JP2010139110A - Latent heat recovery type heat exchanger - Google Patents

Latent heat recovery type heat exchanger Download PDF

Info

Publication number
JP2010139110A
JP2010139110A JP2008313737A JP2008313737A JP2010139110A JP 2010139110 A JP2010139110 A JP 2010139110A JP 2008313737 A JP2008313737 A JP 2008313737A JP 2008313737 A JP2008313737 A JP 2008313737A JP 2010139110 A JP2010139110 A JP 2010139110A
Authority
JP
Japan
Prior art keywords
exhaust
heat exchanger
passage
gap
latent heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008313737A
Other languages
Japanese (ja)
Inventor
Gu Kimura
遇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008313737A priority Critical patent/JP2010139110A/en
Priority to CN200910224993.XA priority patent/CN101749863B/en
Publication of JP2010139110A publication Critical patent/JP2010139110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a latent heat recovery type heat exchanger with improved heat efficiency. <P>SOLUTION: The latent heat recovery type heat exchanger 5 is formed with a lateral passage 500 for guiding gas combustion exhaust gas from an exhaust gas inlet 501 of a casing 50 to an exhaust gas outlet 502. Inside the lateral passage 500, two or more heat sink pipes 51 extending to a direction of crossing a flow of the combustion exhaust gas are laterally installed. Among a plurality of clearances between vertically-aligned adjacent heat sink pipes 51 on the exhaust gas inlet 501 side of the lateral passage 500, the undermost clearance C1 is set to be wider than the topmost clearance A1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃焼排気中に含まれる水蒸気を吸熱管の表面で凝縮させ、その燃焼排気から潜熱を回収する潜熱回収型熱交換器、特に、給湯器や風呂釜等に組み込まれる潜熱回収型熱交換器に関するものである。   The present invention relates to a latent heat recovery type heat exchanger that condenses water vapor contained in combustion exhaust gas on the surface of the heat absorption tube and recovers latent heat from the combustion exhaust gas, particularly latent heat recovery type heat incorporated in a water heater or a bath tub. It relates to an exchanger.

給湯器や風呂釜等に組み込まれる従来の潜熱回収型熱交換器(以下、「潜熱熱交換器」という)には、ケーシング内に形成された横通路の側壁相互間に複数の吸熱管を一定間隔で横設した構成のものが広く採用されている(例えば、特許文献1参照)。   In a conventional latent heat recovery type heat exchanger (hereinafter referred to as “latent heat exchanger”) incorporated in a water heater or a bath tub, a plurality of heat absorption tubes are fixed between the side walls of the lateral passage formed in the casing. The thing of the structure installed horizontally by the space | interval is employ | adopted widely (for example, refer patent document 1).

図5は、上記従来の潜熱熱交換器9を備えた給湯器8の縦断面概略図であり、潜熱熱交換器9の吸熱管91へ送り込まれた水は、顕熱回収用の熱交換器(以下、「顕熱熱交換器」という)4の吸熱管41を通ってカランや浴槽等の温水供給先Pへ導かれる一方、バーナ3で生成されたガスの燃焼排気は、顕熱熱交換器4の吸熱管41相互の間隙を通って潜熱熱交換器9側へ導かれるように構成されている。   FIG. 5 is a schematic vertical sectional view of a water heater 8 provided with the above-described conventional latent heat exchanger 9, and the water sent to the heat absorption pipe 91 of the latent heat exchanger 9 is a heat exchanger for sensible heat recovery. The heat exhaust pipe 41 (hereinafter referred to as “sensible heat exchanger”) 4 is led to a hot water supply destination P such as a currant or a bathtub, while the combustion exhaust gas produced by the burner 3 is subjected to sensible heat exchange. It is configured to be led to the latent heat exchanger 9 side through the gap between the heat absorption tubes 41 of the vessel 4.

潜熱熱交換器9は、ケーシング90内にその前後方向へ延びる横通路900を形成し、この横通路900内に複数の吸熱管91を収容したものであり、上述の顕熱熱交換器4を収容する筒状の缶体40の上端開放部402側に設けられている。   The latent heat exchanger 9 is formed by forming a transverse passage 900 extending in the front-rear direction in the casing 90 and housing a plurality of heat absorption tubes 91 in the transverse passage 900. The cylindrical can body 40 to be accommodated is provided on the upper end open portion 402 side.

ケーシング90の底面後部には、上記横通路900と缶体40の内部空間とを繋ぐ排気入口901が開設されており、顕熱熱交換器4の吸熱管41相互の間隙を通って缶体40の上端開放部402へ導かれた燃焼排気は、この排気入口901から上記横通路900の背面側へ導かれる。   An exhaust inlet 901 that connects the lateral passage 900 and the internal space of the can body 40 is opened at the bottom rear portion of the casing 90, and passes through the gap between the heat absorption tubes 41 of the sensible heat exchanger 4. The combustion exhaust gas guided to the upper end opening 402 is guided from the exhaust inlet 901 to the back side of the lateral passage 900.

また、ケーシング90の正面上部には、上記横通路900と給湯器8の外部とを繋ぐ排気出口902が開設されており、横通路900内へ送り込まれた燃焼排気は、吸熱管91相互の間隙を通ってその横通路900の正面側へ導かれた後、排気出口902から器外へ排出される。   In addition, an exhaust outlet 902 that connects the lateral passage 900 and the outside of the water heater 8 is opened in the upper front portion of the casing 90, and combustion exhaust gas that is fed into the lateral passage 900 is disposed between the heat absorption pipes 91. After being led to the front side of the lateral passage 900, the exhaust is discharged from the exhaust outlet 902 to the outside.

