Country Status (1)

Country Link
JP (1) JP2010141954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015093A1 (en) * 2017-07-21 2019-01-24 深圳市配天电机技术有限公司 Electric vehicle, vehicle wheel and switched reluctance motor thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015093A1 (en) * 2017-07-21 2019-01-24 深圳市配天电机技术有限公司 Electric vehicle, vehicle wheel and switched reluctance motor thereof
WO2019015030A1 (en) * 2017-07-21 2019-01-24 深圳市配天电机技术有限公司 Electric vehicle, wheel and switched reluctance motor thereof

Similar Documents

Publication Publication Date Title
JP6007020B2 (en) motor
JP2009540788A (en) Ring coil motor
JP6010416B2 (en) 3-phase permanent magnet motor
JP2008283785A (en) Switched reluctance motor
EP1953895B1 (en) Reluctance motor rotor and reluctance motor equipped with the same
WO2017110760A1 (en) Rotating electrical machine and method of manufacturing same
US20130015742A1 (en) Synchronous motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP4016341B2 (en) Three-phase synchronous reluctance motor
KR20130021210A (en) Mechanically commutated switched reluctance motor
JP5538984B2 (en) Permanent magnet motor
JP5457869B2 (en) Rotating electric machine stator and rotating electric machine
JP2008252979A (en) Axial-gap type rotating machine
US20220263356A1 (en) Motor
JP6675139B2 (en) Switch reluctance motor
JP6003028B2 (en) Rotating electric machine
US20230318382A1 (en) Stator and motor
JP2011087382A (en) Motor
JP2006320051A (en) Brushless electric motor
JP2010141954A (en) Motor
JP2006340511A (en) Brushless motor
JP6582973B2 (en) Rotating electric machine and manufacturing method thereof
JP2011125127A (en) Motor
JP2010142034A (en) Stator and winding method thereof
JP2005130627A (en) Embedded magnet type synchronous motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306