JP2010139602A - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
JP2010139602A
JP2010139602A JP2008314127A JP2008314127A JP2010139602A JP 2010139602 A JP2010139602 A JP 2010139602A JP 2008314127 A JP2008314127 A JP 2008314127A JP 2008314127 A JP2008314127 A JP 2008314127A JP 2010139602 A JP2010139602 A JP 2010139602A
Authority
JP
Japan
Prior art keywords
light
birefringent crystal
waveguide
vertical line
angle formed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008314127A
Other languages
Japanese (ja)
Inventor
Teruhiro Kubo
輝洋 久保
Norihisa Naganuma
典久 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008314127A priority Critical patent/JP2010139602A/en
Publication of JP2010139602A publication Critical patent/JP2010139602A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform optical multiplexing and demultiplexing for polarized waves using a birefringent crystal without a lens or the like. <P>SOLUTION: A waveguide substrate 10 where a λ/2 plate 13 is stuck to the end face 11b thereof is shaped so that an end face 11a includes an angle θa. As to the positional relationship between the waveguide substrate 10 and the birefringent crystal 14, the waveguide substrate 10 and the birefringent crystal 14 are positioned so that abnormal light emitted through the λ/2 plate 13 and normal light emitted from a waveguide 11 are multiplexed in the interior of the birefringent crystal 14 to emit the multiplexed light to the outside, and when signal light entering the birefringent crystal 14 from the outside are demultiplexed into normal light and abnormal light in the interior of the birefringent crystal 14, the abnormal light emitted from the birefringent crystal 14 becomes normal light and enters a waveguide 12 through the λ/2 plate 13, and the normal light emitted from the birefringent crystal 14 enters the waveguide 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、偏波の合分波を行う光モジュールに関する。   The present invention relates to an optical module that performs polarization multiplexing / demultiplexing.

近年、光通信ネットワークにおいて、伝送容量を増大させるために、信号光の互いに直交する2つの偏波を、送信側で合波して伝送し、受信側で分波することで、1チャネル当りの通信速度を上げる光伝送方式が開発されている。   In recent years, in an optical communication network, in order to increase the transmission capacity, two orthogonal polarizations of signal light are transmitted by being combined on the transmitting side and demultiplexed on the receiving side. Optical transmission systems that increase communication speed have been developed.

また、WDM(Wavelength Division Multiplexing)通信用の光ファイバ増幅器では、複数チャネルの波長多重された信号光を高出力に増幅して伝送するが、チャネル数が増えるにつれて、増幅に必要な励起光パワーも高くなるため、高出力の励起光源が必要とされる。このような励起光の高出力化を図るために、励起光の互いに直交する2つの偏波を合波することで、励起光パワーを増大する励起光源モジュールが開発されている。   In addition, an optical fiber amplifier for WDM (Wavelength Division Multiplexing) communication amplifies and transmits a plurality of channels of wavelength-multiplexed signal light to a high output. However, as the number of channels increases, the pumping light power required for amplification also increases. Therefore, a high-power excitation light source is required. In order to increase the output of the pumping light, a pumping light source module that increases the pumping light power by combining two orthogonal polarizations of the pumping light has been developed.

ここで、偏波合分波素子としては、一般的に、PBS(Polarization Beam Splitter:偏光ビームスプリッタ)や方解石などの複屈折性の結晶が利用される。なお、複屈折とは、結晶、その他の異方性物質に入射する光が、互いに垂直な振動方向を持つ2つの光に分離する現象のことである。   Here, as the polarization multiplexing / demultiplexing element, a birefringent crystal such as PBS (Polarization Beam Splitter) or calcite is generally used. Birefringence is a phenomenon in which light incident on a crystal or other anisotropic substance is separated into two lights having vibration directions perpendicular to each other.

例えば、方解石に光が入射すると、光は2種類の角度で屈折して中を進行するにつれて分離して2つに分かれて出射する。このように2つ(以上)の屈折角を示す現象を複屈折という。   For example, when light is incident on calcite, the light is refracted at two different angles and separated into two as it travels through and exits. Such a phenomenon showing two (or more) refraction angles is called birefringence.

図5はPBSを示す図である。PBS50は、直角プリズム51の斜面に誘電多層膜53を蒸着し、有機系接着剤を用いて、直角プリズム51、52の斜面同士を貼り合わせて構成されたキューブ状の素子である。   FIG. 5 shows PBS. The PBS 50 is a cube-shaped element configured by depositing a dielectric multilayer film 53 on the inclined surface of the right-angle prism 51 and bonding the inclined surfaces of the right-angle prisms 51 and 52 using an organic adhesive.

PBS50に自然光(無偏光)が入射すると、互いに直交する2つの偏波が生成して出射される。出射された光のうち、光軸に平行な振動面の光を異常光(extraordinary ray)と呼び、光軸に垂直な振動面の光を常光(ordinary ray)と呼ぶ。通常、常光はoと表記され、異常光はeと表記される。   When natural light (non-polarized light) is incident on the PBS 50, two orthogonally polarized waves are generated and emitted. Of the emitted light, light on the vibration plane parallel to the optical axis is called extraordinary ray, and light on the vibration plane perpendicular to the optical axis is called ordinary light. Normally, ordinary light is written as o and abnormal light is written as e.

なお、互いに垂直な常光と異常光とが入射して、無偏波の光が生成されて出射するといったような、上記の光の流れと逆の合波を行う偏波合波素子として使用する場合は、PBC(Polarization Beam Combiner:偏光ビームコンバイナ)と呼ばれる。   It is used as a polarization multiplexing element that performs multiplexing opposite to the above-described light flow, such that normal light and extraordinary light that are perpendicular to each other are incident and non-polarized light is generated and emitted. In this case, it is called a PBC (Polarization Beam Combiner).

PBS50は、安価であるため、偏光子や分光デバイスなどに広く使用されるが、透過波長帯域が一般的に狭く、また、接着加工されているために耐熱性に弱いため、高出力の光が入射すると接着力が低下するなどの欠点を持っている。   PBS50 is widely used for polarizers and spectroscopic devices because it is inexpensive, but the transmission wavelength band is generally narrow, and because it is bonded, it is not heat resistant, so high output light It has drawbacks such as reduced adhesive strength when incident.

図6は複屈折性結晶を示す図である。複屈折性結晶60に対して、常光と異常光とが入射ポイントp1、p2からそれぞれ入射し、常光と異常光が複屈折性結晶60内部を進むにつれて近接し、出射ポイントp3で合波して、合波光が出射される。   FIG. 6 shows a birefringent crystal. Ordinary light and extraordinary light are incident on the birefringent crystal 60 from the incident points p1 and p2, respectively. The ordinary light and extraordinary light come closer to each other as they travel through the birefringent crystal 60, and are combined at the emission point p3. The combined light is emitted.