吸熱管91は、横通路900内の側壁相互間に複数横設されており、それぞれが横通路900内へ導かれた燃焼排気の流れと交差する方向へ延びている。また、横通路900内に横設されたこれら複数の吸熱管91は、縦断面が千鳥状になるように配列されており、さらにその上下に並ぶ吸熱管91相互の間隙Sは、全て均一に設定されている。
これにより、排気入口901から横通路900内へ送り込まれた燃焼排気は、その横通路900を通過する間に各吸熱管91の表面へ効率良く接触するから、熱効率が良好である。
特開2008−032369号公報
A plurality of heat absorption pipes 91 are provided between the side walls in the horizontal passage 900, and each extend in a direction intersecting with the flow of combustion exhaust introduced into the horizontal passage 900. The plurality of endothermic tubes 91 installed in the horizontal passage 900 are arranged in a staggered vertical section, and the gaps S between the endothermic tubes 91 arranged vertically are all uniform. Is set.
As a result, the combustion exhaust gas fed into the lateral passage 900 from the exhaust inlet 901 efficiently contacts the surface of each endothermic tube 91 while passing through the lateral passage 900, so that the thermal efficiency is good.
JP 2008-032369 A

しかしながら、排気入口901から横通路900のへ送り込まれる燃焼排気は、比較的高温であるから、その横通路900の上域へ導かれる傾向にある。このため、吸熱管91相互の間隙Sが全て均一に設定された上記従来のものでは、横通路900内へ送り込まれた燃焼排気は、その横通路900内の上域を通って排気出口902から排出され、横通路900内に配設された吸熱管91群全体の吸熱能力が十分に発揮されていなかった。   However, the combustion exhaust gas sent from the exhaust inlet 901 to the horizontal passage 900 has a relatively high temperature, and therefore tends to be guided to the upper region of the horizontal passage 900. For this reason, in the above-mentioned conventional configuration in which the gaps S between the heat absorption tubes 91 are all set uniformly, the combustion exhaust gas fed into the lateral passage 900 passes through the upper region in the lateral passage 900 from the exhaust outlet 902. The heat absorption capacity of the entire heat absorption tube 91 group discharged and disposed in the lateral passage 900 was not sufficiently exhibited.

本発明は係る点に鑑みてなされたものであり、横通路内に配設された吸熱管群全体の吸熱能力を発揮させることで、熱効率のさらなる向上を図った潜熱回収型熱交換器を提供することを課題とする。   The present invention has been made in view of the above points, and provides a latent heat recovery type heat exchanger that further improves thermal efficiency by exhibiting the heat absorption capability of the entire heat absorption tube group disposed in the lateral passage. The task is to do.

本発明に係る潜熱回収型熱交換器は、ガスの燃焼排気をケーシングの排気入口から排気出口へ導く横通路が形成され、前記横通路内には、燃焼排気の流れと交差する方向へ延びる複数の吸熱管が横設された潜熱回収型熱交換器であって、
横通路の排気入口側で上下に並ぶ吸熱管相互の複数の間隙のうち、最上位の間隙に比べて最下位の間隙を広く設定したことを特徴とするものである。
In the latent heat recovery type heat exchanger according to the present invention, a lateral passage for guiding the combustion exhaust of gas from the exhaust inlet of the casing to the exhaust outlet is formed, and a plurality of extending in a direction intersecting the flow of the combustion exhaust is formed in the lateral passage. A latent heat recovery type heat exchanger in which an endothermic tube is horizontally installed,
Among the plurality of gaps between the heat absorption tubes arranged vertically on the exhaust inlet side of the horizontal passage, the lowest gap is set wider than the highest gap.

上記構成によれば、横通路内に配設された吸熱管群の排気入口側領域において、その上域の通気抵抗よりも下域の通気抵抗が小さいから、横通路の排気入口側へ送り込まれた高温の燃焼排気は、その横通路内の上域側に偏らないで、下域側にも導かれる。これにより、横通路内に配設された吸熱管群全体の吸熱能力が効率良く発揮される。   According to the above configuration, in the exhaust inlet side region of the endothermic tube group disposed in the horizontal passage, the lower region has a lower ventilation resistance than the upper region, so that the heat absorption tube group is fed into the side passage at the exhaust inlet side. The high-temperature combustion exhaust gas is guided to the lower region side without being biased toward the upper region side in the lateral passage. Thereby, the heat absorption capability of the whole heat absorption tube group arrange | positioned in a horizontal channel | path is exhibited efficiently.

また、横通路の排気入口側で上下に並ぶ吸熱管相互の複数の間隙のうち、最下位の間隙を最上位の間隙より広く設定したことにより、燃焼排気から潜熱を回収する際に吸熱管の表面に付着するドレンがその最下位の間隙に溜まり難いから、そのドレン溜まりに起因する排気出口からの排気量の低下も抑制できる。   In addition, among the plurality of gaps between the endothermic tubes arranged vertically on the exhaust inlet side of the lateral passage, the lowermost gap is set wider than the uppermost gap, so that when the latent heat is recovered from the combustion exhaust, Since the drain adhering to the surface does not easily accumulate in the lowest gap, it is possible to suppress a decrease in the exhaust amount from the exhaust outlet due to the drain accumulation.

上記構成では、横通路の排気入口側で上下に並ぶ吸熱管相互の複数の間隙を、最上位から最下位へ段階的に広く設定するのが望ましい。   In the above-described configuration, it is desirable that the plurality of gaps between the heat absorption tubes arranged vertically on the exhaust inlet side of the horizontal passage are set to be gradually widened from the top to the bottom.

