JP2010137123A - Mineral supplying agent and water treatment method using the same - Google Patents

Mineral supplying agent and water treatment method using the same Download PDF

Info

Publication number
JP2010137123A
JP2010137123A JP2008313189A JP2008313189A JP2010137123A JP 2010137123 A JP2010137123 A JP 2010137123A JP 2008313189 A JP2008313189 A JP 2008313189A JP 2008313189 A JP2008313189 A JP 2008313189A JP 2010137123 A JP2010137123 A JP 2010137123A
Authority
JP
Japan
Prior art keywords
water
mineral component
supply agent
component supply
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008313189A
Other languages
Japanese (ja)
Inventor
Hideyuki Itabashi
英之 板橋
Katsunobu Mori
勝伸 森
Chisato Hara
知里 原
Tomio Matsumoto
富美雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHOW CO Ltd
Gunma University NUC
Original Assignee
DENSHOW CO Ltd
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHOW CO Ltd, Gunma University NUC filed Critical DENSHOW CO Ltd
Priority to JP2008313189A priority Critical patent/JP2010137123A/en
Publication of JP2010137123A publication Critical patent/JP2010137123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an appropriate mineral supplying agent for supplying ultrapure water from which contained ion components have been removed with a mineral component of a moderate concentration eluted from the supplying agent, and to provide a water treatment method using the mineral supplying agent. <P>SOLUTION: The mineral supplying agent which is a carrier made of a clay powder molded into a grain and supporting carbonate powder, is obtained by mixing and stirring water, the carbonate powder of organism origin, and one or more kinds of clay powder selected from the group consisting of gairome-clay, Kibushi-clay, oceanic soil, and sepiolite, molding the mixture into a grain, and drying and calcinating the mold. By bringing the mineral supplying agent into contact with the ultrapure water from which the contained ion components have been removed and whose hardness is 0 ppm and pH value is 5 to 7, the mineral components are eluted from the mineral supplying agent and supplied to the ultrapure water to thereby adjust the hardness of the ultrapure water brought into contact with the agent to 3 to 30 ppm and the pH value thereof to 6 to 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶存イオン成分が取り除かれた超純水を、飲料水や観賞魚用水、養殖魚用水などの用途として用いる際に、ミネラル成分を付与するのに好適な、ミネラル成分供給剤及び該供給剤を用いた水の処理方法に関するものである。   The present invention provides a mineral component supply agent suitable for imparting a mineral component when using ultrapure water from which dissolved ion components have been removed for use as drinking water, water for ornamental fish, water for cultured fish, and the like. The present invention relates to a water treatment method using a supply agent.

近年、水道水に対する不信感から、国内外の様々な場所で採水されたミネラルウォーターが市販されている。また、水道水中の塩素やトリハロメタンを除去することを目的とした浄水器も多数市販されており、いわゆる「おいしい水」が注目されている。   In recent years, mineral water collected in various places in and outside the country has been marketed due to distrust of tap water. Many water purifiers for removing chlorine and trihalomethane in tap water are also commercially available, and so-called “delicious water” is attracting attention.

一方、身体に好適な弱アルカリ水を得るために、水を中和してpH値を高める処理方法として、カルシウム濾材を用いたフィルタを用い、水をフィルタに通過させることにより、水と濾材とを接触させて、濾材中を通過する間にカルシウム成分を水に溶出させ、水のpH値を高くして、アルカリ水化する方法が開示されている(例えば、特許文献1参照。)。この特許文献1に開示された方法では、単にすべての水をカルシウム濾材に通過させた場合には、水に対するカルシウム成分の溶出量が多くなりすぎ、ヒトの健康上において良い結果とならない高pHとなってしまうことが課題として挙げられ、これを解決するために、身体に好適な弱アルカリ性にする水処理用フィルタが開示されている。   On the other hand, in order to obtain weak alkaline water suitable for the body, as a treatment method for neutralizing water and increasing the pH value, a filter using a calcium filter medium is used, and water is passed through the filter by passing water through the filter. And a calcium component is eluted in water while passing through the filter medium, and the pH value of water is increased to make alkaline water (for example, refer to Patent Document 1). In the method disclosed in Patent Document 1, when all the water is simply passed through the calcium filter medium, the amount of the calcium component eluted with respect to the water is too high, and the high pH is not good for human health. In order to solve this problem, a water treatment filter that is weakly alkaline and suitable for the body is disclosed.

この水処理用フィルタは、フィルタ内に導入した水の一部を分流させて水処理剤層を通過させ、この分流通過水を他の水処理剤層を通過させない水と合流させることで、フィルタに導入した水全体を弱アルカリ水とするものである。水処理剤層は、カルシウム成分を含有するセラミック固形物のようなカルシウム成分含有材で構成され、カルシウム成分を含有する物質としては、珊瑚砂、焼成した珊瑚、焼成した貝化石、焼成した動物骨などが挙げられている。
特開2004−82081号公報(段落[0002]、[0003]、[0007]、[0008]、[0041])
This water treatment filter allows a part of the water introduced into the filter to be diverted and passed through the water treatment agent layer, and this diversion passing water is combined with water that does not pass through other water treatment agent layers, The whole water introduced in is used as weak alkaline water. The water treatment agent layer is composed of a calcium component-containing material such as a ceramic solid containing a calcium component. Examples of the substance containing a calcium component include cinnabar sand, fired cocoons, fired shell fossils, and fired animal bones. Etc. are mentioned.
JP 2004-82081 A (paragraphs [0002], [0003], [0007], [0008], [0041])

一方、最近、逆浸透膜(Reverse Osmosis膜)技術の進歩により、水中のイオンや分子を定量的に取り除くことが可能となった。逆浸透膜法により得られる逆浸透水(RO水)は、通常の浄水処理では取り除くことが困難なウイルスや細菌も除去できることから、安全な水の処理方法として注目されている。   On the other hand, recent advances in reverse osmosis membrane technology have made it possible to quantitatively remove ions and molecules in water. Reverse osmosis water (RO water) obtained by the reverse osmosis membrane method has been attracting attention as a safe water treatment method because it can remove viruses and bacteria that are difficult to remove by ordinary water purification treatment.

しかし、逆浸透膜法により得られる水は、逆浸透膜通過直後のpH値は中性であり、また、ミネラル成分も取り除かれてしまうため、いわゆる「味気ない水」となっていた。   However, since the water obtained by the reverse osmosis membrane method has a neutral pH value immediately after passing through the reverse osmosis membrane and the mineral component is also removed, it has been a so-called “tasteless water”.

そこで、カルシウム濃度比の高い弱アルカリ性の軟水が「名水」と称されていることに着目し、溶存イオン成分を取り除いた超純水に適度な濃度のミネラル成分を溶出付与する材料の開発を試みた。   Therefore, focusing on the fact that weak alkaline soft water with a high calcium concentration ratio is called “name water”, we tried to develop a material that dissolves and imparts an appropriate concentration of mineral components to ultrapure water from which dissolved ion components have been removed. It was.

本発明の目的は、溶存イオン成分を取り除いた超純水に適度な濃度のミネラル成分を溶出付与するのに好適なミネラル成分供給剤及び該供給剤を用いた水の処理方法を提供することにある。   An object of the present invention is to provide a mineral component supply agent suitable for eluting and imparting a mineral component having an appropriate concentration to ultrapure water from which dissolved ion components have been removed, and a water treatment method using the supply agent. is there.

本発明の別の目的は、重金属やアンモニウムを吸着して浄化し得る、ミネラル成分供給剤及び該供給剤を用いた水の処理方法を提供することにある。   Another object of the present invention is to provide a mineral component supply agent capable of adsorbing and purifying heavy metals and ammonium, and a method for treating water using the supply agent.

請求項1に係る発明は、硬度が0ppmでpHが5〜7の溶存イオン成分を取り除いた超純水にミネラル成分を付与するミネラル成分供給剤の改良である。その特徴ある構成は、生物由来の炭酸塩粉末と蛙目粘土、木節粘土、海洋性土及びセピオライトからなる群より選ばれた1種又は2種以上の粘土状粉末と水とを混合攪拌して調製された混合物を粒状に成形し、成形物を乾燥し、更に乾燥した成形物を焼成することにより得られ、粘土状粉末の担体に炭酸塩粉末を担持させた粒状の形態を有するところにある。   The invention according to claim 1 is an improvement of a mineral component supply agent that imparts a mineral component to ultrapure water from which dissolved ion components having a hardness of 0 ppm and a pH of 5 to 7 are removed. The characteristic composition is that one or two or more types of clay-like powder selected from the group consisting of biological carbonate powder, Sasame clay, Kibushi clay, marine soil and sepiolite are mixed and stirred. The mixture prepared in this way is formed into granules, the molded product is dried, and the dried molded product is calcined, and has a granular form in which carbonate powder is supported on a clay powder carrier. is there.

