JP2007170733A - Latent heat recovery type heat exchanger - Google Patents

Latent heat recovery type heat exchanger Download PDF

Info

Publication number
JP2007170733A
JP2007170733A JP2005368296A JP2005368296A JP2007170733A JP 2007170733 A JP2007170733 A JP 2007170733A JP 2005368296 A JP2005368296 A JP 2005368296A JP 2005368296 A JP2005368296 A JP 2005368296A JP 2007170733 A JP2007170733 A JP 2007170733A
Authority
JP
Japan
Prior art keywords
axis direction
endothermic
heat exchanger
axis
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005368296A
Other languages
Japanese (ja)
Inventor
Hidekatsu Naruse
英克 成瀬
Shinichi Goto
真一 後藤
Mitsutoshi Minamitani
充利 南谷
Mineyuki Nasu
峰幸 那須
Yoshiyuki Shibayama
佳之 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2005368296A priority Critical patent/JP2007170733A/en
Priority to KR1020060070850A priority patent/KR100738807B1/en
Priority to CN200610132022A priority patent/CN100582631C/en
Publication of JP2007170733A publication Critical patent/JP2007170733A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

<P>PROBLEM TO BE SOLVED: To improve latent heat recovering efficiency in a latent heat recovery type heat exchanger provided with a plurality of meandering heat absorbing pipes 41 having: a plurality of straight pipe portions 41a arranged at equal pitches in the exhaust gas flowing direction (X-axis direction); and U-turn portions 4b connecting the straight pipe portions adjacent to each other in the X-axis direction, in a barrel portion 40 in which the exhaust gas flows, the plurality of heat absorbing pipes are stacked in the Z-axis direction orthogonal to the X-axis, and the heat absorbing pipes adjacent to each other in the Z-axis direction are shifted from each other in the X-axis direction. <P>SOLUTION: Shifting quantity ΔP in the X-axis direction of the heat absorbing pipes 41, 41 adjacent to each other in the Z-axis direction is determined to be a value excluding 1/2 of the arrangement pitches P in the X-axis direction of the straight pipe portions 41a of each heat absorbing pipe 41, and parts of wide X-axial interval and parts of narrow X-axial interval of the straight pipe portions 41a, 41a of the heat absorbing pipes 41, 41 adjacent to each other in the Z-axis direction, are alternately arranged in the X-axis direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃焼排気中の水蒸気を凝縮させて潜熱を回収するようにした潜熱回収型熱交換器に関する。   The present invention relates to a latent heat recovery type heat exchanger that recovers latent heat by condensing water vapor in combustion exhaust gas.

従来、この種の潜熱回収型熱交換器として、燃焼排気が流れる胴部内に蛇行形状の吸熱管を複数本配置し、これら吸熱管の一端部と他端部とを夫々流入側ヘッダと流出側ヘッダとに接続して、流入側ヘッダから流出側ヘッダにこれら吸熱管を介して被加熱流体を流し、燃焼排気中の水蒸気を吸熱管の外面で凝縮させて潜熱を回収するようにしたものは知られている(例えば、特許文献1参照)。   Conventionally, as this type of latent heat recovery type heat exchanger, a plurality of meandering endothermic tubes are arranged in a body portion through which combustion exhaust flows, and one end portion and the other end portion of these endothermic tubes are respectively connected to an inflow side header and an outflow side. Connected to the header, the fluid to be heated is flowed from the inflow side header to the outflow side header via these endothermic tubes, and water vapor in the combustion exhaust is condensed on the outer surface of the endothermic tube to recover the latent heat It is known (see, for example, Patent Document 1).

これを詳述するに、吸熱管は、燃焼排気の流れに平行な方向をX軸方向、X軸に直交する胴部の幅方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向として、X軸方向に等ピッチで配置されるY軸方向に真直な複数の直管部とX軸方向に隣接する直管部同士を結ぶUターン部とを有する蛇行形状に形成されている。そして、複数本の吸熱管がZ軸方向に積層されると共に、Z軸方向に隣接する吸熱管同士がX軸方向に位置をずらして配置されている。ここで、Z軸方向に隣接する吸熱管同士のX軸方向のずれ量は各吸熱管の直管部のX軸方向の配置ピッチの1/2に設定され、Z軸方向に隣接する吸熱管の各直管部がX軸方向に等間隔で千鳥状に整列して配置される。   In detail, the endothermic tube has a direction parallel to the flow of the combustion exhaust in the X-axis direction, a width direction of the body perpendicular to the X-axis is the Y-axis direction, and a direction perpendicular to the X-axis and the Y-axis is Z As the axial direction, it is formed in a meandering shape having a plurality of straight pipe portions arranged in the X-axis direction at equal pitches and straight in the Y-axis direction and U-turn portions connecting the straight pipe portions adjacent in the X-axis direction. Yes. A plurality of endothermic tubes are stacked in the Z-axis direction, and the endothermic tubes adjacent in the Z-axis direction are arranged with their positions shifted in the X-axis direction. Here, the amount of deviation in the X-axis direction between the endothermic tubes adjacent in the Z-axis direction is set to ½ of the arrangement pitch in the X-axis direction of the straight tube portion of each endothermic tube, and the endothermic tubes adjacent in the Z-axis direction Are arranged in a staggered manner at equal intervals in the X-axis direction.

