JP2010140973A - 磁気メモリセル及び磁気ランダムアクセスメモリ - Google Patents

磁気メモリセル及び磁気ランダムアクセスメモリ Download PDF

Info

Publication number
JP2010140973A
JP2010140973A JP2008313679A JP2008313679A JP2010140973A JP 2010140973 A JP2010140973 A JP 2010140973A JP 2008313679 A JP2008313679 A JP 2008313679A JP 2008313679 A JP2008313679 A JP 2008313679A JP 2010140973 A JP2010140973 A JP 2010140973A
Authority
JP
Japan
Prior art keywords
ferromagnetic
film
temperature
ferromagnetic film
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008313679A
Other languages
English (en)
Other versions
JP5075802B2 (ja
Inventor
Michihiko Yamanouchi
路彦 山ノ内
Hiromasa Takahashi
宏昌 高橋
Jun Hayakawa
純 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008313679A priority Critical patent/JP5075802B2/ja
Publication of JP2010140973A publication Critical patent/JP2010140973A/ja
Application granted granted Critical
Publication of JP5075802B2 publication Critical patent/JP5075802B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】スピントランスファートルク書き込み方式の不揮発性磁気メモリにおいて書き込み電流を増加させることなく、読み出しによる誤書込みを低減する。
【解決手段】強磁性記録層にフェリ磁性体を含むトンネル磁気抵抗効果素子をメモリセルに適用する。読み出し動作時には強磁性記録層のダンピング定数及び異方性磁界を大きくすることで読み出しによる誤書き込みを低減する。書き込み動作時には強磁性記録層のダンピング定数及び磁化を小さくすることで書き込み電流を低減する。
【選択図】図2

