JP2010137414A - Method for manufacturing cement-based sheet - Google Patents

Method for manufacturing cement-based sheet Download PDF

Info

Publication number
JP2010137414A
JP2010137414A JP2008314666A JP2008314666A JP2010137414A JP 2010137414 A JP2010137414 A JP 2010137414A JP 2008314666 A JP2008314666 A JP 2008314666A JP 2008314666 A JP2008314666 A JP 2008314666A JP 2010137414 A JP2010137414 A JP 2010137414A
Authority
JP
Japan
Prior art keywords
cement
compound
mold
water
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008314666A
Other languages
Japanese (ja)
Other versions
JP5268612B2 (en
Inventor
Masami Sato
正己 佐藤
Kazuyoshi Shirai
一義 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2008314666A priority Critical patent/JP5268612B2/en
Publication of JP2010137414A publication Critical patent/JP2010137414A/en
Application granted granted Critical
Publication of JP5268612B2 publication Critical patent/JP5268612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a cement-based sheet, capable of being formed to be ultrathin and excellent in high class feeling, stateliness, and shininess. <P>SOLUTION: The method for manufacturing the cement-based sheet includes: the kneading step of obtaining a compound 2 by kneading (A) cement, (B) fine powders having BET specific surface area of 5-25 m<SP>2</SP>/g, (C) a fine aggregate, (D) a water reducing agent, (E) metal fiber, and (F) water; a molding step which casts the compound 2 obtained in the kneading step in a formwork 1 where a material for forming at least a bottom surface is glass or synthetic resin, and performs a molding of the compound 2 by closely attaching the compound 2 cast in the formwork 1 with a face-down formwork 3 having nonwoven fabric 3a so that the nonwoven fabric 3a opposes to the compound 2; the curing step which cures the compound 2 in such a state that the compound 2 in the formwork 1 and the face-down formwork 3 are closely attached, and obtains a hardened body of the compound 2; and the demolding step which obtains the cement-based sheet 4 having a shiny surface 4a by demolding the hardened body of the compound 2 from the formwork 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、セメント系薄板の製造方法に関し、特に、光沢性に優れた鏡面状の片面を有し、高級感、重厚感、及び優れた意匠性を有するセメント系薄板の製造方法に関する。   The present invention relates to a method for manufacturing a cement-based thin plate, and more particularly to a method for manufacturing a cement-based thin plate having a mirror-like single side with excellent glossiness and having a high-class feeling, a heavy feeling, and an excellent design.

モルタル等のセメント系硬化体は、一般に、セメント、骨材、水及び減水剤等からなるものであり、任意の形状に成形することができ、機械的強度、耐久性等に優れる等の利点があることから、例えば一般住宅やビル等の部材(壁材、床材、天井材等)として広く使用されている。
しかしながら、セメント系硬化体は、大理石等の高級素材と異なり、一般に高級感、重厚感及び光沢性に乏しいことから、例えば、旅館やホテルのロビーの壁材や床材等のように高級感、重厚感及び光沢性等を必要とするような用途に、表面処理などを施さずにそのままで適用することが困難である。
また、一般住宅やビル等に用いられるセメント系硬化体の圧縮強度は、通常、20〜30N/mmである。そのため、一般住宅やビル等のコンクリート部材(例えば、壁材、床材、天井材等)の厚さを大きくする必要があり、特に、プレキャスト製品の場合、運搬作業が困難であるなどの問題がある。
これらの問題を解決するために、セメント100重量部、5〜50重量部のポゾラン質微粉末、粒径2mm以下の細骨材50〜250重量部、減水剤を固形分換算で0.5〜4.0重量部、及び10〜30重量部の水を含む配合物を樹脂型枠に流し込んで得た硬化体であって、表面研磨をせずに、表面粗さ(Rmax)が10μm以下であることを特徴とする硬化体が提案されている(特許文献1)。
特許第4167379号公報
Cement-based hardened bodies such as mortar are generally composed of cement, aggregate, water, water reducing agent, etc., and can be molded into any shape, and have advantages such as excellent mechanical strength and durability. For this reason, they are widely used as members (wall materials, floor materials, ceiling materials, etc.) for general houses and buildings, for example.
However, unlike cement and other high-grade materials, cement-based hardened bodies generally lack a sense of luxury, profoundness, and gloss, so, for example, a sense of quality such as a wall material or flooring in a hotel or hotel lobby, It is difficult to apply as it is without applying a surface treatment or the like to an application that requires a profound feeling and glossiness.
Moreover, the compressive strength of the cement-type hardened body used for a general house, a building, etc. is 20-30 N / mm < 2 > normally. Therefore, it is necessary to increase the thickness of concrete members (for example, wall materials, floor materials, ceiling materials, etc.) such as ordinary houses and buildings. In particular, in the case of precast products, there are problems such as difficult transportation work. is there.
In order to solve these problems, 100 parts by weight of cement, 5 to 50 parts by weight of pozzolanic fine powder, 50 to 250 parts by weight of fine aggregate having a particle size of 2 mm or less, and a water reducing agent in a solid content equivalent of 0.5 to A cured product obtained by pouring a compound containing 4.0 parts by weight and 10 to 30 parts by weight of water into a resin mold, and having a surface roughness (Rmax) of 10 μm or less without surface polishing. There has been proposed a cured product characterized in that (Patent Document 1).
Japanese Patent No. 4167379

特許文献1に記載の技術によると、表面処理を施さずに、高級感、重厚感、及び光沢性を有するセメント系硬化体を得ることができる。しかし、特許文献1には、例えば、厚さ6mm以下の超薄板を製造することは、記載されていない。
そこで、本発明は、例えば6mm以下の超薄肉に形成することができ、かつ、高級感、重厚感、及び光沢性に優れたセメント系薄板の製造方法を提供することを目的とする。
According to the technique described in Patent Document 1, it is possible to obtain a cement-based cured body having a high-class feeling, a heavy feeling, and glossiness without performing surface treatment. However, Patent Document 1 does not describe, for example, manufacturing an ultrathin plate having a thickness of 6 mm or less.
Therefore, an object of the present invention is to provide a method for producing a cement-based thin plate that can be formed into an ultra-thin wall of, for example, 6 mm or less, and is excellent in high-grade feeling, heavy feeling, and glossiness.

本発明者は、上記課題を解決するために鋭意検討した結果、特定のセメント系配合物を、少なくとも底面を形成する材質がガラスまたは合成樹脂である型枠と、透水性又は透気性の部材を含む伏せ型枠とで挟み込んで成形することにより、本発明の上記目的を達成することができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor has obtained a specific cement-based compound, a mold having a glass or synthetic resin as a material forming at least the bottom, and a water-permeable or air-permeable member. The present invention was completed by finding that the above object of the present invention can be achieved by sandwiching and forming with a cover form.