請求項2に係る発明は、請求項1に係る発明であって、混合前の粘土状粉末の平均粒径が0.001〜0.01mmであり、生物由来の炭酸塩粉末がホタテの貝殻の粉砕物であり、混合前のその平均粒径が0.001〜0.01mmであるミネラル成分供給剤である。   The invention according to claim 2 is the invention according to claim 1, wherein the average particle size of the clay-like powder before mixing is 0.001 to 0.01 mm, and the biological carbonate powder is a scallop shell. It is a pulverized product and a mineral component supply agent having an average particle size of 0.001 to 0.01 mm before mixing.

請求項3に係る発明は、請求項1又は2に係る発明であって、混合物が生物由来の炭酸塩粉末30〜50質量部と粘土状粉末50〜70質量部に、炭酸塩粉末と粘土状粉末の全質量に対し水20〜50質量部の割合となるように混合攪拌して調製されたミネラル成分供給剤である。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the mixture is 30 to 50 parts by mass of biological carbonate powder and 50 to 70 parts by mass of clay powder, carbonate powder and clay It is the mineral component supply agent prepared by mixing and stirring so that it may become the ratio of 20-50 mass parts of water with respect to the total mass of powder.

請求項4に係る発明は、請求項1ないし3いずれか1項に記載のミネラル成分供給剤と硬度が0ppmでpHが5〜7の溶存イオンを取り除いた超純水とを接触させることにより、ミネラル成分供給剤からミネラル成分を溶出させて超純水にミネラル成分を付与し、接触させた超純水の硬度を3〜30ppmかつpH6〜8にそれぞれ調整することを特徴とする水の処理方法である。   The invention according to claim 4 is obtained by contacting the mineral component supply agent according to any one of claims 1 to 3 with ultrapure water from which dissolved ions having a hardness of 0 ppm and a pH of 5 to 7 are removed. A method for treating water characterized by eluting a mineral component from a mineral component supply agent to impart a mineral component to ultrapure water and adjusting the hardness of the contacted ultrapure water to 3 to 30 ppm and pH 6 to 8, respectively. It is.

請求項5に係る発明は、請求項4に係る発明であって、図1に示すように、ミネラル成分供給剤と超純水との接触が、ミネラル成分供給剤を通水性を有しかつ供給剤の通過しない第1容器に入れた後、第1容器に超純水を通じることにより行われる水の処理方法である。   The invention according to claim 5 is the invention according to claim 4, wherein, as shown in FIG. 1, the contact between the mineral component supply agent and the ultrapure water is water-permeable and supplied with the mineral component supply agent. This is a water treatment method performed by passing ultrapure water through the first container after it is put in the first container through which the agent does not pass.

請求項6に係る発明は、請求項4に係る発明であって、図2に示すように、ミネラル成分供給剤と超純水との接触が、ミネラル成分供給剤を通水性を有しかつ供給剤の通過しない第1容器に入れた後、超純水を貯えた第2容器に第1容器を浸漬することにより行われる水の処理方法である。   The invention according to claim 6 is the invention according to claim 4, wherein, as shown in FIG. 2, the contact between the mineral component supply agent and the ultrapure water is water-permeable and supplied with the mineral component supply agent. This is a water treatment method performed by immersing the first container in a second container in which ultrapure water is stored after being placed in the first container through which the agent does not pass.

請求項7に係る発明は、請求項4ないし6いずれか1項に係る発明であって、超純水が逆浸透水又は脱イオン水である水の処理方法である。   The invention according to a seventh aspect is the invention according to any one of the fourth to sixth aspects, wherein the ultrapure water is reverse osmosis water or deionized water.

本発明のミネラル成分供給剤は、溶存イオン成分を取り除いた飲料用途にはあまり適していない超純水に適度な濃度のミネラル成分を溶出付与するのに適している。また、処理対象水にアンモニウムイオンや重金属が残存している場合は、これらを吸着する浄化作用も有する。   The mineral component supply agent of the present invention is suitable for eluting and imparting a mineral component having an appropriate concentration to ultrapure water that is not very suitable for beverage use from which dissolved ion components are removed. Further, when ammonium ions and heavy metals remain in the water to be treated, it also has a purification action of adsorbing them.

本発明のミネラル成分供給剤を用いた水の処理方法は、「味気ない水」といわれるような超純水を安全でかつ簡便な方法により美味しい水とすることができる。また、処理対象水にアンモニウムイオンや重金属が残存している場合は、これらを吸着する作用も有するため、身体に優しい水にすることができる。   With the method for treating water using the mineral component supply agent of the present invention, ultrapure water such as “tasteless water” can be made into delicious water by a safe and simple method. In addition, when ammonium ions or heavy metals remain in the water to be treated, since they also have an action of adsorbing them, the water can be made gentle to the body.

次に本発明を実施するための最良の形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

本発明のミネラル成分供給剤は、硬度が0ppmでpHが5〜7の溶存イオン成分を取り除いた超純水にミネラル成分を付与するミネラル成分供給剤の改良である。その特徴ある構成は、生物由来の炭酸塩粉末と蛙目粘土、木節粘土、海洋性土及びセピオライトからなる群より選ばれた1種又は2種以上の粘土状粉末と水とを混合攪拌して調製された混合物を粒状に成形し、成形物を乾燥し、更に乾燥した成形物を焼成することにより得られ、粘土状粉末の担体に炭酸塩粉末を担持させた粒状の形態を有するところにある。   The mineral component supply agent of the present invention is an improvement of the mineral component supply agent that imparts a mineral component to ultrapure water from which dissolved ion components having a hardness of 0 ppm and a pH of 5 to 7 are removed. The characteristic composition is that one or two or more types of clay-like powder selected from the group consisting of biological carbonate powder, Sasame clay, Kibushi clay, marine soil and sepiolite are mixed and stirred. The mixture prepared in this way is formed into granules, the molded product is dried, and the dried molded product is calcined, and has a granular form in which carbonate powder is supported on a clay powder carrier. is there.

生物由来の炭酸塩粉末と上記種類の粘土状粉末と水という化学薬品を使用していない自然物を原料とし、粘土状粉末の担体に炭酸塩粉末を担持させた粒状の形態を有するミネラル成分供給剤は、RO水などといった飲料用途にはあまり適していない超純水に適度な濃度のミネラル成分を溶出付与するのに適している。また、処理対象水にアンモニウムイオンや重金属が残存している場合は、これらを吸着する作用も有する。   Mineral component supply agent having a granular form in which carbonate powder is supported on a carrier of clay-like powder, using a natural product that does not use chemicals of biological carbonate powder, the above kind of clay-like powder and water as raw materials Is suitable for eluting and imparting a moderate concentration of mineral components to ultrapure water that is not very suitable for beverage use such as RO water. Moreover, when ammonium ion and heavy metal remain | survive in process target water, it also has an effect | action which adsorbs these.

上記超純水を本発明のミネラル成分供給剤に接触させることで、カルシウムイオンやマグネシウムイオンといったミネラル成分が適度に付与され、また、pHが身体に適した弱アルカリ性となるため、このミネラル成分供給剤と接触後の処理水は、ヒトが飲んで美味しいと感じる、安全な飲み水となる。また、処理対象水にアンモニウムイオンや重金属が残存している場合は、これらを吸着する作用も有するため、身体に優しい水にすることができる。   By bringing the ultrapure water into contact with the mineral component supply agent of the present invention, mineral components such as calcium ions and magnesium ions are moderately imparted, and the pH becomes weakly alkaline suitable for the body. The treated water after contact with the agent becomes safe drinking water that humans feel delicious when drinking. In addition, when ammonium ions or heavy metals remain in the water to be treated, since they also have an action of adsorbing them, the water can be made gentle to the body.

