JP2010140893A - Apparatus and method for manufacturing solid electrolyte - Google Patents

Apparatus and method for manufacturing solid electrolyte Download PDF

Info

Publication number
JP2010140893A
JP2010140893A JP2009252895A JP2009252895A JP2010140893A JP 2010140893 A JP2010140893 A JP 2010140893A JP 2009252895 A JP2009252895 A JP 2009252895A JP 2009252895 A JP2009252895 A JP 2009252895A JP 2010140893 A JP2010140893 A JP 2010140893A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfide
raw material
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009252895A
Other languages
Japanese (ja)
Other versions
JP5396239B2 (en
Inventor
Minoru Chiga
実 千賀
Masao Aida
真男 相田
Takeshi Ota
剛 太田
Shigeo Matsuzaki
滋夫 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009252895A priority Critical patent/JP5396239B2/en
Publication of JP2010140893A publication Critical patent/JP2010140893A/en
Application granted granted Critical
Publication of JP5396239B2 publication Critical patent/JP5396239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for manufacturing a solid electrolyte that is highly productive and well-suited for mass production. <P>SOLUTION: The apparatus 1 for manufacturing the solid electrolyte includes: a crushing and composing means 10 for crushing and reacting a raw material including at least a lithium sulfide and other sulfide in a hydrocarbon-based solvent to compose a solid electrolyte; a first temperature stabilizing means 30 for keeping the temperature inside the crushing and composing means at 20 to 80°C; a composing means 20 for reacting the raw material including at least a lithium sulfide and other sulfide in the hydrocarbon-based solvent to compose a solid electrolyte; a second temperature stabilizing means 40 for keeping the temperature inside the composing means at 60 to 300°C; coupling means 50, 52 for coupling the crushing and composing means and the composing means; and a circulating means 54 for circulating the raw material, which is being reacted, between the crushing and composing means and the composing means through the coupling means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体電解質、特にリチウム二次電池等に用いられる硫化物固体電解質の製造装置及び製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method for a solid electrolyte, particularly a sulfide solid electrolyte used for a lithium secondary battery and the like.

近年、携帯電話末端、携帯電子機器、家庭用小型電力貯蔵装置、モーターを電力源とする自動二輪車、ハイブリット電気自動車等の主電源として利用されているリチウム電池の需要が増大している。現在リチウム電池に用いられている固体電解質の多くは可燃性の有機物が含まれていることから、電池に異常が生じた際には発火する等の恐れがあり、電池の安全性の確保が望まれている。より安全性の高い電池システムを構築するため、固体電解質を用いた全固体型リチウム二次電池の開発が望まれている。   In recent years, there has been an increasing demand for lithium batteries that are used as main power sources for mobile phone terminals, portable electronic devices, small household power storage devices, motorcycles using a motor as a power source, hybrid electric vehicles, and the like. Since many of the solid electrolytes currently used in lithium batteries contain flammable organic substances, there is a risk of fire when an abnormality occurs in the battery, and it is hoped that the safety of the battery will be ensured. It is rare. In order to construct a safer battery system, it is desired to develop an all-solid-state lithium secondary battery using a solid electrolyte.

不燃性の固体電解質として、硫化物系固体電解質が検討されている。その製造としては、原料を真空下又は不活性雰囲気下にて高温で処理する方法や、室温で遊星型ボールミルを用いてメカニカルミリングする方法がある。しかしながら、いずれの方法も量産化するためには大型の特殊な設備が必要であり、量産化には適さなかった。   A sulfide-based solid electrolyte has been studied as a nonflammable solid electrolyte. As its manufacture, there are a method of treating raw materials at a high temperature under vacuum or in an inert atmosphere, and a method of mechanical milling using a planetary ball mill at room temperature. However, any of these methods requires large special equipment for mass production, and is not suitable for mass production.

本発明者らは上記の課題に対し、原料を有機溶媒中にて反応させることにより、比較的低温で、特殊設備を必要とせずに、リチウムイオン伝導性固体電解質を工業的に有利に製造できる方法を提案している(特許文献1参照)。具体的には、非プロトン性有機溶媒としてN−メチル−2−ピロリドン等を使用し、溶媒中で硫化リチウムと硫化リンとを均一溶液として反応させる。   The present inventors can industrially advantageously produce a lithium ion conductive solid electrolyte at a relatively low temperature without the need for special equipment by reacting the raw materials in an organic solvent in response to the above-mentioned problems. A method is proposed (see Patent Document 1). Specifically, N-methyl-2-pyrrolidone or the like is used as an aprotic organic solvent, and lithium sulfide and phosphorus sulfide are reacted as a homogeneous solution in the solvent.

しかしながら、非プロトン性有機溶媒でも、N−メチル−2−ピロリドン等の極性が比較的高い溶媒は、硫化リンを溶解し易く、反応性を向上させる因子になる一方、硫化リチウムとの溶媒和が強いため、硫化リチウム製品中に残存しやすいという問題があった。   However, even with aprotic organic solvents, solvents with a relatively high polarity such as N-methyl-2-pyrrolidone can easily dissolve phosphorus sulfide and improve the reactivity, while solvation with lithium sulfide is difficult. Because it is strong, there is a problem that it tends to remain in the lithium sulfide product.

特許文献1のように、残留N−メチル−2−ピロリドンを実質的に完全に除去することにより、所定の性能を発現させることも可能である。しかし、生成した固体電解質を非極性溶媒により洗浄したり、減圧下での溶媒留去を多数回繰り返す必要があるため、製造工程が長くなるという問題があった。   As in Patent Document 1, it is possible to exhibit a predetermined performance by removing residual N-methyl-2-pyrrolidone substantially completely. However, since it is necessary to wash the produced solid electrolyte with a nonpolar solvent or to repeat solvent distillation under reduced pressure many times, there is a problem that the production process becomes long.

また、通常の方法による溶媒留去により、N−メチル−2−ピロリドン等の極性溶媒が製品中に残存した場合には、極端なイオン伝導度の低下が起き、安定した製品供給の上で改良が必要であった。尚、高温下で極性溶媒の留去時の温度が高すぎる場合、溶媒との反応により、固定電解質のイオン伝導性が低下する可能性があった。   In addition, when a polar solvent such as N-methyl-2-pyrrolidone remains in the product by distilling off the solvent by a normal method, an extreme decrease in ionic conductivity occurs, improving the stable product supply. Was necessary. In addition, when the temperature at the time of distilling off the polar solvent was too high at a high temperature, there was a possibility that the ion conductivity of the fixed electrolyte was lowered due to the reaction with the solvent.

残留極性溶媒は電池性能の低下、セルの腐食をまねくこともあり、なるべく完全に除去する必要がある。また、N−メチル−2−ピロリドン等の特殊な溶媒は高価であり、コストの面でもより適切な溶媒が望まれている。   Residual polar solvent may lead to deterioration of battery performance and cell corrosion, and it is necessary to remove it as completely as possible. Also, special solvents such as N-methyl-2-pyrrolidone are expensive, and more appropriate solvents are desired in terms of cost.