すなわち、本発明は、以下の[1]〜[3]を提供するものである。
[1] (A)セメント、(B)BET比表面積が5〜25m/gの微粉末、(C)細骨材、(D)減水剤、(E)金属繊維、及び(F)水、を混練して配合物を得る混練工程と、該混練工程で得た配合物を、少なくとも底面を形成する材質がガラスまたは合成樹脂である型枠内に投入し、次いで、該型枠内に投入された配合物と、透水性又は透気性の部材を含む伏せ型枠とを、当該透水性又は透気性の部材が前記配合物に対向するようにして密着させることにより、前記配合物の成形を行う成形工程と、前記型枠内の配合物と前記伏せ型枠とが密着したままの状態で、前記配合物を養生し、前記配合物の硬化体を得る養生工程と、前記配合物の硬化体を前記型枠から脱型することにより、前記配合物の硬化体からなるセメント系薄板を得る脱型工程とを含むことを特徴とするセメント系薄板の製造方法。
[2] 上記混練工程の上記配合物が、(G)ブレーン比表面積が4,000〜10,000cm/gの無機粉末、を含む上記[1]に記載のセメント系薄板の製造方法。
[3] 上記セメント系薄板の厚さが、1〜6mmである上記[1]又は[2]に記載のセメント系薄板の製造方法。
That is, the present invention provides the following [1] to [3].
[1] (A) cement, (B) fine powder having a BET specific surface area of 5 to 25 m 2 / g, (C) fine aggregate, (D) water reducing agent, (E) metal fiber, and (F) water, A kneading step for kneading the mixture, and the mixture obtained in the kneading step is put into a mold whose material forming at least the bottom surface is glass or synthetic resin, and then put into the mold The molded product is formed by adhering the blended composition and the facing mold including the water-permeable or air-permeable member so that the water-permeable or air-permeable member faces the compound. A molding step to be performed, a curing step in which the compound in the mold and the cover mold are kept in close contact with each other and the compound is cured to obtain a cured product of the compound, and curing of the compound By removing the body from the formwork, a cement-based thin plate made of a cured body of the compound is obtained. Method for manufacturing a cementitious sheet which comprises a demolding step.
[2] The method for producing a cement-based thin plate according to [1], wherein the blend in the kneading step includes (G) an inorganic powder having a brain specific surface area of 4,000 to 10,000 cm 2 / g.
[3] The method for producing a cement-based thin plate according to [1] or [2], wherein the cement-based thin plate has a thickness of 1 to 6 mm.

本発明によると、特定の配合物及び特定の2種の型枠を用いているため、配合物の硬化体の中に大きな気泡が混入せず、配合物の硬化体全体に亘って、均一かつ大きな機械的強度(例えば、圧縮強度、曲げ強度等)を確保することができる。そのため、厚さが6mm以下の超薄肉のセメント系薄板を製造した場合でも、気泡に起因するひび割れや欠損などを生じさせることがなく、当該セメント系薄板を例えば一般住宅やビル等の建造物を構成する各種の部材の表面部分の薄肉部材として用いることができる。
また、本発明によると、特定の配合物及び特定の2種の型枠を用いているため、セメント系薄板の片面に鏡面状の優れた光沢性を与えることができる。このようなセメント系薄板は、高級感、重厚感、及び優れた意匠性を有する。そのため、例えば、旅館やホテルのロビーの壁材や床材等のように高級感、重厚感及び光沢性等を必要とするような用途にも、表面処理などを施さずにそのままで適用することができる。
さらに、本発明によると、特定の配合物を用いているため、硬化前に優れた作業性を有し、超薄肉であっても寸法精度が高いセメント系薄板を形成することができる。
According to the present invention, since a specific formulation and two specific types of molds are used, large bubbles are not mixed in the cured product of the formulation, and the entire cured product of the formulation is uniform and A large mechanical strength (for example, compressive strength, bending strength, etc.) can be ensured. Therefore, even when an ultra-thin cement-based sheet having a thickness of 6 mm or less is manufactured, the cement-based sheet does not cause cracks or defects caused by bubbles, and the cement-based sheet can be used as a building such as a general house or a building. Can be used as a thin-walled member on the surface portion of various members.
Further, according to the present invention, since a specific composition and two specific types of molds are used, it is possible to give an excellent gloss of a mirror surface to one side of a cement-based thin plate. Such a cementitious thin plate has a high-class feeling, a heavy feeling, and an excellent design. For this reason, for example, it can be applied as it is without surface treatment to applications that require a high-class feeling, profound feeling, and glossiness such as wall materials and flooring materials in inns and hotel lobbies. Can do.
Furthermore, according to the present invention, since a specific composition is used, it is possible to form a cement-based thin plate having excellent workability before curing and having high dimensional accuracy even if it is ultra-thin.

本発明のセメント系薄板の製造方法は、(a)(A)セメント、(B)BET比表面積が5〜25m/gの微粉末、(C)細骨材、(D)減水剤、(E)金属繊維、及び(F)水、を混練して配合物を得る混練工程と、(b)該混練工程で得た配合物を、少なくとも底面を形成する材質がガラスまたは合成樹脂である型枠内に投入し、次いで、該型枠内に投入された配合物と、透水性又は透気性の部材を含む伏せ型枠とを、当該透水性又は透気性の部材が前記配合物に対向するようにして密着させることにより、前記配合物の成形を行う成形工程と、(c)前記型枠内の配合物と前記伏せ型枠とが密着したままの状態で、前記配合物を養生し、前記配合物の硬化体を得る養生工程と、(d)前記配合物の硬化体を前記型枠から脱型することにより、前記配合物の硬化体からなるセメント系薄板を得る脱型工程と、を含むものである。
以下、工程ごとに説明する。
The method for producing a cement-based sheet according to the present invention comprises (a) (A) cement, (B) fine powder having a BET specific surface area of 5 to 25 m 2 / g, (C) fine aggregate, (D) water reducing agent, ( E) A kneading step in which a metal fiber and (F) water are kneaded to obtain a blend, and (b) a mold in which the material forming at least the bottom surface of the blend obtained in the kneading step is glass or a synthetic resin. Then, the mixture is put into the frame, and then the blended composition is put into the formwork and the laying mold including the water-permeable or gas-permeable member is opposed to the water-permeable or gas-permeable member. In this way, the molding step for molding the formulation, and (c) curing the formulation in a state where the formulation in the mold and the cover mold remain in contact with each other, A curing step for obtaining a cured body of the blend; and (d) removing the cured body of the blend from the mold. By, it is intended to include a demolding step to obtain a cementitious thin plate made of a cured product of the formulation.
Hereinafter, it demonstrates for every process.

[(a)混練工程]
工程(a)は、(A)〜(F)成分、及び必要に応じて配合される他の任意成分を混練して、セメント系の配合物を得る工程である。
まず、配合物を構成する各成分について説明する。
(A)セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントを使用することができる。
本発明においては、配合物の流動性や強度発現性、硬化収縮の低減等の観点から、中庸熱ポルトランドセメント又は低熱ポルトランドセメントを使用することが好ましい。
[(A) Kneading step]
Step (a) is a step of kneading the components (A) to (F) and other optional components blended as necessary to obtain a cement-based blend.
First, each component which comprises a compound is demonstrated.
As the (A) cement, various Portland cements such as ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, and low heat Portland cement can be used.
In the present invention, it is preferable to use moderately hot Portland cement or low heat Portland cement from the viewpoints of fluidity and strength development of the blend, reduction of curing shrinkage, and the like.