このものでは、横通路内に配設された吸熱管群の排気入口側領域において、その上域から下域へ段階的に通気抵抗が小さくなっているから、横通路の排気入口側へ送り込まれた高温の燃焼排気は、その横通路内の全域へ均一に行き渡る。これにより、横通路内に配設された吸熱管群全体の吸熱能力が一層効率良く発揮される。   In this case, in the exhaust inlet side region of the endothermic tube group disposed in the horizontal passage, the ventilation resistance gradually decreases from the upper region to the lower region, so that it is fed to the exhaust inlet side of the horizontal passage. The high-temperature combustion exhaust gas spreads uniformly throughout the entire side passage. Thereby, the heat absorption capability of the whole heat absorption tube group arrange | positioned in a horizontal channel | path is exhibited more efficiently.

また、上記構成において、横通路の排気出口側で上下に並ぶ吸熱管相互の複数の間隙のうち、排気出口に最も近接した間隙に比べて最も遠隔の間隙を広く設定しても良い。   In the above-described configuration, the remotest gap may be set wider than the gap closest to the exhaust outlet among the plurality of gaps between the endothermic tubes arranged vertically on the exhaust outlet side of the horizontal passage.

このものでは、横通路内に配設された吸熱管群の排気出口側領域において、その排気出口に近接した域の通気抵抗よりも遠隔の域の通気抵抗が小さいから、横通路内へ送り込まれた燃焼排気は、排気出口に近接した域に偏らないで、遠隔の域も通って排気出口から排出される。これにより、横通路内に配設された吸熱管群全体の吸熱能力が一層効率良く発揮される。   In this case, in the exhaust outlet side region of the endothermic tube group disposed in the horizontal passage, the ventilation resistance in the remote area is smaller than the ventilation resistance in the region close to the exhaust outlet, so that it is fed into the horizontal passage. Exhaust combustion exhaust gas is discharged from the exhaust outlet through a remote area without being biased to an area close to the exhaust outlet. Thereby, the heat absorption capability of the whole heat absorption tube group arrange | positioned in a horizontal channel | path is exhibited more efficiently.

この場合、横通路の排気出口側で上下に並ぶ吸熱管相互の複数の間隙を、排気出口に最も近接した位置から最も遠隔の位置へ段階的に広く設定するのが望ましい。   In this case, it is desirable to set a plurality of gaps between the heat absorption tubes arranged vertically on the exhaust outlet side of the side passage in a stepwise manner from the position closest to the exhaust outlet to the remotest position.

このものでは、横通路内に配設された吸熱管群の排気出口側領域において、排気出口に最も近接した位置から離れるに従って段階的に通気抵抗が小さくなっているから、横通路内へ送り込まれた燃焼排気は、その排気出口側の全域を均一に通過し、排気出口から排出される。これにより、横通路内に配設された吸熱管群全体の吸熱能力が一層効率良く発揮される。   In this case, in the exhaust outlet side region of the endothermic tube group disposed in the lateral passage, the ventilation resistance decreases stepwise as it moves away from the position closest to the exhaust outlet, so that it is fed into the lateral passage. The combustion exhaust gas uniformly passes through the entire area on the exhaust outlet side and is discharged from the exhaust outlet. Thereby, the heat absorption capability of the whole heat absorption tube group arrange | positioned in a horizontal channel | path is exhibited more efficiently.

本発明は、上記構成であるから次の特有の効果を有する。
横通路の排気入口側へ送り込まれた高温の燃焼排気をその横通路内の上域側にも下域側にも導くことにより、横通路内の吸熱管群全体の吸熱能力が効率良く発揮されるから、熱効率が向上する。
Since the present invention has the above configuration, the present invention has the following specific effects.
By guiding the high-temperature combustion exhaust gas sent to the exhaust passage side of the side passage to the upper side and the lower side of the side passage, the heat absorption capacity of the entire endothermic tube group in the side passage is efficiently exhibited. Therefore, thermal efficiency is improved.

次に、上記した本発明を実施するための最良の形態について、添付図面を参照しながら詳述する。
図1は、本発明の実施の形態に係る潜熱熱交換器5を備えた給湯器1の縦断面概略図であり、その外装ケース10内には、後述する筐体30内へ外装ケース10の外部の空気を送り込む給気ファン2と、ガスを燃焼させるバーナ3と、バーナ3で生成されたガスの燃焼排気から顕熱を回収する顕熱熱交換器4と、上記燃焼排気から潜熱を回収する潜熱熱交換器5とが収容されている。
Next, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic vertical cross-sectional view of a water heater 1 provided with a latent heat exchanger 5 according to an embodiment of the present invention. Inside the exterior case 10, the exterior case 10 is inserted into a case 30 described later. An air supply fan 2 that sends in external air, a burner 3 that burns gas, a sensible heat exchanger 4 that recovers sensible heat from the combustion exhaust gas generated by the burner 3, and recovers latent heat from the combustion exhaust. The latent heat exchanger 5 is accommodated.

バーナ3は、上面側が開放する矩形箱状の筐体30内に組み込まれており、この筐体30の底部に給気ファン2の吐出口が接続されている。また、顕熱熱交換器4は、上記筐体30の上面から上方へ延びる矩形筒状の缶体40内に組み込まれている。従って、バーナ3で生成されたガスの燃焼排気は、給気ファン2によって筐体30内へ送り込まれた空気とともに缶体40内へ導かれ、顕熱熱交換器4の後述する吸熱管41相互の間隙を通って缶体40の上端開放部402側へ導かれる。   The burner 3 is incorporated in a rectangular box-shaped housing 30 whose upper surface is open, and a discharge port of the air supply fan 2 is connected to the bottom of the housing 30. The sensible heat exchanger 4 is incorporated in a rectangular tubular can 40 extending upward from the upper surface of the housing 30. Accordingly, the combustion exhaust gas generated by the burner 3 is guided into the can 40 together with the air fed into the housing 30 by the air supply fan 2, and the heat absorption tubes 41, which will be described later, of the sensible heat exchanger 4. Is guided to the upper end open portion 402 side of the can body 40.