特許文献2には、原料混合粉を回転ミル等特殊な機器により比較的低温で処理する固体電解質の製造方法が記載されている。しかしながら、量産化のためには大型の特殊な機器が必要であり、かつ原料粉が装置の壁面に付着するため製造効率が悪かった。   Patent Document 2 describes a method for producing a solid electrolyte in which a raw material mixed powder is processed at a relatively low temperature using special equipment such as a rotary mill. However, large-scale special equipment is necessary for mass production, and the raw material powder adheres to the wall surface of the apparatus, resulting in poor production efficiency.

国際公開第2004/093099号パンフレットInternational Publication No. 2004/093099 Pamphlet 特開平11−144523号公報JP-A-11-144523

本発明の目的は、生産性が高く量産化に適する固体電解質製造装置及び製造方法を提供することである。   An object of the present invention is to provide a solid electrolyte production apparatus and a production method that are highly productive and suitable for mass production.

本発明の固体電解質製造装置は、少なくとも硫化リチウムと他の硫化物とを含む原料を、炭化水素系溶媒中で粉砕しつつ反応させて固体電解質を合成する粉砕合成手段と、
前記粉砕合成手段内を20℃〜80℃に保つ第1の温度安定手段と、少なくとも硫化リチウムと他の硫化物とを含む原料を、炭化水素系溶媒中で反応させて固体電解質を合成する合成手段と、
前記合成手段内を60℃〜300℃に保つ第2の温度安定手段と、
前記粉砕合成手段と前記合成手段とを連結する連結手段と、
前記連結手段を通して、反応中の原料を前記粉砕合成手段と前記合成手段との間を循環させる循環手段とを備える。
The solid electrolyte production apparatus of the present invention comprises a pulverizing and synthesizing means for synthesizing a solid electrolyte by reacting a raw material containing at least lithium sulfide and other sulfides while pulverizing them in a hydrocarbon solvent,
Synthesis in which a solid electrolyte is synthesized by reacting a first temperature stabilizing means for maintaining the inside of the pulverizing and synthesizing means at 20 ° C. to 80 ° C. and a raw material containing at least lithium sulfide and other sulfides in a hydrocarbon solvent. Means,
Second temperature stabilizing means for maintaining the inside of the synthesis means at 60 ° C. to 300 ° C .;
Connecting means for connecting the pulverizing and synthesizing means and the synthesizing means;
A circulation means for circulating the raw material in the reaction between the pulverizing and synthesizing means and the synthesizing means is provided through the connecting means.

本発明の固体電解質製造方法は、上記固体電解質製造装置を用いて固体電解質を製造する。   The solid electrolyte production method of the present invention produces a solid electrolyte using the solid electrolyte production apparatus.

また、固体電解質の製造方法は、粉砕機中で、少なくとも硫化リチウムと他の硫化物とを含む原料を、炭化水素系溶媒中で粉砕しつつ、20℃〜80℃で反応させて固体電解質を合成し、
反応槽中で、少なくとも硫化リチウムと他の硫化物とを含む原料を、炭化水素系溶媒中で、60℃〜300℃で反応させて固体電解質を合成し、
反応中の原料を、前記粉砕機と前記反応槽との間を循環させる固体電解質の製造方法であってもよい。
In addition, the method for producing a solid electrolyte is obtained by reacting a raw material containing at least lithium sulfide and other sulfides in a hydrocarbon solvent in a pulverizer at 20 ° C. to 80 ° C. Synthesize,
In a reaction vessel, a raw material containing at least lithium sulfide and other sulfides is reacted in a hydrocarbon solvent at 60 ° C. to 300 ° C. to synthesize a solid electrolyte,
It may be a method for producing a solid electrolyte in which a raw material during reaction is circulated between the pulverizer and the reaction vessel.

本発明によれば、固体電解質の製造時間を短く、かつ大型の特殊な機器を不要とすることができる。   According to the present invention, the manufacturing time of the solid electrolyte can be shortened, and a large special device can be dispensed with.

本発明の固体電解質製造装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the solid electrolyte manufacturing apparatus of this invention. 本発明の固体電解質製造装置の他の実施形態を示す図である。It is a figure which shows other embodiment of the solid electrolyte manufacturing apparatus of this invention. 実施例1において2〜12時間の反応時間で得られた固体電解質のXRDスペクトルである。2 is an XRD spectrum of a solid electrolyte obtained in Example 1 with a reaction time of 2 to 12 hours. 実施例1において熱処理した固体電解質のXRDスペクトルである。2 is an XRD spectrum of a solid electrolyte heat treated in Example 1. FIG. 実施例2において2〜8時間の反応時間で得られた固体電解質のXRDスペクトルである。2 is an XRD spectrum of a solid electrolyte obtained in a reaction time of 2 to 8 hours in Example 2. 実施例3において2,4時間の反応時間で得られた固体電解質のXRDスペクトルである。3 is an XRD spectrum of a solid electrolyte obtained in Example 3 with a reaction time of 2, 4 hours. 実施例4において2〜14時間の反応時間で得られた固体電解質のXRDスペクトルである。4 is an XRD spectrum of a solid electrolyte obtained in a reaction time of 2 to 14 hours in Example 4. 比較例1において12時間の反応時間で得られた固体電解質のXRDスペクトルである。3 is an XRD spectrum of a solid electrolyte obtained in Comparative Example 1 with a reaction time of 12 hours. 比較例2において12時間の反応時間で得られた固体電解質のXRDスペクトルである。3 is an XRD spectrum of a solid electrolyte obtained in Comparative Example 2 with a reaction time of 12 hours.

図1は、本発明の固体電解質製造装置の一実施形態を示す図である。
固体電解質製造装置1は、原料を粉砕しつつ反応させて固体電解質を合成する粉砕機(粉砕合成手段)10と、原料を反応させて固体電解質を合成する反応槽(合成手段)20とを備える。本実施形態では反応槽20は容器22と撹拌翼24からなる。撹拌翼24はモータ(M)により駆動される。
粉砕機10には、粉砕機10内を20℃〜80℃に保つために、粉砕機10の周りに温水を通すことのできるヒータ30(第1の温度安定手段)が設けられている。反応槽20は、反応槽20内を60℃〜300℃に保つために、オイルバス40(第2の温度安定手段)に入っている。オイルバス40は容器22内の原料と溶媒を所定温度に加熱する。反応槽20には気化した溶媒を冷却して液化する冷却管26が設けられる。
粉砕機10と反応槽20は、第1の連結管50と第2の連結管52(連結手段)で連結されている。第1の連結管50は、粉砕機10内の原料と溶媒を反応槽20に移動させ、第2の連結部52は、反応槽20内の原料及び溶媒を粉砕機10内に移動させる。原料等を連結管50,52を通して循環するために、ポンプ54(例えばダイアフラムポンプ)(循環手段)が、第2の連結管52に設けられている。
FIG. 1 is a diagram showing an embodiment of the solid electrolyte production apparatus of the present invention.
The solid electrolyte manufacturing apparatus 1 includes a pulverizer (pulverization synthesis means) 10 that synthesizes a solid electrolyte by reacting while pulverizing the raw material, and a reaction tank (synthesis means) 20 that synthesizes the solid electrolyte by reacting the raw material. . In this embodiment, the reaction tank 20 includes a container 22 and a stirring blade 24. The stirring blade 24 is driven by a motor (M).
The pulverizer 10 is provided with a heater 30 (first temperature stabilizing means) through which hot water can be passed around the pulverizer 10 in order to keep the inside of the pulverizer 10 at 20 ° C. to 80 ° C. The reaction tank 20 is in an oil bath 40 (second temperature stabilization means) in order to keep the inside of the reaction tank 20 at 60 ° C. to 300 ° C. The oil bath 40 heats the raw material and solvent in the container 22 to a predetermined temperature. The reaction tank 20 is provided with a cooling pipe 26 that cools and vaporizes the evaporated solvent.
The pulverizer 10 and the reaction tank 20 are connected by a first connecting pipe 50 and a second connecting pipe 52 (connecting means). The first connecting pipe 50 moves the raw material and solvent in the pulverizer 10 to the reaction tank 20, and the second connecting part 52 moves the raw material and solvent in the reaction tank 20 into the pulverizer 10. A pump 54 (for example, a diaphragm pump) (circulation means) is provided in the second connection pipe 52 in order to circulate the raw materials and the like through the connection pipes 50 and 52.