一般に、複屈折性結晶は、PBSと比べて高価ではあるが、結晶の種類によっては広い透過波長帯域を実現し、耐熱性にも優れているという特徴を有している。また、複屈折性結晶の中でも特に、複屈折性が大きなルチル(rutile)結晶が、偏波合分波素子として広く用いられている(複屈折性が大きいということは、常光の屈折率と異常光の屈折率との差が大きいということである)。   In general, a birefringent crystal is more expensive than PBS, but has a characteristic that it has a wide transmission wavelength band and is excellent in heat resistance depending on the type of crystal. In particular, among birefringent crystals, a rutile crystal having a large birefringence is widely used as a polarization multiplexing / demultiplexing element. The difference from the refractive index of light is large).

従来技術として、複屈折性結晶を用いて信号光偏波の合成を行う光ファイバ増幅器として、例えば、特許文献1が提案されている。また、複屈折性結晶を用いて励起光偏波の合波を行う励起光源モジュールとして、例えば、特許文献2が提案されている。
特開2002−252420号公報(段落番号〔0037〕〜〔0044〕,第2図) 特開平11−258453号公報(段落番号〔0051〕〜〔0064〕,第1図)
As a prior art, for example, Patent Document 1 has been proposed as an optical fiber amplifier that synthesizes signal light polarization using a birefringent crystal. For example, Patent Document 2 has been proposed as an excitation light source module that combines excitation light polarization using a birefringent crystal.
JP 2002-252420 A (paragraph numbers [0037] to [0044], FIG. 2) Japanese Patent Laid-Open No. 11-258453 (paragraph numbers [0051] to [0064], FIG. 1)

複屈折性結晶内では、常光の屈折率と異常光の屈折率とが互いに異なるため、光が複屈折性結晶に入射すれば、結晶中を進む常光の光路と、結晶中を進む異常光の光路とが分離するので、偏波の分波が行われることになる(光の進行方向を逆に考えれば、偏波の合波を行うことができる)。   In a birefringent crystal, the refractive index of ordinary light and the refractive index of extraordinary light are different from each other, so that when light enters the birefringent crystal, the path of ordinary light traveling in the crystal and the extraordinary light traveling in the crystal Since the optical path is separated, polarization demultiplexing is performed (polarization multiplexing can be performed if the traveling direction of light is considered in reverse).

ただし、複屈折性結晶として、たとえルチル結晶のような複屈折性の大きな結晶を選択したとしても、それは結晶の種類の中において、複屈折性が大きいということであって、常光の屈折率と異常光の屈折率とは、一般的にどのような複屈折性結晶であっても、非常に近い値をとるものである(屈折率差が小さい)。   However, even if a crystal having a large birefringence such as a rutile crystal is selected as the birefringent crystal, it means that the birefringence is large among the types of crystals, and the refractive index of ordinary light and The refractive index of extraordinary light is generally very close to any birefringent crystal (the difference in refractive index is small).

このため、図6において、例えば、偏波の合波を考えた場合、複屈折性結晶60に対する常光と異常光のそれぞれの入射ポイントp1、p2は、非常に近接した位置にあるので、これらの入射ポイントp1、p2に対して、常光、異常光を正確に入射させるためには(複屈折性結晶60の結晶内部で、常光と異常光とが進むにつれてポイントp3で合波して出射させるためには)、複屈折性結晶60の前段において、レンズやプリズム等の光学素子を配置して、合波すべき光の位置関係を精密に調整しなければならない。   For this reason, in FIG. 6, for example, when considering the combination of polarized waves, the incident points p1 and p2 of the ordinary light and the extraordinary light with respect to the birefringent crystal 60 are in very close positions. In order to make normal light and extraordinary light accurately incident on the incident points p1 and p2 (in order to combine and emit the normal light and extraordinary light at the point p3 as the normal light and extraordinary light travel inside the birefringent crystal 60). In other words, an optical element such as a lens or a prism must be arranged in the previous stage of the birefringent crystal 60 to precisely adjust the positional relationship of light to be combined.

図7は従来の偏波合分波モジュールの構成を示す図である。合波の様子を示している。偏波合分波モジュール6は、導波路基板61、λ/2板62、補正レンズ63、複屈折性結晶60から構成される。   FIG. 7 is a diagram showing a configuration of a conventional polarization multiplexing / demultiplexing module. This shows the state of multiplexing. The polarization multiplexing / demultiplexing module 6 includes a waveguide substrate 61, a λ / 2 plate 62, a correction lens 63, and a birefringent crystal 60.

λ/2板62は、導波路基板61と補正レンズ63との間に配置され、光は吸収せずに、入射した常光の偏光面をπだけ回転させて、異常光として出射する波長板である(または入射した異常光をπ回転させて常光として出射する)。   The λ / 2 plate 62 is a wavelength plate that is disposed between the waveguide substrate 61 and the correction lens 63 and does not absorb light, but rotates the polarization plane of the incident ordinary light by π and emits it as extraordinary light. Yes (or incident extraordinary light is rotated by π and emitted as ordinary light).

導波路基板61上の2本の導波路61a、61bを、常光が伝播して、導波路基板61から出射される。導波路61aから出射した常光は、補正レンズ63に入射する。また、導波路61bから出射した常光は、λ/2板62を通過することで異常光となり、異常光は補正レンズ63に入射する。   Ordinary light propagates through the two waveguides 61 a and 61 b on the waveguide substrate 61 and is emitted from the waveguide substrate 61. Ordinary light emitted from the waveguide 61 a enters the correction lens 63. Further, ordinary light emitted from the waveguide 61 b becomes abnormal light by passing through the λ / 2 plate 62, and the abnormal light enters the correction lens 63.

補正レンズ63は、複屈折性結晶60の内側境界面60−1の適切な位置に、常光と異常光とが入射するように、光路補正を行うレンズである。常光と異常光が、この補正レンズ63を通過することで、常光と異常光の光路の向きが補正されて、複屈折性結晶60の内側境界面60−1の適切なポイントに入射する。これにより、複屈折性結晶60の外側境界面60−2からは、常光と異常光とが合波された光が出射する。   The correction lens 63 is a lens that performs optical path correction so that ordinary light and extraordinary light are incident on an appropriate position of the inner boundary surface 60-1 of the birefringent crystal 60. When ordinary light and extraordinary light pass through the correction lens 63, the directions of the optical paths of the ordinary light and extraordinary light are corrected, and are incident on appropriate points on the inner boundary surface 60-1 of the birefringent crystal 60. Thereby, light obtained by combining ordinary light and extraordinary light is emitted from the outer boundary surface 60-2 of the birefringent crystal 60.