ところで、潜熱の回収効率を向上させるには、燃焼排気の流れを乱流化して、吸熱管の外表面に燃焼排気の滞留層を生じないようにし、更に、水蒸気の凝縮が進んだ燃焼排気の部分(乾排気部分)と水蒸気の凝縮が遅れている燃焼排気の部分(湿排気部分)との混合を促進し、燃焼排気の流れ方向下流側に位置する吸熱管の部分でも水蒸気が効果的に凝縮されるようにする必要がある。ここで、吸熱管の直管部が千鳥状に配置されていれば、燃焼排気の流れがある程度乱流化されるが、吸熱管の直管部が千鳥状ではあってもX軸方向に等間隔で整列して配置されると、燃焼排気の流れがそれなりに安定して、乾排気部分と湿排気部分との混合が不十分になりやすく、潜熱の回収効率を向上させるにも限度がある。
特開2004−232922号公報
By the way, in order to improve the recovery efficiency of the latent heat, the flow of the combustion exhaust is turbulent so as not to generate a stagnant layer of the combustion exhaust on the outer surface of the heat absorption tube, and further, the combustion exhaust with the advanced steam condensation is used. Promotes mixing of the part (dry exhaust part) and the combustion exhaust part (humid exhaust part) where the condensation of water vapor is delayed, and steam is also effective in the endothermic pipe part located downstream in the flow direction of the combustion exhaust. It needs to be condensed. Here, if the straight pipe portions of the endothermic tubes are arranged in a staggered manner, the flow of combustion exhaust is turbulent to some extent, but even if the straight pipe portions of the endothermic tubes are staggered, etc. If they are arranged at intervals, the flow of combustion exhaust is stabilized as it is, mixing of the dry exhaust part and the wet exhaust part tends to be insufficient, and there is a limit to improving the recovery efficiency of latent heat. .
Japanese Patent Application Laid-Open No. 2004-232922

本発明は、以上の点に鑑み、乾排気部分と湿排気部分との混合を促進して、潜熱の回収効率を向上し得るようにした潜熱回収型熱交換器を提供することをその課題としている。   In view of the above points, it is an object of the present invention to provide a latent heat recovery type heat exchanger that promotes mixing of a dry exhaust portion and a wet exhaust portion to improve the recovery efficiency of latent heat. Yes.

上記課題を解決するために、本発明は、燃焼排気が流れる胴部内に、燃焼排気の流れに平行な方向をX軸方向、X軸に直交する胴部の幅方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向として、X軸方向に等ピッチで配置されるY軸方向に真直な複数の直管部とX軸方向に隣接する直管部同士を結ぶUターン部とを有する蛇行形状の吸熱管が複数本収納され、これら吸熱管の一端部と他端部とを夫々流入側ヘッダと流出側ヘッダとに接続して、流入側ヘッダから流出側ヘッダにこれら吸熱管を介して被加熱流体を流し、燃焼排気中の水蒸気を吸熱管の外面で凝縮させて潜熱を回収するようにした潜熱回収型熱交換器であって、複数本の吸熱管がZ軸方向に積層されると共に、Z軸方向に隣接する吸熱管同士がX軸方向に位置をずらして配置されるものにおいて、Z軸方向に隣接する吸熱管同士のX軸方向のずれ量が各吸熱管の直管部のX軸方向の配置ピッチより小さな範囲で該配置ピッチの1/2以外の値に設定されていることを特徴とする。   In order to solve the above-described problems, the present invention provides a body portion through which combustion exhaust flows, a direction parallel to the flow of combustion exhaust gas in the X axis direction, a width direction of the body portion orthogonal to the X axis in the Y axis direction, and the X axis. And a U-turn part connecting a plurality of straight pipe parts arranged in the X axis direction at equal pitches and straight pipe parts adjacent to each other in the X axis direction, with the direction perpendicular to the Y axis as the Z axis direction A plurality of meandering endothermic pipes are housed, and one end and the other end of each of the endothermic pipes are connected to the inflow side header and the outflow side header, respectively. A latent heat recovery type heat exchanger in which a fluid to be heated flows through a pipe and water vapor in combustion exhaust is condensed on the outer surface of the heat absorption pipe to recover latent heat, and a plurality of heat absorption pipes are arranged in the Z-axis direction. And the endothermic tubes adjacent in the Z-axis direction are shifted in the X-axis direction. In the arrangement, the amount of deviation in the X-axis direction between the endothermic tubes adjacent to each other in the Z-axis direction is in a range smaller than the arrangement pitch in the X-axis direction of the straight pipe portion of each endothermic tube. It is set to a value.

本発明によれば、Z軸方向に隣接する吸熱管の直管部同士のX軸方向間隔が狭くなる部分(狭間隔部分)と広くなる部分(広間隔部分)とがX軸方向に交互に並ぶ。そして、燃焼排気の流速が狭間隔部分では速く、広間隔部分では緩やかになり、この流速変化により広間隔部分で燃焼排気が拡散して、乾排気部分と湿排気部分との混合が促進される。その結果、燃焼排気の流れ方向下流側に位置する吸熱管の部分でも水蒸気が効果的に凝縮し、潜熱の回収効率が向上する。   According to the present invention, the portion where the X-axis direction interval between the straight tube portions of the endothermic tubes adjacent in the Z-axis direction becomes narrow (narrow interval portion) and the wide portion (wide interval portion) alternately in the X-axis direction. line up. The flow rate of the combustion exhaust gas is fast at the narrow interval portion and becomes gentle at the wide interval portion. Due to this change in the flow velocity, the combustion exhaust diffuses at the wide interval portion, and the mixing of the dry exhaust portion and the wet exhaust portion is promoted. . As a result, the water vapor is effectively condensed even in the endothermic tube portion located downstream in the flow direction of the combustion exhaust, and the recovery efficiency of latent heat is improved.