顕熱熱交換器4は、図示しない複数の吸熱フィンと、その吸熱フィンを貫通する複数の吸熱管41とで構成されており、この吸熱管41の一端側が温水供給先Pへ繋がり、他端側が潜熱熱交換器5の後述する吸熱管51の一端側へ繋がっている。従って、潜熱熱交換器5を介して顕熱熱交換器4へ送り込まれた湯水は、その吸熱管41内で燃焼排気から顕熱を回収し、温水供給先Pへ供給される。   The sensible heat exchanger 4 includes a plurality of heat absorption fins (not shown) and a plurality of heat absorption tubes 41 penetrating the heat absorption fins, and one end side of the heat absorption tubes 41 is connected to the hot water supply destination P, and the other end. The side is connected to one end side of a heat absorption pipe 51 to be described later of the latent heat exchanger 5. Therefore, the hot water sent to the sensible heat exchanger 4 through the latent heat exchanger 5 collects sensible heat from the combustion exhaust in the heat absorption pipe 41 and is supplied to the hot water supply destination P.

潜熱熱交換器5は、矩形箱状のケーシング50内にその前後方向へ延びる横通路500を形成し、この横通路500内に複数の吸熱管51を収容したものであり、ケーシング50の底板52に上記缶体40の上端が接続されている。   The latent heat exchanger 5 has a rectangular box-shaped casing 50 formed with a transverse passage 500 extending in the front-rear direction, and a plurality of heat absorption tubes 51 accommodated in the transverse passage 500. The upper end of the can 40 is connected to the above.

ケーシング50の底板52の後部には、缶体40の上端開放部402に繋がる排気入口501が開設されており、上記横通路500は、この排気入口501を介して缶体40の内部空間と繋がっている。従って、缶体40の上端開放部402側へ導かれた燃焼排気は、この排気入口501から横通路500の排気入口501側(背面側)へ導かれる。   An exhaust inlet 501 connected to the upper end opening 402 of the can body 40 is opened at the rear portion of the bottom plate 52 of the casing 50, and the lateral passage 500 is connected to the internal space of the can body 40 through the exhaust inlet 501. ing. Therefore, the combustion exhaust guided to the upper end open portion 402 side of the can body 40 is guided from the exhaust inlet 501 to the exhaust inlet 501 side (back side) of the lateral passage 500.

ケーシング50の前板53の略中央には、外装ケース10の外部へ繋がる排気出口502が開設されており、さらにこの排気出口502のケーシング50内側には、横通路500の排気出口502側(正面側)の下域空間へ延びる排気通路54が形成されている。また、ケーシング50の天板55裏面には、吸熱管51の正面側を通って上記排気通路54の入口540の上縁部まで延びるガイド板56が形成されている。従って、横通路500の排気入口501側へ導かれた燃焼排気は、吸熱管51相互の間隙を通過しつつ、ガイド板56やケーシング50の底板52上面に沿って横通路500内の排気出口502側(正面側)の下域へ導かれる。そしてさらに、排気通路54の入口540から排気通路54を通って排気出口502へ導かれ、器外へ排出される。   An exhaust outlet 502 connected to the outside of the exterior case 10 is opened at the approximate center of the front plate 53 of the casing 50. Further, on the exhaust outlet 502 side (front side) of the lateral passage 500 inside the casing 50 of the exhaust outlet 502. An exhaust passage 54 extending to the lower space on the side) is formed. A guide plate 56 is formed on the back surface of the top plate 55 of the casing 50 so as to extend to the upper edge of the inlet 540 of the exhaust passage 54 through the front side of the heat absorption pipe 51. Accordingly, the combustion exhaust guided to the side of the exhaust inlet 501 of the horizontal passage 500 passes through the gap between the heat absorption pipes 51 and extends along the upper surface of the guide plate 56 and the bottom plate 52 of the casing 50 to the exhaust outlet 502 in the horizontal passage 500. It is led to the lower area of the side (front side). Further, the gas is guided from the inlet 540 of the exhaust passage 54 to the exhaust outlet 502 through the exhaust passage 54 and discharged outside the apparatus.

潜熱熱交換器5の吸熱管51は、図2に示すように、金属製の蛇腹管を一定長さ毎に略180度の曲げ加工を施した略M字状の管体であり、横通路500内の側壁57相互間を蛇行するように複数(ここでは、8本)横設され、横通路500へ送り込まれる燃焼排気の流れと交差する方向に延びている。また、これら吸熱管51は、縦断面視においてその各断面が千鳥状になるように上下に重なり合った状態で配列されている(図1参照)。   As shown in FIG. 2, the heat absorption pipe 51 of the latent heat exchanger 5 is a substantially M-shaped tube body obtained by bending a metal bellows pipe at a predetermined length of about 180 degrees, A plurality (eight in this case) are provided so as to meander between the side walls 57 in 500, and extend in a direction intersecting with the flow of combustion exhaust gas fed into the lateral passage 500. In addition, these heat absorption tubes 51 are arranged in a state where they are vertically overlapped so that the cross sections thereof are staggered in a longitudinal sectional view (see FIG. 1).