このように、複屈折性結晶を用いて合分波を行う場合は、合分波する光の位置関係を精密に調整する必要があるので、従来では、補正のためのレンズやプリズム等を導波路基板61と複屈折性結晶60との間に挿入して光路調整を行っていた。   In this way, when performing multiplexing / demultiplexing using a birefringent crystal, it is necessary to precisely adjust the positional relationship of the light to be multiplexed / demultiplexed. The optical path was adjusted by inserting between the waveguide substrate 61 and the birefringent crystal 60.

しかし、補正のためのレンズやプリズム等が挿入すると、光学素子の点数が増えてしまい、その結果、実装スペースやコストが増大するといった問題があった。また、このような光学素子が配置されることにより、光路長が延伸することになるので、過剰損も増大するといった問題があった。   However, when a correction lens, prism, or the like is inserted, the number of optical elements increases, resulting in an increase in mounting space and cost. In addition, since such an optical element is arranged, the optical path length is extended, so that there is a problem that excessive loss also increases.

本発明はこのような点に鑑みてなされたものであり、複屈折性結晶を用いて偏波の合分波を行う際に、レンズ等の光学素子を用いずに、合分波すべき光の位置関係を最適化した光モジュールを提供することを目的とする。   The present invention has been made in view of the above points, and when performing polarization multiplexing / demultiplexing using a birefringent crystal, light to be multiplexed / demultiplexed without using an optical element such as a lens. It is an object of the present invention to provide an optical module that optimizes the positional relationship of

上記課題を解決するために、偏波の合分波を行う光モジュールが提供される。この光モジュールは、第1の導波路と、第2の導波路とが設けられ、前記第1の導波路の端部がある第1の端面と、前記第2の導波路の端部がある第2の端面とを有する導波路基板と、前記第2の端面に貼り付けられ、入射した光の偏光面を回転させる波長板と、常光と異常光との合分波を行うための複屈折性結晶とを備える。   In order to solve the above-described problems, an optical module that performs polarization multiplexing / demultiplexing is provided. The optical module is provided with a first waveguide and a second waveguide, and has a first end face having an end of the first waveguide and an end of the second waveguide. A waveguide substrate having a second end face, a wave plate attached to the second end face, for rotating the polarization plane of incident light, and birefringence for combining and splitting ordinary light and extraordinary light A crystal.

ここで、導波路基板は、第1の端面に傾斜角度がついた形状を有し、導波路基板と複屈折性結晶との位置関係は、波長板を介して出射した異常光と、第1の導波路から出射した常光とが複屈折性結晶の内部で合波して合波光が外部へ出射するように、かつ外部から複屈折性結晶に入射した信号光が、複屈折性結晶の内部で常光と異常光とに分波した際に、複屈折性結晶から出射した異常光は、波長板を介して常光となって第2の導波路に入射し、複屈折性結晶から出射した常光は、第1の導波路に入射するように、導波路基板と複屈折性結晶とが位置する。   Here, the waveguide substrate has a shape with an inclination angle on the first end face, and the positional relationship between the waveguide substrate and the birefringent crystal is such that the extraordinary light emitted through the wave plate and the first The ordinary light emitted from the waveguide is combined inside the birefringent crystal and the combined light is emitted to the outside, and the signal light incident on the birefringent crystal from the outside is inside the birefringent crystal. The extraordinary light emitted from the birefringent crystal when separated into ordinary light and extraordinary light becomes ordinary light via the wave plate, enters the second waveguide, and is emitted from the birefringent crystal. , The waveguide substrate and the birefringent crystal are positioned so as to be incident on the first waveguide.

レンズ等の光路調整のための光学素子を用いずに、複屈折性結晶を用いた偏波の合分波を行うことが可能になり、実装規模や過剰損の低減化を図ることが可能になる。   It is possible to perform polarization multiplexing / demultiplexing using a birefringent crystal without using an optical element for adjusting the optical path such as a lens, thereby reducing the mounting scale and excess loss. Become.

以下、本発明の実施の形態を図面を参照して説明する。図1は光モジュールの構成を示す図である。光モジュール1は、導波路基板10、波長板(以下、λ/2板)13、複屈折性結晶14から構成され、偏波の合分波を行うモジュールである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of an optical module. The optical module 1 includes a waveguide substrate 10, a wave plate (hereinafter referred to as λ / 2 plate) 13, and a birefringent crystal 14, and is a module that performs polarization multiplexing / demultiplexing.

導波路基板10は、導波路11(第1の導波路)と、導波路11と平行な導波路12(第2の導波路)とが設けられ、導波路11の端部がある端面11a(第1の端面)と、導波路12の端部がある端面11b(第2の端面)とを有している。   The waveguide substrate 10 is provided with a waveguide 11 (first waveguide) and a waveguide 12 (second waveguide) parallel to the waveguide 11, and an end surface 11 a (with an end portion of the waveguide 11). A first end face) and an end face 11b (second end face) on which the end of the waveguide 12 is provided.

λ/2板13は、端面11bに直接貼り付けられ、光は吸収せずに、入射した光の偏光面をπだけ回転させて、常光が入射した場合は異常光として出射し、異常光が入射した場合は常光として出射する。複屈折性結晶14は、常光と異常光との合分波を行う。   The λ / 2 plate 13 is directly attached to the end face 11b, does not absorb light, rotates the polarization plane of incident light by π, and emits abnormal light when normal light is incident. When incident, it is emitted as ordinary light. The birefringent crystal 14 performs multiplexing / demultiplexing of ordinary light and extraordinary light.

ここで、導波路基板10は、端面11aを研磨して傾斜角度θaがついた形状を有している。また、導波路基板10と複屈折性結晶14との位置関係は、導波路11、12から出射された光が複屈折性結晶14で合波されるように、かつ複屈折性結晶14で分波した光が導波路11、12に入射するように、導波路基板10と複屈折性結晶14とが位置する。   Here, the waveguide substrate 10 has a shape with an inclination angle θa by polishing the end face 11a. The positional relationship between the waveguide substrate 10 and the birefringent crystal 14 is such that light emitted from the waveguides 11 and 12 is multiplexed by the birefringent crystal 14 and separated by the birefringent crystal 14. The waveguide substrate 10 and the birefringent crystal 14 are positioned so that the waved light enters the waveguides 11 and 12.