(B)微粉末は、BET比表面積が5〜25m/gであり、好ましくは7〜15m/gである。BET比表面積が5m/g未満であると、硬化後の機械的強度が低下し、厚さ6mm以下の薄板を製造することが困難となる。一方、BET比表面積が25m/gを超えると、所定の流動性を得るための水量が多くなり、硬化後の機械的強度等が低下して、厚さ6mm以下の薄板を製造することが困難となる。
(B)微粉末としては、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ、石灰石粉末等が挙げられる。一般に、シリカフュームやシリカダストは、そのBET比表面積が5〜25m/gであり、粉砕等をする必要がないので本発明の微粉末として好適である。また、被粉砕性や流動性等の観点から、石灰石粉末も好ましく用いられる。
(B)微粉末の配合量は、(A)セメント100質量部に対して、10〜40質量部が好ましく、15〜35質量部がより好ましい。該配合量が10質量部未満では、硬化後の機械的強度等が低下し、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となる。該配合量が40質量部を超えると、所定の流動性を得るための水量が多くなり、硬化後の機械的強度等が低下して、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となる。
The fine powder (B) has a BET specific surface area of 5 to 25 m 2 / g, preferably 7 to 15 m 2 / g. When the BET specific surface area is less than 5 m 2 / g, the mechanical strength after curing decreases, and it becomes difficult to produce a thin plate having a thickness of 6 mm or less. On the other hand, when the BET specific surface area exceeds 25 m 2 / g, the amount of water for obtaining a predetermined fluidity increases, the mechanical strength after curing decreases, and a thin plate having a thickness of 6 mm or less can be produced. It becomes difficult.
(B) Examples of the fine powder include silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, precipitated silica, and limestone powder. In general, silica fume and silica dust have a BET specific surface area of 5 to 25 m 2 / g and are not necessary to be pulverized, and thus are suitable as the fine powder of the present invention. Further, limestone powder is also preferably used from the viewpoint of pulverizability and fluidity.
(B) As for the compounding quantity of fine powder, 10-40 mass parts is preferable with respect to 100 mass parts of (A) cement, and 15-35 mass parts is more preferable. When the blending amount is less than 10 parts by mass, the mechanical strength after curing is lowered, and it becomes difficult to produce a thin plate having an ultrathin thickness (for example, a thickness of 6 mm or less). When the blending amount exceeds 40 parts by mass, the amount of water for obtaining a predetermined fluidity increases, the mechanical strength after curing decreases, and a thin plate having a very thin thickness (for example, 6 mm or less) is obtained. It becomes difficult to manufacture.

(C)細骨材としては、川砂、陸砂、海砂、砕砂、珪砂、又はこれらの混合物を使用することができる。
本発明においては、配合物の流動性や施工性、硬化後のクラック抵抗性、及び、超薄厚(例えば、厚さ6mm以下)の薄板を得る観点から、細骨材の最大粒径は、製造しようとする薄板の厚さの1/4以下であることが好ましく、該厚さの1/5以下であることがより好ましく、該厚さの1/6以下であることが特に好ましい。
また、配合物の流動性や施工性等の観点から、細骨材中、粒径が0.15mm未満の粒子の占める割合が5質量%以上であることが好ましい。
(C)細骨材の配合量は、(A)セメント100質量部に対して、50〜150質量部が好ましく、70〜140質量部がより好ましい。該配合量が上記数値範囲外であると、硬化後の機械的強度等が低下して、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となったり、硬化収縮率が大きくなる。
(C) As fine aggregate, river sand, land sand, sea sand, crushed sand, silica sand, or a mixture thereof can be used.
In the present invention, from the viewpoint of obtaining a fluidity and workability of the composition, crack resistance after curing, and a thin plate of ultrathin thickness (for example, a thickness of 6 mm or less), the maximum particle size of the fine aggregate is The thickness is preferably ¼ or less of the thickness of the thin plate to be manufactured, more preferably 5 or less of the thickness, and particularly preferably 6 or less of the thickness.
Further, from the viewpoint of fluidity and workability of the blend, the proportion of particles having a particle size of less than 0.15 mm in the fine aggregate is preferably 5% by mass or more.
(C) As for the compounding quantity of a fine aggregate, 50-150 mass parts is preferable with respect to 100 mass parts of (A) cement, and 70-140 mass parts is more preferable. If the blending amount is outside the above numerical range, the mechanical strength after curing is decreased, and it becomes difficult to produce a thin plate having a very thin thickness (for example, 6 mm or less in thickness), or the curing shrinkage rate. Becomes larger.

(D)減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤又は高性能AE減水剤を使用することができる。中でも、より大きな減水効果が得られることから、ポリカルボン酸系の高性能減水剤又は高性能AE減水剤を使用することが好ましい。(D)減水剤を配合することにより、配合物の流動性や施工性、硬化後の緻密性、機械的強度等を向上させることができる。
(D)減水剤の配合量は、(A)セメント100質量部に対して、固形分換算で0.1〜4.0質量部が好ましく、0.1〜1.0質量部がより好ましい。該配合量が上記数値範囲外であると、配合物の流動性、硬化後の機械的強度や静弾性係数等が低下する。
(D) As a water reducing agent, a lignin type, naphthalenesulfonic acid type, melamine type, polycarboxylic acid type water reducing agent, AE water reducing agent, high performance water reducing agent or high performance AE water reducing agent can be used. Among them, it is preferable to use a polycarboxylic acid-based high-performance water reducing agent or a high-performance AE water reducing agent because a greater water reduction effect can be obtained. (D) By mix | blending a water reducing agent, the fluidity | liquidity and workability of a compound, the denseness after hardening, mechanical strength, etc. can be improved.
(D) As for the compounding quantity of a water reducing agent, 0.1-4.0 mass parts is preferable in conversion of solid content with respect to 100 mass parts of (A) cement, and 0.1-1.0 mass part is more preferable. When the blending amount is out of the above numerical range, the fluidity of the blend, the mechanical strength after curing, the static elastic modulus and the like are lowered.

(E)金属繊維としては、鋼繊維、アモルファス繊維等が挙げられる。中でも鋼繊維は強度に優れており、またコストや入手のし易さの点からも好ましく用いられる。金属繊維は、直径0.01〜0.5mm、長さ2〜30mmのものが好ましい。直径が0.01mm未満では繊維自身の強度が不足し、張力を受けた際に切れやすくなる。直径が0.5mmを超えると、同一配合量での本数が少なくなり、曲げ強度や破壊エネルギーを向上させる効果が低下し、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となる。長さが30mmを超えると、混練の際ファイバーボールが生じやすくなり、一方、2mm未満では、曲げ強度や破壊エネルギーを向上させる効果が低下し、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となる。
(E)金属繊維の配合量は、配合物の体積の0.5〜4%が好ましく、より好ましくは1〜3%である。該配合量が4%を超えると、混練時の作業性等を確保するために単位水量が増大し、硬化後の曲げ強度等が低下し、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となる。一方、該配合量が0.5%未満であっても、硬化後の曲げ強度等が低下し、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となる。
(E) As a metal fiber, a steel fiber, an amorphous fiber, etc. are mentioned. Among these, steel fibers are excellent in strength, and are preferably used from the viewpoint of cost and availability. The metal fibers preferably have a diameter of 0.01 to 0.5 mm and a length of 2 to 30 mm. If the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and it is easy to break when subjected to tension. When the diameter exceeds 0.5 mm, the number of the same compounding amount decreases, the effect of improving the bending strength and fracture energy is reduced, and an ultrathin sheet (for example, a thickness of 6 mm or less) can be manufactured. It becomes difficult. If the length exceeds 30 mm, fiber balls are likely to be produced during kneading. On the other hand, if the length is less than 2 mm, the effect of improving bending strength and fracture energy is reduced, and a thin plate with an ultrathin thickness (for example, a thickness of 6 mm or less). It becomes difficult to manufacture.
(E) As for the compounding quantity of a metal fiber, 0.5-4% of the volume of a compound is preferable, More preferably, it is 1-3%. When the blending amount exceeds 4%, the unit water amount increases in order to ensure workability during kneading, the bending strength after curing decreases, and the like is a thin plate with a very thin thickness (for example, a thickness of 6 mm or less). It becomes difficult to manufacture. On the other hand, even if the blending amount is less than 0.5%, the bending strength after curing is decreased, and it becomes difficult to produce a thin plate having an ultrathin thickness (for example, a thickness of 6 mm or less).