Description

本発明は、不揮発性磁気メモリセル及びそれを用いたランダムアクセスメモリに関するものである。
近年、スピントランスファートルクにより磁気情報の書き込みを行う不揮発性磁気メモリが注目されており、例えば米国特許第5,695,864号明細書、米国特許第6,256,223号明細書あるいは特開2002−305337号公報に開示されている。この書き込み方式を利用した不揮発性磁気メモリは、磁気抵抗効果素子に直接電流を流すことにより強磁性記録層の磁化方向を回転させて磁気情報を書き込む。磁気抵抗効果素子は、強磁性固定層と強磁性記録層の磁化方向がなす角度に応じた抵抗値を示すので、記憶情報の読み出しは、書き込み電流より小さな電流で磁気抵抗効果素子の抵抗を検出することにより行う。
スピントランスファートルクで書き込みを行う場合、書き込み電流の大きさはダンピング定数、磁化の大きさの2乗、強磁性記録層の体積にほぼ比例する。また、記憶されている情報の熱安定性の指標E/kTは磁化の大きさ、異方性磁界、強磁性記録層の体積に比例し、この値が小さいと予期せずに記憶情報が書き換わる確率が増加する。
不揮発性磁気メモリの大容量化によりメモリセルの膜面内方向の寸法が縮小すると、強磁性記録層の体積が小さくなるために書き込み電流は小さくなる。一方で、記録情報を保持するために充分なE/kTを確保することが困難になる。その結果、記録情報の読み出しの際に流す電流により記憶情報が書き換わる誤書き込みが生じやすくなる。逆に強磁性記録層の膜厚を増加させてE/kTを確保すると、書き込み電流も増加してしまい書き込みが困難になる。したがって、書き込み電流を増加させずに誤書込みを低減する方法として、強磁性記録層の体積に依存しない方法が求められている。このような状況の中で、強磁性記録層の体積を変えずに書き込み電流を低減可能な方法が特開2008−4952号公報に開示されている。この方法では書き込みの際に強磁性記録層を加熱することにより磁化を低下させ、書き込み電流を低減する。
米国特許第5,695,864号明細書 米国特許第6,256,223号明細書 特開2002−305337号公報 特開2008−4952号公報
不揮発性磁気メモリの大容量化に伴ってメモリセルのサイズが縮小されるため、読み出しによる誤書き込みを低減することが必須となる。本発明は、書き込み電流を増加させることなく、このような要請に応えることが可能な不揮発性磁気抵抗メモリを提供することを目的とする。
本発明のトンネル磁気抵抗効果素子は、絶縁膜と、絶縁膜を挟んで設けられた強磁性記録層と強磁性固定層とを有し、強磁性記録層は非磁性導電層を挟んで設けられた第一の強磁性膜と第二の強磁性膜からなり、第二の強磁性膜はフェリ磁性体である。
フェリ磁性体は、角運動量補償温度が読み出し動作時の温度近傍にあって書き込み動作時には前記角運動量補償温度より高温になる。また、フェリ磁性体の読み出し電流通電時の温度におけるダンピング定数は、書き込み電流通電時の温度におけるダンピング定数よりも大きい。
更に、第一の強磁性膜と第二の強磁性膜の磁化は交換結合しており、角運動量補償温度より高い温度、すなわち書き込み動作時の温度、において第一の強磁性膜と第二の強磁性膜の磁化方向が互いに逆方向である。
強磁性記録層に隣接して、書き込み電流の通電により発熱して第二の強磁性膜を加熱する加熱層を設けてもよい。
本発明のトンネル磁気抵抗効果素子は、電流を流すための電極と、トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを設けて、強磁性記録層の磁化がスピントランスファートルクにより反転可能な磁気メモリセルを構成することができる。また、その磁気メモリセルを複数個アレイ状に配列し、複数の磁気メモリセルの中から所望の磁気メモリセルを選択する手段と、選択された磁気メモリセルに対して情報の読み出しあるいは書き込みを行う手段とを備えて、磁気ランダムアクセスメモリを構成することができる。
本発明によると、書き込み電流を増加させずに読み出しによる誤書き込みを低減可能なトンネル磁気抵抗効果素子が得られるので、トンネル磁気抵抗効果素子を微細化することが可能になり、不揮発性磁気メモリの大容量化に寄与する。
スピントランスファートルク書き込み方式の不揮発性磁気メモリにおいて、読み出しにより誤書き込みが起こる確率Pは、Y. Higo el al., Applied Physics Letters 87, 082502 (2005)によると、
P=1−exp{(t/τ0)exp[E/kT(1−I/Ic0)]}
と表される。ここで、tは読み出し電流Iを印加している時間、τ0は10-9(sec)である。E/kTは熱安定性の指標であり、強磁性記録層の磁化の大きさM、異方性磁界HK、強磁性記録層の体積Vの積に比例している(E/kT∝MHKV)。Ic0はゼロケルビンでの書き込み電流であり、ダンピング定数α、磁化の大きさの2乗、磁性記録層の体積に比例している(Ic0∝αM2V)。
書き込み動作時に加熱を利用して低書き込み電流を実現する従来のトンネル磁気抵抗効果素子(図1参照)は、絶縁層101を挟んで設けられた強磁性固定層100と、強磁性記録層102で構成される。強磁性固定層100は、その磁化方向が固定されている。強磁性記録層102は、加熱により磁化の大きさが減少するという特徴を有する。読み出し動作時(図1(a))には、強磁性記録層102の磁化が大きく、書き込みに必要な電流も大きいため書き込みが困難である。書き込み動作時(図1(b))には、加熱することにより記録層102の磁化を減少させて書き込み電流を低減する。
本発明では、強磁性記録層に、非磁性導電膜を介してフェリ磁性体を交換結合させることにより、読み出し動作時と書き込み動作時で強磁性記録層のダンピング定数を変化させる。ここで、本明細書における「フェリ磁性体」とは、Nd,Sm,Eu,Gd,Tb,Dyなどの希土類遷移金属(RE)とFe,Co,Niなどの遷移金属(TM)の合金からなるフェリ磁性体と、REとTMを複数層積層させた積層構造のフェリ磁性体、TM及びTMからなる合金と前記合金からなるフェリ磁性体を複数層積層させた積層構造のフェリ磁性体を含む用語とする。読み出し動作時において、強磁性記録層のダンピング定数は従来構造(図1)に比べて増加するのでIc0は増加する。また、読み出し動作時に強磁性記録層の異方性磁界も増加させることが可能なのでE/kTが増加し、従来構造(図1)に比べて誤書込みを低減可能である。書込み動作時には、強磁性記録層のダンピング定数と磁化を低減できるため、書き込み電流は増加しない。
本発明のトンネル磁気抵抗効果素子では、非磁性導電層を挟んで設けられた第一の強磁性膜と第二の強磁性膜を強磁性記録層に適用する。ここで、第二の強磁性膜はフェリ磁性体とし、そのフェリ磁性体の角運動量補償温度は読み出し動作温度近傍に設計する。また、第一の強磁性膜と第二の強磁性膜の磁化方向は前記非磁性導電層を介して交換結合しており、前記角運動量補償温度より高温において、それぞれ磁化方向がほぼ逆方向になるようにする。