すなわち、λ/2板13を介して出射した異常光と、導波路11から出射した常光とが、複屈折性結晶14の内部で合波して合波光となって(信号光sとなって)外部へ出射するように、かつ外部から複屈折性結晶14に入射した信号光sが、複屈折性結晶14の内部で常光と異常光とに分波した際に、複屈折性結晶14から出射した異常光は、λ/2板13を介して常光となって導波路12に入射し、複屈折性結晶14から出射した常光は、導波路11に入射するように、導波路基板10と複屈折性結晶14とが位置する。   That is, the extraordinary light emitted through the λ / 2 plate 13 and the ordinary light emitted from the waveguide 11 are combined inside the birefringent crystal 14 to be combined light (signal light s). ) When the signal light s entering the birefringent crystal 14 so as to be emitted to the outside is demultiplexed into ordinary light and extraordinary light inside the birefringent crystal 14, the birefringent crystal 14 The emitted extraordinary light becomes ordinary light through the λ / 2 plate 13 and enters the waveguide 12, and the ordinary light emitted from the birefringent crystal 14 enters the waveguide substrate 10 so that it enters the waveguide 11. A birefringent crystal 14 is located.

なお、図1では分波時の光の進行方向を示しているが、合波時には単に光の進行方向が逆になる。
次に導波路基板10と複屈折性結晶14との位置関係について詳しく説明する。図2は光モジュールの各構成部位の位置関係を示す図である。なお、常光および異常光の進行方向に関する角度は、同じ考え方で示すことができるので、図2では主に常光の進行方向に関する角度を示している。また、分波と合波は、単に光の進行方向が互いに逆向きになるだけなので、以下では分波時の常光の進行に注目して説明する。さらに角度についてはすべて鋭角側の角度を選択する。
Although FIG. 1 shows the traveling direction of light during demultiplexing, the traveling direction of light is simply reversed at the time of multiplexing.
Next, the positional relationship between the waveguide substrate 10 and the birefringent crystal 14 will be described in detail. FIG. 2 is a diagram illustrating the positional relationship between the components of the optical module. In addition, since the angle regarding the advancing direction of normal light and extraordinary light can be shown with the same view, in FIG. 2, the angle regarding the advancing direction of normal light is mainly shown. In addition, since the demultiplexing and the multiplexing are merely in which the traveling directions of the light are opposite to each other, the following description will be made by paying attention to the progress of the ordinary light during the demultiplexing. Further, for the angle, an acute angle is selected.

複屈折性結晶には、楔型(一端が厚く、もう一端に向かって徐々に細くなるV字形状)の複屈折性結晶を用いる(複屈折性結晶14aと呼ぶ)。導波路基板10の端面11bには、λ/2板13が貼り付けられており、λ/2板13の近傍に、楔部分を下方に向けた複屈折性結晶14aが配置する。   As the birefringent crystal, a wedge-shaped birefringent crystal (V-shape that is thick at one end and gradually narrows toward the other end) is used (referred to as birefringent crystal 14a). A λ / 2 plate 13 is affixed to the end face 11 b of the waveguide substrate 10, and a birefringent crystal 14 a with a wedge portion facing downward is disposed in the vicinity of the λ / 2 plate 13.

ここで、楔部分の頂点Pに引いた垂直線h1と、信号光sが入射する複屈折性結晶14aの境界面14−1とがなす角度をθ1とし、垂直線h1と、信号光sの分波光が出射する複屈折性結晶14aの境界面14−2とがなす角度をθtとする。   Here, the angle formed by the vertical line h1 drawn to the apex P of the wedge portion and the boundary surface 14-1 of the birefringent crystal 14a on which the signal light s enters is θ1, and the vertical line h1 and the signal light s An angle formed by the boundary surface 14-2 of the birefringent crystal 14a from which the demultiplexed light is emitted is defined as θt.

信号光sが複屈折性結晶14aの境界面14−1に入射すると、信号光sは常光と異常光とに分波されるが、信号光sが境界面14−1の垂直線h2に対してθ1の角度で入射した場合に、垂直線h2と、結晶内を進む常光(常光o1と呼ぶ)とのなす角度をθ2o、空気中の屈折率をn1、複屈折性結晶14a内の常光o1に対する屈折率をn2oとすると、スネルの法則から式(1a)が成り立ち、θ2oは式(1a−1)で求まる。   When the signal light s is incident on the boundary surface 14-1 of the birefringent crystal 14a, the signal light s is demultiplexed into ordinary light and abnormal light, but the signal light s is relative to the vertical line h2 of the boundary surface 14-1. Is incident at an angle of θ1, the angle formed by the vertical line h2 and ordinary light traveling in the crystal (referred to as ordinary light o1) is θ2o, the refractive index in air is n1, and the ordinary light o1 in the birefringent crystal 14a is If n2o is the refractive index with respect to, Equation (1a) is established from Snell's law, and θ2o is obtained from Equation (1a-1).

n2o・sinθ2o=n1・sinθ1・・・(1a)
θ2o=sin-1((n1/n2o)sinθ1)・・・(1a−1)
また、境界面14−2に引いた垂直線h3と、垂直線h2と平行で境界面14−2に引いた平行線paがなす角度は、楔角度θv(=θt+θ1)と等しく、結晶内の常光o1と平行線paとがなす角度はθ2oとなる(錯角の関係)。
n2o · sin θ2o = n1 · sin θ1 (1a)
θ2o = sin −1 ((n1 / n2o) sin θ1) (1a-1)
The angle formed by the vertical line h3 drawn on the boundary surface 14-2 and the parallel line pa parallel to the vertical line h2 and drawn on the boundary surface 14-2 is equal to the wedge angle θv (= θt + θ1), The angle formed by the ordinary light o1 and the parallel line pa is θ2o (relation between complex angles).

したがって、結晶内の常光o1が進行して境界面14−2を介して外部へ出射する場合、垂直線h3と常光o1とのなす角度をθ3oとすると、θ3oは式(2a)で求まる。
θ3o=θv−θ2o=θ1+θt−θ2o・・・(2a)
また、複屈折性結晶14aから出射した、外気中の常光(常光o2と呼ぶ)と、垂直線h3とがなす角度をθ4oとすると、スネルの法則から式(3a)が成り立ち、θ4oは式(3a−1)で求まる。
Accordingly, when the ordinary light o1 in the crystal travels and is emitted to the outside via the boundary surface 14-2, θ3o can be obtained by Expression (2a), where θ3o is an angle formed by the vertical line h3 and the ordinary light o1.
θ3o = θv−θ2o = θ1 + θt−θ2o (2a)
Further, assuming that the angle formed between the normal light (referred to as normal light o2) emitted from the birefringent crystal 14a and the vertical line h3 is θ4o, the equation (3a) is established from Snell's law, and θ4o is expressed as 3a-1).

n1・sinθ4o=n2o・sinθ3o・・・(3a)
θ4o=sin-1((n2o/n1)sinθ3o)・・・(3a−1)
さらに、常光o2と、x軸(図2の場合はx軸と信号光sの光軸とは平行)とがなす角度をθ5oとすると、x軸と垂直線h3とがなす角度はθtであるから、式(4a)が成り立つ。
n1 · sin θ4o = n2o · sin θ3o (3a)
θ4o = sin −1 ((n2o / n1) sin θ3o) (3a-1)
Furthermore, if the angle formed by the ordinary light o2 and the x axis (in the case of FIG. 2, the x axis and the optical axis of the signal light s are parallel) is θ5o, the angle formed by the x axis and the vertical line h3 is θt. Therefore, Expression (4a) is established.