(F)水としては、水道水等を使用することができる。
(F)水は、水/セメント比が、好ましくは10〜30質量%、より好ましくは13〜25質量%となる量配合される。水/セメント比が10質量%未満では、配合物の流動性が低くなり、成形などの作業が困難となる。一方、水/セメント比が30質量%を超えると、硬化後の機械的強度等が低下し、超薄厚(例えば、厚さ6mm以下)の薄板を製造することが困難となる。
(F) As water, tap water etc. can be used.
(F) Water is blended in such an amount that the water / cement ratio is preferably 10 to 30% by mass, more preferably 13 to 25% by mass. If the water / cement ratio is less than 10% by mass, the fluidity of the compound is lowered, and operations such as molding become difficult. On the other hand, if the water / cement ratio exceeds 30% by mass, the mechanical strength after curing decreases, and it becomes difficult to produce a thin plate having an ultrathin thickness (for example, a thickness of 6 mm or less).

工程(a)の配合物は、流動性、硬化後の機械的強度や耐久性等を高める観点から、さらに、(G)無機粉末を含むことができる。
(G)無機粉末は、ブレーン比表面積が4,000〜10,000cm/gであることが好ましく、5,000〜9,000cm/gであることがより好ましい。ブレーン比表面積が4,000cm/g未満であると、流動性の向上効果が低下するうえ、硬化後の機械的強度、静弾性係数、緻密性、耐衝撃性等の向上効果も低下するため、好ましくない。一方、ブレーン比表面積が10,000cm/gを超えると、流動性が低下したり、硬化後の機械的強度、静弾性係数等が低下することがある。さらに、この場合、コストも高くなるため好ましくない。
The blend of step (a) can further contain (G) inorganic powder from the viewpoint of improving fluidity, mechanical strength after curing, durability, and the like.
(G) an inorganic powder preferably has a Blaine specific surface area of 4,000~10,000cm 2 / g, more preferably 5,000~9,000cm 2 / g. If the Blaine specific surface area is less than 4,000 cm 2 / g, the effect of improving the fluidity is lowered, and the effect of improving the mechanical strength, static elastic modulus, denseness, impact resistance and the like after curing is also reduced. Is not preferable. On the other hand, if the Blaine specific surface area exceeds 10,000 cm 2 / g, the fluidity may be lowered, and the mechanical strength after curing and the static elastic modulus may be lowered. Furthermore, this case is not preferable because the cost increases.

(G)無機粉末としては、セメント以外の無機粉末、例えば、スラグ、石灰石粉末、長石類、ムライト類、アルミナ粉末、石英粉末、フライアッシュ、火山灰、シリカゾル、炭化物粉末、窒化物粉末等が挙げられる。中でも、スラグ、フライアッシュ、石灰石粉末、石英粉末は、コスト、及び硬化後の品質安定性の点で好ましく用いられる。
(G)無機粉末の配合量は、セメント100質量部に対して、好ましくは50質量部以下、より好ましくは40質量部以下である。該配合量が50質量部を超えると、流動性や施工性、硬化後の機械的強度、緻密性や耐衝撃性等が低下することがある。
また、(G)無機粉末の配合量は、セメント100質量部に対して、好ましくは5質量部以上、より好ましくは7質量部以上である。該配合量を5質量部以上とすることにより、配合物の流動性、硬化後の機械的強度や耐久性等の向上効果を高めることができる。
(G) Examples of the inorganic powder include inorganic powders other than cement, such as slag, limestone powder, feldspar, mullite, alumina powder, quartz powder, fly ash, volcanic ash, silica sol, carbide powder, and nitride powder. . Among them, slag, fly ash, limestone powder, and quartz powder are preferably used in terms of cost and quality stability after curing.
(G) The compounding quantity of inorganic powder becomes like this. Preferably it is 50 mass parts or less with respect to 100 mass parts of cement, More preferably, it is 40 mass parts or less. When the amount exceeds 50 parts by mass, fluidity, workability, mechanical strength after curing, denseness, impact resistance, and the like may decrease.
Moreover, the compounding quantity of (G) inorganic powder becomes like this. Preferably it is 5 mass parts or more with respect to 100 mass parts of cement, More preferably, it is 7 mass parts or more. By setting the blending amount to 5 parts by mass or more, it is possible to enhance the improvement effects such as the fluidity of the blend, the mechanical strength after curing, and the durability.

また、工程(a)の配合物は、硬化後の靱性の向上、及び、(E)金属繊維の分離防止の観点から、(H)平均粒度が1mm以下の繊維状粒子又は薄片状粒子、を含むことができる。ここで、粒子の粒度とは、その最大寸法の大きさ(特に、繊維状粒子ではその長さ)である。
繊維状粒子としては、ウォラストナイト、ボーキサイト、ムライト等が挙げられる。薄片状粒子としては、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。
繊維状粒子又は薄片状粒子の配合量(ただし、これら2種の粒子を併用する場合は、合計量)は、硬化前の施工性や硬化後の靭性等の観点から、(A)セメント100質量部に対して、35質量部以下が好ましく、0.1〜5質量部がより好ましい。
なお、繊維状粒子においては、硬化後の靱性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いるのが好ましい。
In addition, the blend of step (a) comprises (H) fibrous particles or flaky particles having an average particle size of 1 mm or less from the viewpoint of improving toughness after curing and (E) preventing separation of metal fibers. Can be included. Here, the particle size of the particle is the size of the maximum dimension (particularly, the length of the fibrous particle).
Examples of fibrous particles include wollastonite, bauxite, and mullite. Examples of the flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes.
The blending amount of fibrous particles or flaky particles (however, when these two types of particles are used in combination) is (A) 100 mass of cement from the viewpoint of workability before curing, toughness after curing, and the like. 35 parts by mass or less is preferable with respect to parts, and 0.1 to 5 parts by mass is more preferable.
In addition, it is preferable to use a fibrous particle having a needle-like degree represented by a length / diameter ratio of 3 or more from the viewpoint of increasing toughness after curing.

工程(a)においては、上記材料を混練することにより、配合物を得る。
具体的な混練方法としては、特に限定するものではないが、例えば、下記(1)〜(3)の方法が挙げられる。
(1)水、減水剤以外の材料を予め混合して、プレミックス材を調製した後、該プレミックス材、水、減水剤をミキサに投入し、混練する方法
(2)水以外の材料(ただし、減水剤は粉末タイプのものを使用する。)を予め混合して、プレミックス材を調製した後、該プレミックス材、水をミキサに投入し、混練する方法
(3)各材料を、それぞれ個別にミキサに投入し、混練する方法
混練に用いるミキサとしては、通常のコンクリートの混練に用いられるどのタイプのものでもよく、例えば、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等の慣用のミキサを使用することができる。
In the step (a), a blend is obtained by kneading the above materials.
Although it does not specifically limit as a concrete kneading method, For example, the method of following (1)-(3) is mentioned.
(1) A method in which materials other than water and a water reducing agent are mixed in advance to prepare a premix material, and then the premix material, water and water reducing agent are put into a mixer and kneaded. (2) Materials other than water ( However, the water reducing agent is a powder type.) A premix material is prepared in advance and a premix material is prepared, and then the premix material and water are put into a mixer and kneaded (3) Method of mixing and kneading each separately The mixer used for kneading may be any type used for ordinary concrete kneading, such as an omni mixer, a pan-type mixer, a biaxial kneading mixer, a tilting cylinder mixer, etc. Conventional mixers can be used.