ところで、複数本の吸熱管の一端と他端の各端部は、胴部の側板に形成した各透孔を通して流入側と流出側の各ヘッダに接続される。そして、これら吸熱管の各端部間の隙間が狭くなると、側板に形成する透孔間の隙間も狭くなり、側板の強度が不足する。この場合、透孔の孔径を小さくして、透孔間の隙間を広くすれば良いが、これでは、吸熱管の各端部を透孔に合わせて縮径するスウェージング加工を施すことが必要になり、コストが高くなる。   By the way, the end portions of one end and the other end of the plurality of heat absorption tubes are connected to the headers on the inflow side and the outflow side through the respective through holes formed in the side plate of the body portion. And if the clearance gap between each edge part of these heat absorption tubes becomes narrow, the clearance gap between the through-holes formed in a side plate will also become narrow, and the intensity | strength of a side plate will be insufficient. In this case, it is only necessary to reduce the hole diameter of the through holes and widen the gap between the through holes. However, in this case, it is necessary to perform a swaging process that reduces the diameter of each end of the heat absorption tube to match the through holes. Cost.

このことを考慮すると、Z軸方向に隣接する吸熱管同士のX軸方向のずれ量は各吸熱管の直管部のX軸方向の配置ピッチの1/2より大きな値に設定されていることが望ましい。これによれば、複数本の吸熱管の一端と他端の各端部間の隙間が広くなり、胴部の側板に形成する透孔の孔径を小さくしなくても、透孔間の隙間をヘッダの強度不足を生じない程度に広く確保できる。従って、吸熱管の各端部を縮径するスウェージング加工が不要になり、コスト的に有利である。   In consideration of this, the amount of deviation in the X-axis direction between the endothermic tubes adjacent in the Z-axis direction is set to a value larger than ½ of the arrangement pitch in the X-axis direction of the straight pipe portion of each endothermic tube. Is desirable. According to this, the gap between the end portions of the plurality of endothermic tubes is widened, and the gap between the through holes can be reduced without reducing the hole diameter of the through holes formed in the side plate of the trunk portion. It can be secured widely enough not to cause insufficient strength of the header. This eliminates the need for swaging for reducing the diameter of each end of the endothermic tube, which is advantageous in terms of cost.

図1を参照して、1は給湯器の外装ケースであり、外装ケース1内に、バーナ(図示せず)を内蔵する燃焼筐2と、燃焼筐2の上方の主熱交換器3と、主熱交換器3の上方の副熱交換器4とを配置している。また、燃焼筐2の下側には、燃焼筐2内に燃焼用空気を供給する燃焼ファン5が配置されている。   Referring to FIG. 1, reference numeral 1 denotes an outer case of a water heater, and a combustion housing 2 containing a burner (not shown) in the outer case 1, a main heat exchanger 3 above the combustion housing 2, A sub heat exchanger 4 above the main heat exchanger 3 is arranged. A combustion fan 5 that supplies combustion air into the combustion housing 2 is disposed below the combustion housing 2.

主熱交換器3は、バーナの燃焼排気が流れる胴部30内に前後方向(図1の紙面垂直方向)の隙間を存して積層した多数の吸熱フィン(図示せず)と、これら吸熱フィンを貫通する前後方向に長手の複数本の吸熱管31とを備えている。そして、胴部30の前後の板の外面において、図1、図2に示す如く、主熱交換器3の吸熱管31を2本宛Uベント32を介して接続し、上流端の吸熱管31−Sから下流端の吸熱管31−Eに至る一連の熱交換水路を構成している。主熱交換器3の上流端の吸熱管31―Sには副熱交換器4を介して給水管K1が接続され、下流端の吸熱管31―Eには出湯管K2が接続されている。そして、出湯管K2の下流端の出湯栓(図示せず)が開かれて副熱交換器4及び主熱交換器3に通水されたとき、バーナに点火されて、副熱交換器4及び主熱交換器3で加熱された温水が出湯栓から出湯されるようにしている。   The main heat exchanger 3 includes a large number of heat absorbing fins (not shown) stacked in the body portion 30 through which the burner combustion exhaust flows with gaps in the front-rear direction (perpendicular to the plane of FIG. 1), and these heat absorbing fins. And a plurality of longitudinal heat-absorbing tubes 31 in the front-rear direction. As shown in FIGS. 1 and 2, two endothermic pipes 31 of the main heat exchanger 3 are connected via two U-bents 32 on the outer surfaces of the plates before and after the body part 30, and the upstream endothermic pipe 31. -S constitutes a series of heat exchange channels from the downstream end heat absorption pipe 31-E. A water supply pipe K1 is connected to the heat absorption pipe 31-S at the upstream end of the main heat exchanger 3 via the sub heat exchanger 4, and a tapping pipe K2 is connected to the heat absorption pipe 31-E at the downstream end. When the outlet tap (not shown) at the downstream end of the outlet pipe K2 is opened and passed through the auxiliary heat exchanger 4 and the main heat exchanger 3, the burner is ignited and the auxiliary heat exchanger 4 and The hot water heated by the main heat exchanger 3 is discharged from the tap.

