JP2010134394A - Stereoscopic display using guest-host liquid crystal - Google Patents

Stereoscopic display using guest-host liquid crystal Download PDF

Info

Publication number
JP2010134394A
JP2010134394A JP2008335889A JP2008335889A JP2010134394A JP 2010134394 A JP2010134394 A JP 2010134394A JP 2008335889 A JP2008335889 A JP 2008335889A JP 2008335889 A JP2008335889 A JP 2008335889A JP 2010134394 A JP2010134394 A JP 2010134394A
Authority
JP
Japan
Prior art keywords
liquid crystal
display
image
glasses
displayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008335889A
Other languages
Japanese (ja)
Inventor
Susumu Nishikawa
進 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008335889A priority Critical patent/JP2010134394A/en
Publication of JP2010134394A publication Critical patent/JP2010134394A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems; there are defects regarding a system for obtaining a stereoscopic view in a direct-viewing type, thin-shaped display while wearing glasses. <P>SOLUTION: 1. The display is constituted of a backlight and two guest-host liquid crystal cells, right and left images are independently displayed on the liquid crystal cells, and the right and the left images are separately viewed through the right and the left polarizing glasses perpendicular to the right and the left images, then, the stereoscopic view is obtained. 2. A 1/4 wavelength plate is bonded on the surface of the display, and the right and the left images are made reverse-circularly polarized beams, then, the right and the left images are separately viewed through the reverse-circularly polarizer glasses, then, the stereoscopic view is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本発明は2枚重ねのGH液晶セルと偏光めがねを用いた立体視ディスプレイに関する。  The present invention relates to a stereoscopic display using two stacked GH liquid crystal cells and polarized glasses.

直視式かつ薄型のディスプレイでめがねを使用して立体視を得る方式に次のようなものがある。
1.ディスプレイ画像の偶数ラインと奇数ラインにそれぞれ互いに直交する偏光板を張り合わせ、左右が互いに直交する偏光めがねを使用する方式
1’.上記画像の出射光を互いに逆方向の円偏光とし、左右が逆方向の円偏光めがねを使用する方式
2.プラズマ・ディスプレイとシャッターめがねを使用する方式
3.液晶表示板とシャッターめがねを使用する方式
4.バックライト、TN液晶表示板、TN液晶セルを重ねてディスプレイを構成し、偏光めがねを用いて立体視するiZ3D方式
There are the following methods for obtaining stereoscopic vision using glasses on a direct-view and thin display.
1. A method in which polarizing plates that are orthogonal to each other are bonded to the even and odd lines of the display image, and polarized glasses that are orthogonal to each other are used. 1. A method in which the emitted light of the image is circularly polarized light in opposite directions, and circular polarized glasses whose directions are opposite to each other are used. 2. Method using plasma display and shutter glasses 3. Method using liquid crystal display panel and shutter glasses. An iZ3D system that forms a display by overlapping a backlight, a TN liquid crystal display panel, and a TN liquid crystal cell, and stereoscopically displays using polarized glasses

発明が解決しようとする課題Problems to be solved by the invention

1、1’の方式:垂直解像度が半分に減る。見る位置を上下させるとゴーストが発生する。
2の方式:大型、多人数用。コンピュータ用ディスプレイとしては画素の大きさから適さない。ゴーストも若干残る。
3の方式:液晶の応答速度が遅いのでゴーストが目立つ。
4の方式:ゴースト、着色現象、斜めから見たときの画質劣化、ぼけ、コントラスト劣化、輪郭効果など欠点が多い。
1, 1 'method: Vertical resolution is reduced by half. A ghost is generated when the viewing position is moved up and down.
Method 2: Large size, large number of people. It is not suitable as a computer display due to the size of the pixels. Some ghost remains.
Method 3: The ghost is conspicuous because the response speed of the liquid crystal is slow.
Method 4: There are many drawbacks such as ghost, coloring phenomenon, image quality degradation when viewed from an oblique angle, blur, contrast degradation, and contour effect.