この装置1を用いて、固体電解質を製造するときは、炭化水素系溶媒と原料を、粉砕機10と反応槽20にそれぞれ供給する。原料は、少なくとも硫化リチウムと他の硫化物とを含む。ヒータ30には温水(HW)が入り排出される(RHW)。ヒータ30により粉砕機10内の温度を20℃〜80℃に保ちながら、原料を炭化水素系溶媒中で粉砕しつつ反応させて固体電解質を合成する。オイルバス40により反応槽20内の温度を60℃〜300℃に保ちながら、原料を炭化水素系溶媒中で反応させて固体電解質を合成する。反応槽20内の温度は温度計(Th)で測定する。このとき、撹拌翼24をモータ(M)により回転させて反応系を撹拌し、原料と溶媒からなるスラリが沈殿しないようにする。冷却管26には冷却水(CW)が入り排出される(RCW)。冷却管26は、容器22内の気化した溶媒を冷却して液化し、容器22内に戻す。粉砕機10と反応槽20で固体電解質を合成する間、ポンプ54により、反応中の原料は連結管50,52を通って、粉砕機10と反応槽20の間を循環する。粉砕機10に送り込まれる原料と溶媒の温度は、粉砕機10前の第2の連結管に設けられた温度計(Th)で測定する。   When a solid electrolyte is produced using this apparatus 1, a hydrocarbon solvent and a raw material are supplied to the pulverizer 10 and the reaction tank 20, respectively. The raw material contains at least lithium sulfide and other sulfides. Hot water (HW) enters and exits the heater 30 (RHW). While maintaining the temperature in the pulverizer 10 at 20 ° C. to 80 ° C. by the heater 30, the raw materials are reacted while being pulverized in a hydrocarbon solvent to synthesize a solid electrolyte. The raw material is reacted in a hydrocarbon solvent while the temperature in the reaction vessel 20 is maintained at 60 ° C. to 300 ° C. by the oil bath 40 to synthesize a solid electrolyte. The temperature in the reaction vessel 20 is measured with a thermometer (Th). At this time, the stirring blade 24 is rotated by the motor (M) to stir the reaction system so that the slurry composed of the raw material and the solvent does not precipitate. Cooling water (CW) enters and exits the cooling pipe 26 (RCW). The cooling pipe 26 cools and liquefies the vaporized solvent in the container 22 and returns it to the container 22. While the solid electrolyte is synthesized in the pulverizer 10 and the reaction tank 20, the raw material being reacted is circulated between the pulverizer 10 and the reaction tank 20 through the connecting pipes 50 and 52 by the pump 54. The temperature of the raw material and the solvent fed into the pulverizer 10 is measured by a thermometer (Th) provided in the second connecting pipe before the pulverizer 10.

粉砕機10は、硫化リチウムと他の硫化物を粉砕混合しながら反応させ、硫化物系固体電解質を製造することができるものであればどのような粉砕機でもよい。例えば、回転ミル(転動ミル)、揺動ミル、振動ミル、ビーズミルを挙げることができる。原料を細かく粉砕できる点でビーズミルが好ましい。原料が細かいほど、反応性が高くなり、短時間で固体電解質を製造できる。   The pulverizer 10 may be any pulverizer as long as it can react with lithium sulfide and other sulfides while being pulverized and mixed to produce a sulfide-based solid electrolyte. For example, a rotary mill (rolling mill), a rocking mill, a vibration mill, and a bead mill can be used. A bead mill is preferable in that the raw material can be finely pulverized. The finer the raw material, the higher the reactivity, and a solid electrolyte can be produced in a short time.

粉砕機がボールを含むとき、ボールと容器とが磨耗することによる固体電解質への混入を防止するため、ボールはジルコニウム製、強化アルミナ製、アルミナ製であることが好ましい。
また、粉砕機10から反応槽20へのボールの混合を防ぐため、必要に応じて粉砕機10又は第1の連結管50にボールと原料及び溶媒を分離するフィルタを設けてもよい。
When the pulverizer includes a ball, the ball is preferably made of zirconium, reinforced alumina, or alumina in order to prevent mixing into the solid electrolyte due to wear of the ball and the container.
Moreover, in order to prevent mixing of the balls from the pulverizer 10 to the reaction tank 20, a filter for separating the balls, the raw material, and the solvent may be provided in the pulverizer 10 or the first connecting pipe 50 as necessary.

粉砕機での粉砕温度は、20℃以上80℃以下、好ましくは20℃以上60℃以下である。粉砕機での処理温度が20℃未満の場合、固体電解質製造に要する反応時間を短縮する効果が小さく、80℃を超えると、容器、ボールの材質であるジルコニア、強化アルミナ、アルミナの強度低下が著しく起こるため、容器、ボールの磨耗、劣化や電解質へのコンタミが生じるおそれがある。   The pulverization temperature in the pulverizer is 20 ° C. or higher and 80 ° C. or lower, preferably 20 ° C. or higher and 60 ° C. or lower. When the processing temperature in the pulverizer is less than 20 ° C., the effect of shortening the reaction time required for the production of the solid electrolyte is small. Since it occurs remarkably, there is a risk that the container and balls are worn and deteriorated, and the electrolyte is contaminated.

反応槽20は、硫化リチウムと他の硫化物を反応させ、硫化物系固体電解質を製造することができるものであればどのような反応槽でもよい。通常、反応槽は、容器と、攪拌機等の混合手段、冷却手段を有する。混合手段は、容器内の原料と溶媒からなるスラリを混合し、スラリが沈殿しないようにする。冷却手段は、蒸発した溶媒を冷却して容器に戻す。
容器22は、金属製又はガラス製であることが好ましい。溶媒の沸点以上の反応温度で反応する場合には耐圧仕様の容器を用いることが好ましい。
The reaction vessel 20 may be any reaction vessel as long as it can react with lithium sulfide and other sulfides to produce a sulfide-based solid electrolyte. Usually, the reaction tank has a container, mixing means such as a stirrer, and cooling means. The mixing means mixes the slurry made of the raw material and the solvent in the container so that the slurry does not precipitate. The cooling means cools the evaporated solvent and returns it to the container.
The container 22 is preferably made of metal or glass. When reacting at a reaction temperature equal to or higher than the boiling point of the solvent, it is preferable to use a pressure resistant container.