また、図2に示すように、吸熱管51の両端は、ケーシング50の一方の側壁57を貫通し、その側壁57の外面に固定された入水側ヘッダ58aおよび出水側ヘッダ58bの各管接続部へ接続されており、一端側がこの入水側ヘッダ58aを介して上水道へ繋がり、他端が出水側ヘッダ58bを介して顕熱熱交換器4の吸熱管41の一端側へ繋がっている。従って、上水道から潜熱熱交換器5へ送り込まれた湯水は、その吸熱管51内で燃焼排気から潜熱を回収した後、顕熱熱交換器4へ送り出される。   As shown in FIG. 2, both ends of the heat absorption pipe 51 pass through one side wall 57 of the casing 50, and each pipe connection portion of the water inlet side header 58 a and the water outlet side header 58 b fixed to the outer surface of the side wall 57. One end side is connected to the water supply via the water inlet side header 58a, and the other end is connected to one end side of the heat absorption pipe 41 of the sensible heat exchanger 4 via the water outlet side header 58b. Therefore, the hot water sent from the water supply to the latent heat exchanger 5 is sent to the sensible heat exchanger 4 after recovering latent heat from the combustion exhaust gas in the heat absorption pipe 51.

さらに、図3に示すように、横通路500の最も排気入口501側で上下に並ぶ吸熱管51相互の複数(ここでは、3つ)の間隙A1,B1,C1は、最上位から最下位へ段階的に広く設定されている。即ち、横通路500内に配設された吸熱管51群の排気入口501側領域において、その下域の通気抵抗が上域の通気抵抗に比べて小さくなるように構成されている。   Further, as shown in FIG. 3, a plurality (three in this case) of gaps A1, B1, and C1 between the endothermic tubes 51 arranged vertically on the side of the exhaust passage 501 closest to the exhaust passage 501 are from the top to the bottom. Widely set in stages. That is, in the region on the exhaust inlet 501 side of the heat absorption pipe 51 group disposed in the horizontal passage 500, the lower region has a lower ventilation resistance than the upper region.

具体的には、上記排気入口501側の間隙A1,B1,C1のうち、最下位の間隙C1は、その上の間隙(中位の間隙)B1の略1.3倍、中位の間隙B1は、その上位の間隙(最上位の間隙)A1の略1.3倍の寸法に設定されており、高温である燃焼排気が導かれ易い最上位の間隙A1から中位の間隙B1、最下位の間隙C1の順で段階的に通気抵抗が小さくなるように構成されている。   Specifically, among the gaps A1, B1, and C1 on the exhaust inlet 501 side, the lowest gap C1 is approximately 1.3 times the upper gap (medium gap) B1 and the middle gap B1. Is set to a size approximately 1.3 times as large as the upper gap (uppermost gap) A1, and the intermediate gap B1 from the uppermost gap A1 to which the combustion exhaust gas having a high temperature is easily guided, and the lowest The airflow resistance is gradually reduced in the order of the gap C1.

また、横通路500の最も排気出口502側で上下に並ぶ吸熱管51相互の複数(ここでは、3つ)の間隙A2,B2,C2は、排気通路54の入口540に最も近接した最下位から最も遠隔の最上位へ段階的に広くなるように配列されている。即ち、横通路500内に配設された吸熱管51群の排気出口502側領域において、その排気出口502に近接した域の通気抵抗よりも遠隔の域の通気抵抗が小さくなるように構成されている。   Further, a plurality (three in this case) of gaps A2, B2, and C2 between the heat absorption tubes 51 arranged vertically on the side of the exhaust passage 502 closest to the exhaust passage 502 are from the lowest position closest to the entrance 540 of the exhaust passage 54. It is arranged so as to gradually widen to the remotest highest level. That is, in the region of the heat absorption pipe 51 group disposed in the lateral passage 500 on the side of the exhaust outlet 502, the ventilation resistance in the remote area is smaller than the ventilation resistance in the area close to the exhaust outlet 502. Yes.

具体的には、上記排気出口502側の間隙A2,B2,C2のうち、最上位の間隙C2は、その下の間隙(中位の間隙)B2の略1.3倍、中位の間隙B2は、その下位の間隙(最下位の間隙)A2の略1.3倍に設定されており、燃焼排気が比較的排気され易い最下位の間隙A2から中位の間隙B2、最上位の間隙C2の順で段階的に通気抵抗が小さくなるように構成されている。   Specifically, of the gaps A2, B2, and C2 on the exhaust outlet 502 side, the uppermost gap C2 is approximately 1.3 times the lower gap (medium gap) B2, and the middle gap B2. Is set to approximately 1.3 times the lower gap (lowermost gap) A2, and the middle gap B2 and the uppermost gap C2 from the lowest gap A2 where the combustion exhaust gas is relatively easily discharged are set. In this order, the ventilation resistance is reduced step by step.

これによれば、排気入口501から横通路500内の背面側へ送り込まれた燃焼排気は、排気入口501側の最上位の間隙A1側へ偏らないで、それより通気抵抗の小さい最下位の間隙C1や中位の間隙B1側も通って横通路500の正面側へ導かれるから、その横通路500内に配設された吸熱管51群の全体へ燃焼排気が行き渡る。その結果、吸熱管51群の吸熱能力が効率良く発揮され、熱効率が向上する。   According to this, the combustion exhaust sent from the exhaust inlet 501 to the rear side in the lateral passage 500 does not bias toward the uppermost gap A1 side on the exhaust inlet 501 side, and the lowermost gap having a smaller ventilation resistance than that. Since it is guided to the front side of the lateral passage 500 through C1 and the middle gap B1 side, the combustion exhaust gas spreads over the entire group of heat absorption pipes 51 disposed in the lateral passage 500. As a result, the endothermic capacity of the endothermic tube 51 group is efficiently exhibited, and the thermal efficiency is improved.