[(b)成形工程]
工程(b)は、工程(a)で得られた配合物を、特定の型枠及び特定の伏せ型枠を用いて成形する工程である。
工程(b)において用いられる型枠は、少なくともその底面がガラスまたは合成樹脂で形成されていればよい。
このような少なくともその底面がガラスまたは合成樹脂で形成された型枠を用いることにより、型枠の底面に接する面である片面が鏡面状の優れた光沢を有する硬化体(セメント系薄板)を製造することができる。
底面を形成するための合成樹脂としては、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリカーボネート等が挙げられる。
なお、本発明においては、型枠の底面に接した面に、より優れた光沢性等を付与することができる点で、型枠の底面を形成する材料として、ガラスを使用することが好ましい。
型枠は、通常、型枠の底面を形成するための部材の該底面の周囲に、所定の高さ(例えば、1〜6mm)を有する側壁を形成するための部材を接着剤等で固着させてなるものである。
側壁を形成するための部材の材質としては、特に限定されず、例えば木材、合成樹脂、鋼等の金属等が挙げられる。
[(B) Molding step]
A process (b) is a process of shape | molding the compound obtained by the process (a) using a specific formwork and a specific hiding formwork.
The mold used in the step (b) only needs to have at least a bottom surface made of glass or synthetic resin.
By using a mold with at least the bottom surface made of glass or synthetic resin, a hardened body (cement-based thin plate) having excellent gloss with one side that is in contact with the bottom surface of the mold is mirror-like. can do.
Examples of the synthetic resin for forming the bottom surface include polyvinyl chloride, polyethylene, polypropylene, and polycarbonate.
In the present invention, it is preferable to use glass as a material for forming the bottom surface of the mold because it can impart more excellent gloss and the like to the surface in contact with the bottom of the mold.
Usually, a mold is fixed to a member for forming a side wall having a predetermined height (for example, 1 to 6 mm) with an adhesive or the like around the bottom of the member for forming the bottom of the mold. It will be.
The material of the member for forming the side wall is not particularly limited, and examples thereof include metals such as wood, synthetic resin, and steel.

工程(b)において用いられる伏せ型枠は、透水性又は透気性の部材を含む伏せ型枠であり、通常、透水性及び透気性を有しない部材(例えば、鋼板、合成樹脂板等)の面のうち、少なくともセメント系配合物に密着させる部分に、シート状の透水性又は透気性の部材を貼付してなるものが用いられる。
なお、本明細書において、伏せ型枠とは、セメント系の配合物を収容しうる型枠と組み合わせて用いられる型枠をいう。本発明のセメント系薄板は、その表面が、セメント系の配合物を収容しうる型枠のガラス製または合成樹脂製の底面によって形成され、光沢性を有するものであり、かつ、その裏面が、伏せ型枠によって形成され、光沢性を有しないものである。
透水性又は透気性の部材としては、不織布、織布等が挙げられる。
透水性又は透気性の部材を含む伏せ型枠を用いることにより、セメント系薄板の伏せ型枠に接する側の面に大きな気泡が発生するのを防ぐことができ、セメント系薄板全体の機械的強度の均一性を確保し、セメント系薄板における亀裂や破壊の発生を防止することができる。
The hiding formwork used in the step (b) is a hiding formwork including a water-permeable or air-permeable member and is usually a surface of a member (for example, a steel plate, a synthetic resin plate, etc.) that does not have water-permeability and air-permeability. Among them, a sheet formed by attaching a sheet-like water-permeable or air-permeable member to at least a portion to be in close contact with the cementitious compound is used.
In addition, in this specification, a turndown formwork means the formwork used in combination with the formwork which can accommodate a cement-type compound. The cement-based thin plate of the present invention has a glossy surface formed by a glass or synthetic resin bottom surface of a mold that can contain a cement-based compound, and the back surface thereof, It is formed by a turndown mold and does not have gloss.
Examples of the water permeable or air permeable member include a nonwoven fabric and a woven fabric.
By using a cover-up form that includes a water-permeable or air-permeable member, it is possible to prevent large bubbles from being generated on the surface of the cement-based sheet that contacts the cover-up form, and the mechanical strength of the entire cement-based sheet. Can be ensured and the occurrence of cracks and breakage in the cement-based thin plate can be prevented.

[(c)養生工程]
工程(c)は、型枠内の配合物と伏せ型枠とが密着したままの状態で、配合物を養生し、配合物の硬化体を得る工程である。
養生の方法は、特に限定されるものではないが、セメント系薄板の生産性や強度発現性等を考慮すると、例えば、下記の一次養生及び二次養生を行う方法が好ましい。
(一次養生)
まず、型枠内の配合物を伏せ型枠で押さえたままの状態で、5〜40℃で所定時間(例えば、3〜48時間)静置する。
(二次養生)
一次養生終了後、硬化した配合物を伏せ型枠で押さえたままの状態で、75〜95℃で10〜48時間蒸気養生する。
[(C) Curing process]
Step (c) is a step of curing the blend and obtaining a cured product of the blend in a state where the blend in the mold and the lying mold are in close contact with each other.
The curing method is not particularly limited, but considering the productivity and strength development of the cement-based thin plate, for example, the following primary curing method and secondary curing method are preferable.
(Primary curing)
First, the composition in the mold is left to stand at a temperature of 5 to 40 ° C. for a predetermined time (for example, 3 to 48 hours) while being held down by the facing mold.
(Secondary curing)
After completion of primary curing, steam curing is performed at 75 to 95 ° C. for 10 to 48 hours while the cured formulation is held down with the face down formwork.

[(d)脱型工程]
工程(d)は、工程(c)で得られた配合物の硬化体を型枠から脱型して、セメント系薄板を得る工程である。
セメント系薄板の厚みは、大きな気泡の発生の防止、及び、軽量性の観点から、6mm以下であることが好ましく、5mm以下であることがより好ましい。
また、セメント系薄板の厚みは、セメント系薄板全体の機械的強度の確保の観点から、1mm以上であることが好ましい。
セメント系薄板は、例えばホテルやマンション等の各種の新築または既存の建築物の柱、壁、床等に貼り付けて用いることにより、高級感、重厚感、及び光沢性に優れた意匠性の高い空間を創造することができる。
[(D) Demolding step]
Step (d) is a step of removing the cured product of the blend obtained in step (c) from the mold and obtaining a cement-based thin plate.
The thickness of the cement-based thin plate is preferably 6 mm or less, and more preferably 5 mm or less, from the viewpoint of preventing generation of large bubbles and lightness.
Moreover, it is preferable that the thickness of a cement-type thin plate is 1 mm or more from a viewpoint of ensuring the mechanical strength of the whole cement-type thin plate.
Cement-based thin plate is used for pasting, pillars, walls, floors, etc. of various newly built or existing buildings such as hotels and apartments, etc., so that it has high quality, solidness, and high design. A space can be created.

セメント系薄板を構成する配合物の硬化前及び硬化後の好ましい物性は、以下のとおりである。
硬化前の配合物のフロー値は、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した値として、好ましくは150mm以上、より好ましくは180mm以上、特に好ましくは210mm以上である。
配合物の硬化体の圧縮強度は、180N/mm以上であることが好ましく、190N/mm以上であることがより好ましく、200N/mm以上であることが特に好ましい。圧縮強度が180N/mm未満であると、硬化体全体の機械的強度が不足することがある。なお、本明細書において、圧縮強度とは、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定された値である。
配合物の硬化体の曲げ強度は、35N/mm以上であることが好ましく、37N/mm以上であることがより好ましく、40N/mm以上であることが特に好ましい。曲げ強度が35N/mm以上であると、硬化体全体の機械的強度が大きくなり、好ましい。なお、本明細書において、曲げ強度とは、「JIS R 5201(セメントの物理試験方法)」に準じて測定された値である。
The preferred physical properties of the compound constituting the cement-based sheet before and after curing are as follows.
The flow value of the compound before curing is preferably 150 mm as a value measured without performing 15 drop motions in the method described in “JIS R 5201 (Cement physical test method) 11. Flow test”. Above, more preferably 180 mm or more, particularly preferably 210 mm or more.
Compressive strength of the cured product of the formulation, is preferably 180 N / mm 2 or more, more preferably 190 N / mm 2 or more, particularly preferably 200 N / mm 2 or more. When the compressive strength is less than 180 N / mm 2 , the mechanical strength of the entire cured body may be insufficient. In this specification, the compressive strength is a value measured according to “JIS A 1108 (Concrete compressive strength test method)”.
Flexural strength of the cured product of the formulation is preferably 35N / mm 2 or more, more preferably 37N / mm 2 or more, and particularly preferably 40N / mm 2 or more. It is preferable that the bending strength is 35 N / mm 2 or more because the mechanical strength of the entire cured body is increased. In this specification, the bending strength is a value measured according to “JIS R 5201 (physical test method for cement)”.