容器22内の反応温度は60℃〜300℃である。80℃〜200℃が好ましい。60℃未満ではガラス化反応に時間がかがり生産効率が十分ではない。300℃を超えると、好ましくない結晶が析出する場合がある。   The reaction temperature in the container 22 is 60 ° C to 300 ° C. 80 to 200 degreeC is preferable. If it is less than 60 degreeC, it takes time for vitrification reaction and production efficiency is not enough. If it exceeds 300 ° C., undesirable crystals may be precipitated.

反応は温度が高い領域が速いので高温にすることが好ましいが、粉砕機を80℃を超える温度にすると磨耗等の機械的な問題が発生する。したがって、反応槽は反応温度を高めに設定し、粉砕機は比較的低温に保つ必要がある。   The reaction is preferably carried out at a high temperature because the region where the temperature is high is fast. However, when the pulverizer is heated to a temperature exceeding 80 ° C., mechanical problems such as wear occur. Therefore, it is necessary to set the reaction tank to a high reaction temperature and to keep the pulverizer at a relatively low temperature.

反応槽20の容量と粉砕機10の容量との比率は任意でよいが、通常反応槽20の容量は、粉砕機10の容量の1〜100倍程度である。   The ratio between the capacity of the reaction tank 20 and the capacity of the pulverizer 10 may be arbitrary, but the capacity of the reaction tank 20 is usually about 1 to 100 times the capacity of the pulverizer 10.

図2は、本発明の固体電解質製造装置の他の実施形態を示す図である。
この固体電解質製造装置2は、第2の連結部52に熱交換器60(熱交換手段)を設けた他は、固体電解質製造装置1と同じである。固体電解質製造装置1と同じ部材には同じ符号を付して説明は省略する。
熱交換器60は、反応槽20から送り出される高温の原料と溶剤を冷却して、撹拌機10に送り込む。例えば、反応槽20において、80℃を超える温度で反応を行った場合、原料等の温度を80℃以下に冷却して、撹拌機10に送り込む。
FIG. 2 is a view showing another embodiment of the solid electrolyte production apparatus of the present invention.
This solid electrolyte production apparatus 2 is the same as the solid electrolyte production apparatus 1 except that a heat exchanger 60 (heat exchange means) is provided in the second connecting portion 52. The same members as those in the solid electrolyte manufacturing apparatus 1 are denoted by the same reference numerals and description thereof is omitted.
The heat exchanger 60 cools the high-temperature raw material and solvent sent out from the reaction tank 20 and sends them to the stirrer 10. For example, when the reaction is performed at a temperature exceeding 80 ° C. in the reaction tank 20, the temperature of the raw material or the like is cooled to 80 ° C. or less and sent to the stirrer 10.

本発明において、原料である硫化リチウムとしては、例えば、特許第3528866号(特開平7−330312号公報)に記載の方法で合成することができる。特に、国際公開第2005/040039号に記載された方法等で合成し、純度が99%以上であるものが好ましい。   In the present invention, the raw material lithium sulfide can be synthesized, for example, by the method described in Japanese Patent No. 3528866 (JP-A-7-330312). In particular, those synthesized by the method described in International Publication No. 2005/040039 and having a purity of 99% or more are preferable.

LiSと混合する硫化物としては、硫化リン、硫化ケイ素、硫化ホウ素、硫化ゲルマニウムから選択される1つ以上の硫化物が好ましく使用できる。特にPが好ましい。
上記の硫化物については、特に限定はなく、市販されているものが使用できる。
As the sulfide mixed with Li 2 S, one or more sulfides selected from phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide can be preferably used. P 2 S 5 is particularly preferable.
About said sulfide, there is no limitation in particular and what is marketed can be used.

溶媒としては、飽和炭化水素、不飽和炭化水素又は芳香族炭化水素等の炭化水素系溶媒が使用できる。
飽和炭化水素としては、ヘキサン、ペンタン、2−エチルヘキサン、ヘプタン、デカン、シクロヘキサン等が挙げられる。
不飽和炭化水素しては、ヘキセン、ヘプテン、シクロヘキセン等が挙げられる。
芳香族炭化水素としては、トルエン、キシレン、デカリン、1,2,3,4−テトラヒドロナフタレン等が挙げられる。
これらのうち、特にトルエン、キシレンが好ましい。
As the solvent, hydrocarbon solvents such as saturated hydrocarbons, unsaturated hydrocarbons, and aromatic hydrocarbons can be used.
Examples of the saturated hydrocarbon include hexane, pentane, 2-ethylhexane, heptane, decane, and cyclohexane.
Examples of the unsaturated hydrocarbon include hexene, heptene, cyclohexene and the like.
Aromatic hydrocarbons include toluene, xylene, decalin, 1,2,3,4-tetrahydronaphthalene and the like.
Of these, toluene and xylene are particularly preferable.

有機溶媒中の水分量は、原料硫化物及び合成された硫化物系固体電解質との反応を考慮して、50ppm(重量)以下であることが好ましい。水分は反応により硫化物系固体電解質の変性を引き起こし、固体電解質の性能を悪化させる。そのため、水分量は低いほど好ましく、より好ましくは、30ppm以下であり、さらに好ましくは20ppm以下である。   The amount of water in the organic solvent is preferably 50 ppm (weight) or less in consideration of the reaction with the raw material sulfide and the synthesized sulfide solid electrolyte. Moisture causes the modification of the sulfide-based solid electrolyte due to the reaction, and deteriorates the performance of the solid electrolyte. Therefore, the lower the moisture content, the better, more preferably 30 ppm or less, and even more preferably 20 ppm or less.

本発明では、上記原料(硫化リチウムと他の硫化物を含む)に、有機溶媒を加えた状態で反応させる。有機溶媒を加えた状態で反応させることで、処理時の造粒効果を抑制し、合成反応を効率的に促進できる。これにより、均一性に優れ、未反応原料の含有率が低い固体電解質を得ることができる。また、原料や反応物の器壁等への固着を防止することができ、製品の歩留を向上できる。   In the present invention, the above raw materials (including lithium sulfide and other sulfides) are reacted with an organic solvent added. By making it react in the state which added the organic solvent, the granulation effect at the time of a process can be suppressed and a synthetic reaction can be accelerated | stimulated efficiently. Thereby, the solid electrolyte which is excellent in uniformity and has a low content of unreacted raw materials can be obtained. Further, it is possible to prevent the raw materials and reactants from sticking to the vessel wall and the like, and to improve the product yield.

反応時の硫化リチウムの仕込み量は、硫化リチウムと他の硫化物の合計に対し30〜95mol%とすることが好ましく、さらに、40〜85mol%とすることが好ましく、特に50〜75mol%とすることが好ましい。   The amount of lithium sulfide charged during the reaction is preferably 30 to 95 mol%, more preferably 40 to 85 mol%, particularly 50 to 75 mol%, based on the total of lithium sulfide and other sulfides. It is preferable.