また、横通路500内に配設された吸熱管51群の排気入口501側領域において、その上域から下域へ段階的に通気抵抗が小さくなるように構成したことによって、横通路500の排気入口501側へ送り込まれた高温の燃焼排気が、その横通路500内の全域へ均一に行き渡るから、吸熱管51群の吸熱能力が一層効率良く発揮される。従って、熱効率が一層向上する。   Further, in the region of the heat absorption pipe 51 group disposed in the horizontal passage 500 on the side of the exhaust inlet 501, the ventilation resistance is gradually reduced from the upper region to the lower region. Since the high-temperature combustion exhaust gas sent to the inlet 501 side uniformly spreads over the entire area of the lateral passage 500, the heat absorption capability of the heat absorption tubes 51 group is more efficiently exhibited. Accordingly, the thermal efficiency is further improved.

さらに、最下位の間隙C1を最上位の間隙A1より広く設定したことにより、燃焼排気から潜熱を回収する際に各吸熱管51の表面に付着したドレンが、その最下位の間隙C1に溜まり難いから、そのドレン溜まりに起因する排気出口502からの排気量の低下も抑制できる。   Further, since the lowermost gap C1 is set wider than the uppermost gap A1, the drain adhering to the surface of each endothermic tube 51 when collecting latent heat from the combustion exhaust gas is unlikely to collect in the lowermost gap C1. Therefore, it is possible to suppress a decrease in the exhaust amount from the exhaust outlet 502 due to the drain pool.

一方、横通路500内へ送り込まれた燃焼排気は、排気通路54の入口540に近い最下位の間隙A2側へ偏らないで、それより通気抵抗の小さい最上位の間隙C2や中位の間隙B2側も通って排気通路54内へ導かれるから、その横通路500内に配設された吸熱管51群の全体へ燃焼排気が一層行き渡る。その結果、吸熱管51群の吸熱能力が一層効率良く発揮され、熱効率が一層向上する。   On the other hand, the combustion exhaust gas fed into the lateral passage 500 is not biased toward the lowermost gap A2 near the inlet 540 of the exhaust passage 54, and the uppermost gap C2 and the middle gap B2 having a smaller airflow resistance. Since the exhaust gas passes through the side and is led into the exhaust passage 54, the combustion exhaust gas further spreads to the entire heat absorption pipe 51 group disposed in the side passage 500. As a result, the endothermic capacity of the endothermic tube 51 group is exhibited more efficiently, and the thermal efficiency is further improved.

また、横通路500内に配設された吸熱管51群の排気出口502側領域において、その下域から上域へ段階的に通気抵抗が小さくなるように構成したことによって、横通路500内へ送り込まれた燃焼排気が、その排気出口502側の全域を均一に通過し、排気出口502から排出されるから、吸熱管51群の吸熱能力が一層効率良く発揮される。従って、熱効率が一層向上する。   Further, in the region on the exhaust outlet 502 side of the endothermic pipe 51 group disposed in the horizontal passage 500, the ventilation resistance is gradually reduced from the lower region to the upper region, thereby entering the horizontal passage 500. The sent combustion exhaust gas uniformly passes through the entire area on the exhaust outlet 502 side and is discharged from the exhaust outlet 502, so that the heat absorbing ability of the heat absorbing pipe 51 group is more efficiently exhibited. Accordingly, the thermal efficiency is further improved.

尚、上記潜熱熱交換器5では、図4(a)に示すように、一本の管体を水平に蛇行させた吸熱管51を用い、その複数の吸熱管51を燃焼排気の流れる方向に対してそれぞれ異なる角度で並設することによって、排気入口501側の間隙A1,B1,C1や排気出口502側の間隙A2、B2,C2を不均一の寸法に設定しているが、図4(b)に示すように、上述の複数の吸熱管51を燃焼排気の流れる方向に対してそれぞれ同じ角度で並設し、排気入口501側の曲管部R1に下向きの曲げ加工、排気出口502側の曲管部R2に上向きの曲げ加工をそれぞれ施すことによって、排気入口501側の間隙A1,B1,C1や排気出口502側の間隙A2、B2,C2を不均一の寸法に設定しても良い。   In the latent heat exchanger 5, as shown in FIG. 4 (a), a heat absorption tube 51 in which a single tube is meandered horizontally is used, and the plurality of heat absorption tubes 51 are arranged in the direction in which combustion exhaust flows. The gaps A1, B1, C1 on the exhaust inlet 501 side and the gaps A2, B2, C2 on the exhaust outlet 502 side are set to have non-uniform dimensions by arranging them at different angles. As shown in b), the plurality of heat absorption pipes 51 described above are juxtaposed at the same angle with respect to the flow direction of the combustion exhaust, and the bent pipe portion R1 on the exhaust inlet 501 side is bent downward, and the exhaust outlet 502 side The bent pipe portion R2 may be bent upward so that the gaps A1, B1, C1 on the exhaust inlet 501 side and the gaps A2, B2, C2 on the exhaust outlet 502 side may be set to non-uniform dimensions. .