θ5o=θ4o−θt・・・(4a)
一方、複屈折性結晶14aの境界面14−2を介して出射した常光o2は、導波路基板10の端面11aに端部を持つ導波路11へ入射する。端面11aに対する垂直線h4と、常光o2とのなす角度をθ6oとし、また、端面11aとx軸とがなす角度をθoとすると、常光o2と端面11aとx軸とで、図3に示すような三角形abcが作られるので、式(5a)が成り立ち、式(5a−1)からθ6oが求まる。
θ5o = θ4o−θt (4a)
On the other hand, the ordinary light o2 emitted through the boundary surface 14-2 of the birefringent crystal 14a enters the waveguide 11 having an end on the end surface 11a of the waveguide substrate 10. Assuming that the angle formed between the vertical line h4 with respect to the end face 11a and the ordinary light o2 is θ6o, and the angle formed between the end face 11a and the x axis is θo, the ordinary light o2, the end face 11a and the x axis are as shown in FIG. Since a simple triangle abc is created, equation (5a) is established, and θ6o is obtained from equation (5a-1).

π=θo+θ5o+θ6o+π/2・・・(5a)
θ6o=−θo−θ5o+π/2・・・(5a−1)
また、導波路11に入射して導波路11を伝播する常光(常光o3−1と呼ぶ)と、端面11aに対する垂直線h4とがなす角度、すなわち、導波路11と垂直線h4とがなす角度をθ7oとし、導波路11の屈折率をn3とすると(導波路12の屈折率もn3)、スネルの法則から式(6a)が成り立ち、θ7oは式(6a−1)で求まる。
π = θo + θ5o + θ6o + π / 2 (5a)
θ6o = −θo−θ5o + π / 2 (5a-1)
Further, the angle formed between ordinary light (referred to as ordinary light o3-1) that is incident on the waveguide 11 and propagates through the waveguide 11, and the vertical line h4 with respect to the end face 11a, that is, the angle formed between the waveguide 11 and the vertical line h4. Is θ7o, and the refractive index of the waveguide 11 is n3 (the refractive index of the waveguide 12 is also n3), Equation (6a) is established from Snell's law, and θ7o is obtained by Equation (6a-1).

n3・sinθ7o=n1・sinθ6o・・・(6a)
θ7o=sin-1((n1/n3)sinθ6o)・・・(6a−1)
そして、常光o3−1とx軸とのなす角度、すなわち、導波路11とx軸とのなす角度をθ8oとすると、式(7a)の関係があるので(図3参照)、θ8oは式(7a−1)で求まる。
n3 · sin θ7o = n1 · sin θ6o (6a)
θ7o = sin −1 ((n1 / n3) sin θ6o) (6a-1)
If the angle between the ordinary light o3-1 and the x-axis, that is, the angle between the waveguide 11 and the x-axis is θ8o, since there is a relationship of the equation (7a) (see FIG. 3), θ8o 7a-1).

π/2=θ7o+θ8o+θo・・・(7a)
θ8o=−θo−θ7o+π/2・・・(7a−1)
上記では常光に対する角度の算出式を示したが、異常光に対しても同様な式が成り立つ。考え方は同じなので、以下に異常光に関する角度の算出式のみ示す。ただし、複屈折性結晶14a内の異常光の屈折率をn2eとし、端面11bとx軸とがなす角度をθeとする。
π / 2 = θ7o + θ8o + θo (7a)
θ8o = −θo−θ7o + π / 2 (7a-1)
Although the calculation formula of the angle with respect to the ordinary light has been described above, the same formula holds for the abnormal light. Since the concept is the same, only the formula for calculating the angle related to abnormal light is shown below. However, the refractive index of extraordinary light in the birefringent crystal 14a is n2e, and the angle between the end face 11b and the x-axis is θe.

θ2e=sin-1((n1/n2e)sinθ1)・・・(1b−1)
θ3e=θv−θ2e=θ1+θt−θ2e・・・(2b)
θ4e=sin-1((n2e/n1)sinθ3e)・・・(3b−1)
θ5e=θ4e−θt・・・(4b)
θ6e=−θe−θ5e+π/2・・・(5b−1)
θ7e=sin-1((n1/n3)sinθ6e)・・・(6b−1)
θ8e=−θe−θ7e+π/2・・・(7b−1)
次に上記の式に対して具体的な数値を用いて説明する。図4は角度の値を示すテーブルである。なお、角度の単位は「°」である。空気中の光の屈折率n1を1、複屈折性結晶14a内の常光の屈折率n2oを2.451、複屈折性結晶14a内の異常光の屈折率n2eを2.709、導波路11、12の屈折率n3を2.14とする。
θ2e = sin −1 ((n1 / n2e) sin θ1) (1b-1)
θ3e = θv−θ2e = θ1 + θt−θ2e (2b)
θ4e = sin −1 ((n2e / n1) sin θ3e) (3b-1)
θ5e = θ4e−θt (4b)
θ6e = −θe−θ5e + π / 2 (5b−1)
θ7e = sin −1 ((n1 / n3) sin θ6e) (6b−1)
θ8e = −θe−θ7e + π / 2 (7b-1)
Next, the above formula will be described using specific numerical values. FIG. 4 is a table showing angle values. The unit of angle is “°”. The refractive index n1 of light in the air is 1, the refractive index n2o of ordinary light in the birefringent crystal 14a is 2.451, the refractive index n2e of extraordinary light in the birefringent crystal 14a is 2.709, the waveguide 11, The refractive index n3 of 12 is 2.14.

また、θ1=θt=8°、θo=47.9815°、θe=52.203°、θa=52.203−47.9815=4.2215°として、上記の式にもとづいて角度計算を行うと、図4のテーブルに示すような値となり、最終的にθ8o=θ8e=34.037°が求められる。   Further, when θ1 = θt = 8 °, θo = 47.9815 °, θe = 52.203 °, θa = 52.203−47.9815 = 4.2215 °, the angle calculation is performed based on the above formula. The values shown in the table of FIG. 4 are obtained, and θ8o = θ8e = 34.037 ° is finally obtained.

θ8oとθ8eとが同じ値になったということは、複屈折性結晶14aで信号光sが常光と異常光とに分波された際、常光は導波路11へ入射し、異常光はλ/2板13を介して常光となって導波路12へ入射することを意味しており、すなわち、レンズ等の光学素子を用いずに、導波路基板10と複屈折性結晶14aとの構成だけで、偏波の分波が行われていることを意味している。   The fact that θ8o and θ8e have the same value means that when the signal light s is demultiplexed into ordinary light and extraordinary light by the birefringent crystal 14a, the ordinary light enters the waveguide 11 and the extraordinary light is λ / It means that the light enters the waveguide 12 through the two plates 13 as ordinary light, that is, without using an optical element such as a lens, only the configuration of the waveguide substrate 10 and the birefringent crystal 14a. This means that polarization splitting is performed.