有機溶媒の量は、原料である硫化リチウムと他の硫化物が、溶媒の添加により溶液又はスラリ状になる程度であることが好ましい。通常、溶媒1kgに対する原料(合計量)の添加量は0.03〜1Kg程度となる。好ましくは0.05〜0.5Kg、特に好ましくは0.1〜0.3Kgである。   The amount of the organic solvent is preferably such that the raw material lithium sulfide and other sulfides become a solution or slurry by the addition of the solvent. Usually, the amount of raw material (total amount) added to 1 kg of solvent is about 0.03 to 1 kg. Preferably it is 0.05-0.5Kg, Most preferably, it is 0.1-0.3Kg.

反応生成物を乾燥し、溶媒を除去することにより、硫化物ガラスである硫化物系固体電解質が得られる。
得られた固体電解質を、さらに、200℃以上400℃以下、より好ましくは250〜320℃で加熱処理することにより、硫化物系固体電解質のイオン伝導性を向上できる。これは、上記の硫化物ガラスである硫化物系固体電解質が硫化物結晶化ガラス(ガラスセラミック)となるためである。
加熱処理の時間は、1〜5時間が好ましく、特に1.5〜3時間が好ましい。
By drying the reaction product and removing the solvent, a sulfide-based solid electrolyte that is sulfide glass is obtained.
By further heat-treating the obtained solid electrolyte at 200 ° C. or higher and 400 ° C. or lower, more preferably 250 to 320 ° C., the ionic conductivity of the sulfide-based solid electrolyte can be improved. This is because the sulfide-based solid electrolyte, which is the sulfide glass, becomes sulfide crystallized glass (glass ceramic).
The heat treatment time is preferably 1 to 5 hours, and particularly preferably 1.5 to 3 hours.

尚、好ましい様態として、乾燥工程での加熱と結晶化工程の加熱を、別工程とするのではなく、1つの加熱工程とすることができる。   In a preferred embodiment, the heating in the drying step and the heating in the crystallization step can be performed as one heating step, not as separate steps.

本発明の固体電解質製造装置又は製造方法を用いれば、固体電解質を短時間で合成できるため生産性が高くなる。また、大型の特殊な機器を不要とすることができる。   If the solid electrolyte manufacturing apparatus or manufacturing method of this invention is used, since a solid electrolyte can be synthesize | combined in a short time, productivity will become high. In addition, large special equipment can be dispensed with.

本発明で得られる硫化物系固体電解質は、全固体リチウム二次電池の固体電解質層や、正極合材に混合する固体電解質等として使用できる。
例えば、正極と、負極と、正極及び負極の間に本発明の固体電解質からなる層を形成することで、全固体リチウム二次電池となる。
The sulfide-based solid electrolyte obtained in the present invention can be used as a solid electrolyte layer of an all-solid lithium secondary battery, a solid electrolyte mixed with a positive electrode mixture, or the like.
For example, an all-solid lithium secondary battery is formed by forming a layer made of the solid electrolyte of the present invention between the positive electrode, the negative electrode, and the positive electrode and the negative electrode.

製造例1
(1)硫化リチウムの製造
硫化リチウムは、特開平7−330312号公報における第1の態様(2工程法)の方法に従って製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した水硫化リチウムを脱硫化水素化し硫化リチウムを得た。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。水硫化リチウムの脱硫化水素反応が終了後(約80分)に反応を終了し、硫化リチウムを得た。
Production Example 1
(1) Manufacture of lithium sulfide Lithium sulfide was manufactured according to the method of the 1st aspect (2 process method) in Unexamined-Japanese-Patent No. 7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated under a nitrogen stream (200 cc / min), and the reacted lithium hydrosulfide was dehydrosulfurized to obtain lithium sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. The reaction was completed after the dehydrosulfurization reaction of lithium hydrosulfide (about 80 minutes) to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得られた500mLのスラリ反応溶液(NMP−硫化リチウムスラリ)中のNMPをデカンテーションした後、脱水したNMP100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. . NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.

尚、亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)並びにチオ硫酸リチウム(Li)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、N−メチルアミノ酪酸リチウム(LMAB)は0.07質量%であった。
このようにして精製したLiSを、以下の実施例で使用した。
Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (LMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and lithium N-methylaminobutyrate (LMAB) was 0.07% by mass.
Li 2 S thus purified was used in the following examples.

尚、実施例において、イオン伝導度は下記方法により測定した。
硫化物系固体電解質ガラスセラミックを錠剤成形機に充填し、4〜6MPaの圧力を加え成形体を得た。さらに、電極としてカーボンと電解質ガラスセラミックを重量比1:1で混合した合材を成形体の両面に乗せ、再度錠剤成形機にて圧力を加えることで、伝導度測定用の成形体(直径約10mm、厚み約1mm)を作製した。この成形体について交流インピーダンス測定によりイオン伝導度測定を実施した。伝導度の値は25℃における数値を採用した。
In the examples, the ionic conductivity was measured by the following method.
A sulfide-based solid electrolyte glass ceramic was filled in a tablet molding machine, and a pressure of 4 to 6 MPa was applied to obtain a molded body. Furthermore, a composite material in which carbon and electrolyte glass ceramic are mixed at a weight ratio of 1: 1 as an electrode is placed on both sides of the molded body, and pressure is again applied by a tablet molding machine, so that a molded body for measuring conductivity (diameter of about 10 mm and a thickness of about 1 mm). The molded body was subjected to ion conductivity measurement by AC impedance measurement. The conductivity value was a value at 25 ° C.

得られた固体電解質のX線回折測定は、リガク社製ultima−IIIのX線発生装置(CuKα:λ=1.5418オングストロング)を用いて行った。   X-ray diffraction measurement of the obtained solid electrolyte was performed using an ultrama-III X-ray generator (CuKα: λ = 1.5418 angstrom) manufactured by Rigaku Corporation.

実施例1
図1に示す装置を用いた。撹拌機として、アシザワ・ファインテック社製スターミルミニツェア(0.15L)(ビーズミル)を用い、0.5mmφジルコニアボール450gを仕込んだ。反応槽として、攪拌機付の1.5Lガラス製反応器を使用した。
Example 1
The apparatus shown in FIG. 1 was used. As a stirrer, 450 g of 0.5 mmφ zirconia balls were charged using a star mill mini-zea (0.15 L) (bead mill) manufactured by Ashizawa Finetech. A 1.5 L glass reactor with a stirrer was used as a reaction vessel.

製造例1により製造したLiS 39.05g(70mol%)とアルドリッチ社製P 80.95g(30mol%)に、広島和光純薬製社製脱水トルエン1080g(水分量8ppm)を加えた混合物を反応槽及びミルに充填した。 To 39.05 g (70 mol%) of Li 2 S produced according to Production Example 1 and 80.95 g (30 mol%) of P 2 S 5 manufactured by Aldrich, 1080 g of dehydrated toluene (water content 8 ppm) manufactured by Hiroshima Wako Pure Chemical Industries, Ltd. was added. The resulting mixture was charged to the reactor and mill.

ポンプにより内容物を400mL/分の流量で循環させ、反応槽を80℃になるまで昇温した。   The contents were circulated at a flow rate of 400 mL / min by a pump, and the temperature of the reaction vessel was increased to 80 ° C.