このものでは、排気入口501側の間隙A1,B1,C1や排気出口502側の間隙A2、B2,C2以外の他の吸熱管51相互の間隙が均一に配列されるから、燃焼排気が排気入口501側の間隙A1,B1,C1を通過してから排気出口502側の間隙A2、B2,C2を通過するまでの間に、それら各吸熱管51の周囲で過剰な乱流となり難く、吸熱管51の表面全体へ安定的に接触するから、熱効率が一層向上する。   In this case, since the gaps between the endothermic pipes 51 other than the gaps A1, B1, C1 on the exhaust inlet 501 side and the gaps A2, B2, C2 on the exhaust outlet 502 side are uniformly arranged, the combustion exhaust is discharged into the exhaust inlet. From passing through the gaps A1, B1 and C1 on the 501 side to passing through the gaps A2, B2 and C2 on the exhaust outlet 502 side, it is difficult for excessive turbulent flow to occur around each of the endothermic pipes 51. Since the entire surface of 51 is stably contacted, the thermal efficiency is further improved.

また、上記潜熱熱交換器5における排気出口502側の間隙A2、B2,C2は、下側よりも上側の方が広くなるように構成されているが(図3参照)、上側より下側の方が広くなるように構成しても良い。このものでは、最上位の間隙C2に比べて最下位の間隙A2が広く設定されているから、その最下位の間隙A2にドレンが溜まり難い。従って、そのドレン溜まりに起因する排気出口502からの排気量の低下を抑制できる。   Further, the gaps A2, B2, and C2 on the exhaust outlet 502 side in the latent heat exchanger 5 are configured to be wider on the upper side than the lower side (see FIG. 3), but on the lower side from the upper side. You may comprise so that one may become wider. In this case, since the lowermost gap A2 is set wider than the uppermost gap C2, the drain hardly accumulates in the lowermost gap A2. Therefore, it is possible to suppress a decrease in the exhaust amount from the exhaust outlet 502 due to the drain pool.

尚、排気出口502側の間隙A2、B2,C2をその上側より下側の方が広くなるように構成した場合、排気通路54の入口540は、横通路500の排気出口502側の上域空間に設けるのが好ましい。これによれば、横通路500内へ送り込まれた燃焼排気が、排気通路54の入口540に近い最上位の間隙C2側へ偏らないで、それより通気抵抗の小さい最下位の間隙A2や中位の間隙B2側も通って排気通路54内へ導かれるから、上記実施の形態と同様、熱効率が一層向上する。   When the gaps A2, B2, and C2 on the exhaust outlet 502 side are configured so that the lower side is wider than the upper side, the inlet 540 of the exhaust passage 54 is the upper space on the exhaust outlet 502 side of the lateral passage 500. It is preferable to provide in. According to this, the combustion exhaust gas fed into the lateral passage 500 is not biased toward the uppermost gap C2 near the inlet 540 of the exhaust passage 54, and the lowermost gap A2 and the middle Since the gap B2 is also led into the exhaust passage 54, the thermal efficiency is further improved as in the above embodiment.

本発明の実施の形態に係る潜熱熱交換器5を備えた給湯器1の縦断面概略図The longitudinal cross-sectional schematic of the water heater 1 provided with the latent heat exchanger 5 which concerns on embodiment of this invention. 本発明の実施の形態に係る潜熱熱交換器5の横断面概略図Schematic cross-sectional view of latent heat exchanger 5 according to an embodiment of the present invention 本発明の実施の形態に係る潜熱熱交換器5の概略構成図The schematic block diagram of the latent heat exchanger 5 which concerns on embodiment of this invention 本発明の実施の形態に係る潜熱熱交換器5の吸熱管51の配列状態を示す右側面図(a)および本発明の他の実施形態に係る潜熱熱交換器5の吸熱管51の配列状態を示す右側面図(b)The right side view (a) showing the arrangement state of the heat absorption tubes 51 of the latent heat exchanger 5 according to the embodiment of the present invention and the arrangement state of the heat absorption tubes 51 of the latent heat exchanger 5 according to another embodiment of the present invention. Right side view showing (b) 従来の潜熱熱交換器9を備えた給湯器8の縦断面概略図Longitudinal cross-sectional schematic view of a water heater 8 provided with a conventional latent heat exchanger 9

符号の説明Explanation of symbols

5・・・潜熱回収型熱交換器
50・・・ケーシング
500・・・横通路
501・・・排気入口
502・・・排気出口
51・・・吸熱管
A1・・・最上位の間隙
C1・・・最下位の間隙
5 ... Latent heat recovery type heat exchanger 50 ... Casing 500 ... Transverse passage 501 ... Exhaust inlet 502 ... Exhaust outlet 51 ... Endothermic pipe A1 ... Top gap C1 ...・ Lowest gap

Claims (4)