課題を解決するための手段Means for solving the problem

本発明はかかる課題に鑑みなされたものであって、以下の構成によって上記の方式の持つ課題を一挙に解決する。
1.バックライトと2枚のゲストホスト型液晶セルでディスプレイを構成し、左右の画像をそれぞれ独立に液晶セルに表示し、左右の画像を互いに直交する左右の偏光めがねで分離して立体視を得る。
2.上記ディスプレイの表面に1/4波長板を張り、左右の画像をそれぞれ逆方向の円偏光とし、左右の画像を左右逆方向の円偏光めがねで分離して立体視を得る。
This invention is made | formed in view of this subject, Comprising: The subject which said system has with the following structures is solved at a stretch.
1. A display is composed of a backlight and two guest-host type liquid crystal cells, and left and right images are independently displayed on the liquid crystal cell, and the left and right images are separated by right and left polarizing glasses to obtain a stereoscopic view.
2. A 1/4 wavelength plate is stretched on the surface of the display, and the left and right images are respectively circularly polarized in opposite directions, and the left and right images are separated by circularly polarized glasses in opposite left and right directions to obtain a stereoscopic view.

図1は本発明の概略図である。構成はバックライト(1)、後面GH液晶セル(2)、モアレ防止拡散板(3)、前面GH液晶セル(4)そして偏光めがね(5)からなる。GH液晶セルの偏光軸は前面と後面で直交させる。図では一例として後面GH液晶セルの偏光軸を+45°とし、ここに右画像を表示する。前面GH液晶セルは偏光軸を−45°とし、左画像を表示する。偏光めがね右(5R)は偏光軸が右画像と直交しており画像を可視化するが、左画像は偏光軸が平行のため透明で画像として可視化されない。偏光めがね左(5L)も同様に左画像のみ可視化する。  FIG. 1 is a schematic diagram of the present invention. The structure is composed of a backlight (1), a rear GH liquid crystal cell (2), a moire preventing diffusion plate (3), a front GH liquid crystal cell (4), and polarized glasses (5). The polarization axis of the GH liquid crystal cell is orthogonal to the front surface and the rear surface. In the figure, as an example, the polarization axis of the rear GH liquid crystal cell is set to + 45 °, and the right image is displayed here. The front GH liquid crystal cell has a polarization axis of −45 ° and displays a left image. Polarized glasses right (5R) has a polarization axis orthogonal to the right image and visualizes the image. However, the left image is transparent because the polarization axis is parallel and is not visualized as an image. Similarly, the left image of the polarized glasses left (5L) is also visualized.

より具体的に図2を用いて説明する。例として黒い背景に白い円盤を画面手前に表示した場合を想定する。後面GH液晶セルに右画像(2R)を表示したとき円盤以外は偏光軸(2P)は+45°を示す。円盤の部分は二色性色素が面に対し垂直になっており偏光を示さない。前面GH液晶セルには左画像(4L)を表示する。円盤以外は偏光軸(4P)が−45°、円盤は無偏光である。これらの絵を左右の偏光めがねを通して見るとその偏光軸(5L’、5R’)と直交する画像が可視化されるから左眼画像(6L)、右眼画像(6R)を得る。  This will be described more specifically with reference to FIG. As an example, assume that a white disk is displayed in front of the screen on a black background. When the right image (2R) is displayed on the rear GH liquid crystal cell, the polarization axis (2P) indicates + 45 ° except for the disc. In the disk portion, the dichroic dye is perpendicular to the surface and does not show polarized light. The left image (4L) is displayed on the front GH liquid crystal cell. Except for the disk, the polarization axis (4P) is −45 °, and the disk is non-polarized. When these pictures are viewed through the left and right polarized glasses, an image orthogonal to the polarization axis (5L ', 5R') is visualized, so that a left eye image (6L) and a right eye image (6R) are obtained.