フェリ磁性体のダンピング定数の温度変化は、角運動量補償温度近傍において極大値をとる。第一の強磁性層と第二の強磁性層の磁化は交換結合しているため、読み出し動作温度において、強磁性記録層全体のダンピング定数も増加する。また、角運動量補償温度は磁化補償温度近傍にあるため、保磁力も極大値近傍にある。そのため、第二の強磁性層の保磁力の増大に伴い、第一の強磁性層に異方性磁界が付与される。その結果、読み出し動作時においてIc0とE/kTが増加するので、誤書き込みを低減することが可能である。
書き込みの際には、トンネル磁気抵抗効果素子に流す書き込み電流によって、又は加熱機構を用いてフェリ磁性体を角運動量補償温度以上の温度まで加熱する。磁化補償温度より高温において、フェリ磁性体のダンピング定数は読み出し動作温度の場合よりも減少する。また、フェリ磁性体は第一の強磁性層の磁化と逆方向の磁化を示し、かつ読み出し動作温度の場合よりも磁化が増加するため強磁性記録層全体の磁化は減少する。その結果、本発明を用いない場合と比較して書き込み電流を低減可能である。
本発明の構造を用いずに強磁性記録層をフェリ磁性体だけで構成した場合、角運動量補償温度を読み出し動作温度近傍に設計すると、読み出し動作時においてスイッチング磁界は増加するため、磁界書き込み方式では誤書込みを低減可能である。しかし本発明で適用するスピントランスファートルクによる書き込み方式では、強磁性記録層の磁化が小さくなるため、Ic0が低下し誤書込みが増加してしまう可能性がある。
[実施例1]
図2は、本発明の磁気メモリセルに用いるトンネル磁気抵抗効果素子の一例の断面模式図である。このトンネル磁気抵抗効果素子200は、配向制御膜201、反強磁性膜202、強磁性固定層203、絶縁膜204、強磁性記録層205を備え、適当な温度で熱処理することにより磁気抵抗比が最適化される。強磁性記録層205は第一の強磁性膜206、第一の非磁性導電膜207、第二の強磁性膜208で構成されている。強磁性固定層203は、第四の磁性膜209、第二の非磁性導電膜210、第三の強磁性膜211で構成される。なお、図3のように強磁性固定層203が単層であるトンネル磁気抵抗効果素子300も用いることができる。
配向制御膜201は、例えばNiFeやTaとNiFeの積層膜などであり、反強磁性膜202の配向性を向上させ、安定した反強磁性結合を実現することができれば他の材料を用いてもよい。反強磁性膜202は膜厚8nmのMnIrが望ましい。MnPt,MnFeを用いることもできる。膜厚は反強磁性を示すために十分な膜厚以上の膜厚が望ましい。第四の強磁性膜209にはCoFe、第二の非磁性導電膜210にはRu、第三の強磁性膜211には体心立方構造のCoFeBが望ましい。第四の強磁性膜209、第二の非磁性導電膜210、第三の強磁性膜211は、第四の強磁性膜209と第三の強磁性膜211の磁化が反強磁性結合し、かつ第四の強磁性膜209と第三の強磁性膜211の磁化の大きさがほぼ等しくなるように材料と膜厚を選択する。図3のように強磁性固定層203が単層で構成される場合、強磁性固定層203はCoFeBであることが望ましい。絶縁膜204は、岩塩構造をもつ酸化マグネシウム結晶膜であり、(100)方向に配向した膜が望ましい。膜厚は0.8〜1.5nmが望ましい。
以下に第一の強磁性膜206が強磁性体、第二の強磁性膜208がフェリ磁性体で構成される場合について述べる。第一の強磁性膜206は体心立方格子構造のCoFeBが望ましい。第二の強磁性膜208はGdCo,GdFeCo,TbFeCoなど、Nd,Sm,Eu,Gd,Tb,Dyなどの希土類遷移金属(RE)とFe,Co,Niなどの遷移金属(TM)の合金からなるフェリ磁性体であり、膜厚は2nm以上が望ましい。第一の強磁性膜206(第二の強磁性膜208)の磁化と膜厚をそれぞれM1,T1(M2,T2)とすると、書き込み動作時において、M1×T1=M2×T2となるように第一の強磁性膜206と第二の強磁性膜208の膜厚を調整すると、書き込み電流の低減の効果が大きい。しかし、書き込みの際に強磁性記録層205の磁化を低減し、書き込み電流を許容範囲内にできれば、必ずしも上式の関係を満たさなくとも良い。フェリ磁性体の角運動量補償温度は読み出し動作温度近傍に設計する。ここで読み出し動作温度近傍は、トンネル磁気抵抗効果素子200の抵抗値を検出する温度±30℃以内が望ましい。角運動量補償温度は磁化補償温度に近傍にあるので、磁化補償温度を調整すれば角運動量補償温度も調整可能である。磁化補償温度の調整は、フェリ磁性体のREとTMの組成を調整することで実現可能である。例えば、GdCoを用いた場合には、Coの組成が70〜80%で室温付近に磁化補償温度をもつ。
第一の非磁性導電膜207はRuなどからなる。第一の強磁性膜206と第二の強磁性膜208の磁化方向は第一の非磁性導電膜207を介して交換結合しており、角運動量補償温度より高温においてそれぞれの磁化方向がほぼ反平行になるように非磁性導電膜207の材料と膜厚を調整する。
次に、本発明で適用するフェリ磁性体の特徴について述べる。前記フェリ磁性体中ではREとTMの磁化方向はほほ逆方向を向いており、フェリ磁性体全体としてREとTMの差分の磁化が現れる。図4(a)に、フェリ磁性体の磁化の温度依存性の模式図を示す。REとTMのそれぞれの磁化の大きさと温度依存性は異なっており、一般にREの方がTMよりも強磁性転移温度が低く、低温でREの方がTMよりも磁化の大きさが大きい。ここで、強磁性転移温度とは強磁性秩序を示す臨界の温度であり、これよりも高温で強磁性体は強磁性を示さなくなる。磁化補償温度より低温では、REの磁化の方がTMよりも大きいため、フェリ磁性体全体の磁化は主にREの磁化方向を反映する(図4(d)参照)。温度が上昇し磁化補償温度になると、TMよりもREの方が磁化の減少量は大きいため、REとTMの磁化の大きさが釣り合い、フェリ磁性体全体の磁化はゼロとなる(図4(e)参照)。また、磁化補償温度より高温ではTMの磁化の方がREよりも大きくなる(図4(f)参照)。したがって、第一の非磁性導電膜207を介して第一の強磁性膜206とフェリ磁性体である第二の強磁性膜208中のTMの磁化方向が反平行に結合するように設計すれば、磁化補償温度より高温において、第一の強磁性層と第二の強磁性膜208の磁化はほぼ反対方向となる。
以上では、フェリ磁性体の磁化の温度依存性について述べたが、フェリ磁性体にはダンピング定数、保磁力の温度依存性にも特徴がある。ここで、ダンピング定数は磁化の運動に対する摩擦に関係した定数であり、保磁力は磁化方向を反転するために必要な磁場の大きさである。図4(b)はフェリ磁性体のダンピング定数の温度依存性の模式図、図4(c)は保磁力の温度依存性の模式図である。ダンピング定数は角運動量補償温度において極大値をとる。ここで角運動量補償温度は、フェリ磁性体全体でREとTMの示す全角運動量がゼロとなる温度である。また、保磁力は磁化補償温度において極大値をとる。RE及びTMの示す磁化はそれぞれのもつ全角運動量に比例するが、それぞれの比例係数が異なるため、REとTMの合金からなるフェリ磁性体ではフェリ磁性体全体の磁化がゼロとなる磁化補償温度と角運動量補償温度は必ずしも一致するとは限らない。しかし角運動量補償温度は磁化補償温度の近傍になり、例えばCoGd(Co組成〜78%)では角運動量補償温度が磁化補償温度よりも30℃程度高くなる。図4(a)−(c)は角運動量補償温度が磁化補償温度よりも高い場合の模式図であるが、角運動量補償温度は磁化補償温度よりも低くても良い。