副熱交換器4は潜熱回収型熱交換器であり、図2、図3に示す如く、胴部40内に配置した蛇行形状の複数本(本実施形態では6本)の吸熱管41を備えている。胴部40は底板部401を有しており、底板部401の後部に排気導入口402が開設されている。そして、主熱交換器3を通過したバーナの燃焼排気が主熱交換器3上の排気フード33を介して排気導入口402から胴部40内に流入するようにしている。また、胴部40の前面には排気排出口403が設けられており、胴部40内に排気排出口403に向けて燃焼排気が流れる。尚、底板部401と胴部40の上面とは前下がりに傾斜しており、燃焼排気は、前下がりに傾斜した図2のX軸に平行な方向に流れる。   The auxiliary heat exchanger 4 is a latent heat recovery type heat exchanger, and includes a plurality of meandering-shaped (six in this embodiment) heat absorption tubes 41 arranged in the body 40 as shown in FIGS. ing. The body portion 40 has a bottom plate portion 401, and an exhaust introduction port 402 is opened at the rear portion of the bottom plate portion 401. The burner combustion exhaust gas that has passed through the main heat exchanger 3 flows into the trunk portion 40 from the exhaust inlet 402 via the exhaust hood 33 on the main heat exchanger 3. Further, an exhaust discharge port 403 is provided on the front surface of the body portion 40, and combustion exhaust gas flows in the body portion 40 toward the exhaust discharge port 403. Note that the bottom plate portion 401 and the upper surface of the body portion 40 are inclined forward and downward, and the combustion exhaust flows in a direction parallel to the X axis of FIG.

胴部40の横方向一側の側板404の外面には、X軸方向前方に位置する流入側ヘッダ42と、X軸方向後方に位置する流出側ヘッダ42とが取り付けられている。そして、側板404の各ヘッダ42,42の配置部に複数本の吸熱管41用の複数の透孔を開設し、各吸熱管41の一端部と他端部とを各透孔を通して流入側と流出側の各ヘッダ42,42に接続している。また、流入側ヘッダ42に給水管K1を接続すると共に、流出側ヘッダ42に、主熱交換器3の上流端の吸熱管31−Sに連なる接続管K3を接続している。出湯栓を開くと、流入ヘッド42から流出ヘッド42に複数本の吸熱管41を介して被加熱流体たる水が流れ、燃焼排気中の水蒸気が吸熱管41の外面で凝縮して、潜熱が回収される。かくして、潜熱により予熱された水が副熱交換器4から主熱交換器3に供給される。 The outer surface of the lateral one side of the side plate 404 of the body portion 40, and the inlet side header 42 1 located ahead X-axis direction, and an outlet side header 42 2 is attached is located in the X-axis direction rearward. Then, it opened a plurality of through holes of each header 42 1, 42 of the plurality of the second placement unit heat absorbing tube 41 of the side plates 404, flow into one end and the other end of each heat absorbing tube 41 through each through hole They are connected to each header 42 1, 42 2 side and the outflow side. Further, the connecting water supply pipe K1 to the inlet side header 42 1, the outlet side header 42 2 connects the connection tube K3 connecting to the heat absorbing tube 31-S of the main heat exchanger 3 at the upstream end. When opening the hot water tap, serving heated fluid water flows through the heat absorbing tube 41 a plurality of the inlet head 42 1 to the outlet head 42 2, water vapor in the flue gas condenses at the outer surface of the heat absorbing tube 41, the latent heat Is recovered. Thus, the water preheated by the latent heat is supplied from the auxiliary heat exchanger 4 to the main heat exchanger 3.

吸熱管41は、耐食性金属、例えば、ステンレス製のコルゲート管を蛇行形状に曲げ加工して形成される。この蛇行形状は、上記X軸に直交する胴部40の幅方向たる横方向をY軸方向として、X軸方向に等ピッチで配置されるY軸方向に真直な4個の直管部41aと、X軸方向に隣接する直管部41a,41a同士を結ぶ計3個のUターン部41bとを有する蛇行形状である。そして、6本の吸熱管41をX軸及びY軸に直交するZ軸方向に積層すると共に、Z軸方向に隣接する吸熱管41,41同士をX軸方向に位置をずらして配置している。   The endothermic tube 41 is formed by bending a corrosion-resistant metal, for example, a stainless corrugated tube into a meandering shape. The meandering shape includes four straight pipe portions 41a straight in the Y-axis direction, which are arranged at equal pitches in the X-axis direction, with the lateral direction that is the width direction of the body portion 40 orthogonal to the X-axis as the Y-axis direction. The meandering shape has a total of three U-turn portions 41b connecting the straight pipe portions 41a and 41a adjacent to each other in the X-axis direction. Then, the six endothermic tubes 41 are stacked in the Z-axis direction orthogonal to the X-axis and the Y-axis, and the endothermic tubes 41 and 41 adjacent to each other in the Z-axis direction are arranged with their positions shifted in the X-axis direction. .