図3は本発明を発展させた構成である。すなわちディスプレイからの出射光を直交する直線偏光ではなく左旋および右旋の円偏光にしたものである。上に記したディスプレイの表面に1/4波長板を偏光軸と遅相軸の角度を45°にして貼り合わせると、左画像、右画像の直線偏光はそれぞれ左旋円偏光(8L)と右旋円偏光(8R)に変換される。  FIG. 3 shows a configuration obtained by developing the present invention. In other words, the light emitted from the display is not a linearly polarized light that is orthogonal, but a left-handed and right-handed circularly-polarized light. When a quarter wave plate is attached to the surface of the display described above with the angle of the polarization axis and the slow axis set at 45 °, the linear polarization of the left image and the right image is left-handed circularly polarized light (8L) and right-handed, respectively. Converted to circularly polarized light (8R).

これらの円偏光を円偏光めがねで左右画像に分離、立体視するわけであるが、ここで円偏光めがねについて説明する。左右の円偏光板は1/4波長板と直線偏光板を偏光軸と遅相軸の角度を45°にして貼り合わせたものである。左画像の左旋円偏光(8L)は1/4波長板(9a)を通過すると直線偏光に変換され偏光板(9c)と直交して可視化される。右画像の右旋円偏光(8R)はそのまま通過し可視化されない。右画像の右旋円偏光(8R)は同様にして右の円偏光板(9b、9d)で可視化される。本方式は顔を傾けても左右画像の分離に影響がないためゴーストの発生がなく使いやすい。  These circularly polarized light is separated into right and left images by circularly polarized glasses and stereoscopically viewed. Here, circularly polarized glasses will be described. The left and right circularly polarizing plates are formed by laminating a quarter wavelength plate and a linear polarizing plate with an angle between the polarization axis and the slow axis being 45 °. When the left-handed circularly polarized light (8L) in the left image passes through the quarter-wave plate (9a), it is converted into linearly polarized light and visualized perpendicular to the polarizing plate (9c). The right-handed circularly polarized light (8R) in the right image passes through as it is and is not visualized. The right-handed circularly polarized light (8R) in the right image is similarly visualized by the right circularly polarizing plates (9b, 9d). This method is easy to use because it does not affect the separation of the left and right images even if the face is tilted, so that no ghost occurs.

GH型液晶はネマティック液晶などに二色性色素を例えば2パーセント程度混入したものである。細長い液晶分子と細長い二色性色素分子は平行に並ぶと考えられ、従って液晶分子と同じ動きをすると期待される。図4はGH液晶における二色性色素の動きを表示したものである。二色性色素が配向方向に向きを揃え電極面に平行の時(無電界時)偏光を示すが垂直(電界印加時)になるに従い無偏光になる。OCB(Optically Compensated Bend)液晶は電圧のON,OFFに対しベンド構造と垂直構造をとり、応答速度が速い。一般に液晶に色素を混入すると粘度が上がり応答速度が遅くなるが、早い応答速度を持つ液晶および構造との組み合わせで問題克服が期待される。  The GH type liquid crystal is a nematic liquid crystal mixed with a dichroic dye, for example, about 2%. The elongated liquid crystal molecules and the elongated dichroic dye molecules are considered to be aligned in parallel, and thus are expected to move in the same manner as the liquid crystal molecules. FIG. 4 shows the movement of the dichroic dye in the GH liquid crystal. When the dichroic dye is aligned in the alignment direction and parallel to the electrode surface (no electric field), it shows polarized light, but becomes non-polarized as it becomes vertical (when an electric field is applied). An OCB (Optically Compensated Bend) liquid crystal has a bend structure and a vertical structure with respect to ON / OFF of the voltage, and has a high response speed. Generally, when a dye is mixed in a liquid crystal, the viscosity increases and the response speed becomes slow. However, the problem can be overcome by combining the liquid crystal and the structure having a fast response speed.

カラー表示方式は従来のカラー液晶表示板で一般に用いられる方式すなわちRGBカラー・フィルター、TFT駆動などを採用する。GH液晶に用いる二色性色素は黒色でなければならない。  As a color display method, a method generally used in a conventional color liquid crystal display panel, that is, an RGB color filter, a TFT drive, or the like is adopted. The dichroic dye used in the GH liquid crystal must be black.