本発明の処理対象となる超純水は、硬度が0ppmでpHが5〜7の溶存イオン成分を取り除いた水である。このような超純水としては、逆浸透膜法により得られるRO水やイオン交換樹脂法により得られる脱イオン水などが好ましいが、上記方法を用いて得られた水に限定されるものではなく、溶存イオンが取り除かれ、硬度が0ppmでpHが5〜7の範囲の、いわゆる「味気ない水」といわれるような超純水であれば、特に制限されない。   The ultrapure water to be treated in the present invention is water from which dissolved ion components having a hardness of 0 ppm and a pH of 5 to 7 are removed. Such ultrapure water is preferably RO water obtained by a reverse osmosis membrane method or deionized water obtained by an ion exchange resin method, but is not limited to water obtained using the above method. There is no particular limitation as long as it is ultrapure water so-called “tasteless water” in which dissolved ions are removed, the hardness is 0 ppm, and the pH is in the range of 5 to 7.

ミネラル成分供給剤に配合される生物由来の炭酸塩粉末は主としてカルシウム源の供給に寄与する。この生物由来の炭酸塩粉末としては、ホタテの貝殻の粉砕物(以下、ホタテパウダーという。)が、最も安定にかつ安全にカルシウム成分を供給できることから好ましい。混合前のホタテパウダーの平均粒径は0.001〜0.01mmが、作製後のミネラル成分供給剤からのカルシウム成分を溶出する速度の面、担体成分への担持のし易さなどから好ましい。   Biological carbonate powder blended in the mineral component supply agent mainly contributes to supply of calcium source. As this biological carbonate powder, a scallop shell pulverized product (hereinafter referred to as scallop powder) is preferable because it can supply the calcium component most stably and safely. The average particle diameter of the scallop powder before mixing is preferably 0.001 to 0.01 mm from the aspect of speed of elution of the calcium component from the mineral component supply agent after preparation, ease of loading on the carrier component, and the like.

ミネラル成分供給剤に配合される粘土状粉末は主としてカルシウム以外のミネラル成分源の供給に寄与し、また、供給剤の担体としても機能する。更に、処理対象水に残存するアンモニウムイオンや重金属の吸着作用としても機能する。この粘土状粉末として列挙した、蛙目粘土、木節粘土、海洋性土及びセピオライトからなる群より選ばれた1種又は2種以上の成分は、カルシウム以外のミネラル成分が適度にその組成に含まれ、また、カルシウム源である生物由来の炭酸塩粉末の担持に適している。混合前の粘土状粉末の平均粒径は0.001〜0.01mmが、作製後のミネラル成分供給剤からのカルシウム成分以外の他のミネラル成分を溶出する速度の面や生物由来の炭酸塩粉末の担持の程度などから好ましい。   The clay-like powder blended in the mineral component supply agent mainly contributes to supply of mineral component sources other than calcium, and also functions as a carrier for the supply agent. Furthermore, it functions also as an adsorption action of ammonium ions and heavy metals remaining in the water to be treated. One or more components selected from the group consisting of glazed clay, Kibushi clay, marine soil and sepiolite listed as this clay-like powder, moderately contain mineral components other than calcium. It is also suitable for supporting biologically derived carbonate powder as a calcium source. The average particle size of the clay-like powder before mixing is 0.001 to 0.01 mm, the speed of eluting other mineral components other than the calcium component from the mineral component supply agent after preparation, and biological carbonate powder It is preferable from the degree of loading.

蛙目粘土とは、淡灰ないし青灰色で粗粒の石英を含む、花崗岩が風化し、堆積してできた粘土である。   Sasame clay is a clay made by weathering and depositing granite, including light ash or blue-gray and coarse quartz.

木節粘土とは、暗灰ないし褐色で、炭化した木片など有機物を多く含み、花崗岩が風化し、堆積してできた非常に粒子が細かく、可塑性が高い粘土である。   Kibushi clay is dark ash or brown, contains a lot of organic matter such as carbonized wood fragments, is granulated from the weathered and deposited granite, is very fine particles and highly plasticized clay.

海洋性土とは、花崗岩が風化し海底に堆積した微粒状粘土と、プランクトンや魚類の死骸等が堆積及び混合したものが、数千年かけて地質変動に伴い地上に隆起した粘土であり、その平均粒径は0.002mm以下である。   Marine soil is a clay that has risen on the ground due to geological changes over a period of thousands of years. The average particle diameter is 0.002 mm or less.

セピオライトは海泡石ともいい、緻密土状の単斜晶系または斜方晶系の鉱物である。   Sepiolite, also known as aorite, is a dense earth-like monoclinic or orthorhombic mineral.

次の表1に蛙目粘土及び木節粘土の化学組成の一例を示す。なお、表1中の各化学組成の単位は「質量%」である。   Table 1 below shows an example of the chemical composition of Sasame clay and Kibushi clay. In addition, the unit of each chemical composition in Table 1 is “mass%”.

生物由来の炭酸塩粉末と粘土状粉末と水との混合では、先ず、生物由来の炭酸塩粉末と粘土状粉末を混合して混合粉末とし、次に、この混合粉末に水を添加して混合攪拌することで混合物を調製することが好ましい。このような順で混合物を調製するのは、添加する水によって混合物の硬さなどを調整するためであるが、ある一定の配合割合で、どの程度の硬さとなるかが判っている場合は、炭酸塩粉末と粘土状粉末と水とを一度に混合攪拌して混合物を調製しても良い。 In the mixing of biological carbonate powder, clay powder and water, first, biological carbonate powder and clay powder are mixed to form a mixed powder, and then water is added to the mixed powder and mixed. It is preferable to prepare the mixture by stirring. The mixture is prepared in this order in order to adjust the hardness of the mixture by the water to be added, but when it is known how hard it will be at a certain blending ratio, Carbonate powder, clay powder and water may be mixed and stirred at a time to prepare a mixture.

生物由来の炭酸塩粉末と粘土状粉末との混合割合は、生物由来の炭酸塩粉末が30〜50質量部、粘土状粉末が50〜70質量部となるように混合することが、溶出させるミネラル成分のバランスや、得られる供給剤の粘土状粉末の担体への炭酸塩粉末の担持の安定性の面などから好ましい。また、水の混合割合は炭酸塩粉末と粘土状粉末の全質量に対し20〜50質量部となるように混合することが、成形物の成形時の取扱い易さ、などから好ましい。   The mixing ratio of the biological carbonate powder and the clay-like powder is a mineral to be eluted by mixing so that the biological carbonate powder is 30 to 50 parts by mass and the clay-like powder is 50 to 70 parts by mass. It is preferable from the viewpoint of the balance of the components and the stability of the support of the carbonate powder on the carrier of the obtained powdery clay powder. Moreover, it is preferable from the ease of handling at the time of shaping | molding of a molded object, etc. to mix so that the mixing ratio of water may be 20-50 mass parts with respect to the total mass of carbonate powder and clay-like powder.

次に、本発明のミネラル成分供給剤の作製方法を、生物由来の炭酸塩粉末としてホタテパウダーを、粘土状粉末として蛙目粘土を用いた例で説明する。   Next, a method for producing the mineral component supply agent of the present invention will be described using an example in which scallop powder is used as the biological carbonate powder and cocoon clay is used as the clay-like powder.

先ず、平均粒径0.001〜0.100mmのホタテパウダーと、平均粒径0.001〜0.100mmの蛙目粘土とを用意し、ホタテパウダーと蛙目粘土と水とを所定の割合で混合及び攪拌することで混合物を調製する。ここで添加する水の割合が少ないと、攪拌し難くなるため、均一に混合することができず、水の割合が多すぎると、成形時に形状を保つことができないなどの不具合を生じる。   First, scallop powder having an average particle diameter of 0.001 to 0.100 mm and a cocoon clay having an average particle diameter of 0.001 to 0.100 mm are prepared, and scallop powder, cocoon clay and water are mixed at a predetermined ratio. A mixture is prepared by mixing and stirring. If the ratio of water added here is small, it becomes difficult to stir, so uniform mixing cannot be achieved. If the ratio of water is too large, problems such as inability to maintain the shape during molding occur.

次いで、調製した混合物を粒状に成形する。ここでの大きさや形状によって、作製されるミネラル成分供給剤のおおよその粒径や形状が決定する。作製後のミネラル成分供給剤からのミネラル成分の溶出の程度を考慮すると、混合物中に含まれる水の割合によって多少左右されるが、成形物は直径5〜10mm、長さ5〜10mmの粒状となるように成形することが好ましい。   The prepared mixture is then formed into granules. The approximate particle size and shape of the mineral component supply agent to be produced are determined by the size and shape here. Considering the degree of elution of the mineral component from the mineral component supply agent after preparation, it depends somewhat on the proportion of water contained in the mixture, but the molded product is granular with a diameter of 5 to 10 mm and a length of 5 to 10 mm. It is preferable to mold so as to be.