配合物の硬化体の密度は、2.50〜2.60g/cmであることが好ましく、2.52〜2.58g/cmであることがより好ましい。密度が2.50g/cm未満であると、180N/mm以上の圧縮強度が得られにくく、その結果、硬化体全体の機械的強度が不足することがある。密度が2.60g/cmを超えると、硬化体全体の質量が大きくなり、セメント系薄板の運搬時及び取付時の作業負担が大きくなるなどの点で、好ましくない。
配合物の硬化体の弾性係数は、50kN/mm以上であることが好ましく、52〜65kN/mmであることがより好ましい。弾性係数が50kN/mm未満であると、180N/mm以上の圧縮強度が得られにくく、その結果、硬化体全体の機械的強度が不足することがある。なお、本明細書において、弾性係数とは、「JIS A 1149(コンクリートの静弾性係数試験方法)」に準じて測定された値である。
Density of the cured product of the formulation is preferably 2.50~2.60g / cm 3, more preferably 2.52~2.58g / cm 3. When the density is less than 2.50 g / cm 3, it is difficult to obtain a compressive strength of 180 N / mm 2 or more, and as a result, the mechanical strength of the entire cured body may be insufficient. When the density exceeds 2.60 g / cm 3 , the mass of the entire cured body increases, which is not preferable in terms of increasing the work load during transportation and attachment of the cement-based thin plate.
The elastic modulus of the cured product of the blend is preferably 50 kN / mm 2 or more, and more preferably 52 to 65 kN / mm 2 . When the elastic modulus is less than 50 kN / mm 2, it is difficult to obtain a compressive strength of 180 N / mm 2 or more, and as a result, the mechanical strength of the entire cured body may be insufficient. In this specification, the elastic modulus is a value measured according to “JIS A 1149 (static elastic modulus test method for concrete)”.

次に、本発明のセメント系薄板の製造方法の一例を、図面を参照しつつ説明する。図1は、本発明のセメント系薄板の製造方法の一例を示す図である。
図1中、工程(a)で得られたセメント系の配合物2を、平滑な上面を有するガラス部材1aと木製の側壁1bとからなる型枠1内に、型枠1の上端に達するまで投入する(図1の(イ))。次いで、型枠1内の配合物2の上面の全体と伏せ型枠3の不織布3aの全面とを密着させることによって、配合物2の成形を行う(図1の(ロ))。なお、伏せ型枠3は、鋼板3bに、透水性又は透気性の部材である不織布3aを貼付してなるものである。
配合物2は、型枠1の側壁1bの上端まで投入してもよいし、あるいは、上端よりも下方(例えば、型枠1の深さの中ほどまで)の高さとなるように投入してもよい。
配合物2を型枠1の側壁1bの上端まで投入する場合には、型枠1中の配合物2の上面と略同一の面積を有する伏せ型枠を、型枠1中の配合物2の上面に上方から密着させてもよいし、図1中の(ロ)に示すように、型枠1中の配合物2の上面よりも大きい面積を有する伏せ型枠3を用いてもよい。この場合、伏せ型枠3を型枠1の側壁1bの上面上に載置することにより、伏せ型枠3の不織布3aと配合物2とを密着させることができる。
側壁1bの上端よりも下方の高さまで配合物2を投入する場合には、型枠1中の配合物2の上面と略同一の面積を有する伏せ型枠(図示せず)を、型枠1内に嵌合させて、型枠1中の配合物2の上面に伏せ型枠3の不織布3aの全面を密着させる必要がある。
Next, an example of the manufacturing method of the cement-type thin plate of this invention is demonstrated, referring drawings. FIG. 1 is a diagram showing an example of a method for producing a cement-based thin plate of the present invention.
In FIG. 1, until the upper end of the formwork 1 is reached in the formwork 1 composed of the glass member 1a having a smooth upper surface and the wooden side wall 1b, the cement-based composition 2 obtained in the step (a). (Fig. 1 (A)). Next, molding of the blend 2 is performed by bringing the entire top surface of the blend 2 in the mold 1 into close contact with the entire surface of the nonwoven fabric 3a of the cover mold 3 ((B) in FIG. 1). In addition, the turndown mold 3 is formed by sticking a nonwoven fabric 3a which is a water-permeable or air-permeable member to the steel plate 3b.
The mixture 2 may be charged up to the upper end of the side wall 1b of the mold 1 or may be charged so as to be lower than the upper end (for example, to the middle of the depth of the mold 1). Also good.
In the case where the compound 2 is charged up to the upper end of the side wall 1b of the mold 1, a face-down mold having substantially the same area as the top surface of the compound 2 in the mold 1 is used as the compound 2 in the mold 1. The upper surface may be brought into close contact with the upper surface, or, as shown in (b) of FIG. 1, an underlay mold 3 having a larger area than the upper surface of the composition 2 in the mold 1 may be used. In this case, the non-woven fabric 3a of the cover mold 3 and the compound 2 can be brought into close contact with each other by placing the cover mold 3 on the upper surface of the side wall 1b of the mold 1.
When the compound 2 is introduced to a height below the upper end of the side wall 1b, an overlaid mold (not shown) having the same area as the upper surface of the compound 2 in the mold 1 is used as the mold 1. It is necessary to fit the inside of the nonwoven fabric 3a of the face-down mold 3 to the upper surface of the compound 2 in the mold 1 by fitting it inside.

配合物の成形後、型枠1内の配合物2と伏せ型枠3とが密着したままの状態で、型枠1内の配合物2の養生を行う(図1中の(ロ))。
養生後、伏せ型枠3を外した後、配合物2の硬化体を型枠1から脱型すれば、配合物2の硬化体からなるセメント系薄板4が得られる(図1中の(ハ))。
セメント系薄板4は、型枠1の底面に接していた面(表面)4aと、その反対側の面であって、伏せ型枠3の不織布3aに接していた面(裏面)4bとを有する。表面4aは、鏡面状の光沢を有する平滑な面であり、セメント系薄板4に高級感、重厚感、及び光沢性を付与するものである。
After molding of the blend, curing of the blend 2 in the mold 1 is performed in a state where the blend 2 in the mold 1 and the face-down mold 3 are kept in close contact ((b) in FIG. 1).
After curing, after removing the lying mold 3, the hardened body of the composition 2 is removed from the mold 1 to obtain a cement-based thin plate 4 made of the hardened body of the composition 2 ((C in FIG. 1). )).
The cement-based thin plate 4 has a surface (front surface) 4a that has been in contact with the bottom surface of the mold 1 and a surface (back surface) 4b that is on the opposite side and that has been in contact with the nonwoven fabric 3a of the face-down mold 3. . The surface 4a is a smooth surface having a specular gloss, and imparts a high-class feeling, a heavy feeling, and a glossiness to the cement-based thin plate 4.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[材料の準備]
セメント系薄板の構成材料として、下記の材料を準備した。
(A)セメント;低熱ポルトランドセメント(太平洋セメント社製)
(B)微粉末;シリカフューム(BET比表面積10m/g)
(C)細骨材;珪砂(粒径0.15〜0.6mm)
(D)減水剤;ポリカルボン酸系高性能減水剤
(E)金属繊維;鋼繊維(直径:0.15mm、長さ:15mm)
(F)水;水道水
(G)無機粉末;石英粉末(ブレーン比表面積7,500cm/g)
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Preparation of materials]
The following materials were prepared as constituent materials for the cement-based thin plate.
(A) Cement: Low heat Portland cement (manufactured by Taiheiyo Cement)
(B) Fine powder; silica fume (BET specific surface area 10 m 2 / g)
(C) Fine aggregate; quartz sand (particle size 0.15 to 0.6 mm)
(D) Water reducing agent; polycarboxylic acid-based high-performance water reducing agent (E) metal fiber; steel fiber (diameter: 0.15 mm, length: 15 mm)
(F) Water; Tap water (G) Inorganic powder; Quartz powder (Blaine specific surface area 7,500 cm 2 / g)