より詳細には、Z軸方向下方から数えて奇数番目、即ち、1番目(#1)と3番目(#3)と5番目(#5)の吸熱管41,41,41のX軸方向位置を互いに同一にすると共に、Z軸方向下方から数えて偶数番目、即ち、2番目(#2)と4番目(#4)と6番目(#6)の吸熱管41,41,41のX軸方向位置を互いに同一にし、奇数番目の吸熱管41の位置に対し偶数番目の吸熱管41の位置をX軸方向後方にずらしている。かくして、奇数番目の吸熱管41の直管部41aと偶数番目の吸熱管41の直管部41aとが千鳥状に配置されることになる。   More specifically, the positions of odd-numbered, that is, first (# 1), third (# 3), and fifth (# 5) endothermic tubes 41, 41, 41 in the X-axis direction from the lower side in the Z-axis direction. Are the same, and the X-axis of the even-numbered, that is, second (# 2), fourth (# 4), and sixth (# 6) endothermic tubes 41, 41, 41 from the lower side in the Z-axis direction. The direction positions are the same, and the positions of the even-numbered heat absorption tubes 41 are shifted rearward in the X-axis direction with respect to the positions of the odd-numbered heat absorption tubes 41. Thus, the straight tube portions 41a of the odd-numbered heat absorption tubes 41 and the straight tube portions 41a of the even-numbered heat absorption tubes 41 are arranged in a staggered manner.

尚、奇数番目の吸熱管41と偶数番目の吸熱管41とが交差する両者のUターン部41b,41bは、Z軸方向の厚さが直管部41aの直径よりも小さくなるように押し潰されている。そして、奇数番目の吸熱管41の直管部41aと偶数番目の吸熱管41の直管部41aとがX軸方向から見てZ軸方向に重なり合うようにしている。   The odd-numbered endothermic tubes 41 and even-numbered endothermic tubes 41 intersect with each other so that the U-turn portions 41b and 41b are crushed so that the thickness in the Z-axis direction is smaller than the diameter of the straight tube portion 41a. Has been. The straight tube portion 41a of the odd-numbered endothermic tube 41 and the straight tube portion 41a of the even-numbered endothermic tube 41 are overlapped in the Z-axis direction when viewed from the X-axis direction.

また、奇数番目の吸熱管41と偶数番目の吸熱管41とのX軸方向のずれ量ΔPは、各吸熱管41の直管部41aのX軸方向の配置ピッチをPとして、0.5P<ΔP<Pに設定されている。そのため、奇数番目の吸熱管41の直管部41aと偶数番目の吸熱管41の直管部41aとの間のX軸方向間隔が広くなる部分(広間隔部分)と狭くなる部分(狭間隔部分)とがX軸方向に交互に並ぶ。   Further, the shift amount ΔP in the X-axis direction between the odd-numbered endothermic tubes 41 and the even-numbered endothermic tubes 41 is 0.5P <, where P is the arrangement pitch in the X-axis direction of the straight tube portion 41a of each endothermic tube 41. ΔP <P is set. Therefore, a portion where the X-axis direction interval between the straight tube portion 41a of the odd-numbered endothermic tube 41 and the straight tube portion 41a of the even-numbered endothermic tube 41 is wide (wide space portion) and a narrow portion (narrow space portion). ) Are alternately arranged in the X-axis direction.

これによれば、燃焼排気の流速が狭間隔部分では速く、広間隔部分では緩やかになる。そして、この流速変化により広間隔部分で燃焼排気が拡散して、水蒸気の凝縮が進んだ燃焼排気の部分(乾排気部分)と水蒸気の凝縮が遅れている燃焼排気の部分(湿排気部分)との混合が促進される。その結果、燃焼排気の流れ方向下流側、即ち、X軸方向前方に位置する吸熱管41の部分でも水蒸気が効果的に凝縮し、潜熱の回収効率が向上する。   According to this, the flow rate of the combustion exhaust gas is fast in the narrow interval portion and becomes gentle in the wide interval portion. Then, due to this change in flow velocity, the combustion exhaust diffuses over a wide interval portion, and the portion of the combustion exhaust where the condensation of water vapor has progressed (dry exhaust portion) and the portion of the combustion exhaust where the condensation of water vapor has been delayed (wet exhaust portion) Is promoted. As a result, the water vapor is effectively condensed also in the portion of the heat absorption pipe 41 located downstream in the flow direction of the combustion exhaust, that is, in the front in the X axis direction, and the recovery efficiency of latent heat is improved.

尚、狭間隔部分における奇数番目の吸熱管41の直管部41aの外面と偶数番目の吸熱管41の直管部41aの外面との間の隙間δが3mm未満になると、各直管部41aの外面での水蒸気の凝縮で生ずる凝縮水同士が繋がって、直管部41a、41a間の隙間が閉塞される可能性がある。従って、上記ずれ量ΔPは隙間δが3mm以上になるように設定することが望まれる。後述する実施例の発明品ではδが3.209mmになっている。   When the gap δ between the outer surface of the straight tube portion 41a of the odd-numbered heat absorption tube 41 and the outer surface of the straight tube portion 41a of the even-numbered heat absorption tube 41 in the narrow interval portion is less than 3 mm, each straight tube portion 41a. There is a possibility that the condensed water produced by the condensation of water vapor on the outer surface of each other is connected, and the gap between the straight pipe portions 41a and 41a is closed. Therefore, it is desirable to set the deviation amount ΔP so that the gap δ is 3 mm or more. In the invention of the example described later, δ is 3.209 mm.