続いて、本発明のトンネル磁気抵抗効果素子の読み出し、書き込み動作について図5を用いて説明する。読み出しによる誤書込みは、読み出し動作時にゼロケルビンでの書き込み電流Ic0と熱安定性の指標E/kTを増加させることにより低減可能である。ここで、E/kTは磁化の大きさ、異方性磁界、体積に比例し、Ic0はダンピング定数、磁化の大きさの2乗、体積にほぼ比例している。
図5(a)に、読み出し動作時における強磁性記録層500の磁化配列を示す。読み出し動作時の温度は角運動量補償温度及び磁化補償温度近傍にあるため、フェリ磁性体の磁化の大きさはゼロに近い。この状態では、フェリ磁性体の内部でREとTMの示す磁化の大きさがほぼ同じでほぼ逆方向に結合している。そのため、フェリ磁性体中で磁化及びスピンが熱的に不安定な状態にあるわけではない。また、第一の強磁性膜501と第二の強磁性膜503の間の交換結合は、非磁性導電膜を介した両界面のスピン同士の結合である。そのため、第一の強磁性膜の磁化方向も熱的に不安定になることはない。読み出し動作時の温度は角運動量補償温度近傍にあるため、第二の強磁性膜503のダンピング定数は極大値近傍にある。第一の強磁性膜501と第二の強磁性膜503の磁化は、第一の非磁性導電膜502を介して互いにほぼ逆方向となるように交換結合しているので、強磁性記録層500全体のダンピング定数も増加する。そのため、本発明を用いない場合と比較してIc0を増加させることが可能である。また第二の強磁性膜503の保磁力は磁化補償温度において極大値をとり、角運動量補償温度は磁化補償温度近傍にあるため、読み出し動作時において第二の強磁性膜503の保磁力も大きい。したがって、第二の強磁性膜から第一の強磁性膜に異方性磁界が付与され、本発明を用いない場合と比較して読み出しの際にE/kTを増加させることが可能である。以上から、読み出し動作時の誤書込みを低減可能である。
次に、書き込み動作を図5(b)の書き込み動作時における強磁性記録層500の磁化配列を用いて説明する。書き込み動作時には、トンネル磁気抵抗効果素子に流した書き込み電流を用いて第二の強磁性膜503を角運動量補償温度より高い温度にする。例えば、素子サイズ100×200nm2、強磁性記録層の膜厚5nm、抵抗1kΩの素子に100μA、パルス幅10nsの書き込み電流を流した場合を考える。書き込み電流が発生するジュール熱は主に高抵抗の絶縁膜204で発生する。発生したジュール熱のすべてが強磁性記録層で消費されるとすると、250℃加熱することが可能である。ここで強磁性記録層の比熱を4×106J/m3Kと仮定した。書き込み電流の場合と同様にして読み出し電流による発熱を見積もると、読み出し電流が20μA、パルス幅10nsとした場合、強磁性記録層は10℃温度上昇する。この読み出し電流による発熱は、角運動量補償温度の設計マージン内にあるため、読み出し動作上問題にならない。
強磁性記録層の加熱温度は、トンネル磁気抵抗効果素子に接続された電極のサイズと膜厚、素子サイズ、強磁性記録層の膜厚、書き込み時間を調整することにより、所望の値に調節することが可能である。強磁性記録層の磁化反転に必要な電流と加熱に必要な電流の大きさ及びパルス幅が異なる場合には、図6のように、トンネル磁気抵抗効果素子600に加熱電流601を流して所望の温度にまで加熱した後に、書き込み電流602を流して書き込みを行うこともできる。
第二の強磁性膜503の温度が角運動量補償温度より高温になると、ダンピング定数は読み出し動作時に比べて減少する。書き込み時のダンピング定数は、読み出し時の0.8以下となるまで加熱することが望ましい。また、第一の強磁性膜と第二の強磁性膜の磁化方向は互いにほぼ反平行に結合しているため、強磁性記録層全体の磁化を減少させることが可能である。書き込み電流はIc0に比例しており、Ic0はダンピング定数と磁化の2乗に比例しているので、本発明を用いない場合に比べて書き込み電流を低減可能である。
上記の効果を確認するため、E/kT=60、1000個のトンネル磁気抵抗効果素子に読み出し電流を10年間流し続けた時に反転してしまう(誤書込みが起こる)確率を、読み出し電流に対して計算すると、図7のようになる。本発明を用いない場合に、Ic0=100μAとすると図7の破線のようになる。読み出し電流を20μAとすると、約35%の素子で誤書込みが起きしまう。本発明で、読み出しの際にダンピング定数aが2倍になり、Ic0も2倍になった場合の計算結果を、図7の実線に示す。読み出し電流が20μAの場合、誤書込みの確率は約0.2%となる。図7の計算では簡単のため、E/kTの増加はないものとしたが、E/kTが増加すればさらに誤書込みを低減することが可能となる。
書き込みの際に、ダンピング定数が読み出しの際の1/2なったとすると、書き込み電流は本発明を用いない場合と同じなる。また、書き込みの際には強磁性記録層の磁化が減少する。例えば磁化が読み出しの際の0.7倍になったとすると、書き込み電流は磁化の2乗に比例するため、全体として書き込み電流は本発明を用いない場合の約1/2となる。したがって、本発明のトンネル磁気抵抗効果素子をメモリセルに適用することにより、書き込み電流を増加させることなく、読み出しの際にIc0とE/kTを増加し、誤書き込みを低減可能である。
[実施例2]
図8は、本発明によるトンネル磁気抵抗効果素子の他の構成例の断面模式図である。このトンネル磁気抵抗効果素子800は、配向制御膜801、反強磁性膜802、強磁性固定層803、絶縁膜804、強磁性記録層805を備え、適当な温度で熱処理することにより磁気抵抗比が最適化される。強磁性記録層805は、第一の強磁性膜806、第一の非磁性導電膜807、第二の強磁性膜808で構成されている。強磁性固定層803は、第四の強磁性膜809、第二の非磁性導電膜810、第三の強磁性膜811で構成される。なお、強磁性固定層803は、図3のように単層の強磁性固定層としてもよい。
配向制御膜801は、例えばNiFeやTaとNiFeの積層膜などであり、反強磁性膜802の配向性を向上させ、安定した反強磁性結合を実現することができれば他の材料を用いてもよい。反強磁性膜802は膜厚8nmのMnIrが望ましい。MnPt,MnFeを用いることもできる。膜厚は反強磁性を示すために十分な膜厚以上の膜厚が望ましい。第四の強磁性膜809にはCoFe、第二の非磁性導電膜810にはRu、第三の強磁性膜811には体心立方構造のCoFeBが望ましい。第四の強磁性膜809、第二の非磁性導電膜810、第三の強磁性膜811は、第四の強磁性膜809と第三の強磁性膜811の磁化が反強磁性結合し、かつ第四の強磁性膜809と第三の強磁性膜811の磁化の大きさがほぼ等しくなるように材料と膜厚を選択する。図3のように強磁性固定層が単層で構成される場合、強磁性固定層はCoFeBであることが望ましい。絶縁膜804は、岩塩構造をもつ酸化マグネシウム結晶膜であり、(100)方向に配向した膜が望ましい。膜厚は0.8〜1.5nmが望ましい。