[実施例1;各種物性値の測定]
セメント100質量部、シリカフューム30質量部、細骨材105質量部、減水剤0.5質量部(セメントに対する固形分)、鋼繊維(配合物の体積の2%)、水22質量部、石英粉末30質量部を二軸練りミキサに投入し、混練して配合物を得た。
得られた配合物のフロー値を、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した。その結果、フロー値は270mmであった。
また、配合物をφ50×100mmの型枠に流し込み、20℃で48時間静置(一次養生)後、脱型し、さらに90℃で48時間蒸気養生(二次養生)し、硬化体を得た。得られた硬化体の圧縮強度及び静弾性係数を、それぞれ、「JIS A 1108(コンクリートの圧縮強度試験方法)」及び「JIS A 1149(コンクリートの静弾性係数試験方法)」に準じて測定した。その結果、圧縮強度は、230N/mmであり、静弾性係数は55kN/mmであった。
また、配合物を、4×4×16cmの型枠に流し込み、20℃で48時間静置(一次養生)後、脱型し、さらに90℃で48時間蒸気養生(二次養生)し、硬化体を得た。得られた硬化体の曲げ強度を、「JIS R 5201」に準じて測定した。その結果、曲げ強度は、45N/mmであった。
配合物の硬化体の密度は、2.55g/cmであった。
[Example 1; Measurement of various physical properties]
100 parts by mass of cement, 30 parts by mass of silica fume, 105 parts by mass of fine aggregate, 0.5 parts by mass of water reducing agent (solid content with respect to cement), steel fibers (2% of the volume of the compound), 22 parts by mass of water, quartz powder 30 parts by mass was charged into a biaxial kneader and kneaded to obtain a blend.
In the method described in “JIS R 5201 (Cement physical test method) 11. Flow test”, the flow value of the obtained blend was measured without performing 15 drop motions. As a result, the flow value was 270 mm.
In addition, the mixture was poured into a mold of φ50 × 100 mm, allowed to stand at 20 ° C. for 48 hours (primary curing), demolded, and further subjected to steam curing (secondary curing) at 90 ° C. for 48 hours to obtain a cured body. It was. The compression strength and static elastic modulus of the obtained cured product were measured in accordance with “JIS A 1108 (Concrete compressive strength test method)” and “JIS A 1149 (Concrete static elastic modulus test method)”, respectively. As a result, the compressive strength was 230 N / mm 2 and the static elastic modulus was 55 kN / mm 2 .
In addition, the composition was poured into a 4 × 4 × 16 cm mold, left at 20 ° C. for 48 hours (primary curing), demolded, and further steam-cured (secondary curing) at 90 ° C. for 48 hours to cure. Got the body. The bending strength of the obtained cured product was measured according to “JIS R 5201”. As a result, the bending strength was 45 N / mm 2 .
The density of the cured product of the blend was 2.55 g / cm 3 .

[実施例2;セメント系薄板の製造]
ガラス板の上面に、化粧合板からなる側壁を両面テープで貼付けて、上方のみが開口した20cm×20cm×3mm(深さ)の内部空間を有する型枠を準備した。また、鋼板の片面に不織布を貼り付けて、伏せ型枠を作製した。
実施例1で得られた配合物を、上記型枠内にその上端まで厚さ3mmとなるように流し込んだ後、型枠内の配合物と伏せ型枠とを、伏せ型枠の不織布の側が配合物の上面に対向するように密着させた。次いで、そのままの状態で、20℃で24時間静置(一次養生)後、90℃で48時間蒸気養生(二次養生)し、次いで脱型して、20cm×20cm×3mmのセメント系薄板を得た。
同様の製造手順を繰り返して、セメント系薄板を10枚製造したところ、いずれも割れや欠損部分が発生せず、問題なく製造することができた。また、セメント系薄板の表面(型枠の底面に接していた面)を目視にて観察したところ、高級感、重厚感、及び、鏡面状の光沢を有し、意匠性に優れるものであった。
[Example 2; Production of cement-based sheet]
On the upper surface of the glass plate, a side wall made of a decorative plywood was attached with a double-sided tape to prepare a form having an internal space of 20 cm × 20 cm × 3 mm (depth) opened only at the top. Moreover, the nonwoven fabric was affixed on the single side | surface of the steel plate, and the down formwork was produced.
After pouring the compound obtained in Example 1 into the mold so as to have a thickness of 3 mm up to the upper end, the compound in the mold and the cover mold are placed on the nonwoven fabric side of the cover mold. It was made to adhere so that the upper surface of a blend might be countered. Next, after standing for 24 hours at 20 ° C. (primary curing), steam curing (secondary curing) is performed at 90 ° C. for 48 hours, and then demolded to obtain a cement-based thin plate of 20 cm × 20 cm × 3 mm. Obtained.
The same manufacturing procedure was repeated and 10 cement-based thin plates were manufactured. As a result, no cracks or chipped portions were generated, and it was possible to manufacture without problems. In addition, when the surface of the cement-based thin plate (the surface that was in contact with the bottom surface of the formwork) was visually observed, it had a high-class feeling, a heavy feeling, and a specular gloss, and was excellent in design. .

[比較例1]
伏せ型枠として、鋼板のみからなり、透水性又は透気性の部材を含まないものを用いたこと以外は、実施例1と同様にして、セメント系薄板を得た。
同様の製造手順を繰り返して、セメント系薄板を10枚製造したところ、そのうちの3枚の裏面(伏せ型枠に接していた面)に数個の大きな気泡が認められ、該気泡部分から割れや欠損が生じていた。
[比較例2]
配合物として、セメント100質量部、シリカフューム30質量部、細骨材105質量部、減水剤0.5質量部(セメントに対する固形分)、水22質量部、石英粉末30質量部を二軸練りミキサに投入し、混練して得た配合物を用いたこと以外は、実施例1と同様にして、セメント系薄板を得た。
同様の製造手順を繰り返して、セメント系薄板を10枚製造したところ、そのうちの4枚において、脱型時に割れや欠損が発生した。
[Comparative Example 1]
A cement-based thin plate was obtained in the same manner as in Example 1 except that a concealed form was made of only a steel plate and did not contain a water-permeable or air-permeable member.
The same manufacturing procedure was repeated to produce 10 cement-based thin plates. Among them, several large bubbles were observed on the back surface (the surface that was in contact with the face-down formwork), and cracks were observed from the bubbles. A defect occurred.
[Comparative Example 2]
As a blend, 100 parts by mass of cement, 30 parts by mass of silica fume, 105 parts by mass of fine aggregate, 0.5 parts by mass of water reducing agent (solid content with respect to cement), 22 parts by mass of water, and 30 parts by mass of quartz powder were mixed in a biaxial mixer. A cementitious thin plate was obtained in the same manner as in Example 1 except that the compound obtained by mixing and kneading was used.
The same manufacturing procedure was repeated to produce 10 cement-based thin plates, and in 4 of them, cracks and defects occurred during demolding.