発明の効果The invention's effect

本発明は以下の効果を生み出す。
1.薄型直視式でめがねを用いる立体視方式の中で欠点が少ない。
2.めがね無しで一般画像表示装置として利用できる。
3.2枚の液晶セルに独立に左右の絵を表示するので垂直解像度は劣化しない。
4.円偏光めがねをつかう方式は顔の傾きによってゴーストが発生しない。
5.LCD、シャッターめがね式が持つゴーストの問題はない。
6.iZ3D方式の持つ演算回路を必要とせず、それに伴う問題も発生しない。
7.液晶素材および駆動法としてOCB液晶技術を使うことによりGH型といえども実用的な応答速度を確保できる。
The present invention produces the following effects.
1. There are few shortcomings in the stereoscopic viewing method using glasses with a thin direct view.
2. It can be used as a general image display device without glasses.
3. Since the left and right pictures are displayed independently on the two liquid crystal cells, the vertical resolution does not deteriorate.
4). The method using circularly polarized glasses does not cause ghosts due to the tilt of the face.
5). There is no ghost problem with LCD and shutter glasses.
6). The arithmetic circuit which iZ3D system has is not required, and the problem accompanying it does not occur.
7). By using the OCB liquid crystal technology as the liquid crystal material and driving method, a practical response speed can be secured even for the GH type.

GH液晶を用いた立体視方式の構成(1)  Configuration of stereoscopic viewing method using GH liquid crystal (1) 画面手前に表示した円盤  Disc displayed in front of the screen GH液晶を用いた立体視方式の構成(2)  Configuration of stereoscopic viewing method using GH liquid crystal (2) GH液晶における二色性色素の動き  Movement of dichroic dye in GH liquid crystal

符号の説明Explanation of symbols

1.バックライト
2.後面GH液晶セル
2R.後面GH液晶セルに表示した右画像
2P.偏光軸(+45°)
3.モアレ防止拡散板
4.前面GH液晶セル
4L.前面GH液晶セルに表示した左画像
4P.偏光軸(−45°)
5.偏光めがね
5L.左
5R.右
6L.左眼画像
6R.右眼画像
7.1/4波長板
8L.左旋円偏光(左画像)
8R.右旋円偏光(右画像)
9.円偏光めがね
9a.1/4波長板
9b.1/4波長板
9c.偏光板(−45°)
9d.偏光板(+45°)
10.電極
11.配向膜
12.二色性色素
1. Backlight 2. Rear GH liquid crystal cell 2R. Right image 2P. Displayed on the rear GH liquid crystal cell. Polarization axis (+ 45 °)
3. 3. Moire prevention diffusion plate Front GH liquid crystal cell 4L. Left image 4P. Displayed on front GH liquid crystal cell. Polarization axis (-45 °)
5). Polarized glasses 5L. Left 5R. Right 6L. Left eye image 6R. Right eye image 7.1 / 4 wavelength plate 8L. Left-handed circularly polarized light (left image)
8R. Right-handed circularly polarized light (right image)
9. Circular polarized glasses 9a. 1/4 wavelength plate 9b. 1/4 wavelength plate 9c. Polarizing plate (-45 °)
9d. Polarizing plate (+ 45 °)
10. Electrode 11. Alignment film 12. Dichroic dye

Claims (3)

バックライトと2枚のGH(Guest Host)型液晶セルを重ねてディスプレイを形成し、これらのGH液晶セルの一方に左画像、一方に右画像を表示し、その偏光軸を互いに直交させ、これを互いに直交する左右の偏光めがねで左右画像を分離して立体視を得る立体視ディスプレイ。  A backlight and two GH (Guest Host) liquid crystal cells are overlapped to form a display. A left image is displayed on one of these GH liquid crystal cells and a right image is displayed on the other, and their polarization axes are orthogonal to each other. A stereoscopic display that obtains a stereoscopic view by separating left and right images with right and left polarizing glasses orthogonal to each other. 後面のGH液晶セルに画像を表示し前面のGH液晶セルを偏光板として用い一般画像表示を可能にした上記立体視ディスプレイ。  The above-mentioned stereoscopic display in which an image is displayed on a rear GH liquid crystal cell and a general image can be displayed using the front GH liquid crystal cell as a polarizing plate. 上記ディスプレイの表面に1/4波長板を置き左旋および右旋の円偏光に変換し、これを一方が左旋、一方が右旋の円偏光めがねを用いて立体視を得る立体視ディスプレイ。  A stereoscopic display in which a quarter-wave plate is placed on the surface of the display and converted into left-handed and right-handed circularly polarized light, and this is obtained using one of the left-handed and one of the right-handed circularly polarized glasses.
JP2008335889A 2008-12-03 2008-12-03 Stereoscopic display using guest-host liquid crystal Pending JP2010134394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335889A JP2010134394A (en) 2008-12-03 2008-12-03 Stereoscopic display using guest-host liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335889A JP2010134394A (en) 2008-12-03 2008-12-03 Stereoscopic display using guest-host liquid crystal