次に、成形した成形物を乾燥する。ここでは、成形物を室温で乾燥雰囲気下に5〜10日間、好ましくは5日間静置することで、成形物中の水の大部分を取り除く。   Next, the molded product is dried. Here, most of the water in the molding is removed by allowing the molding to stand at room temperature in a dry atmosphere for 5 to 10 days, preferably 5 days.

最後に、乾燥した成形物を焼成する。乾燥した成形物を酸素含有雰囲気下、850〜1100℃の温度で6〜12時間焼成することで本発明のミネラル成分供給剤が得られる。成形物の焼成温度を上記範囲内としたのは、下限値未満の温度ではミネラル成分供給剤が水に溶解する不具合を生じるためであり、上限値を越える温度で焼成をすると、粘土の融解が進み、得られる供給剤の表面積が減少して、適度なミネラル成分の付与が進まなくなるためである。また、成形物の焼成時間を上記範囲内としたのは、下限値未満では表面がひび割れる不具合を生じるためであり、上限値を越えると供給剤の表面積が減少する不具合を生じるためである。このうち、900〜1150℃の温度で7〜10時間焼成することが特に好ましい。   Finally, the dried molded product is fired. The dried molded product is fired at a temperature of 850 to 1100 ° C. for 6 to 12 hours in an oxygen-containing atmosphere to obtain the mineral component supply agent of the present invention. The reason why the firing temperature of the molded product is within the above range is that the mineral component supply agent dissolves in water at a temperature lower than the lower limit value. When firing at a temperature exceeding the upper limit value, the clay is melted. This is because the surface area of the obtained feed agent decreases and the provision of an appropriate mineral component does not proceed. The reason why the firing time of the molded product is within the above range is that the surface is cracked if it is less than the lower limit value, and the surface area of the supply agent is decreased if the upper limit value is exceeded. Among these, it is particularly preferable to bake at a temperature of 900 to 1150 ° C. for 7 to 10 hours.

本発明の水の処理方法は、前述した本発明のミネラル成分供給剤と硬度が0ppmでpHが5〜7の溶存イオンを取り除いた超純水とを接触させることにより、ミネラル成分供給剤からミネラル成分を溶出させて超純水にミネラル成分を付与し、接触させた超純水の硬度を3〜30ppmかつpH6〜8にそれぞれ調整することを特徴とする。   The water treatment method of the present invention comprises the step of bringing the mineral component supply agent of the present invention described above into contact with the ultrapure water from which dissolved ions having a hardness of 0 ppm and a pH of 5 to 7 have been removed to thereby remove the mineral from the mineral component supply agent. The component is eluted, a mineral component is added to the ultrapure water, and the hardness of the ultrapure water that is brought into contact is adjusted to 3 to 30 ppm and pH 6 to 8, respectively.

ミネラル成分供給剤に接触させた超純水(以下、処理水という。)の硬度及びpHが上記範囲内であれば、ヒトが飲むにあたって、美味しいと感じられる程度となり、本発明の処理方法によって、「味気ない水」といわれるような超純水を安全でかつ簡便な方法により美味しい水とすることができる。また、処理対象水にアンモニウムイオンや重金属が残存している場合は、ミネラル成分供給剤と超純水との接触によって、超純水に含まれる上記アンモニウムイオンや重金属がミネラル成分供給剤に吸着されるため、本発明の処理方法により得られる処理水を身体に優しい水にすることができる。   If the hardness and pH of the ultrapure water contacted with the mineral component supply agent (hereinafter referred to as treated water) are within the above range, it becomes a degree that humans feel delicious when drinking, and according to the treatment method of the present invention, Ultrapure water called “tasteless water” can be made into delicious water by a safe and simple method. Further, when ammonium ions or heavy metals remain in the water to be treated, the ammonium ions and heavy metals contained in the ultrapure water are adsorbed by the mineral component supply agent due to the contact between the mineral component supply agent and the ultrapure water. Therefore, the treated water obtained by the treatment method of the present invention can be made into body-friendly water.

本発明の水の処理方法におけるミネラル成分供給剤と超純水との接触としては、図1に示すような、通水性を有しかつ供給剤の通過しない第1容器11に所定量のミネラル成分供給剤10を入れた後、ミネラル成分供給剤10が入った第1容器11に超純水12を通じることにより行われる。ここで第1容器11内に入れるミネラル成分供給剤10の使用量は、第1容器11への通水量や処理量によって、適宜調整可能である。通じる水の流速は、第1容器の大きさや、第1容器内に入れるミネラル成分供給剤の使用量によって適宜調節可能である。   As the contact between the mineral component supply agent and the ultrapure water in the water treatment method of the present invention, a predetermined amount of mineral component is contained in the first container 11 that has water permeability and does not pass the supply agent as shown in FIG. After the supply agent 10 is put, the ultrapure water 12 is passed through the first container 11 containing the mineral component supply agent 10. Here, the usage amount of the mineral component supply agent 10 put in the first container 11 can be appropriately adjusted according to the amount of water flowed into the first container 11 and the amount of treatment. The flow rate of the water to be communicated can be adjusted as appropriate depending on the size of the first container and the amount of the mineral component supply agent put in the first container.

また、図2に示すような、通水性を有しかつ供給剤の通過しない第1容器11に所定量のミネラル成分供給剤10を入れた後、超純水12を貯えた第2容器13にミネラル成分供給剤10が入った第1容器11を一定時間浸漬することで行っても良い。この接触方法での第1容器の浸漬時間は、第1容器に入れたミネラル成分供給剤中の、生物由来の炭酸塩粉末と粘土状粉末の配合割合や供給剤の形状、第1容器内に入れるミネラル成分供給剤の使用量、第2容器に貯えた超純水の量などによって適宜調節する。   Also, as shown in FIG. 2, after a predetermined amount of the mineral component supply agent 10 is put in the first container 11 having water permeability and through which the supply agent does not pass, the second container 13 storing the ultrapure water 12 is added. You may carry out by immersing the 1st container 11 containing the mineral component supply agent 10 for a fixed time. The soaking time of the first container in this contact method is the blending ratio of the biological carbonate powder and the clay-like powder in the mineral component supply agent put in the first container, the shape of the supply agent, and the first container. The amount is appropriately adjusted according to the amount of mineral component supply agent to be added and the amount of ultrapure water stored in the second container.

上記接触方法は、その対象となる超純水の処理形態によってそれぞれ使い分けることができる。   The said contact method can be selectively used according to the processing form of the ultrapure water used as the object.

次に本発明の実施例を詳しく説明する。
<カルシウム源の検討>
ミネラル成分供給剤のカルシウム源としてホタテパウダーを、担体材料として木節粘土及び蛙目粘土を用意した。ホタテパウダーの組成を表2に、ホタテパウダーの写真図を図3にそれぞれ示す。
Next, embodiments of the present invention will be described in detail.
<Examination of calcium source>
Scallop powder was prepared as a calcium source for the mineral component supply agent, and Kibushi clay and Sasame clay were prepared as carrier materials. The composition of scallop powder is shown in Table 2, and a photograph of the scallop powder is shown in FIG.

そして、ホタテパウダー0.4gを入れたフィルターにRO水を50ml通水させ、通水後の処理水のpHをpHメーターで、硬度(Ca2+、Mg2+の合量)をイオンクロマトグラフィー(IC)によりそれぞれ測定した。木節粘土についても同様の操作を行い、通水後の処理水のpH及び硬度を測定した。 Then, RO water filter containing the scallop powder 0.4g was 50ml passed through, by a pH meter to pH of the treated water after passing water, ion chromatography hardness (Ca 2+, the total amount of Mg 2+) Each was measured by (IC). The same operation was performed on Kibushi clay, and the pH and hardness of the treated water after passing water were measured.