以上から、本発明のセメント系薄板の製造方法によると、セメント系配合物の硬化体に気泡が含まれていないことなどから、薄板全体の機械的強度に優れた、超薄肉(例えば、1〜6mm)の、高級感、重厚感、及び光沢性に優れたセメント系薄板が得られることがわかる。   As described above, according to the method for producing a cement-based thin plate of the present invention, since the hardened body of the cement-based compound does not contain bubbles, an ultra-thin wall (for example, 1 It can be seen that a cement-based thin plate having a high-quality feeling, a heavy feeling, and glossiness can be obtained.

本発明の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of this invention.

符号の説明Explanation of symbols

1 型枠
1a ガラス部材
1b 側壁
2 配合物
3 伏せ型枠
3a 不織布(透水性又は透気性の部材)
3b 鋼板
4 セメント系薄板
4a 表面(光沢性に優れた面)
4b 裏面
DESCRIPTION OF SYMBOLS 1 Formwork 1a Glass member 1b Side wall 2 Compound 3 Face-down formwork 3a Nonwoven fabric (water-permeable or air-permeable member)
3b Steel plate 4 Cement-based thin plate 4a Surface (surface with excellent gloss)
4b Back side

Claims (3)

(A)セメント、(B)BET比表面積が5〜25m/gの微粉末、(C)細骨材、(D)減水剤、(E)金属繊維、及び(F)水、を混練して配合物を得る混練工程と、
該混練工程で得た配合物を、少なくとも底面を形成する材質がガラスまたは合成樹脂である型枠内に投入し、次いで、該型枠内に投入された配合物と、透水性又は透気性の部材を含む伏せ型枠とを、当該透水性又は透気性の部材が前記配合物に対向するようにして密着させることにより、前記配合物の成形を行う成形工程と、
前記型枠内の配合物と前記伏せ型枠とが密着したままの状態で、前記配合物を養生し、前記配合物の硬化体を得る養生工程と、
前記配合物の硬化体を前記型枠から脱型することにより、前記配合物の硬化体からなるセメント系薄板を得る脱型工程と
を含むことを特徴とするセメント系薄板の製造方法。
(A) Cement, (B) Fine powder having a BET specific surface area of 5 to 25 m 2 / g, (C) Fine aggregate, (D) Water reducing agent, (E) Metal fiber, and (F) Water are kneaded. Kneading step to obtain a blended product,
The compound obtained in the kneading step is put into a mold whose material forming at least the bottom surface is glass or synthetic resin, and then the compound charged into the mold and the water-permeable or gas-permeable A molding step of molding the blend by closely contacting the formwork including the member such that the water-permeable or gas-permeable member faces the blend;
In the state where the compound in the mold and the cover mold are in close contact with each other, the compound is cured, and a curing process for obtaining a cured product of the compound,
And a demolding step of demolding the cured body of the blend from the mold to obtain a cement thin sheet comprising the cured body of the blend.
上記混練工程の上記配合物が、(G)ブレーン比表面積が4,000〜10,000cm/gの無機粉末、を含む請求項1に記載のセメント系薄板の製造方法。 The method for producing a cement-based thin plate according to claim 1, wherein the compound in the kneading step includes (G) an inorganic powder having a brain specific surface area of 4,000 to 10,000 cm 2 / g. 上記セメント系薄板の厚さが、1〜6mmである請求項1又は2に記載のセメント系薄板の製造方法。   The method for producing a cement-based thin plate according to claim 1 or 2, wherein the cement-based thin plate has a thickness of 1 to 6 mm.
JP2008314666A 2008-12-10 2008-12-10 Cement-based sheet manufacturing method Active JP5268612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314666A JP5268612B2 (en) 2008-12-10 2008-12-10 Cement-based sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314666A JP5268612B2 (en) 2008-12-10 2008-12-10 Cement-based sheet manufacturing method

Publications (2)

Publication Number Publication Date
JP2010137414A true JP2010137414A (en) 2010-06-24
JP5268612B2 JP5268612B2 (en) 2013-08-21

Family

ID=42347983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314666A Active JP5268612B2 (en) 2008-12-10 2008-12-10 Cement-based sheet manufacturing method

Country Status (1)

Country Link
JP (1) JP5268612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318342A (en) * 2018-12-04 2019-02-12 安徽水安建设集团股份有限公司 The secondary vibration of one kind squeezes surface layer processing unit and precast concrete block manufacture craft
JP2021126850A (en) * 2020-02-14 2021-09-02 清水建設株式会社 Frame mold for concrete formation and manufacturing method of concrete

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445707U (en) * 1990-08-20 1992-04-17
JPH10166342A (en) * 1996-12-13 1998-06-23 Ishikawajima Constr Materials Co Ltd Shuttering for concrete product
JP2004323262A (en) * 2003-04-22 2004-11-18 Taiheiyo Cement Corp Panel for assembly wall
JP4167379B2 (en) * 2000-03-29 2008-10-15 太平洋セメント株式会社 Cured body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445707U (en) * 1990-08-20 1992-04-17
JPH10166342A (en) * 1996-12-13 1998-06-23 Ishikawajima Constr Materials Co Ltd Shuttering for concrete product
JP4167379B2 (en) * 2000-03-29 2008-10-15 太平洋セメント株式会社 Cured body
JP2004323262A (en) * 2003-04-22 2004-11-18 Taiheiyo Cement Corp Panel for assembly wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318342A (en) * 2018-12-04 2019-02-12 安徽水安建设集团股份有限公司 The secondary vibration of one kind squeezes surface layer processing unit and precast concrete block manufacture craft
JP2021126850A (en) * 2020-02-14 2021-09-02 清水建設株式会社 Frame mold for concrete formation and manufacturing method of concrete
JP7374805B2 (en) 2020-02-14 2023-11-07 清水建設株式会社 Formwork for concrete forming and concrete manufacturing method

Also Published As

Publication number Publication date
JP5268612B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5505756B2 (en) Hydraulic composition, flexible article, and method for producing flexible article
CN100450963C (en) Cladded cement based artificial moulded stone material
CN108609974A (en) A kind of preparation method of ultra-high performance concrete and prefabricated PC
JP2009084092A (en) Mortar-based restoring material
JP4809575B2 (en) Cement composition for civil engineering structure and concrete product using the same
JP5268612B2 (en) Cement-based sheet manufacturing method
JP4167379B2 (en) Cured body
JP2008190117A (en) Board for buried form
CN116343956A (en) Surface layer permeable concrete mixing proportion design method
JP3894738B2 (en) Embedded formwork board
KR100547084B1 (en) Cement terazo composite materials using the magnesia
KR100656965B1 (en) Cement terazo composite materials using the high strength cement grout materials
JP5190187B2 (en) Method for manufacturing concrete pipe and concrete pipe
JP2005213085A (en) Ultra-lightweight mortar
JP4342701B2 (en) Hardened cement and method for producing the same
JP2008194881A (en) Concrete product and its manufacturing method
JP5800552B2 (en) Precast staircase
JP2007269591A (en) Method of producing concrete product, and concrete product
JP4406123B2 (en) Manufacturing method of mortar and concrete products
JP2004263386A (en) Floating floor plate
CN114046011A (en) Prefabricated bare concrete wallboard and manufacturing process
JP2008308364A (en) Method for manufacturing cementitious hardened article
JP2001089218A (en) Ariticial lightweight concrete for curtain wall and manufacture thereof
JPH01216805A (en) Manufacture of precast concrete product
JP2008246977A (en) Concrete product and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250