また、ずれ量ΔPを0<ΔP<0.5Pに設定することも可能である。但し、この場合には、奇数番目の吸熱管41の一端と他端の各端部と偶数番目の吸熱管41の一端と他端の各端部との間の隙間が狭くなる。そのため、胴部40の側板404に開設する吸熱管用の透孔間の隙間も狭くなり、このままでは側板404の強度が不足する。この場合、透孔の孔径を小さくして、透孔間の隙間を広くすれば良いが、これでは、吸熱管41の各端部を透孔に合わせて縮径するスウェージング加工を施すことが必要になり、コストが高くなる。   Further, the deviation amount ΔP can be set to 0 <ΔP <0.5P. However, in this case, the gaps between the one end and the other end of the odd-numbered endothermic tube 41 and the one end and the other end of the even-numbered endothermic tube 41 are narrowed. For this reason, the gap between the through holes for the heat absorption pipes established in the side plate 404 of the body 40 is also narrowed, and the strength of the side plate 404 is insufficient as it is. In this case, the hole diameter of the through holes may be reduced to widen the gaps between the through holes. However, in this case, a swaging process for reducing the diameter of each end of the heat absorbing pipe 41 according to the through holes may be performed. Necessary and costly.

これに対し、ずれ量ΔPを、本実施形態の如く、0.5<ΔP<Pに設定すれば、奇数番目の吸熱管41の各端部と偶数番目の吸熱管41の各端部との間の隙間が広くなる。そのため、透孔の孔径を小さくしなくても、透孔間の隙間を側板404の強度不足を生じない程度に広く確保できる。従って、吸熱管41の各端部を縮径するスウェージング加工が不要になり、コスト的に有利である。   On the other hand, if the amount of deviation ΔP is set to 0.5 <ΔP <P as in this embodiment, the difference between each end of the odd-numbered endothermic tube 41 and each end of the even-numbered endothermic tube 41 is set. The gap between them becomes wider. Therefore, even if the hole diameter of the through holes is not reduced, the gap between the through holes can be secured wide enough to prevent the side plate 404 from having insufficient strength. Therefore, the swaging process for reducing the diameter of each end of the endothermic tube 41 becomes unnecessary, which is advantageous in terms of cost.

尚、本実施形態では、胴部40の側板404の外面に各ヘッダ42,42を配置したが、側板404の内面に各ヘッダ42,42を配置し、吸熱管41の各端部を各ヘッダ42,42の横方向内側面に開設する各接続孔に挿入接続するようにしても良い。この場合においても、ずれ量ΔPを0.5<ΔP<Pに設定すれば、接続孔の孔径を小さくせずに接続孔間の隙間を広くして各ヘッダ42,42の強度を確保でき、吸熱管41のスウェージング加工が不要になる。 In the present exemplary embodiment has been arranged each header 42 1, 42 2 to the outer surface of the side plate 404 of the barrel 40, placing each header 42 1, 42 2 to the inner surface of the side plates 404, each end of the heat absorbing tube 41 part of may be inserted and connected to the respective connection holes opened in each header 42 1, 42 2 in the lateral direction in the side surface. Also in this case, by setting the shift amount [Delta] P to 0.5 <[Delta] P <P, ensuring wide to the strength of each header 42 1, 42 2 a gap between the connection hole and pore size without reducing the connection hole This can eliminate the need for swaging the heat absorption tube 41.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、吸熱管41の本数は、上記実施形態の6本より多くしても少なくしても良い。また、上記実施形態では、給湯器の副熱交換器4から成る潜熱回収型熱交換器に本発明を適用しているが、給湯器以外で使用する潜熱回収型熱交換器にも同様に本発明を適用できる。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, the number of endothermic tubes 41 may be more or less than six in the above embodiment. In the above embodiment, the present invention is applied to the latent heat recovery type heat exchanger composed of the sub-heat exchanger 4 of the hot water heater, but the present invention is similarly applied to a latent heat recovery type heat exchanger used other than the hot water heater. The invention can be applied.