以下に、第一の強磁性膜806が強磁性体、第二の強磁性膜808がフェリ磁性体で構成される場合について述べる。第一の強磁性膜806は、体心立方格子構造のCoFeBが望ましい。第二の強磁性膜808はNd,Sm,Eu,Gd,Tb,Dyなどの希土類遷移金属(RE)とFe,Co,Niなどの遷移金属(TM)及びCoFe,NiFeなどのTMの合金を交互に複数層積層した積層構造のフェリ磁性体、GdCo,GdFeCo,TbFeCoなどREとTMの合金からなるフェリ磁性体と前記TM及びCoFe,NiFeなどの前記TMの合金を交互に複数層積層させた積層構造のフェリ磁性体であり、例えばTbとCoの積層構造、GdとNiFeの積層構造及びCoとGdCo積層構造である。
第一の強磁性膜806(第二の強磁性膜808)の磁化と膜厚をそれぞれM1,T1(M2,T2)とすると、書き込み動作時において、M1×T1=M2×T2となるように第一の強磁性膜806と第二の強磁性膜808の膜厚を調整すると、書き込み電流の低減の効果が大きい。しかし、書き込みの際に強磁性記録層805の磁化を低減し、書き込み電流を許容範囲内にできれば、必ずしも上式の関係を満たさなくとも良い。フェリ磁性体の角運動量補償温度は読み出し動作温度近傍に設計する。ここで読み出し動作温度近傍は、トンネル磁気抵抗効果素子800の抵抗値を検出する温度±30℃以内が望ましい。角運動量補償温度は磁化補償温度に近傍にあるので、磁化補償温度を調整すれば角運動量補償温度も調整可能である。磁化補償温度の調整は、REとTMの合金からなるフェリ磁性体におけるREとTMの組成、又は前記積層構造のフェリ磁性のそれぞれの膜厚を調整することにより調整することができる。
第一の非磁性導電膜807はRuなどである。第一の強磁性膜806と第二の強磁性膜808の磁化方向は第一の非磁性導電膜807を介して交換結合しており、角運動量補償温度より高温においてそれぞれの磁化方向がほぼ反平行になるように非磁性導電膜807の材料と膜厚を調整する。第二の強磁性膜808の前記TM及び前記TMの合金で構成されている層が第一の非磁性導電膜807に接していると、交換結合の調整が比較的容易である。
本実施例のトンネル磁気抵抗効果素子の読み出し、書き込み動作は実施例1と同様であり、本発明のトンネル磁気抵抗効果素子をメモリセルに適用することにより、書き込み電流を増加させることなく、読み出しの際にIc0とE/kTを増加し、誤書き込みを低減可能である。
[実施例3]
図9は、本発明によるトンネル磁気抵抗効果素子の他の構成例の断面模式図である。このトンネル磁気抵抗効果素子900は、配向制御膜901、反強磁性膜902、強磁性固定層903、絶縁膜904、強磁性記録層905を備え、適当な温度で熱処理することにより磁気抵抗比が最適化される。強磁性記録層905は、第一の強磁性膜906、第一の非磁性導電膜907、第二の強磁性膜908で構成されている。強磁性固定層903は、第四の強磁性膜909、第二の非磁性導電膜910、第三の強磁性膜911で構成される。強磁性固定層903は、図3のように単層である構成も用いることができる。
配向制御膜901は、例えばNiFeやTaとNiFeの積層膜などであり、反強磁性膜902の配向性を向上させ、安定した反強磁性結合を実現することができれば他の材料を用いてもよい。反強磁性膜902は膜厚8nmのMnIrが望ましい。MnPt,MnFeを用いることもできる。膜厚は反強磁性を示すために十分な膜厚以上の膜厚が望ましい。第四の強磁性膜909にはCoFe、第二の非磁性導電膜910にはRu、第三の強磁性膜911には体心立方構造のCoFeBが望ましい。第四の強磁性膜909、第二の非磁性導電膜910、第三の強磁性膜911は、第四の強磁性膜909と第三の強磁性膜911の磁化が反強磁性結合し、かつ第四の強磁性膜909と第三の強磁性膜911の磁化の大きさがほぼ等しくなるように材料と膜厚を選択する。図3のように強磁性固定層が単層で構成される場合、強磁性固定層はCoFeBであることが望ましい。絶縁膜904は、岩塩構造をもつ酸化マグネシウム結晶膜であり、(100)方向に配向した膜が望ましい。膜厚は0.8〜1.5nmが望ましい。
以下に、第一の強磁性膜906がフェリ磁性体、第二の強磁性膜908が強磁性体で構成される場合について述べる。第二の強磁性膜908はCoFe,NiFeなどが望ましい。第一の強磁性膜906は、Nd,Sm,Eu,Gd,Tb,Dyなどの希土類遷移金属(RE)とFe,Co,Niなどの遷移金属(TM)及びCoFe,NiFeなどのTMの合金を交互に複数層積層した積層構造のフェリ磁性体、GdCo,GdFeCo,TbFeCoなどREとTMの合金からなるフェリ磁性体と前記TM及びCoFe,NiFeなどの前記TMの合金を交互に複数層積層させた積層構造のフェリ磁性体であり、例えばTbとCoの積層構造、GdとNiFeの積層構造及びCoとGdCoの積層構造である。絶縁膜904と第一の強磁性膜906の界面がTM及びTMの合金で構成されていると磁気抵抗比の設計が比較的容易になるが十分な磁気抵抗比が得られれば、他の構成を用いることもできる。また、十分な磁気抵抗比が得られれば第一の強磁性層906として、上記REと上記TMの合金からなるフェリ磁性体を用いることができる。
第一の強磁性膜906(第二の強磁性膜908)の磁化と膜厚をそれぞれM1,T1(M2,T2)とすると、書き込み動作時において、M1×T1=M2×T2となるように第一の強磁性膜906と第二の強磁性膜908の膜厚を調整すると、書き込み電流の低減の効果が大きい。しかし、書き込みの際に強磁性記録層905の磁化を低減し、書き込み電流を許容範囲内にできれば、必ずしも上式の関係を満たさなくとも良い。フェリ磁性体の角運動量補償温度は読み出し動作温度近傍に設計する。ここで読み出し動作温度近傍は、トンネル磁気抵抗効果素子900の抵抗値を検出する温度±30℃以内が望ましい。角運動量補償温度は磁化補償温度に近傍にあるので、磁化補償温度を調整すれば角運動量補償温度も調整可能である。磁化補償温度の調整は、REとTMの合金からなるフェリ磁性体におけるREとTMの組成、又は積層構造のフェリ磁性のそれぞれの膜厚を調整することにより調整することができる。
第一の非磁性導電膜907はRuなどである。第一の強磁性膜906と第二の強磁性膜908の磁化方向は第一の非磁性導電膜907を介して交換結合しており、角運動量補償温度より高温においてそれぞれの磁化方向がほぼ反平行になるように非磁性導電膜907の材料と膜厚を調整する。第一の非磁性導電膜907と第二の強磁性膜908の界面がTM及びTMの合金で構成されている場合には、この調整が比較的容易である。
本実施例のトンネル磁気抵抗効果素子の読み出し、書き込み動作は実施例1と同様であり、本発明のトンネル磁気抵抗効果素子をメモリセルに適用することにより、書き込み電流を増加させることなく、読み出しの際にIc0とE/kTを増加し、誤書き込みを低減可能である。