また、木節粘土100gにホタテパウダー33gと水40mlを添加し、よく攪拌して混合物を調製した。この混合物を直径5〜10mm、長さ5〜10mmの粒状に成形し、成形物を乾燥雰囲気下、室温で5日間静置して乾燥させ、更に乾燥した成形物を、酸素含有雰囲気下、900℃で9時間焼成することにより、粒状の担体材料に木節粘土を使用したミネラル成分供給剤を作製した。また、蛙目粘土についても同様の操作を行い、担体材料に蛙目粘土を使用したミネラル成分供給剤を作製した。そして、上記作製したミネラル成分供給剤16gを入れたフィルターにRO水を1L通水させ、通水後の処理水のpHをpHメーターで、硬度(Ca2+、Mg2+の合量)をイオンクロマトグラフィーによりそれぞれ測定した。これらの結果を次の表3に示す。 Moreover, 33 g of scallop powder and 40 ml of water were added to 100 g of Kibushi clay, and stirred well to prepare a mixture. This mixture was formed into granules having a diameter of 5 to 10 mm and a length of 5 to 10 mm, and the molded product was left to dry at room temperature for 5 days in a dry atmosphere. By firing at 9 ° C. for 9 hours, a mineral component supply agent using Kibushi clay as a granular carrier material was produced. In addition, the same operation was performed for the clay, and a mineral component supply agent using the clay was prepared as a carrier material. Then, 1 L of RO water is passed through the filter containing 16 g of the above-prepared mineral component supply agent, and the pH of the treated water after passing through is measured with a pH meter to determine the hardness (total amount of Ca 2+ and Mg 2+ ). Each was measured by ion chromatography. These results are shown in Table 3 below.

表3に示す結果から、カルシウム源や担体材料といった原料単体に対する通水では、処理水の硬度及びpHが高い数値となっていたが、上記原料を混合及び焼成を行うことによって得られた供給剤を用いることで、処理水の硬度及びpHの上昇を抑えることができることが確認された。 From the results shown in Table 3, the water supply to the raw material alone such as the calcium source and the carrier material had high numerical values for the hardness and pH of the treated water, but the supply agent obtained by mixing and firing the above raw materials It was confirmed that the increase in hardness and pH of the treated water can be suppressed by using.

次に、ホタテパウダー16gを入れたフィルターにRO水を1L通水させ、通水後の処理水の硬度(Ca2+、Mg2+の合量)をイオンクロマトグラフィーによりそれぞれ適宜測定した。得られた処理水の硬度を図4に示す。 Next, 1 L of RO water was passed through a filter containing 16 g of scallop powder, and the hardness (total amount of Ca 2+ and Mg 2+ ) after the water flow was appropriately measured by ion chromatography. The hardness of the obtained treated water is shown in FIG.

図4から明らかなように、処理水の硬度は15ppm前後を保っている結果が得られた。また、他のカルシウム源として安全に供給できると考えられる、炭酸カルシウム、真珠岩、寒水石などについても、上記ホタテパウダーと同様に実験を行ってみたが、実験により得られた処理水ではホタテパウダーを使用したほどの硬度は得られず、ホタテパウダーが通水後の処理水の硬度を高い数値で安定させることができる、カルシウム源の付与に適した原料であることが示唆された。
<ミネラル成分供給剤を作製する際の焼成温度の検討>
次いで、ミネラル成分供給剤を作製するにあたって、成形した成形物の焼成温度について検討した。
As is apparent from FIG. 4, the hardness of the treated water was maintained at around 15 ppm. In addition, with regard to calcium carbonate, pearlite, and cryolite, which can be safely supplied as other calcium sources, an experiment was conducted in the same manner as the above scallop powder. It was suggested that scallop powder is a raw material suitable for providing a calcium source, which can stabilize the hardness of treated water after passing water at a high numerical value.
<Examination of firing temperature when preparing mineral component supply agent>
Next, in preparing the mineral component supply agent, the firing temperature of the molded product was examined.

蛙目粘土100gにホタテパウダー33gと水40mlを添加し、よく攪拌して混合物を調製した。この混合物を直径5〜10mm、長さ5〜10mmの粒状に成形し、成形物を乾燥雰囲気下、室温で5日間静置して乾燥させ、更に乾燥した成形物を3つに分け、酸素含有雰囲気下、900℃、1100℃、1200℃でそれぞれ9時間焼成することにより、粒状のミネラル成分供給剤を3種類作製した。   To 100 g of Sasame clay, 33 g of scallop powder and 40 ml of water were added and stirred well to prepare a mixture. This mixture is formed into granules having a diameter of 5 to 10 mm and a length of 5 to 10 mm, and the molded product is left to dry at room temperature for 5 days in a dry atmosphere. The dried molded product is further divided into three parts, and contains oxygen. Three types of granular mineral component supply agents were produced by firing at 900 ° C., 1100 ° C., and 1200 ° C. for 9 hours in an atmosphere.

図5に示すように、内径が5.6cm、深さが1.2cmの漏斗内に上記作製したミネラル成分供給剤16gを敷き詰め、この漏斗にRO水200mlを約20ml/秒の流速で通過させた。通過後の処理水の主要イオン濃度をイオンクロマトグラフィーによりそれぞれ測定し、得られた各イオン濃度の数値から、水の硬度を求めた。なお、この通水操作は5回行い、以下に示す結果はその平均値を示したものである。   As shown in FIG. 5, 16 g of the above-prepared mineral component supply agent was laid in a funnel having an inner diameter of 5.6 cm and a depth of 1.2 cm, and 200 ml of RO water was passed through the funnel at a flow rate of about 20 ml / second. It was. The main ion concentration of the treated water after passing was measured by ion chromatography, and the hardness of the water was determined from the obtained numerical value of each ion concentration. In addition, this water flow operation was performed 5 times, and the result shown below has shown the average value.

ミネラル成分供給剤作製時の焼成温度に対する通水後の処理水の硬度を図6に示す。   The hardness of the treated water after passing water with respect to the firing temperature at the time of preparing the mineral component supply agent is shown in FIG.

図6から明らかなように、焼成温度が高くなるにつれて通水後の処理水の硬度が減少する傾向が見られた。これは高温での焼成によって、粘土の融解が進みミネラル成分供給剤の表面積が減少したためと考えられる。この結果から、ミネラル成分供給剤を作製する際の焼成温度には適した温度範囲が存在することが確認された。上記結果から950℃程度が最も最適な焼成温度であると推察される。
<ミネラル成分供給剤に配合するホタテパウダーの割合の検討>
次に、ミネラル成分供給剤に混合するホタテパウダーの割合について検討した。
As apparent from FIG. 6, the hardness of the treated water after passing water tended to decrease as the firing temperature increased. This is considered to be because the surface area of the mineral component supply agent decreased due to the progress of melting of the clay by firing at a high temperature. From this result, it was confirmed that a suitable temperature range exists for the firing temperature when producing the mineral component supply agent. From the above results, it is estimated that about 950 ° C. is the most suitable firing temperature.
<Examination of ratio of scallop powder to be blended in mineral ingredient supply agent>
Next, the ratio of the scallop powder to be mixed with the mineral component supply agent was examined.

蛙目粘土100gにホタテパウダー30gと水40mlを添加し、よく攪拌して混合物を調製した。また、ホタテパウダーの配合量を30gから50gに代えて、別の混合物を調製した。これら混合物をサイズが1cm大の球状に成形し、成形物を乾燥雰囲気下、室温で5日間静置して乾燥させ、更に乾燥した成形物を、酸素含有雰囲気下、900℃でそれぞれ9時間焼成することにより、図7に示す、サイズが1cm大の球状のミネラル成分供給剤を2種類作製した。   A mixture was prepared by adding 30 g of scallop powder and 40 ml of water to 100 g of Sasame clay and stirring well. Further, another mixture was prepared by changing the amount of scallop powder from 30 g to 50 g. These mixtures are molded into a 1 cm size sphere, the molded product is left to dry at room temperature for 5 days in a dry atmosphere, and the dried molded product is fired at 900 ° C. for 9 hours in an oxygen-containing atmosphere. By doing so, two types of spherical mineral component supply agents having a size of 1 cm shown in FIG. 7 were produced.