上記実施形態の副熱交換器4において、吸熱管41を構成するコルゲート管の大径部の直径を16mm、図2、図3の各部の寸法L1,L2,L3,L4,L5,P,ΔPを夫々L1=108mm、L2=60mm、L3=91mm、L4=215.5mm、L5=234.2mm、P=36mm、ΔP=21mmとした発明品と、ΔPをPの1/2の18mmとし、他の寸法を発明品と同一にした比較品とについて、熱流体解析ソフトウェア「FLUENT」を用い、排気導入口402から1kg当り84.1gの水蒸気を含む空気を温度443.15K、流量0.08095kg/sで流入させ、流入側ヘッダ42から15℃の水を毎分16リットルの流量で流入させた場合の凝縮水の発生量と吸熱量とを算出した。比較品では、凝縮水の発生量が0.0039202253kg/s、吸熱量が7049.607Wになり、発明品では、凝縮水の発生量が0.0039780749kg/s、吸熱量が7296.226Wになった。このように吸熱量が発明品では比較品より3.5%程度多くなっている。これは、胴部40内の気流の乱流化が促進されると共に、広間隔部分で乾排気部分と湿排気部分との混合が促進されて、潜熱の回収効率が向上したためと考えられる。 In the auxiliary heat exchanger 4 of the above embodiment, the diameter of the large diameter portion of the corrugated tube constituting the heat absorption tube 41 is 16 mm, and the dimensions L1, L2, L3, L4, L5, P, ΔP of the respective portions in FIGS. L1 = 108 mm, L2 = 60 mm, L3 = 91 mm, L4 = 215.5 mm, L5 = 234.2 mm, P = 36 mm, ΔP = 21 mm, and ΔP is 18 mm which is 1/2 of P, Using a thermal fluid analysis software “FLUENT” for the comparative product having the same dimensions as the invention product, air containing 84.1 g of water vapor per kg from the exhaust inlet 402 was set at a temperature of 443.15 K and a flow rate of 0.08095 kg. It flowed in / s, were calculated and generation amount and the heat absorption amount of the condensed water when flowed at a flow rate per minute 16 liters of 15 ℃ water from the inflow side header 42 1. In the comparative product, the amount of condensed water generated was 0.0039202253 kg / s and the endothermic amount was 7049.607 W, and in the product according to the invention, the amount of condensed water generated was 0.0039780749 kg / s and the endothermic amount was 7296.2226 W. . Thus, the endothermic amount of the invention is about 3.5% higher than that of the comparative product. This is presumably because the turbulence of the airflow in the body 40 is promoted, and the mixing of the dry exhaust portion and the wet exhaust portion is promoted at a wide interval portion, thereby improving the recovery efficiency of latent heat.

本発明の実施形態の潜熱回収型熱交換器から成る副熱交換器を具備する給湯器の正面図。The front view of the water heater provided with the auxiliary heat exchanger which consists of a latent heat recovery type heat exchanger of the embodiment of the present invention. 図1のII−II線で切断した切断側面図。FIG. 2 is a cut side view taken along line II-II in FIG. 1. 図2のIII−III線で切断した切断平面図。The cutting top view cut | disconnected by the III-III line | wire of FIG.

符号の説明Explanation of symbols

4…副熱交換器(潜熱回収型熱交換器)、40…胴部、41…吸熱管、41a…直管部、41b…Uターン部、42…流入側ヘッダ、42…流出側ヘッダ。 4 ... Sub heat exchanger (latent heat recovery type heat exchanger), 40 ... Body, 41 ... Endothermic pipe, 41a ... Straight pipe part, 41b ... U-turn part, 42 1 ... Inflow side header, 42 2 ... Outflow side header .

Claims (2)

燃焼排気が流れる胴部内に、燃焼排気の流れに平行な方向をX軸方向、X軸に直交する胴部の幅方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向として、X軸方向に等ピッチで配置されるY軸方向に真直な複数の直管部とX軸方向に隣接する直管部同士を結ぶUターン部とを有する蛇行形状の吸熱管が複数本収納され、これら吸熱管の一端部と他端部とを夫々流入側ヘッダと流出側ヘッダとに接続して、流入側ヘッダから流出側ヘッダにこれら吸熱管を介して被加熱流体を流し、燃焼排気中の水蒸気を吸熱管の外面で凝縮させて潜熱を回収するようにした潜熱回収型熱交換器であって、
複数本の吸熱管がZ軸方向に積層されると共に、Z軸方向に隣接する吸熱管同士がX軸方向に位置をずらして配置されるものにおいて、
Z軸方向に隣接する吸熱管同士のX軸方向のずれ量が各吸熱管の直管部のX軸方向の配置ピッチより小さな範囲で該配置ピッチの1/2以外の値に設定されていることを特徴とする潜熱回収型熱交換器。
In the body part through which the combustion exhaust flows, the direction parallel to the flow of the combustion exhaust gas is the X-axis direction, the width direction of the body part perpendicular to the X-axis is the Y-axis direction, and the direction perpendicular to the X-axis and Y-axis is the Z-axis direction. A plurality of meandering endothermic tubes each having a plurality of straight pipe portions arranged in the X-axis direction at equal pitches and straight in the Y-axis direction and U-turn portions connecting the straight pipe portions adjacent in the X-axis direction are accommodated. One end portion and the other end portion of these heat absorption pipes are connected to the inflow side header and the outflow side header, respectively, and the fluid to be heated is flowed from the inflow side header to the outflow side header via these heat absorption pipes. A latent heat recovery type heat exchanger that condenses water vapor inside the heat absorption tube to recover latent heat,
A plurality of endothermic tubes are stacked in the Z-axis direction, and adjacent endothermic tubes in the Z-axis direction are arranged with their positions shifted in the X-axis direction.
The amount of deviation in the X-axis direction between the endothermic tubes adjacent in the Z-axis direction is set to a value other than ½ of the arrangement pitch in a range smaller than the arrangement pitch in the X-axis direction of the straight pipe portion of each endothermic tube. A latent heat recovery type heat exchanger.
Z軸方向に隣接する前記吸熱管同士のX軸方向のずれ量は前記配置ピッチの1/2より大きな値に設定されていることを特徴とする請求項1記載の潜熱回収型熱交換器。   The latent heat recovery type heat exchanger according to claim 1, wherein the amount of deviation in the X-axis direction between the endothermic tubes adjacent in the Z-axis direction is set to a value larger than ½ of the arrangement pitch.
JP2005368296A 2005-12-21 2005-12-21 Latent heat recovery type heat exchanger Pending JP2007170733A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005368296A JP2007170733A (en) 2005-12-21 2005-12-21 Latent heat recovery type heat exchanger
KR1020060070850A KR100738807B1 (en) 2005-12-21 2006-07-27 Heat exchanger for latent heat recovery
CN200610132022A CN100582631C (en) 2005-12-21 2006-10-19 Heat exchanger for latent heat recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368296A JP2007170733A (en) 2005-12-21 2005-12-21 Latent heat recovery type heat exchanger