また、合波は単に光進行方向が逆向きになるだけなので、図2で示した位置関係のレイアウトを持つ光モジュール1に対して、外部から導波路11、12へ光が入射すれば、複屈折性結晶14aから合波光が出射されることになり、レンズ等の光学素子を用いずに、導波路基板10と複屈折性結晶14aとの構成だけで、偏波の合波を行うことが可能になる。   In addition, since the light is simply transmitted in the opposite direction, if the light is incident on the waveguides 11 and 12 from the outside with respect to the optical module 1 having the positional relationship layout shown in FIG. The combined light is emitted from the refractive crystal 14a, and polarization can be combined only by the configuration of the waveguide substrate 10 and the birefringent crystal 14a without using an optical element such as a lens. It becomes possible.

次に光モジュール1の構成要素を配置する上での角度関係についてまとめた内容を説明する。複屈折性結晶は、楔型の複屈折性結晶14aであって、常光および異常光が入射または出射する複屈折性結晶14の境界面である内側境界面14−2と、楔角θvを分割するように引いた第1の垂直線(垂直線h1)とのなす角度がθtである。   Next, a summary of the angular relationship in arranging the components of the optical module 1 will be described. The birefringent crystal is a wedge-shaped birefringent crystal 14a, and divides the wedge angle θv from the inner boundary surface 14-2 that is a boundary surface of the birefringent crystal 14 on which ordinary light and extraordinary light enter or exit. The angle formed with the first vertical line (vertical line h1) drawn in such a manner is θt.

また、導波路基板10は、端面11bとx軸とのなす角度がθeであり、傾斜角度をθaとして、端面11aとx軸とのなす角度を、θeからθaを引いたθoとする。
そして、端面11aに対する第2の垂直線(垂直線h4)と、導波路11を伝播する常光o3−1とがなす角度をθ7oとし、端面11bに対する第3の垂直線(垂直線h5)と、導波路12を伝播する常光o3−2とがなす角度をθ7eとした場合に、以下の式(8)を満たすように、導波路11と導波路12とが平行して導波路基板10上に設けられる(式(8)は、式(7a−1)、(7b−1)に対して、θ8o=θ8eとしたもの)。
The waveguide substrate 10 has an angle formed between the end surface 11b and the x axis as θe, an inclination angle as θa, and an angle formed between the end surface 11a and the x axis as θo obtained by subtracting θa from θe.
An angle formed between the second vertical line (vertical line h4) with respect to the end face 11a and the ordinary light o3-1 propagating through the waveguide 11 is θ7o, and a third vertical line (vertical line h5) with respect to the end face 11b, When the angle formed by the ordinary light o3-2 propagating through the waveguide 12 is θ7e, the waveguide 11 and the waveguide 12 are parallel to each other on the waveguide substrate 10 so as to satisfy the following formula (8). (Formula (8) is set to θ8o = θ8e with respect to formulas (7a-1) and (7b-1)).

θ7o+θo=θ7e+θe・・・(8)
また、複屈折性結晶14aと導波路基板10との位置関係については、内側境界面14−2に対する第4の垂直線(垂直線h3)と、外気中の常光o2とがなす角度をθ4oとし、端面11aに対する第2の垂直線(垂直線h4)と、外気中の常光o2とがなす角度をθ6oとした場合に、以下の式(9a)を満たす(式(4a)と式(5a−1)からθ5oを消去したものが式(9a))。
θ7o + θo = θ7e + θe (8)
Further, regarding the positional relationship between the birefringent crystal 14a and the waveguide substrate 10, the angle formed by the fourth vertical line (vertical line h3) with respect to the inner boundary surface 14-2 and the ordinary light o2 in the outside air is θ4o. When the angle formed between the second vertical line (vertical line h4) with respect to the end face 11a and the ordinary light o2 in the outside air is θ6o, the following expression (9a) is satisfied (expression (4a) and expression (5a− Equation (9a)) is obtained by eliminating θ5o from 1).

θ6o+θ4o=θt−θo+π/2・・・(9a)
また、内側境界面14−2に対する第4の垂直線(垂直線h3)と、外気中の異常光e2とがなす角度をθ4e(図示せず)とし、端面11bに対する第3の垂直線(垂直線h5)と、外気中の異常光e2とがなす角度をθ6e(図示せず)とした場合に、以下の式(9b)を満たす(式(4b)と式(5b−1)からθ5eを消去したものが式(9b))。
θ6o + θ4o = θt−θo + π / 2 (9a)
Further, an angle formed by the fourth vertical line (vertical line h3) with respect to the inner boundary surface 14-2 and the abnormal light e2 in the outside air is θ4e (not shown), and the third vertical line (vertical) with respect to the end surface 11b. When the angle formed between the line h5) and the abnormal light e2 in the outside air is θ6e (not shown), the following equation (9b) is satisfied (from equation (4b) and equation (5b-1), θ5e is What is erased is equation (9b)).

θ6e+θ4e=θt−θe+π/2・・・(9b)
式(9a)、(9b)を満たす角度で、複屈折性結晶14aと導波路基板10とが位置する。
θ6e + θ4e = θt−θe + π / 2 (9b)
The birefringent crystal 14a and the waveguide substrate 10 are positioned at an angle satisfying the expressions (9a) and (9b).

一方、信号光sが入射または合波光が出射する複屈折性結晶14aの境界面である外側境界面14−1と、第1の垂直線(垂直線h1)とのなす角度がθ1であって、外側境界面14−1に対して信号光sを入射する際は、外側境界面14−1に対する第5の垂直線(垂直線h2)と、信号光sとがなす角度がθ1となるように入射する。同様に、合波光が外側境界面14−1から出射する際は、外側境界面14−1に対する第5の垂直線(垂直線h2)に対して、角度がθ1で出射することになる。   On the other hand, the angle between the outer boundary surface 14-1 that is the boundary surface of the birefringent crystal 14a through which the signal light s is incident or the combined light is emitted and the first vertical line (vertical line h1) is θ1. When the signal light s is incident on the outer boundary surface 14-1, the angle formed by the fifth vertical line (vertical line h2) with respect to the outer boundary surface 14-1 and the signal light s is θ1. Is incident on. Similarly, when the combined light is emitted from the outer boundary surface 14-1, the angle is emitted at θ1 with respect to the fifth vertical line (vertical line h2) with respect to the outer boundary surface 14-1.