ミル本体は、液温が70℃に保持できるよう外部循環により温水を通水し、周速8m/sの条件で運転した。2時間ごとにスラリを採取し、150℃にて乾燥し白色粉末を得た。得られた粉末についてX線回析測定により図3に示すXRDスペクトルを得た。12時間反応後の生成物では原料である硫化ピークは消失しガラスとなっていることが判った。また、得られた粉末のイオン伝導度を測定した。結果を表1に示す。伝導度は1.2×10−4S/cmであった。 The mill body was operated under conditions of a peripheral speed of 8 m / s by passing warm water through external circulation so that the liquid temperature could be maintained at 70 ° C. Slurries were collected every 2 hours and dried at 150 ° C. to obtain a white powder. The XRD spectrum shown in FIG. 3 was obtained by X-ray diffraction measurement for the obtained powder. It was found that in the product after the reaction for 12 hours, the sulfide peak as a raw material disappeared to become glass. Moreover, the ionic conductivity of the obtained powder was measured. The results are shown in Table 1. The conductivity was 1.2 × 10 −4 S / cm.

さらに、12時間反応後の生成物を密閉容器に入れ、300℃、2時間の熱処理を行った。熱処理後のサンプルのX線回折測定を行なった結果、Li11の結晶相に帰属される2θ=17.8、18.2、19.8、21.8、23.8、25.9、29.5、30.0degにピークが観測された(図4)。イオン伝導度測定の結果、この粉末のイオン伝導度は1.8×10−3S/cmであった。 Further, the product after the reaction for 12 hours was put in a sealed container and subjected to heat treatment at 300 ° C. for 2 hours. As a result of X-ray diffraction measurement of the sample after the heat treatment, 2θ = 17.8, 18.2, 19.8, 21.8, 23.8, 25 attributed to the crystal phase of Li 7 P 3 S 11 Peaks were observed at .9, 29.5 and 30.0 deg (FIG. 4). As a result of measuring the ionic conductivity, the ionic conductivity of this powder was 1.8 × 10 −3 S / cm.

実施例2
図2に示す装置を用いた。具体的には、実施例1で用いた装置にさらにミル入り口側ラインに熱交換器を設けた。この装置を用いて、以下の点を変更した他は、実施例1と同様にして固体電解質を合成した。
・脱水トルエンの代わりに脱水パラキシレン(水分量8ppm)を用いた。
・反応槽温度80℃を138℃に変更した。
・熱交換器によりミル入り口液温70℃まで冷却した。
Example 2
The apparatus shown in FIG. 2 was used. Specifically, the apparatus used in Example 1 was further provided with a heat exchanger on the mill inlet side line. A solid electrolyte was synthesized in the same manner as in Example 1 except that the following points were changed using this apparatus.
-Dehydrated paraxylene (water content 8 ppm) was used instead of dehydrated toluene.
-The reactor temperature of 80 ° C was changed to 138 ° C.
-It cooled to the mill inlet liquid temperature of 70 degreeC with the heat exchanger.

得られた粉末についてX線回析測定により図5に示すXRDスペクトルを得た。8時間反応後の生成物では原料である硫化ピークは消失しガラスとなっていることが判った。また、得られた粉末のイオン伝導度を測定した。結果を表1に示す。伝導度は1.1×10−4S/cmであった。 The XRD spectrum shown in FIG. 5 was obtained by X-ray diffraction measurement for the obtained powder. It was found that in the product after the reaction for 8 hours, the sulfurization peak as a raw material disappeared to become glass. Moreover, the ionic conductivity of the obtained powder was measured. The results are shown in Table 1. The conductivity was 1.1 × 10 −4 S / cm.

実施例3
実施例2において、周速8m/sを12m/sに変更した他は、実施例2と同様にして固体電解質を合成した。
得られた粉末についてX線回析測定により図6に示すXRDスペクトルを得た。4時間反応後の生成物では原料である硫化ピークは消失しガラスとなっていることが判った。また、得られた粉末のイオン伝導度を測定した。結果を表1に示す。伝導度は1.1×10−4S/cmであった。
Example 3
A solid electrolyte was synthesized in the same manner as in Example 2 except that the peripheral speed was changed from 8 m / s to 12 m / s in Example 2.
The XRD spectrum shown in FIG. 6 was obtained by X-ray diffraction measurement for the obtained powder. It was found that in the product after the reaction for 4 hours, the sulfurization peak as a raw material disappeared to become glass. Moreover, the ionic conductivity of the obtained powder was measured. The results are shown in Table 1. The conductivity was 1.1 × 10 −4 S / cm.

実施例4
実施例1においてLiSを54.31g(80mol%)、Pを65.69g(20mol%)に変更した以外は実施例1と同様にして固体電解質を合成した。
得られた粉末についてX線回析測定により図7に示すXRDスペクトルを得た。14時間反応後の生成物では原料であるLiSピークは完全に消失し、ガラスとなっていることが判った。また、得られた粉末のイオン伝導度は、4.8×10−4S/cmであった。
比較例1
実施例2において、反応槽、ミルを30℃に保持して反応を行った他は、実施例2と同様にして固体電解質を合成した。
得られた粉末についてX線回析測定により図8に示すXRDスペクトルを得た。12時間反応後の生成物のXRDにおいてLiSピークが残留していた。また、得られた粉末のイオン伝導度を測定した。結果を表1に示す。伝導度は2.2×10−5S/cmであった。
Example 4
A solid electrolyte was synthesized in the same manner as in Example 1 except that Li 2 S was changed to 54.31 g (80 mol%) and P 2 S 5 was changed to 65.69 g (20 mol%) in Example 1.
The XRD spectrum shown in FIG. 7 was obtained by X-ray diffraction measurement for the obtained powder. It was found that in the product after the reaction for 14 hours, the Li 2 S peak as a raw material completely disappeared and became a glass. Moreover, the ionic conductivity of the obtained powder was 4.8 × 10 −4 S / cm.
Comparative Example 1
In Example 2, a solid electrolyte was synthesized in the same manner as in Example 2 except that the reaction was performed while maintaining the reaction vessel and the mill at 30 ° C.
The XRD spectrum shown in FIG. 8 was obtained by X-ray diffraction measurement for the obtained powder. A Li 2 S peak remained in the XRD of the product after the reaction for 12 hours. Moreover, the ionic conductivity of the obtained powder was measured. The results are shown in Table 1. The conductivity was 2.2 × 10 −5 S / cm.

比較例2
実施例2において、ミルと反応槽を循環することをせずに、反応槽を138℃に保持した状態で反応した他は、実施例2と同様にして固体電解質を合成した。
得られた粉末についてX線回析測定により図9に示すXRDスペクトルを得た。12時間反応後の生成物のXRDにおいてLiSピークが残留していた。また、得られた粉末のイオン伝導度を測定した。結果を表1に示す。伝導度は1.5×10−6S/cmであった。
Comparative Example 2
In Example 2, a solid electrolyte was synthesized in the same manner as in Example 2 except that the reaction was performed while maintaining the reaction vessel at 138 ° C. without circulating the mill and the reaction vessel.
The XRD spectrum shown in FIG. 9 was obtained by X-ray diffraction measurement for the obtained powder. A Li 2 S peak remained in the XRD of the product after the reaction for 12 hours. Moreover, the ionic conductivity of the obtained powder was measured. The results are shown in Table 1. The conductivity was 1.5 × 10 −6 S / cm.