Publications (1)

Publication Number Publication Date
JP2007170733A true JP2007170733A (en) 2007-07-05

Family

ID=38184212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368296A Pending JP2007170733A (en) 2005-12-21 2005-12-21 Latent heat recovery type heat exchanger

Country Status (3)

Country Link
JP (1) JP2007170733A (en)
KR (1) KR100738807B1 (en)
CN (1) CN100582631C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112624A (en) * 2010-11-28 2012-06-14 Noritz Corp Heat exchanger and water heater including the same
JP2014070800A (en) * 2012-09-28 2014-04-21 Gastar Corp Combustion apparatus
JP2019011912A (en) * 2017-06-30 2019-01-24 パーパス株式会社 Heat exchange pipe, heat exchange unit, heat exchange device, hot water supply system and heat exchange pipe manufacturing method
JP2020101363A (en) * 2020-04-01 2020-07-02 パーパス株式会社 Heat exchanger and heat source equipment
WO2022044523A1 (en) * 2020-08-24 2022-03-03 富士電機株式会社 Fin tube heat exchanger
US11624526B2 (en) 2020-02-26 2023-04-11 Noritz Corporation Heat exchanger and water heating device including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139110A (en) * 2008-12-09 2010-06-24 Rinnai Corp Latent heat recovery type heat exchanger
CN102906510B (en) * 2010-04-26 2015-05-20 林内株式会社 Heat exchanger
CN105403064B (en) * 2015-11-03 2017-12-22 武汉烽火兴业节能环保科技有限公司 A kind of finned tube cooling water steam heat recovery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074872A (en) * 1993-06-11 1995-01-10 Matsushita Electric Ind Co Ltd Heat exchanger and its manufacturing method
JPH07293802A (en) * 1994-04-27 1995-11-10 Miura Co Ltd Boiler structure of electrical boiler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112624A (en) * 2010-11-28 2012-06-14 Noritz Corp Heat exchanger and water heater including the same
JP2014070800A (en) * 2012-09-28 2014-04-21 Gastar Corp Combustion apparatus
JP2019011912A (en) * 2017-06-30 2019-01-24 パーパス株式会社 Heat exchange pipe, heat exchange unit, heat exchange device, hot water supply system and heat exchange pipe manufacturing method
US11168922B2 (en) 2017-06-30 2021-11-09 Purpose Co., Ltd. Heat exchanger tube, heat exchange unit, heat exchange apparatus, hot water supply system, and method of manufacturing heat exchanger tube
US11624526B2 (en) 2020-02-26 2023-04-11 Noritz Corporation Heat exchanger and water heating device including the same
JP2020101363A (en) * 2020-04-01 2020-07-02 パーパス株式会社 Heat exchanger and heat source equipment
WO2022044523A1 (en) * 2020-08-24 2022-03-03 富士電機株式会社 Fin tube heat exchanger

Also Published As

Publication number Publication date
CN100582631C (en) 2010-01-20
KR100738807B1 (en) 2007-07-12
CN1987326A (en) 2007-06-27
KR20070066837A (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP2007170733A (en) Latent heat recovery type heat exchanger
JP4574535B2 (en) Manufacturing method of latent heat recovery type heat exchanger.
JP6314106B2 (en) Heat transfer fin for heat exchanger and heat exchanger provided with the same
AU2007207217B2 (en) Tube bundle heat exchanger
US7686072B2 (en) Heat exchanger and methods of producing the same
JP5746353B2 (en) Waste heat boiler
JP5818071B2 (en) Water heater
CN106796050A (en) Heat exchanger
CA2470184A1 (en) Feedwater heater
KR101031101B1 (en) separation type heat exchanger
JP5904407B2 (en) Water heater
JP2003294382A (en) Heat exchanger
JP7357207B2 (en) Heat exchanger and water heating equipment equipped with the same
JP2021134971A (en) Heat exchanger and water heater having the same
US20110067650A1 (en) Water heater module having detachable heat exchanger
JP5900731B2 (en) Water heater
JP4160576B2 (en) Combined heat source machine
JP2005315520A (en) Heat exchanger
JP2008032354A (en) Heat exchange apparatus and combustion device equipped therewith
JP2007064551A (en) Combustion apparatus
JP2003254626A (en) Heat exchanger
JP2004360968A (en) Heat exchanger unit
JP2006057988A (en) Heat exchanger for recovering waste heat of combustion type heat source machine
JP7351781B2 (en) water heater
JP6991767B2 (en) Multi-tube waste heat recovery heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201