Publications (1)

Publication Number Publication Date
JP2010134394A true JP2010134394A (en) 2010-06-17

Family

ID=42345719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335889A Pending JP2010134394A (en) 2008-12-03 2008-12-03 Stereoscopic display using guest-host liquid crystal

Country Status (1)

Country Link
JP (1) JP2010134394A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011050975A1 (en) 2010-06-11 2011-12-29 Denso Corporation Electromagnetic switch
JP2012032527A (en) * 2010-07-29 2012-02-16 Fujifilm Corp Polarized glasses
JP2012032507A (en) * 2010-07-29 2012-02-16 Fujifilm Corp Polarized glasses
CN106444149A (en) * 2016-09-09 2017-02-22 广东顺德中山大学卡内基梅隆大学国际联合研究院 Autostereoscopic display system with brightness and uniformity adjustable and control method of autostereoscopic display system
WO2023075429A1 (en) * 2021-10-27 2023-05-04 서울대학교산학협력단 Polarized glasses-type three-dimensional image liquid crystal display apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011050975A1 (en) 2010-06-11 2011-12-29 Denso Corporation Electromagnetic switch
JP2012032527A (en) * 2010-07-29 2012-02-16 Fujifilm Corp Polarized glasses
JP2012032507A (en) * 2010-07-29 2012-02-16 Fujifilm Corp Polarized glasses
CN106444149A (en) * 2016-09-09 2017-02-22 广东顺德中山大学卡内基梅隆大学国际联合研究院 Autostereoscopic display system with brightness and uniformity adjustable and control method of autostereoscopic display system
WO2023075429A1 (en) * 2021-10-27 2023-05-04 서울대학교산학협력단 Polarized glasses-type three-dimensional image liquid crystal display apparatus

Similar Documents

Publication Publication Date Title
KR100483352B1 (en) Liquid crystal display device using thin film polarizers and retarders
TWI432784B (en) Stereoscopic image display device
JP5424915B2 (en) Video display system
JP4311492B2 (en) Liquid crystal display element and broadcast receiving apparatus
WO2009157245A1 (en) Liquid crystal display panel and liquid crystal display device
JP5634503B2 (en) Active shutter glasses and 3D image recognition system
CN1431546A (en) Active matrix type liquid crystal display
JP2010204389A (en) Display device
JP5628611B2 (en) Liquid crystal display
WO2019201158A1 (en) Display apparatus, drive method therefor, and display system
JP2010134394A (en) Stereoscopic display using guest-host liquid crystal
JP2015114371A5 (en)
TWI397719B (en) Stereoscopic display device and stereoscopic image displaying method
KR20150137367A (en) Multi Domain Vertical Alignment Liquid Crystal Display with High Transmittance and Wide Viewing Angle
WO2016117325A1 (en) Display device
JP2010134393A (en) Stereoscopic display and polarizing glasses
CN1721940A (en) IPS-LCD device having optical compensation films
TWI309315B (en)
TWI386035B (en) Three-dimensional display device and three-dimensional display method
WO2012008408A1 (en) Display device
CN209707826U (en) One-dimensional integrated imaging double vision 3D display device based on polarizing film
CN114415391A (en) Stereoscopic display device
JP2002511605A (en) Liquid crystal display
JP6161174B2 (en) Display device
US8248547B2 (en) Vertical electric field type liquid crystal display and driving method comprising applying a format voltage and a driving voltage to a liquid crystal without an alignment layer