Figure 2010140893
Figure 2010140893

本発明の固体電解質製造装置又は製造方法を用いれば、固体電解質を生産性良く製造できる。製造された固体電解質は、リチウム二次電池に好適に利用できる。   If the solid electrolyte manufacturing apparatus or manufacturing method of this invention is used, a solid electrolyte can be manufactured with sufficient productivity. The manufactured solid electrolyte can be suitably used for a lithium secondary battery.

1 固体電解質製造装置
2 固体電解質製造装置
10 粉砕機(粉砕合成手段)
20 反応槽(合成手段)
22 容器
24 撹拌翼
26 冷却管
30 ヒータ(第1の温度安定手段)
40 オイルバス(第2の温度安定手段)
50 第1の連結管(連結手段)
52 第2の連結管(連結手段)
54 ポンプ(循環手段)
60 熱交換器(熱交換手段)
DESCRIPTION OF SYMBOLS 1 Solid electrolyte manufacturing apparatus 2 Solid electrolyte manufacturing apparatus 10 Crusher (pulverization synthesis means)
20 reaction tank (synthesis method)
22 Container 24 Stirring blade 26 Cooling pipe 30 Heater (first temperature stabilization means)
40 Oil bath (second temperature stabilization means)
50 1st connection pipe (connection means)
52 Second connecting pipe (connecting means)
54 Pump (circulation means)
60 heat exchanger (heat exchange means)

Claims (4)

少なくとも硫化リチウムと他の硫化物とを含む原料を、炭化水素系溶媒中で粉砕しつつ反応させて固体電解質を合成する粉砕合成手段と、
前記粉砕合成手段内を20℃〜80℃に保つ第1の温度安定手段と、少なくとも硫化リチウムと他の硫化物とを含む原料を、炭化水素系溶媒中で反応させて固体電解質を合成する合成手段と、
前記合成手段内を60℃〜300℃に保つ第2の温度安定手段と、
前記粉砕合成手段と前記合成手段とを連結する連結手段と、
前記連結手段を通して、反応中の原料を前記粉砕合成手段と前記合成手段との間を循環させる循環手段とを備えることを特徴とする固体電解質製造装置。
A pulverizing and synthesizing means for synthesizing a solid electrolyte by reacting a raw material containing at least lithium sulfide and other sulfides while pulverizing them in a hydrocarbon solvent;
Synthesis in which a solid electrolyte is synthesized by reacting a first temperature stabilizing means for maintaining the inside of the pulverizing and synthesizing means at 20 ° C. to 80 ° C. and a raw material containing at least lithium sulfide and other sulfides in a hydrocarbon solvent. Means,
Second temperature stabilizing means for maintaining the inside of the synthesis means at 60 ° C. to 300 ° C .;
Connecting means for connecting the pulverizing and synthesizing means and the synthesizing means;
An apparatus for producing a solid electrolyte, comprising: circulating means for circulating the raw material in the reaction between the pulverizing and synthesizing means and the synthesizing means through the connecting means.
前記粉砕合成手段と前記合成手段との間で熱交換を行う熱交換手段を備えることを特徴とする請求項1に記載の固体電解質製造装置。   The solid electrolyte manufacturing apparatus according to claim 1, further comprising a heat exchanging unit configured to exchange heat between the pulverizing and synthesizing unit and the synthesizing unit. 請求項1又は2に記載の固体電解質製造装置を用いて固体電解質を製造することを特徴とする固体電解質の製造方法。   A method for producing a solid electrolyte, comprising producing a solid electrolyte using the solid electrolyte production apparatus according to claim 1. 前記他の硫化物が硫化リン、硫化ケイ素、硫化ホウ素及び硫化ゲルマニウムから選択される1以上の硫化物であることを特徴とする請求項3に記載の固体電解質の製造方法。   4. The method for producing a solid electrolyte according to claim 3, wherein the other sulfide is one or more sulfides selected from phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide.
JP2009252895A 2008-11-17 2009-11-04 Solid electrolyte manufacturing apparatus and manufacturing method Active JP5396239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252895A JP5396239B2 (en) 2008-11-17 2009-11-04 Solid electrolyte manufacturing apparatus and manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008292967 2008-11-17
JP2008292967 2008-11-17
JP2009252895A JP5396239B2 (en) 2008-11-17 2009-11-04 Solid electrolyte manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2010140893A true JP2010140893A (en) 2010-06-24
JP5396239B2 JP5396239B2 (en) 2014-01-22

Family

ID=42350825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252895A Active JP5396239B2 (en) 2008-11-17 2009-11-04 Solid electrolyte manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5396239B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186744A (en) * 2009-01-15 2010-08-26 Idemitsu Kosan Co Ltd Method of manufacturing lithium ion conductive solid electrolyte
WO2010116732A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Glass comprising solid electrolyte particles and lithium battery
JP2010241643A (en) * 2009-04-07 2010-10-28 Toyota Motor Corp Method for producing lithium ion conductive sulfide-based crystallized glass and method for producing formed body of lithium ion conductive sulfide-based crystallized glass
WO2013042371A1 (en) 2011-09-22 2013-03-28 出光興産株式会社 Glass particles
WO2013069243A1 (en) 2011-11-07 2013-05-16 出光興産株式会社 Solid electrolyte
JP2013222650A (en) * 2012-04-18 2013-10-28 Idemitsu Kosan Co Ltd Manufacturing method of ion conductive substance
WO2014002483A1 (en) 2012-06-29 2014-01-03 出光興産株式会社 Positive electrode mix
WO2014073197A1 (en) 2012-11-06 2014-05-15 出光興産株式会社 Solid electrolyte
JP2014093263A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte and lithium battery
JP2014118328A (en) * 2012-12-18 2014-06-30 Taiheiyo Cement Corp Method for manufacturing an olivine-type silicate compound including a transition metal
KR20150039573A (en) 2013-10-02 2015-04-10 삼성전자주식회사 Sulfide-based solid electrolytes, preparing methods thereof, and solid state batteries containing the same
JP2015179649A (en) * 2014-03-20 2015-10-08 出光興産株式会社 Method of producing crystallized sulfide-based solid electrolyte
JP2015207521A (en) * 2014-04-23 2015-11-19 出光興産株式会社 Apparatus and method for production of solid electrolyte
JP2015232965A (en) * 2014-06-10 2015-12-24 三星電子株式会社Samsung Electronics Co.,Ltd. Sulfide solid electrolyte, and method of producing sulfide solid electrolyte
US9761906B2 (en) 2012-12-27 2017-09-12 Toyota Jidosha Kabushiki Kaisha Method for manufacturing sulfide solid electrolyte
WO2018110647A1 (en) 2016-12-14 2018-06-21 出光興産株式会社 Method for producing sulfide solid electrolyte
US10020535B2 (en) 2015-12-01 2018-07-10 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
US10280109B2 (en) 2014-10-31 2019-05-07 Idemitsu Kosan Co., Ltd. Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
WO2020105736A1 (en) 2018-11-22 2020-05-28 出光興産株式会社 Sulfide solid electrolyte and treatment method therefor
WO2020105737A1 (en) 2018-11-22 2020-05-28 出光興産株式会社 Method for producing solid electrolyte, and electrolyte precursor
CN112599848A (en) * 2020-12-11 2021-04-02 浙江锋锂新能源科技有限公司 Batch production method of sulfide solid electrolyte
WO2021230189A1 (en) 2020-05-13 2021-11-18 出光興産株式会社 Solid electrolyte producing method
WO2021240913A1 (en) 2020-05-27 2021-12-02 出光興産株式会社 Electrode mixture and method for producing same
KR20220089899A (en) 2020-12-22 2022-06-29 울산대학교 산학협력단 Method for preparing solid electrolyte and solid electrolyte prepared therefrom
DE112020005721T5 (en) 2019-11-21 2022-09-08 Idemitsu Kosan Co., Ltd. PROCESS FOR THE PREPARATION OF A SULPHIDE SOLID ELECTROLYTE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047977A1 (en) * 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
JP2009110920A (en) * 2007-10-11 2009-05-21 Idemitsu Kosan Co Ltd Manufacturing method of sulfide based solid electrolyte, all solid lithium secondary battery, all solid lithium primary cell, and device equipped with these