[実施例4]
図10に、本発明によるトンネル磁気抵抗効果素子の他の構成例の断面図模式図を示す。このトンネル磁気抵抗効果素子1000は、配向制御膜1001、反強磁性膜1002、強磁性固定層1003、絶縁膜1004、強磁性記録層1005、加熱層1009を備え、適当な温度で熱処理することにより磁気抵抗比が最適化される。強磁性記録層1005は実施例1、実施例2の構成が望ましいが、加熱層で発生する熱が強磁性記録層を加熱するのに十分な場合には実施例3の構成を用いることもできる。強磁性固定層1003は、第四の強磁性膜1006、第二の非磁性導電膜1007、第三の強磁性膜1008で構成されている。強磁性固定層1003は、図3のように単層である構成も用いることができる。
反強磁性膜1002は膜厚8nmのMnIrを用いることができる。MnPt,MnFeを用いることもできる。また、膜厚は反強磁性を示すために十分な膜厚以上の膜厚が望ましい。第四の強磁性膜1006にはCoFe、第二の非磁性導電膜1007にはRu、第三の強磁性膜1008には体心立方構造のCoFeBが望ましい。第四の強磁性膜1006、第二の非磁性導電膜1007、第三の強磁性膜1008は、第四の強磁性膜1006と第三の強磁性膜1008の磁化が反強磁性結合し、かつ第四の強磁性膜1006と第三の強磁性膜1008の磁化の大きさがほぼ等しくなるように材料と膜厚を選択する。絶縁膜1004は、岩塩構造をもつ酸化マグネシウム結晶膜であり、(100)方向に配向した膜が望ましい。膜厚は0.8〜1.5nmを用いることができる。
加熱層1009は電流が流れると発熱し、強磁性記録層1005中のフェリ磁性体で構成される膜を所望の温度にまで加熱するために十分な抵抗値を示す材料である。例えばタングステン、窒化チタン(TiN)、窒化タンタル(TaN)、窒化タングステン(WN)、窒化チタンアルミ(TiAlN)などの高融点金属が望ましい。実施例1、実施例2、実施例3の構造において、書き込み動作時にフェリ磁性体を所望の温度まで加熱することが困難な場合、本実施例は有効である。
読み出し方法は実施例1と同様である。書き込み動作時には、トンネル磁気抵抗効果素子に流した書き込み電流を用いて強磁性記録層1005中のフェリ磁性体を角運動量補償温度より高い温度にする。強磁性記録層の磁化反転に必要な電流と加熱に必要な電流の大きさ及びパルス幅が異なる場合には、図6のように加熱電流601を流して所望の温度にまで加熱した後に書き込み電流602を流して書き込みを行うこともできる。
[実施例5]
図11は、本発明のトンネル磁気抵抗効果素子を磁気メモリセルと磁気ランダムアクセスメモリに適用した場合の模式図である。磁気メモリセル1100は、実施例1−4に記載のトンネル磁気抵抗効果素子1102、トンネル磁気抵抗効果素子1102に接続された電極1103、トンネル磁気抵抗効果素子1102に接続され、トンネル磁気抵抗効果素子1102に流れる電流のON/OFFを制御する選択トランジスタ1101、選択トランジスタ1101の電流のON/OFFを制御する信号を伝達するためのゲート電極1104で構成される。
磁気ランダムアクセスメモリ1105は、磁気メモリセル1100をアレイ状に複数配置したもので、各磁気メモリセル1100の電極1103及びゲート電極1104にはそれぞれビット線1106及びワード線1107が接続されている。各ビット線1106及びワード線には、それぞれビット線ドライバ1108及びワード線ドライバ1109が接続されており、ワード線ドライバ1109から所望の選択トランジスタに制御信号を送り選択トランジスタをONにすること、またビット線ドライバ1108から所望のメモリセルに読み出し又は書き込み電流を流すことが可能である。このようにして目的のメモリセルに接続されているワード線1107及びビット線1106を選択することにより、所望の磁気メモリセル1100への書き込み、読み出しが可能となる。
書き込み動作時に加熱を利用する従来のトンネル磁気抵抗効果素子の読み出し動作時と書き込み動作時における磁化配列の模式図。 本発明のトンネル磁気抵抗効果素子の構成例を示した図。 本発明のトンネル磁気抵抗効果素子の構成例を示した図。 本発明のトンネル磁気抵抗効果素子において強磁性記録層に用いるフェリ磁性体の磁気特性の模式図であり、(a)は磁化の温度依存性を示した図、(b)はダンピング定数の温度依存性図、(c)は保磁力の温度依存性、(d)は磁化補償温度より低温における磁化状態の模式図、(e)は磁化補償温度における磁化状態の模式図、(f)は磁化補償温度より高温における磁化状態の模式図。 本発明のトンネル磁気抵抗効果素子における読み出し動作時の磁化状態、及び書き込み動作時の磁化状態の模式図。 書き込み方法の一例を示す図。 読み出し電流と誤書き込みの確率の関係を示す図。 本発明のトンネル磁気抵抗効果素子の構成例を示した図。 本発明のトンネル磁気抵抗効果素子の構成例を示した図。 本発明のトンネル磁気抵抗効果素子の構成例を示した図。 本発明のトンネル磁気抵抗効果素子を用いた磁気メモリセルと磁気ランダムアクセスメモリの構成例を示した図。
符号の説明
100…強磁性固定相、101…絶縁層、102…強磁性記録層、200…トンネル磁気抵抗効果素子、201…配向制御膜、202…反強磁性膜、203…強磁性固定層、204…絶縁膜、205…強磁性記録層、206…第一の強磁性膜、207…第一の非磁性導電膜、208…第二の強磁性膜、209…第四の強磁性膜、210…第二の非磁性導電膜、211…第三の強磁性膜、300…トンネル磁気抵抗素、500…強磁性記録層、501…第一の強磁性膜、502…第一の非磁性導電膜、503…第二の強磁性膜、600…トンネル磁気抵抗効果素子、601…加熱電流、602…書き込み電流、800…トンネル磁気抵抗効果素子、801…配向制御膜、802…反強磁性膜、803…強磁性固定層、804…絶縁膜、805…強磁性記録層、806…第一の強磁性膜、807…第一の非磁性導電膜、808…第二の強磁性膜、809…第四の強磁性膜、810…第二の非磁性導電膜、811…第三の強磁性膜、900…トンネル磁気抵抗効果素子、901…配向制御膜、902…反強磁性膜、903…強磁性固定層、904…絶縁膜、905…強磁性記録層、906…第一の強磁性膜、907…第一の非磁性導電膜、908…第二の強磁性膜、909…第四の強磁性膜、910…第二の非磁性導電膜、911…第三の強磁性膜、1000…トンネル磁気抵抗効果素子、1001…配向制御膜、1002…反強磁性膜、1003…強磁性記録層、1004…絶縁膜、1005…強磁性記録層、1006…第四の強磁性膜、1007…第二の非磁性導電膜、1008…第三の強磁性膜、1009…加熱層、1100…磁気メモリセル、1101…選択トランジスタ、1102…トンネル磁気抵抗効果素子、1103…電極、1104…ゲート電極、1105…磁気ランダムアクセスメモリ、1106…ビット線、1107…ワード線、1108…ビット線ドライバ、1109…ワード線ドライバ