前述した漏斗内に上記作製したミネラル成分供給剤16gを敷き詰め、この漏斗にRO水200mlを約20ml/秒の流速で通過させ、通過後の処理水のpHをpHメーターで、主要イオン濃度をイオンクロマトグラフィーによりそれぞれ測定し、得られた各イオン濃度の数値から、水の硬度を求めた。なお、この通水操作は5回行い、以下に示す結果はその平均値を示したものである。   16 g of the above-prepared mineral component supply agent is laid in the funnel described above, 200 ml of RO water is passed through the funnel at a flow rate of about 20 ml / second, the pH of the treated water after passing is adjusted with a pH meter, and the main ion concentration is ionized. Each was measured by chromatography, and the hardness of water was determined from the numerical value of each ion concentration obtained. In addition, this water flow operation was performed 5 times, and the result shown below has shown the average value.

ホタテパウダーの配合割合をそれぞれ30質量部及び50質量部としたミネラル成分供給剤を用いた通水結果を次の表4に示す。   The following Table 4 shows the results of water passing using the mineral component supply agent with the blending ratio of scallop powder being 30 parts by mass and 50 parts by mass, respectively.

表4に示すように、通水後の処理水の硬度はともに2ppm前後と低い数値となったため、通水に使用するミネラル成分供給剤の量を2倍の32gにして再度検討したが、大きな改善は認められなかった。ここで、ホタテパウダーの割合が少ないミネラル成分供給剤の方が高い硬度を示しているが、この要因としてミネラル成分供給剤の形状が影響しているものと考えられる。
<ミネラル成分供給剤の形状についての検討>
以上の実験では、通水後の処理水で高い硬度が得られなかったため、ここでは、ミネラル成分供給剤の形状について検討した。図7に示す、サイズが1cm大の球状のものから、図8に示す、直径5〜10mm、長さ5〜10mmの粒状にその形状を代えて上記実験を再度行った。その結果を次の表5に示す。
As shown in Table 4, since the hardness of the treated water after passing water was a low value of around 2 ppm, the amount of the mineral component supply agent used for passing water was doubled to 32 g, but it was examined again. There was no improvement. Here, although the mineral component supply agent with a small proportion of scallop powder shows higher hardness, it is considered that the shape of the mineral component supply agent has an influence on this factor.
<Examination of the shape of mineral component supply agent>
In the above experiment, since the high hardness was not acquired with the treated water after water flow, the shape of the mineral component supply agent was examined here. The above experiment was performed again by changing the shape from a spherical shape having a size of 1 cm shown in FIG. 7 to a granular shape having a diameter of 5 to 10 mm and a length of 5 to 10 mm shown in FIG. The results are shown in Table 5 below.

表5から明らかなように、前述した表4の結果に比べて、通水後の処理水の硬度に明らかな上昇が認められ、硬度10ppm以上の水が得られることが判った。
<ミネラル成分供給剤に配合する担体材料の検討>
上記実験で使用した蛙目粘土以外の担体材料として、木節粘土、海洋性土及びセピオライトの3種類を用意し、これら担体材料100gにホタテパウダー30gと水40mlを添加し、よく攪拌して混合物を調製した。この混合物を直径5〜10mm、長さ5〜10mmの粒状に成形し、成形物を乾燥雰囲気下、室温で5日間静置して乾燥させ、更に乾燥した成形物を、酸素含有雰囲気下、950℃でそれぞれ9時間焼成することにより、粒状のミネラル成分供給剤を3種類作製した。
As is apparent from Table 5, it was found that a clear increase in the hardness of the treated water after water passage was observed as compared with the results of Table 4 described above, and water having a hardness of 10 ppm or more was obtained.
<Examination of carrier materials to be blended in mineral component supply agent>
Prepare three kinds of carrier materials other than the maple clay used in the above experiment: Kibushi clay, marine soil and sepiolite. Add 100 g of these carrier materials to 30 g of scallop powder and 40 ml of water, and mix well. Was prepared. This mixture was formed into granules having a diameter of 5 to 10 mm and a length of 5 to 10 mm, the molded product was left to dry at room temperature for 5 days in a dry atmosphere, and the dried molded product was further dried at 950 in an oxygen-containing atmosphere. Three kinds of granular mineral component supply agents were produced by firing at 9 ° C. for 9 hours each.

前述した漏斗内に上記作製したミネラル成分供給剤16gを敷き詰め、この漏斗にRO水1000mlを約20ml/秒の流速で通過させ、通過後の処理水のpHをpHメーターで、主要イオン濃度をイオンクロマトグラフィーによりそれぞれ測定し、得られた各イオン濃度の数値から、水の硬度を求めた。なお、この通水操作は5回行い、以下に示す結果はその平均値を示したものである。その結果を次の表6に示す。   16 g of the above-prepared mineral component supply agent is laid in the funnel described above, 1000 ml of RO water is passed through the funnel at a flow rate of about 20 ml / sec, the pH of the treated water after passing is adjusted with a pH meter, and the main ion concentration is ionized. Each was measured by chromatography, and the hardness of water was determined from the numerical value of each ion concentration obtained. In addition, this water flow operation was performed 5 times, and the result shown below has shown the average value. The results are shown in Table 6 below.

表6より明らかなように、セピオライトを担体材料として用いた場合、他の材料に比べて、美味しい水としてバランスの良い硬度値、pH値となった。これはセピオライトが最もマグネシウムの含有割合が高いためと考えられる。 As is apparent from Table 6, when sepiolite was used as the carrier material, the hardness value and pH value were better balanced as delicious water than other materials. This is probably because sepiolite has the highest magnesium content.

なお、ここでは蛙目粘土を担体材料とした実験を行わなかったが、蛙目粘土は木節粘土とその組成傾向が似ているため、その結果も木節粘土と似通った内容となるものと推察される。   Here, we did not conduct an experiment using Sasame clay as a carrier material. However, Sasame clay is similar in composition to Kibushi clay, so the result is similar to Kibushi clay. Inferred.

以上の結果から、担体材料にセピオライト、カルシウム源にホタテパウダーを用い、ホタテパウダーの割合を30質量部に調整し、焼成温度950℃としたものがミネラル成分を適度に付与することができる最も適した条件と考えられる。
<200Lまでの通水試験>
セピオライト55g、木節粘土5g及び陶石10gにホタテパウダー30gと水27〜40mlを添加し、よく攪拌して混合物を調製した。この混合物を直径3〜6mm、長さ5〜10mmの粒状に成形し、成形物を乾燥雰囲気下、室温で5日間静置して乾燥させ、更に乾燥した成形物を、酸素含有雰囲気下、950℃で9時間焼成することにより、粒状のミネラル成分供給剤を作製した。
From the above results, it is most suitable to use sepiolite as the carrier material, scallop powder as the calcium source, adjust the ratio of scallop powder to 30 parts by mass, and set the calcination temperature to 950 ° C. to appropriately impart the mineral component. It is considered to be a condition.
<Water flow test up to 200L>
30 g of scallop powder and 27 to 40 ml of water were added to 55 g of sepiolite, 5 g of kibushi clay and 10 g of porcelain stone, and the mixture was stirred well to prepare a mixture. This mixture was formed into granules having a diameter of 3 to 6 mm and a length of 5 to 10 mm, and the molded product was left to dry at room temperature for 5 days in a dry atmosphere. Further, the dried molded product was 950 in an oxygen-containing atmosphere. By calcining at 0 ° C. for 9 hours, a granular mineral component supply agent was produced.

前述した漏斗内に上記作製したミネラル成分供給剤45gを敷き詰め、この漏斗にRO水200Lを約5.6ml/秒の流速で通過させ、一定流量通過後の処理水のpHをpHメーターで、主要イオン濃度をイオンクロマトグラフィーによりそれぞれ測定し、得られた各イオン濃度の数値から、水の硬度を求めた。なお、この通水操作は5回行い、以下に示す結果はその平均値を示したものである。   45 g of the above-prepared mineral component supply agent was laid in the funnel described above, and 200 L of RO water was passed through the funnel at a flow rate of about 5.6 ml / second. The ion concentration was measured by ion chromatography, and the hardness of water was determined from the obtained numerical value of each ion concentration. In addition, this water flow operation was performed 5 times, and the result shown below has shown the average value.

また、ミネラル成分供給剤90gを使用して、上記実験と同様の通水試験を行った。その結果を図9及び図10に示す。   Moreover, the water flow test similar to the said experiment was done using 90g of mineral component supply agents. The results are shown in FIGS.