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047977A1 (en) * 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
JP2009110920A (en) * 2007-10-11 2009-05-21 Idemitsu Kosan Co Ltd Manufacturing method of sulfide based solid electrolyte, all solid lithium secondary battery, all solid lithium primary cell, and device equipped with these

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186744A (en) * 2009-01-15 2010-08-26 Idemitsu Kosan Co Ltd Method of manufacturing lithium ion conductive solid electrolyte
JP2010241643A (en) * 2009-04-07 2010-10-28 Toyota Motor Corp Method for producing lithium ion conductive sulfide-based crystallized glass and method for producing formed body of lithium ion conductive sulfide-based crystallized glass
US9051201B2 (en) 2009-04-10 2015-06-09 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
WO2010116732A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Glass comprising solid electrolyte particles and lithium battery
US11075404B2 (en) 2009-04-10 2021-07-27 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
US11431024B2 (en) 2009-04-10 2022-08-30 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
WO2013042371A1 (en) 2011-09-22 2013-03-28 出光興産株式会社 Glass particles
US20160043433A1 (en) * 2011-09-22 2016-02-11 Idemitsu Kosan Co., Ltd. Glass particles
WO2013069243A1 (en) 2011-11-07 2013-05-16 出光興産株式会社 Solid electrolyte
EP3361545A1 (en) 2011-11-07 2018-08-15 Idemitsu Kosan Co., Ltd. Solid electrolyte
JP2013222650A (en) * 2012-04-18 2013-10-28 Idemitsu Kosan Co Ltd Manufacturing method of ion conductive substance
WO2014002483A1 (en) 2012-06-29 2014-01-03 出光興産株式会社 Positive electrode mix
JP2014093263A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte and lithium battery
WO2014073197A1 (en) 2012-11-06 2014-05-15 出光興産株式会社 Solid electrolyte
JP2014118328A (en) * 2012-12-18 2014-06-30 Taiheiyo Cement Corp Method for manufacturing an olivine-type silicate compound including a transition metal
US9761906B2 (en) 2012-12-27 2017-09-12 Toyota Jidosha Kabushiki Kaisha Method for manufacturing sulfide solid electrolyte
KR20150039573A (en) 2013-10-02 2015-04-10 삼성전자주식회사 Sulfide-based solid electrolytes, preparing methods thereof, and solid state batteries containing the same
KR102287814B1 (en) 2013-10-02 2021-08-10 삼성전자주식회사 Sulfide-based solid electrolytes, preparing methods thereof, and solid state batteries containing the same
JP2015179649A (en) * 2014-03-20 2015-10-08 出光興産株式会社 Method of producing crystallized sulfide-based solid electrolyte
JP2015207521A (en) * 2014-04-23 2015-11-19 出光興産株式会社 Apparatus and method for production of solid electrolyte
JP2015232965A (en) * 2014-06-10 2015-12-24 三星電子株式会社Samsung Electronics Co.,Ltd. Sulfide solid electrolyte, and method of producing sulfide solid electrolyte
US10280109B2 (en) 2014-10-31 2019-05-07 Idemitsu Kosan Co., Ltd. Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
US10020535B2 (en) 2015-12-01 2018-07-10 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
WO2018110647A1 (en) 2016-12-14 2018-06-21 出光興産株式会社 Method for producing sulfide solid electrolyte
WO2020105736A1 (en) 2018-11-22 2020-05-28 出光興産株式会社 Sulfide solid electrolyte and treatment method therefor
WO2020105737A1 (en) 2018-11-22 2020-05-28 出光興産株式会社 Method for producing solid electrolyte, and electrolyte precursor
DE112020005721T5 (en) 2019-11-21 2022-09-08 Idemitsu Kosan Co., Ltd. PROCESS FOR THE PREPARATION OF A SULPHIDE SOLID ELECTROLYTE
WO2021230189A1 (en) 2020-05-13 2021-11-18 出光興産株式会社 Solid electrolyte producing method
WO2021240913A1 (en) 2020-05-27 2021-12-02 出光興産株式会社 Electrode mixture and method for producing same
CN112599848A (en) * 2020-12-11 2021-04-02 浙江锋锂新能源科技有限公司 Batch production method of sulfide solid electrolyte
KR20220089899A (en) 2020-12-22 2022-06-29 울산대학교 산학협력단 Method for preparing solid electrolyte and solid electrolyte prepared therefrom

Also Published As

Publication number Publication date
JP5396239B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5396239B2 (en) Solid electrolyte manufacturing apparatus and manufacturing method
JP5460283B2 (en) Method for producing lithium sulfide
CN108780683B (en) Solid electrolyte and method for producing solid electrolyte
JP6145091B2 (en) Ion conductive material manufacturing method, ion conductive material, crystallized ion conductive material, and battery
JP5599573B2 (en) Glass and lithium battery comprising solid electrolyte particles
JP6055770B2 (en) Glass particles
JP5303428B2 (en) Lithium sulfide and method for producing the same
JP5396033B2 (en) Method for producing sulfide-based solid electrolyte, all-solid lithium secondary battery, all-solid lithium primary battery, and apparatus equipped with these
WO2014192309A1 (en) Production method of solid electrolyte
JP5414143B2 (en) Method for producing sulfide solid electrolyte
CN110073536B (en) Method for producing sulfide solid electrolyte
JP6186296B2 (en) Method for producing crystallized sulfide solid electrolyte
JP2010030889A (en) Production method for lithium ion-conductive sulfide glass, production method for lithium ion-conductive sulfide glass ceramic, and mechanical milling apparatus for sulfide glass production
JP6122708B2 (en) Method for producing sulfide solid electrolyte
JP2010090003A (en) Method of producing sulfide-based solid electrolyte
JP5823811B2 (en) Ion conductive material manufacturing method, ion conductive material, crystallized ion conductive material, and battery
JP2013222650A (en) Manufacturing method of ion conductive substance
EP3181529A1 (en) Method of manufacturing a crystallized glass for secondary battery and an electrode comprising sulfide
JP2015002053A (en) Solid electrolytic composition
JP2014091664A (en) Solid electrolyte glass particles and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5396239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150