また、複屈折性結晶14aの楔角度θvは、第5の垂直線(垂直線h2)と、複屈折性結晶14aの内部を進む常光o1とがなす角度をθ2oとし、内側境界面14−2に対する第4の垂直線(垂直線h3)と、複屈折性結晶14aの内部を進む常光o1とがなす角度をθ3oとした場合に、式(2a)を満たす関係を有する。   The wedge angle θv of the birefringent crystal 14a is θ2o, which is an angle formed between the fifth vertical line (vertical line h2) and the ordinary light o1 traveling inside the birefringent crystal 14a, and the inner boundary surface 14-2. When the angle formed by the fourth vertical line (vertical line h3) with respect to and the ordinary light o1 traveling through the birefringent crystal 14a is θ3o, the relationship satisfies the expression (2a).

すなわち、複屈折性結晶14a内の常光の外側境界面14−1に対する屈折角、内側境界面14−2に対する屈折角および楔角の関係については式(2a)が成り立つ。
さらに、第5の垂直線(垂直線h2)と、複屈折性結晶14aの内部を進む異常光e1とがなす角度をθ2e(図示せず)とし、第4の垂直線(垂直線h3)と、複屈折性結晶14aの内部を進む異常光e1とがなす角度をθ3e(図示せず)とした場合に、式(2b)を満たす関係を有する。
That is, the relation (2a) holds for the relationship between the refraction angle of the ordinary light in the birefringent crystal 14a with respect to the outer boundary surface 14-1, the refraction angle with respect to the inner boundary surface 14-2, and the wedge angle.
Furthermore, an angle formed by the fifth vertical line (vertical line h2) and the extraordinary light e1 traveling through the birefringent crystal 14a is θ2e (not shown), and the fourth vertical line (vertical line h3) When the angle formed by the extraordinary light e1 traveling inside the birefringent crystal 14a is θ3e (not shown), the relationship satisfies the expression (2b).

すなわち、複屈折性結晶14a内の異常光の外側境界面14−1に対する屈折角、内側境界面14−2に対する屈折角および楔角の関係については式(2b)が成り立つ。
以上説明したように、光モジュール1によれば、導波路基板10と複屈折性結晶14との間に、従来光路調整に用いていたレンズやプリズム等の光学素子を挿入せずに、合分波を行うことができるので、光学素子を削減することができ、実装スペースやコストの低減化および光路長短尺化による過剰損の低減化を図ることが可能になる。
That is, the relationship between the refraction angle of the extraordinary light in the birefringent crystal 14a with respect to the outer boundary surface 14-1, the refraction angle with respect to the inner boundary surface 14-2, and the wedge angle is established.
As described above, according to the optical module 1, an optical element such as a lens or a prism used for conventional optical path adjustment is not inserted between the waveguide substrate 10 and the birefringent crystal 14. Since waves can be generated, the number of optical elements can be reduced, and it is possible to reduce the mounting space and cost, and to reduce excess loss by shortening the optical path length.

光モジュールの構成を示す図である。It is a figure which shows the structure of an optical module. 光モジュールの各構成部位の位置関係を示す図である。It is a figure which shows the positional relationship of each structure part of an optical module. 角度を説明するための図である。It is a figure for demonstrating an angle. 角度の値を示すテーブルである。It is a table which shows the value of an angle. PBSを示す図である。It is a figure which shows PBS. 複屈折性結晶を示す図である。It is a figure which shows a birefringent crystal. 従来の偏波合分波モジュールの構成を示す図である。It is a figure which shows the structure of the conventional polarization multiplexing / demultiplexing module.

符号の説明Explanation of symbols

1 光モジュール
10 導波路基板
11、12 導波路
11a、11b 端面
13 λ/2板
14 複屈折性結晶
θa 傾斜角度
s 信号光
DESCRIPTION OF SYMBOLS 1 Optical module 10 Waveguide board | substrate 11, 12 Waveguide 11a, 11b End surface 13 (lambda) / 2 board 14 Birefringent crystal (theta) a Inclination angle s Signal light

Claims (3)