図9及び図10から明らかなように、通水後の処理水の硬度は3〜15ppm、pHは弱酸性〜弱アルカリ性の範囲で安定していることが判った。また、使用するミネラル成分供給剤の量を90gとした実験例の方が、硬度、pHとも高い数値となった。
<各イオン濃度とおいしい水指標>
上記200Lの通水試験での、40L通水直後の処理水、200L通水直後の処理水の各イオン濃度を次の表7に示す。
As apparent from FIGS. 9 and 10, it was found that the hardness of the treated water after passing water is 3 to 15 ppm and the pH is stable in the range of weakly acidic to weakly alkaline. In the experimental example in which the amount of the mineral component supply agent used was 90 g, both hardness and pH were higher.
<Each ion concentration and delicious water index>
Table 7 below shows the ion concentrations of treated water immediately after passing 40 L and treated water immediately after passing 200 L in the 200 L water flow test.

表7に示す結果から、ミネラル成分供給剤から溶出するイオンはカルシウムの他、カリウム、またわずかにマグネシウムを溶出することが判った。 From the results shown in Table 7, it was found that ions eluting from the mineral component supply agent elute potassium and slightly magnesium in addition to calcium.

続いて、上記表7に示す各イオン濃度から、次の式(1)に示す「おいしい水指標」を計算すると、40L通水直後の処理水では13.2ppm、200L通水直後の処理水では6.87ppmとなり、おいしい水指標である2ppm以上を十分に満たす結果となった。   Subsequently, when calculating the “delicious water index” shown in the following formula (1) from each ion concentration shown in Table 7 above, 13.2 ppm for treated water immediately after passing 40 L, and for treated water immediately after passing 200 L, The result was 6.87 ppm, which sufficiently satisfied the delicious water index of 2 ppm or more.

<ミネラル成分供給剤を用いた吸着実験>
先ず、木節粘土70gにホタテパウダー30gと水25mlを添加し、よく攪拌して混合物を調製した。この混合物を直径5〜10mm、長さ5〜10mmの粒状に成形し、成形物を乾燥雰囲気下、室温で5日間静置して乾燥させ、更に乾燥した成形物を、酸素含有雰囲気下、950℃で9時間焼成することにより、粒状のミネラル成分供給剤を作製した。
<Adsorption experiment using mineral component supply agent>
First, 30 g of scallop powder and 25 ml of water were added to 70 g of Kibushi clay and stirred well to prepare a mixture. This mixture was formed into granules having a diameter of 5 to 10 mm and a length of 5 to 10 mm, the molded product was left to dry at room temperature for 5 days in a dry atmosphere, and the dried molded product was further dried at 950 in an oxygen-containing atmosphere. By calcining at 0 ° C. for 9 hours, a granular mineral component supply agent was produced.

次いで、超純水に0.05mmol濃度となるように硫酸アンモニウムを溶解し、この硫酸アンモニウム溶液50mlをビーカーに貯えた。   Next, ammonium sulfate was dissolved in ultrapure water to a concentration of 0.05 mmol, and 50 ml of this ammonium sulfate solution was stored in a beaker.

次に、このビーカーにミネラル成分供給剤12gを浸漬して静置状態を保持した。   Next, 12 g of the mineral component supply agent was immersed in this beaker to maintain a stationary state.

続いて、ミネラル成分供給剤を浸漬して静置状態に保持してから30分経過後、60分経過後、90分経過後及び120分経過後にそれぞれ750μLずつ溶液をサンプリングし、サンプリングした溶液の残存アンモニウムイオン濃度、pH、カルシウムイオン濃度、硫酸イオン濃度、及び硬度をpHメーター及びイオンクロマトグラフィーを用いてそれぞれ測定した。その結果を図11〜図15にそれぞれ示す。   Subsequently, after 30 minutes have passed since the mineral component supply agent was immersed and held in a stationary state, 750 μL of the solution was sampled after 60 minutes, 90 minutes, and 120 minutes, respectively. Residual ammonium ion concentration, pH, calcium ion concentration, sulfate ion concentration, and hardness were measured using a pH meter and ion chromatography, respectively. The results are shown in FIGS.

図11に示すように、ミネラル成分供給剤浸漬後90分経過後に、残存アンモニウムイオン濃度が急激に低下する結果が得られた。この結果から、本発明のミネラル成分供給剤を水と接触させることで、ミネラル成分供給剤が水中に存在するアンモニウムイオンの吸着作用を示すことが確認された。   As shown in FIG. 11, the result that the residual ammonium ion density | concentration fell rapidly 90 minutes after mineral component supply agent immersion was obtained. From this result, it was confirmed that the mineral component supply agent exhibits an action of adsorbing ammonium ions present in water by bringing the mineral component supply agent of the present invention into contact with water.

図12〜図15に示すように、浸漬による水と供給剤との接触でも、通水での接触と同様に、カルシウムイオンや硫酸イオンの溶出が見られたが、その硬度は、通水時よりも高くなることが判った。これは、浸漬による接触の方が、水と供給剤との接触時間が長いことによると推察される。なお、その硬度は浸漬時間が長くなるにつれて上昇傾向を示したが、pH値は浸漬時間にかかわらず10〜11の間を保っている結果となった。   As shown in FIGS. 12 to 15, the elution of calcium ions and sulfate ions was observed in the contact between the water and the supply agent by immersion, as in the case of contact with water. It turned out to be higher. This is presumed to be due to the longer contact time between water and the supply agent in the contact by immersion. In addition, the hardness showed an increasing tendency as the immersion time increased, but the pH value was maintained between 10 and 11 regardless of the immersion time.

本発明のミネラル成分供給剤は、ミネラル成分の適度な付与やpH調整だけでなく、アンモニウムイオンや重金属などを吸着するといった浄化作用も備えることから、飲料用途に限らず、観賞魚用水、養殖魚用水などの用途にも適用できる。   The mineral component supply agent of the present invention has not only a proper application of mineral components and pH adjustment, but also a purification action of adsorbing ammonium ions, heavy metals, etc. It can also be applied to water usage.

本発明のミネラル成分供給剤と超純水との第1の接触方法を示す図。The figure which shows the 1st contact method of the mineral component supply agent and ultrapure water of this invention. 本発明のミネラル成分供給剤と超純水との第2の接触方法を示す図。The figure which shows the 2nd contact method of the mineral component supply agent of this invention, and an ultrapure water. ホタテパウダーの写真図。A photograph of scallop powder. ホタテパウダー単体に通水した処理水の硬度を示す図。The figure which shows the hardness of the treated water which passed the scallop powder simple substance. 実験に使用した漏斗を用いた通水を示す図。The figure which shows water flow using the funnel used for experiment. ミネラル成分供給剤作製時の焼成温度に対する通水後の処理水の硬度の関係を示す図。The figure which shows the relationship of the hardness of the treated water after water flow with respect to the calcination temperature at the time of mineral component supply agent preparation. 実験に用いたサイズが1cm大の球状のミネラル成分供給剤の写真図。The photograph figure of the spherical mineral component supply agent whose size used for experiment is 1 cm large. 実験に用いた直径5〜10mm、長さ5〜10mmの粒状のミネラル成分供給剤の写真図。The photograph figure of the granular mineral component supply agent of diameter 5-10mm used for experiment, and length 5-10mm. 200L通水試験における、ミネラル成分供給剤への通水量と処理後の処理水の硬度の関係を示す図。The figure which shows the relationship between the water flow volume to a mineral component supply agent in the 200L water flow test, and the hardness of the treated water after a process. 200L通水試験における、ミネラル成分供給剤への通水量と処理後の処理水のpHの関係を示す図。The figure which shows the relationship between the amount of water flow to a mineral component supply agent and pH of the treated water after a process in a 200L water flow test. ミネラル成分供給剤の浸漬時間と処理水の残存アンモニウムイオン濃度の関係を示す図。The figure which shows the relationship between the immersion time of a mineral component supply agent, and the residual ammonium ion density | concentration of a treated water. ミネラル成分供給剤の浸漬時間と処理水のpHの関係を示す図。The figure which shows the relationship between the immersion time of a mineral component supply agent, and the pH of treated water. ミネラル成分供給剤の浸漬時間と処理水のカルシウムイオン濃度の関係を示す図。The figure which shows the relationship between the immersion time of a mineral component supply agent, and the calcium ion concentration of treated water. ミネラル成分供給剤の浸漬時間と処理水の硫酸イオン濃度の関係を示す図。The figure which shows the relationship between the immersion time of a mineral component supply agent and the sulfate ion concentration of a treated water. ミネラル成分供給剤の浸漬時間と処理水の硬度の関係を示す図。The figure which shows the relationship between the immersion time of a mineral component supply agent, and the hardness of treated water.