ガスの燃焼排気をケーシングの排気入口から排気出口へ導く横通路が形成され、前記横通路内には、燃焼排気の流れと交差する方向へ延びる複数の吸熱管が横設された潜熱回収型熱交換器であって、
横通路の排気入口側で上下に並ぶ吸熱管相互の複数の間隙のうち、最上位の間隙に比べて最下位の間隙を広く設定したことを特徴とする、潜熱回収型熱交換器。
A transverse passage is formed to guide the combustion exhaust of gas from the exhaust inlet of the casing to the exhaust outlet, and a plurality of heat absorption tubes extending in a direction intersecting with the flow of the combustion exhaust are provided in the transverse passage. An exchanger,
A latent heat recovery type heat exchanger characterized in that the lowermost gap is set wider than the uppermost gap among a plurality of gaps between heat absorption tubes arranged vertically on the exhaust inlet side of the horizontal passage.
請求項1に記載の潜熱回収型熱交換器において、
横通路の排気入口側で上下に並ぶ吸熱管相互の複数の間隙を、最上位から最下位へ段階的に広く設定したことを特徴とする、潜熱回収型熱交換器。
In the latent heat recovery type heat exchanger according to claim 1,
A latent heat recovery type heat exchanger characterized in that a plurality of gaps between endothermic tubes arranged vertically on the exhaust inlet side of the horizontal passage are set to be wide in steps from the highest to the lowest.
請求項1または2に記載の潜熱回収型熱交換器において、
横通路の排気出口側で上下に並ぶ吸熱管相互の複数の間隙のうち、排気出口に最も近接した間隙に比べて最も遠隔の間隙を広く設定したことを特徴とする、潜熱回収型熱交換器。
In the latent heat recovery type heat exchanger according to claim 1 or 2,
Latent heat recovery heat exchanger characterized in that the remotest gap is set wider than the gap closest to the exhaust outlet among the plurality of gaps between the heat absorption tubes arranged vertically on the exhaust outlet side of the horizontal passage. .
請求項3に記載の潜熱回収型熱交換器において、
横通路の排気出口側で上下に並ぶ吸熱管相互の複数の間隙を、排気出口に最も近接した位置から最も遠隔の位置へ段階的に広く設定したことを特徴とする、潜熱回収型熱交換器。
In the latent heat recovery type heat exchanger according to claim 3,
A latent heat recovery type heat exchanger characterized in that a plurality of gaps between heat absorption tubes arranged vertically on the exhaust outlet side of the side passage are set in a stepwise manner from the position closest to the exhaust outlet to the remotest position. .
JP2008313737A 2008-12-09 2008-12-09 Latent heat recovery type heat exchanger Pending JP2010139110A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008313737A JP2010139110A (en) 2008-12-09 2008-12-09 Latent heat recovery type heat exchanger
CN200910224993.XA CN101749863B (en) 2008-12-09 2009-11-26 Latent heat recovery type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313737A JP2010139110A (en) 2008-12-09 2008-12-09 Latent heat recovery type heat exchanger

Publications (1)

Publication Number Publication Date
JP2010139110A true JP2010139110A (en) 2010-06-24

Family

ID=42349392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313737A Pending JP2010139110A (en) 2008-12-09 2008-12-09 Latent heat recovery type heat exchanger

Country Status (2)

Country Link
JP (1) JP2010139110A (en)
CN (1) CN101749863B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047981A (en) * 2012-08-31 2014-03-17 Noritz Corp Heat exchanger and hot water device having the same
JP2014070801A (en) * 2012-09-28 2014-04-21 Gastar Corp Latent heat recovery heat exchanger, combustion block assembly with latent heat recovery heat exchanger and combustion device
JP2014126259A (en) * 2012-12-26 2014-07-07 Noritz Corp Heat exchanger and water heater including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133393B2 (en) * 2010-12-07 2013-01-30 株式会社パロマ Exhaust path components
AU2011351245B2 (en) * 2010-12-27 2016-07-14 Rinnai Corporation Latent heat exchanger and water heater
CN105466019B (en) * 2014-09-10 2018-08-24 关隆股份有限公司 Water heater and its secondary heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353964A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Latent heat recovery heat exchanger
JP2007170733A (en) * 2005-12-21 2007-07-05 Rinnai Corp Latent heat recovery type heat exchanger
JP2007225262A (en) * 2006-02-27 2007-09-06 Hitachi Housetec Co Ltd Water heater
JP4719101B2 (en) * 2006-08-01 2011-07-06 リンナイ株式会社 Latent heat recovery type heat exchanger
JP2008292059A (en) * 2007-05-24 2008-12-04 Noritz Corp Heat exchanger and water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047981A (en) * 2012-08-31 2014-03-17 Noritz Corp Heat exchanger and hot water device having the same
JP2014070801A (en) * 2012-09-28 2014-04-21 Gastar Corp Latent heat recovery heat exchanger, combustion block assembly with latent heat recovery heat exchanger and combustion device
JP2014126259A (en) * 2012-12-26 2014-07-07 Noritz Corp Heat exchanger and water heater including the same
US9829204B2 (en) 2012-12-26 2017-11-28 Noritz Corporation Water heater including heat exchanger

Also Published As

Publication number Publication date
CN101749863B (en) 2014-02-19
CN101749863A (en) 2010-06-23

Similar Documents

Publication Publication Date Title
CN102906510B (en) Heat exchanger
JP2010139110A (en) Latent heat recovery type heat exchanger
JP5182570B2 (en) Water heater
US20190195563A1 (en) Heat exchange device and heat source machine
JP6162598B2 (en) Latent heat exchanger and hot water supply apparatus including the same
US10222126B2 (en) Condensation heat exchanger having dummy pipe
US10465943B2 (en) Water heat exchanger with tube drainage member
JP5818071B2 (en) Water heater
JP4773374B2 (en) Heat exchanger
JP2011158200A (en) Heat exchanger
JP2008249313A (en) Hot water heating system
JP5030981B2 (en) Heat exchanger
JP2010007968A (en) Hot water supply device
JP5405395B2 (en) Heat exchanger
JP2009133551A (en) Hot water supply apparatus
JP2011174688A (en) Combustion device
JP2010007924A (en) Water heater
JP2008164275A (en) Gas water heater
JP2014202402A (en) Heat exchanger and combustion device
JP2014070800A (en) Combustion apparatus
JP5975423B2 (en) Heat exchanger and hot water device provided with the same
JP4565316B2 (en) Heat source equipment
JP2008298326A (en) Heat exchanger and water heating system
JP2014214977A (en) Heat exchanger
JP2005274044A (en) Heat source device