偏波の合分波を行う光モジュールにおいて、
第1の導波路と、第2の導波路とが設けられ、前記第1の導波路の端部がある第1の端面と、前記第2の導波路の端部がある第2の端面とを有する導波路基板と、
前記第2の端面に貼り付けられ、入射した光の偏光面を回転させる波長板と、
常光と異常光との合分波を行うための複屈折性結晶と、
を備え、
前記導波路基板は、前記第1の端面に傾斜角度がついた形状を有し、
前記導波路基板と前記複屈折性結晶との位置関係は、
前記波長板を介して出射した異常光と、前記第1の導波路から出射した常光とが前記複屈折性結晶の内部で合波して合波光が外部へ出射するように、かつ外部から前記複屈折性結晶に入射した信号光が、前記複屈折性結晶の内部で常光と異常光とに分波した際に、前記複屈折性結晶から出射した異常光は、前記波長板を介して常光となって前記第2の導波路に入射し、前記複屈折性結晶から出射した常光は、前記第1の導波路に入射するように、前記導波路基板と前記複屈折性結晶とが位置する、
ことを特徴とする光モジュール。
In an optical module that performs polarization multiplexing and demultiplexing,
A first end face provided with a first waveguide and a second waveguide, the first end face having an end of the first waveguide, and the second end face having an end of the second waveguide; A waveguide substrate having
A wave plate attached to the second end face and rotating a polarization plane of incident light;
A birefringent crystal for combining and splitting ordinary light and extraordinary light;
With
The waveguide substrate has a shape with an inclination angle on the first end face;
The positional relationship between the waveguide substrate and the birefringent crystal is:
The extraordinary light emitted through the wave plate and the ordinary light emitted from the first waveguide are combined inside the birefringent crystal so that the combined light is emitted to the outside, and the outside from the outside When the signal light incident on the birefringent crystal is demultiplexed into ordinary light and extraordinary light inside the birefringent crystal, the extraordinary light emitted from the birefringent crystal is ordinary light through the wave plate. Thus, the waveguide substrate and the birefringent crystal are positioned so that the ordinary light incident on the second waveguide and emitted from the birefringent crystal enters the first waveguide. ,
An optical module characterized by that.
前記複屈折性結晶は、
楔型の結晶であって、常光および異常光が入射または出射する前記複屈折性結晶の境界面である内側境界面と、楔角を分割するように引いた第1の垂直線とのなす角度がθtであり、
前記導波路基板は、
前記第2の端面とx軸とのなす角度がθeであり、前記傾斜角度をθaとして、前記第1の端面と前記x軸とのなす角度を、θeからθaを引いたθoとし、
前記第1の端面に対する第2の垂直線と、前記第1の導波路を伝播する常光とがなす角度をθ7oとし、
前記第2の端面に対する第3の垂直線と、前記第2の導波路を伝播する常光とがなす角度をθ7eとした場合に、
θ7o+θo=θ7e+θe
を満たすように、前記第1の導波路と前記第2の導波路とが平行して前記導波路基板上に設けられ、
前記複屈折性結晶と前記導波路基板との位置関係は、
前記内側境界面に対する第4の垂直線と、外気中の常光とがなす角度をθ4oとし、前記第1の端面に対する前記第2の垂直線と、外気中の常光とがなす角度をθ6oとした場合に、
θ6o+θ4o=θt−θo+π/2
を満たし、
前記内側境界面に対する前記第4の垂直線と、外気中の異常光とがなす角度をθ4eとし、前記第2の端面に対する前記第3の垂直線と、外気中の異常光とがなす角度をθ6eとした場合に、
θ6e+θ4e=θt−θe+π/2
を満たすように、前記複屈折性結晶と前記導波路基板とが位置する、
ことを特徴とする請求項1記載の光モジュール。
The birefringent crystal is
An angle formed by an inner boundary surface, which is a boundary surface of the birefringent crystal, on which ordinary light and extraordinary light enter or exit, and a first vertical line drawn so as to divide the wedge angle. Is θt,
The waveguide substrate is
The angle formed between the second end surface and the x axis is θe, the tilt angle is defined as θa, and the angle formed between the first end surface and the x axis is defined as θo obtained by subtracting θa from θe,
An angle formed by the second vertical line with respect to the first end face and the ordinary light propagating through the first waveguide is θ7o,
When the angle formed by the third vertical line with respect to the second end face and the ordinary light propagating through the second waveguide is θ7e,
θ7o + θo = θ7e + θe
The first waveguide and the second waveguide are provided on the waveguide substrate in parallel so as to satisfy
The positional relationship between the birefringent crystal and the waveguide substrate is as follows:
The angle formed by the fourth vertical line with respect to the inner boundary surface and ordinary light in the outside air is θ4o, and the angle formed by the second vertical line with respect to the first end surface and ordinary light in the outside air is θ6o. In case,
θ6o + θ4o = θt−θo + π / 2
The filling,
An angle formed by the fourth vertical line with respect to the inner boundary surface and extraordinary light in the outside air is defined as θ4e, and an angle formed by the third vertical line with respect to the second end surface and extraordinary light in the outer air is defined. When θ6e is assumed,
θ6e + θ4e = θt−θe + π / 2
The birefringent crystal and the waveguide substrate are positioned so as to satisfy
The optical module according to claim 1.
前記信号光が入射または前記合波光が出射する前記複屈折性結晶の境界面である外側境界面と、前記第1の垂直線とのなす角度がθ1であって、
前記外側境界面に対して前記信号光を入射する際は、前記外側境界面に対する第5の垂直線と、前記信号光とがなす角度がθ1となるように入射し、
前記合波光が前記外側境界面から出射する際は、前記外側境界面の前記第5の垂直線に対する角度がθ1で出射し、
前記複屈折性結晶の楔角度は、
前記第5の垂直線と、前記複屈折性結晶の内部を進む常光とがなす角度をθ2oとし、前記内側境界面に対する前記第4の垂直線と、前記複屈折性結晶の内部を進む常光とがなす角度をθ3oとした場合に、、
θ3o+θ2o=θ1+θt
を満たし、
前記第5の垂直線と、前記複屈折性結晶の内部を進む異常光とがなす角度をθ2eとし、前記第4の垂直線と、前記複屈折性結晶の内部を進む異常光とがなす角度をθ3eとした場合に、
θ3e+θ2e=θ1+θt
を満たすことを特徴とする請求項2記載の光モジュール。
An angle formed between an outer boundary surface, which is a boundary surface of the birefringent crystal from which the signal light is incident or the combined light is emitted, and the first vertical line is θ1,
When the signal light is incident on the outer boundary surface, the signal light is incident so that an angle formed by the fifth vertical line with respect to the outer boundary surface and the signal light is θ1,
When the combined light is emitted from the outer boundary surface, the angle of the outer boundary surface with respect to the fifth vertical line is emitted at θ1,
The wedge angle of the birefringent crystal is
An angle formed by the fifth vertical line and ordinary light traveling inside the birefringent crystal is θ2o, the fourth vertical line with respect to the inner boundary surface, and ordinary light traveling inside the birefringent crystal; If the angle formed by is θ3o,
θ3o + θ2o = θ1 + θt
The filling,
The angle formed between the fifth vertical line and the extraordinary light traveling inside the birefringent crystal is θ2e, and the angle formed between the fourth vertical line and the extraordinary light traveling inside the birefringent crystal. Is θ3e,
θ3e + θ2e = θ1 + θt
The optical module according to claim 2, wherein:
JP2008314127A 2008-12-10 2008-12-10 Optical module Withdrawn JP2010139602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314127A JP2010139602A (en) 2008-12-10 2008-12-10 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314127A JP2010139602A (en) 2008-12-10 2008-12-10 Optical module

Publications (1)

Publication Number Publication Date
JP2010139602A true JP2010139602A (en) 2010-06-24

Family

ID=42349829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314127A Withdrawn JP2010139602A (en) 2008-12-10 2008-12-10 Optical module

Country Status (1)

Country Link
JP (1) JP2010139602A (en)

Similar Documents

Publication Publication Date Title
JP4740994B2 (en) Light modulator
JP5201508B2 (en) Waveguide-type wavelength domain optical switch
JP4937325B2 (en) Optical waveguide device
JP5589926B2 (en) Light modulator
JP5673283B2 (en) Polarization synthesizer
US10151883B2 (en) Optical coupling device and method
WO2014119450A1 (en) Optical modulator
JP6237691B2 (en) Optical module and optical fiber assembly
JP2009162830A (en) Light modulator
JP2015172630A (en) Optical transmission apparatus
JP6769378B2 (en) Light modulator
JP6233366B2 (en) Light modulator
JP2018072605A (en) Light modulator and light module
JP2010139602A (en) Optical module
JP6540576B2 (en) Light modulation device
WO2018216216A1 (en) Optical multiplexer
JP2004334169A (en) Beam multiplexing element, beam multiplexing method, beam separating element, beam separating method, and exciting light output device
JP2002107579A (en) Optical multiplexer/demultiplexer module
JP2012211971A (en) Polarized wave synthesizer
JP6413807B2 (en) Light modulator
JP2012173320A (en) Optical wiring board, laser beam multiplexing module, and projector using those
JP6269710B2 (en) Light modulation device
JP5084705B2 (en) Polarization combining type semiconductor laser light source and Raman amplifier provided with the same
JP2005043727A (en) Optical coupler, excitation module using it, and optical circulator
JP2015225263A (en) Optical multiplexer and manufacturing method of optical multiplexer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306