Claims (8)

  1. 絶縁膜と、前記絶縁膜を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
    前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の強磁性膜と第二の強磁性膜からなり、
    前記第二の強磁性膜はフェリ磁性体であり、
    前記フェリ磁性体は、角運動量補償温度が読み出し動作時の温度近傍にあって書き込み動作時には前記角運動量補償温度より高温になり、
    前記第一の強磁性膜と前記第二の強磁性膜の磁化は交換結合しており、
    前記角運動量補償温度より高い温度において前記第一の強磁性膜と前記第二の強磁性膜の磁化方向が互いに逆方向であることを特徴とするトンネル磁気抵抗効果素子。
  2. 請求項1記載のトンネル磁気抵抗効果素子において、前記フェリ磁性体の読み出し電流通電時の温度におけるダンピング定数は、書き込み電流通電時の温度におけるダンピング定数よりも大きいことを特徴とするトンネル磁気抵抗効果素子。
  3. 請求項1又は2記載のトンネル磁気抵抗効果素子において、前記強磁性記録層に隣接して、書き込み電流の通電により発熱して前記第二の強磁性膜を加熱する加熱層が設けられていることを特徴とするトンネル磁気抵抗効果素子。
  4. トンネル磁気抵抗効果素子と、
    前記トンネル磁気抵抗効果素子に電流を流すための電極と、
    前記トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備え、
    前記強磁性記録層の磁化がスピントランスファートルクにより反転可能な磁気メモリセルにおいて、
    前記トンネル磁気抵抗効果素子は、
    絶縁膜と、前記絶縁膜を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
    前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の強磁性膜と第二の強磁性膜からなり、
    前記第二の強磁性膜はフェリ磁性体であり、
    前記フェリ磁性体は、角運動量補償温度が読み出し動作時の温度近傍にあって書き込み動作時には前記角運動量補償温度より高温になり、
    前記第一の強磁性膜と前記第二の強磁性膜の磁化は交換結合しており、
    前記角運動量補償温度より高い温度において前記第一の強磁性膜と前記第二の強磁性膜の磁化方向が互いに逆方向であることを特徴とする磁気メモリセル。
  5. 請求項4記載の磁気メモリセルにおいて、前記フェリ磁性体の読み出し電流通電時の温度におけるダンピング定数は、書き込み電流通電時の温度におけるダンピング定数よりも大きいことを特徴とする磁気メモリセル。
  6. 請求項4記載の磁気メモリセルにおいて、書き込み時に、前記トンネル磁気抵抗効果素子に加熱のための電流を印加した後に、スピントランスファートルクにより前記強磁性記録層の磁化方向を反転させるための書き込み電流を印加することを特徴とする磁気メモリセル。
  7. 複数の磁気メモリセルと、
    前記複数の磁気メモリセルの中から所望の磁気メモリセルを選択する手段と、
    前記選択された磁気メモリセルに対して情報の読み出しあるいは書き込みを行う手段とを備えた磁気ランダムアクセスメモリにおいて、
    前記磁気メモリセルは、トンネル磁気抵抗効果素子と、前記トンネル磁気抵抗効果素子に電流を流すための電極と、前記トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備え、前記強磁性記録層の磁化がスピントランスファートルクにより反転可能であり、
    前記トンネル磁気抵抗効果素子は、絶縁膜と、前記絶縁膜を挟んで設けられた強磁性記録層と強磁性固定層とを有し、前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の強磁性膜と第二の強磁性膜からなり、前記第二の強磁性膜はフェリ磁性体であり、前記フェリ磁性体は、角運動量補償温度が読み出し動作時の温度近傍にあって書き込み動作時には前記角運動量補償温度より高温になり、前記第一の強磁性膜と前記第二の強磁性膜の磁化は交換結合しており、前記角運動量補償温度より高い温度において前記第一の強磁性膜と前記第二の強磁性膜の磁化方向が互いに逆方向であることを特徴とする磁気ランダムアクセスメモリ。
  8. 請求項7記載の磁気ランダムアクセスメモリにおいて、前記フェリ磁性体の読み出し電流通電時の温度におけるダンピング定数は、書き込み電流通電時の温度におけるダンピング定数よりも大きいことを特徴とする磁気ランダムアクセスメモリ。
JP2008313679A 2008-12-09 2008-12-09 磁気メモリセル及び磁気ランダムアクセスメモリ Expired - Fee Related JP5075802B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313679A JP5075802B2 (ja) 2008-12-09 2008-12-09 磁気メモリセル及び磁気ランダムアクセスメモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313679A JP5075802B2 (ja) 2008-12-09 2008-12-09 磁気メモリセル及び磁気ランダムアクセスメモリ