符号の説明Explanation of symbols

10 ミネラル成分供給剤
11 第1容器
12 超純水
13 第2容器
10 Mineral Component Supply Agent 11 First Container 12 Ultrapure Water 13 Second Container

Claims (7)

硬度が0ppmでpHが5〜7の溶存イオン成分を取り除いた超純水にミネラル成分を付与するミネラル成分供給剤において、
生物由来の炭酸塩粉末と蛙目粘土、木節粘土、海洋性土及びセピオライトからなる群より選ばれた1種又は2種以上の粘土状粉末と水とを混合攪拌して調製された混合物を粒状に成形し、前記成形物を乾燥し、更に乾燥した成形物を焼成することにより得られ、前記粘土状粉末の担体に前記炭酸塩粉末を担持させた粒状の形態を有することを特徴とするミネラル成分供給剤。
In a mineral component supply agent for imparting a mineral component to ultrapure water from which dissolved ion components having a hardness of 0 ppm and a pH of 5 to 7 are removed,
A mixture prepared by mixing and stirring one or more kinds of clay-like powder selected from the group consisting of biological carbonate powder, Sasame clay, Kibushi clay, marine soil and sepiolite and water. It is obtained by molding into a granule, drying the molded product, and firing the dried molded product, and having a granular form in which the carbonate powder is supported on a carrier of the clay-like powder. Mineral ingredient supply agent.
混合前の粘土状粉末の平均粒径が0.001〜0.01mmであり、生物由来の炭酸塩粉末がホタテの貝殻の粉砕物であり、混合前のその平均粒径が0.001〜0.01mmである請求項1記載のミネラル成分供給剤。   The average particle size of the clay-like powder before mixing is 0.001 to 0.01 mm, the biological carbonate powder is pulverized scallop shell, and the average particle size before mixing is 0.001 to 0 The mineral component supply agent according to claim 1, which is 0.01 mm. 混合物が生物由来の炭酸塩粉末30〜50質量部と粘土状粉末50〜70質量部に、前記炭酸塩粉末と前記粘土状粉末の全質量に対し水20〜50質量部の割合となるように混合攪拌して調製された請求項1又は2記載のミネラル成分供給剤。   The mixture is 30-50 parts by mass of biological carbonate powder and 50-70 parts by mass of clay-like powder, so that the total mass of the carbonate powder and clay-like powder is 20-50 parts by mass of water. The mineral component supply agent according to claim 1 or 2, prepared by mixing and stirring. 請求項1ないし3いずれか1項に記載のミネラル成分供給剤と硬度が0ppmでpHが5〜7の溶存イオンを取り除いた超純水とを接触させることにより、前記ミネラル成分供給剤からミネラル成分を溶出させて前記超純水に前記ミネラル成分を付与し、前記接触させた超純水の硬度を3〜30ppmかつpH6〜8にそれぞれ調整することを特徴とする水の処理方法。   The mineral component supply agent according to any one of claims 1 to 3 is brought into contact with the ultrapure water from which dissolved ions having a hardness of 0 ppm and a pH of 5 to 7 have been removed, thereby bringing the mineral component supply agent into contact with the mineral component supply agent. The water treatment method is characterized in that the mineral component is added to the ultrapure water and the hardness of the contacted ultrapure water is adjusted to 3 to 30 ppm and pH 6 to 8, respectively. ミネラル成分供給剤と超純水との接触が、前記ミネラル成分供給剤を通水性を有しかつ供給剤の通過しない第1容器に入れた後、前記第1容器に前記超純水を通じることにより行われる請求項4記載の水の処理方法。   The contact between the mineral component supply agent and the ultrapure water is such that the ultrapure water is passed through the first container after the mineral component supply agent is passed through the first container that has water permeability and does not pass the supply agent. The water treatment method according to claim 4, which is performed by the following. ミネラル成分供給剤と超純水との接触が、前記ミネラル成分供給剤を通水性を有しかつ供給剤の通過しない第1容器に入れた後、前記超純水を貯えた第2容器に前記第1容器を浸漬することにより行われる請求項4記載の水の処理方法。   After the contact between the mineral component supply agent and the ultrapure water is put in the first container that has water permeability and does not pass through the mineral component supply agent, the second container that stores the ultrapure water contains the The water treatment method according to claim 4, which is performed by immersing the first container. 超純水が逆浸透水又は脱イオン水である請求項4ないし6いずれか1項に記載の水の処理方法。   The method for treating water according to any one of claims 4 to 6, wherein the ultrapure water is reverse osmosis water or deionized water.
JP2008313189A 2008-12-09 2008-12-09 Mineral supplying agent and water treatment method using the same Pending JP2010137123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313189A JP2010137123A (en) 2008-12-09 2008-12-09 Mineral supplying agent and water treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313189A JP2010137123A (en) 2008-12-09 2008-12-09 Mineral supplying agent and water treatment method using the same

Publications (1)

Publication Number Publication Date
JP2010137123A true JP2010137123A (en) 2010-06-24

Family

ID=42347728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313189A Pending JP2010137123A (en) 2008-12-09 2008-12-09 Mineral supplying agent and water treatment method using the same

Country Status (1)

Country Link
JP (1) JP2010137123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008398A1 (en) * 2013-07-16 2015-01-22 太平洋セメント株式会社 Water quality purification material, method for manufacturing same, and method for purifying water quality of fish and shellfish farm
JP2018091860A (en) * 2018-02-14 2018-06-14 株式会社フレッシュ Manufacturing method of water
CN111511689A (en) * 2017-12-21 2020-08-07 百事可乐公司 Water filtration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008398A1 (en) * 2013-07-16 2015-01-22 太平洋セメント株式会社 Water quality purification material, method for manufacturing same, and method for purifying water quality of fish and shellfish farm
JPWO2015008398A1 (en) * 2013-07-16 2017-03-02 太平洋セメント株式会社 Water purification material, method for producing the same, and method for purification of water quality in fish farm
CN111511689A (en) * 2017-12-21 2020-08-07 百事可乐公司 Water filtration system
JP2018091860A (en) * 2018-02-14 2018-06-14 株式会社フレッシュ Manufacturing method of water

Similar Documents

Publication Publication Date Title
Zamparas et al. Restoration of eutrophic freshwater by managing internal nutrient loads. A review
Meski et al. Synthesis of hydroxyapatite from mussel shells for effective adsorption of aqueous Cd (II)
JP4032199B2 (en) Nitrate nitrogen denitrification substrate
FR2650265A1 (en) MATERIAL COMPOSITION FOR THE CHEMICAL AND BIOLOGICAL PURIFICATION OF POLLUTED WATER AND PROCESS FOR PREPARING THE SAME
GB2128600A (en) Process for preparing a bacteriological inhibitor for water
JP2010137123A (en) Mineral supplying agent and water treatment method using the same
CN115322008B (en) Porous biological filler for purifying polluted seawater and preparation method and application thereof
Dehestaniathar et al. Adsorption of nitrate from aqueous solution using activated carbon-supported Fe0, Fe2 (SO4) 3, and FeSO4
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
Shi et al. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands
Gorre et al. Removal of ammoniacal nitrogen by using albite, activated carbon and resin
TWI758753B (en) Water purification material and water purification method using the same
Vieira et al. Phosphate sorption in shellfish shell (venerupis pulastra) substrates: development of green and low-cost technology for tertiary treatment of effluents
JP2009189914A (en) Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it
JP2012110883A (en) Humic acid-containing activator
JP7009183B2 (en) Granules for nutrient supply
Yogafanny et al. The leaching behavior of pervious mortar used as water filter in rural areas
Assami et al. Fluoride in Groundwaters of Southeastern Algeria Region and Their Removal by Cattle Bone Particles
JPH1177025A (en) Water purification agent and its manufacture
KR20050024481A (en) Depurator prepared using natural mineral powder containing germanium and method for preparing the same by preparing natural mineral powder, preparing quicklime, mixing natural mineral powder and quicklime and aging mixture
RU2185328C2 (en) Method of purification and conditioning of potable water and media for method embodiment
JPS5832805A (en) Red tide treating agent and its preparation
JPH0475883B2 (en)
KR101500656B1 (en) Clay ball with chloride and method for fabricating the same and method for regeneration of the same
JPH07173466A (en) Production of soil/water conditioner