Publications (2)

Publication Number Publication Date
JP2010140973A true JP2010140973A (ja) 2010-06-24
JP5075802B2 JP5075802B2 (ja) 2012-11-21

Family

ID=42350877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313679A Expired - Fee Related JP5075802B2 (ja) 2008-12-09 2008-12-09 磁気メモリセル及び磁気ランダムアクセスメモリ

Country Status (1)

Country Link
JP (1) JP5075802B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151476A (ja) * 2011-01-19 2012-08-09 Crocus Technology Sa 低電力磁気ランダムアクセスメモリセル
WO2016139878A1 (ja) * 2015-03-05 2016-09-09 ソニー株式会社 記憶素子、記憶装置、磁気ヘッド、及び電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208681A (ja) * 2001-01-11 2002-07-26 Canon Inc 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録方法
JP2004072090A (ja) * 2002-06-28 2004-03-04 Internatl Business Mach Corp <Ibm> 磁性トンネル接合
JP2006269866A (ja) * 2005-03-25 2006-10-05 Sharp Corp 磁気抵抗効果素子、磁気センサー、再生ヘッド、複合ヘッド、磁気情報再生装置、磁気情報記録再生装置、および、磁気情報の再生方法
JP2008227009A (ja) * 2007-03-09 2008-09-25 Toshiba Corp 磁気ランダムアクセスメモリ、その書き込み方法及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208681A (ja) * 2001-01-11 2002-07-26 Canon Inc 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録方法
JP2004072090A (ja) * 2002-06-28 2004-03-04 Internatl Business Mach Corp <Ibm> 磁性トンネル接合
JP2006269866A (ja) * 2005-03-25 2006-10-05 Sharp Corp 磁気抵抗効果素子、磁気センサー、再生ヘッド、複合ヘッド、磁気情報再生装置、磁気情報記録再生装置、および、磁気情報の再生方法
JP2008227009A (ja) * 2007-03-09 2008-09-25 Toshiba Corp 磁気ランダムアクセスメモリ、その書き込み方法及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151476A (ja) * 2011-01-19 2012-08-09 Crocus Technology Sa 低電力磁気ランダムアクセスメモリセル
WO2016139878A1 (ja) * 2015-03-05 2016-09-09 ソニー株式会社 記憶素子、記憶装置、磁気ヘッド、及び電子機器
US10672420B2 (en) 2015-03-05 2020-06-02 Sony Corporation Storage device, storage apparatus, magnetic head, and electronic apparatus
US11257516B2 (en) 2015-03-05 2022-02-22 Sony Corporation Storage device, storage apparatus, magnetic head, and electronic apparatus

Also Published As

Publication number Publication date
JP5075802B2 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
US10756261B2 (en) Magnetoresistance element and non-volatile semiconductor storage device using same magnetoresistance element
JP4991155B2 (ja) 半導体記憶装置
JP5321991B2 (ja) 磁気メモリー素子及びその駆動方法
US8565013B2 (en) Storage element and storage device
US10439133B2 (en) Method and system for providing a magnetic junction having a low damping hybrid free layer
JP4970113B2 (ja) 磁気抵抗素子及び磁気メモリ
US20150235688A1 (en) Memory element and memory apparatus
TW200937415A (en) Magnetic memory with a thermally assisted writing procedure
TW201234361A (en) Storage element and storage device
US9070462B2 (en) Memory element and memory apparatus with a plurality of magnetic layers and an oxide layer
JP5062538B2 (ja) 磁気メモリー素子、その駆動方法及び不揮発性記憶装置
US20170084823A1 (en) Memory element, memory apparatus
EP2375464B1 (en) Magnetoresistive element and memory device using same
KR20190104865A (ko) 자기접합 및 하이브리드 캡핑층을 갖는 자기장치, 이를 이용하는 자기메모리 및 자기장치의 제공방법
JP2013115399A (ja) 記憶素子、記憶装置
JP5316967B2 (ja) 磁気メモリー素子及び不揮発性記憶装置
JP2013115412A (ja) 記憶素子、記憶装置
JP5075802B2 (ja) 磁気メモリセル及び磁気ランダムアクセスメモリ
WO2011096312A1 (ja) トンネル磁気抵抗効果素子及びそれを用いた磁気メモリセル並びに磁気ランダムアクセスメモリ
JP5386637B2 (ja) トンネル磁気抵抗効果素子及びそれを用いた磁気メモリセル並びに磁気ランダムアクセスメモリ
JP5777124B6 (ja) 磁気抵抗効果素子、磁性膜、及び、磁性膜の製造方法
JP5777124B2 (ja) 磁気抵抗効果素子、磁性膜、及び、磁性膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees