JP2010133664A - Burner tip structure - Google Patents

Burner tip structure Download PDF

Info

Publication number
JP2010133664A
JP2010133664A JP2008311304A JP2008311304A JP2010133664A JP 2010133664 A JP2010133664 A JP 2010133664A JP 2008311304 A JP2008311304 A JP 2008311304A JP 2008311304 A JP2008311304 A JP 2008311304A JP 2010133664 A JP2010133664 A JP 2010133664A
Authority
JP
Japan
Prior art keywords
burner tip
flow path
spray medium
mixing section
inclined surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008311304A
Other languages
Japanese (ja)
Inventor
Kazuaki Hashiguchi
和明 橋口
Kotaro Fujimura
皓太郎 藤村
Kazuhiro Takeuchi
和広 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008311304A priority Critical patent/JP2010133664A/en
Publication of JP2010133664A publication Critical patent/JP2010133664A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a burner tip structure capable of securing a sufficient mixing distance in a mixing section flow channel in which an atomizing medium flows, without increasing a dimension of the shape of a burner tip body, and increasing the consumption of the atomizing medium such as steam. <P>SOLUTION: In this two-fluid type burner tip structure in which fuel oil is atomized by the steam in the burner tip body 10 and charged into a furnace, the inside of a steam main flow channel 11 has a two stage structure having a downstream side end section inclined face 11a and a step section inclined face 11b, an outlet opening of the mixing section flow channel 12A formed in a state of communicated with the downstream side end section inclined surface 11a of the steam main flow channel 11, is composed of a narrow angle injection hole 15A, and an outlet opening of the mixing section flow channel 12B formed in a state of communicated with the step section inclined surface 11b is composed of a wide angle injection hole 15B. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、油焚きボイラ等に適用されるバーナチップ構造に関する。   The present invention relates to a burner tip structure applied to an oil-fired boiler or the like.

従来、油焚きボイラにおいては、バーナチップ構造として2流体式チップが用いられている。
2流体式のバーナチップ構造は、噴霧媒体として空気や蒸気を用い、燃料である油(アスファルトやVR等の粗悪燃料を含む)を微粒化することにより、着火及び燃焼を確立させる方法がよく知られている。このような2流体式のバーナチップ構造においては、燃料油と蒸気はチップ内の混合区間で混合され、微粒化されながら炉内へ投入される。
Conventionally, in an oil-fired boiler, a two-fluid chip is used as a burner chip structure.
The two-fluid burner chip structure is well known for establishing ignition and combustion by using air or steam as a spray medium and atomizing oil (including poor fuels such as asphalt and VR) as fuel. It has been. In such a two-fluid burner tip structure, fuel oil and steam are mixed in a mixing section in the tip, and are injected into the furnace while being atomized.

図3及び図4に示すバーナチップ構造は、燃焼性を向上させるため、微粒化燃料の噴出方向を広角及び狭角にアンバランスさせた複数(図示の構成例では8個)の噴出孔を備えたものである。
図示のバーナチップ構造において、バーナチップ本体1の内部には、噴霧媒体となる蒸気を供給する蒸気主流路2が上流側の中心部に形成されている。この蒸気主流路2は、バーナチップ本体1の軸方向において略中間位置まで形成され、その先端部2a及び流路途中から分岐して、複数の分割蒸気流路3A,3Bが放射状外向きに形成されている。この分割蒸気流路3A,3Bは、それぞれがバーナチップ本体1の先端部1aまたは側面部1bに開口するよう設けられた複数の混合区間流路4A,4Bに連通している。この混合区間流路4A,4Bは分割蒸気流路3A,3Bと同数設けられ、同一軸線上において分割蒸気流路3A,3Bから流路断面積を拡径して設けられている。
The burner tip structure shown in FIGS. 3 and 4 includes a plurality of (eight in the illustrated configuration example) ejection holes in which the ejection direction of the atomized fuel is unbalanced to a wide angle and a narrow angle in order to improve combustibility. It is a thing.
In the illustrated burner tip structure, a steam main passage 2 for supplying steam as a spray medium is formed in the center of the upstream side inside the burner tip body 1. The steam main flow path 2 is formed up to a substantially intermediate position in the axial direction of the burner tip body 1, and is branched from the tip 2a and the middle of the flow path, and a plurality of divided steam flow paths 3A and 3B are formed radially outward. Has been. The divided steam flow paths 3A and 3B are in communication with a plurality of mixing section flow paths 4A and 4B provided so as to open to the front end portion 1a or the side surface portion 1b of the burner tip body 1, respectively. The number of the mixing section channels 4A and 4B is the same as that of the divided steam channels 3A and 3B, and the channel cross-sectional area is expanded from the divided steam channels 3A and 3B on the same axis.

蒸気主流路2の外周側には、混合区間流路4A,4Bと同数(複数)の燃料油流路5A,5Bが形成されており、バーナチップ本体1の周方向において等ピッチとなるように配置されている。この燃料油流路5A,5Bは、油焚きボイラの燃料となる燃料油を供給するものであり、バーナチップ本体1の内部において、混合区間流路4A,4Bが分割蒸気流路3A,3Bと連通する入口近傍側面に対して、側面または斜め方向から合流するようになっている。
なお、バーナチップ本体1の上流側には、蒸気及び燃料油の整流や流路切替を行うバックプレート(不図示)が連結されている。
The same number (plural) of fuel oil passages 5A and 5B as the mixing section passages 4A and 4B are formed on the outer peripheral side of the steam main passage 2 so as to have an equal pitch in the circumferential direction of the burner tip body 1. Has been placed. The fuel oil passages 5A and 5B supply fuel oil as fuel for the oil-fired boiler. Inside the burner chip body 1, the mixing section passages 4A and 4B are separated from the divided steam passages 3A and 3B. It joins from the side surface or an oblique direction to the side surface in the vicinity of the communicating inlet.
A back plate (not shown) that rectifies steam and fuel oil and switches the flow path is connected to the upstream side of the burner chip body 1.

このように構成された2流体式のバーナチップ構造においては、蒸気主流路2から分流して分割蒸気流路3A,3Bを流れる噴霧媒体の蒸気と、燃料油流路5A,5Bを通って供給された燃料油とが混合区間流路4A,4B内で合流することにより、合流時の衝突や混合区間4A,4B内を流れる際の撹拌・混合により燃料油が微粒化される。そして、混合区間流路4A,4Bを通過して微粒化された燃料油は、バーナチップ本体1に開口する混合区間4A,4Bの出口開口から微粒化燃料として蒸気とともに炉内へ投入される。   In the two-fluid burner tip structure configured as described above, the vapor of the spray medium which is diverted from the main steam flow path 2 and flows through the divided steam flow paths 3A and 3B and the fuel oil flow paths 5A and 5B is supplied. The fuel oil thus formed joins in the mixing section flow paths 4A and 4B, so that the fuel oil is atomized by collision at the time of joining and agitation / mixing when flowing in the mixing sections 4A and 4B. Then, the fuel oil atomized through the mixing section flow paths 4A and 4B is introduced into the furnace together with the steam from the outlet opening of the mixing sections 4A and 4B opening in the burner tip body 1 as the atomized fuel.

この場合の出口開口は、バーナチップ本体1の先端部1aに開口する混合区間流路4Aの出口開口が、炉内へ向けた微粒化燃料の投入角度を小さくした狭角噴出孔6Aであり、バーナチップ本体1の側面部1bに開口する混合区間流路4Bの出口開口が、炉内へ向けた微粒化燃料の投入角度を大きくした広角噴出孔6Bである。なお、微粒化燃料の投入角度は、バーナチップ本体1の軸線が基準の0度となる。   The outlet opening in this case is a narrow-angle jet hole 6A in which the outlet opening of the mixing section flow path 4A that opens to the tip portion 1a of the burner tip body 1 is reduced in the injection angle of the atomized fuel toward the inside of the furnace, The outlet opening of the mixing section flow path 4B that opens to the side surface portion 1b of the burner tip body 1 is a wide-angle jet hole 6B that increases the injection angle of the atomized fuel toward the furnace. Note that the atomization fuel is supplied at an angle of 0 degrees with respect to the axis of the burner tip body 1.

2流体式のバーナチップ構造に関する他の従来技術としては、バーナチップの先端部に開口する蒸気流路を追設することにより、燃料の微粒化を促進して噴霧性能を向上させ、窒素酸化物並びに煤煙の発生を抑制できるバーナが提案されている。(たとえば、特許文献1参照)
また、2流体式のバーナチップ構造に関する他の従来技術としては、ボイラ装置用CWM(高濃度石炭・水スラリ)等のスラリ燃料を良好に微粒化(噴霧)させるスラリ燃料用アトマイザ構造が提案されている。この従来技術は、微粒化媒体供給環状流路を先端側で収束させて微粒化媒体を加速してからスラリ燃料と合流させるものである。(たとえば、特許文献2参照)
As another conventional technique related to the two-fluid burner tip structure, by adding a steam flow path opened at the tip of the burner tip, fuel atomization is promoted to improve the spray performance, and nitrogen oxide In addition, a burner that can suppress the generation of smoke is proposed. (For example, see Patent Document 1)
As another conventional technique related to the two-fluid burner tip structure, there has been proposed a slurry fuel atomizer structure that finely atomizes (sprays) slurry fuel such as CWM (high concentration coal / water slurry) for boiler equipment. ing. In this prior art, the atomizing medium supply annular flow path is converged on the tip side to accelerate the atomizing medium and then merge with the slurry fuel. (For example, see Patent Document 2)

特開2002−168413号公報JP 2002-168413 A 特開平9−287714号公報JP-A-9-287714

ところで、上述した2流体式のバーナチップ構造は、良好な微粒化及び燃焼性を確保するため、混合区間流路4A,4Bの流路長さに十分な混合距離L1,L2を確保する必要がある。一般的な混合区間流路4A,4Bの混合距離L1,L2については、混合区間流路4A,4B及びその出口開口の流路径をD1,D2とした場合、流路径D1,D2の2〜3倍以上(L1/D1>2〜3,L2/D2>2〜3)を確保する必要がある。なお、混合距離L1,L2は、燃料油と蒸気とが合流した位置から流路出口までの流路長さとなる。   By the way, the above-described two-fluid burner tip structure needs to ensure sufficient mixing distances L1 and L2 for the channel length of the mixing section channels 4A and 4B in order to ensure good atomization and combustibility. is there. As for the mixing distances L1 and L2 of the general mixing section flow paths 4A and 4B, when the mixing section flow paths 4A and 4B and the outlet diameters of the mixing section flow paths 4A and 4B are D1 and D2, the flow path diameters D1 and D2 are 2-3. It is necessary to ensure at least twice (L1 / D1> 2 to 3, L2 / D2> 2 to 3). The mixing distances L1 and L2 are the channel lengths from the position where the fuel oil and the steam merge to the channel outlet.

しかし、上述した狭角噴出孔6A及び広角噴出孔6Bのように、微粒化燃料の噴出方向をアンバランスさせて燃焼性の向上を図る場合には、噴出角度が広い広角噴出孔6B側の混合距離L2が短くなる傾向にある。
また、バーナチップ本体1は、バーナ燃焼量の増大に伴い、蒸気消費率を高めるために流路径D1,D2を大きくする設計が一般的である。従って、バーナチップ本体1が受ける寸法形状の制約から十分な混合距離L1,L2を確保できなくなり、良好な微粒化を得られない2流体式のバーナチップ構造となることが懸念される。さらに、バーナチップ本体1の外形寸法を増して流路径D1,D2を拡大すると、バーナ保炎器などバーナ全体の構造が大きくなるため好ましくない。
However, in the case of improving the combustibility by unbalancing the injection direction of the atomized fuel as in the narrow-angle injection hole 6A and the wide-angle injection hole 6B described above, the mixing on the wide-angle injection hole 6B side having a wide injection angle is performed. The distance L2 tends to be shorter.
The burner tip body 1 is generally designed to increase the flow path diameters D1 and D2 in order to increase the steam consumption rate as the burner combustion amount increases. Accordingly, there is a concern that sufficient mixing distances L1 and L2 cannot be ensured due to the size and shape restrictions that the burner tip body 1 receives, resulting in a two-fluid burner tip structure that does not provide good atomization. Furthermore, if the outer diameter of the burner tip body 1 is increased and the flow path diameters D1 and D2 are enlarged, the structure of the entire burner such as a burner flame stabilizer is not preferable.

このような背景から、微粒化燃料の噴出方向をアンバランスさせて燃焼性の向上を図るバーナチップ構造においては、バーナ燃焼量の増大に伴い噴霧媒体消費率を高める場合、バーナチップ本体の形状を大型化することなく十分な混合距離を確保できるバーナチップ構造の開発が望まれる。
本発明は、上記の事情に鑑みてなされたもので、その目的とするところは、特に微粒化燃料の噴出方向をアンバランスさせて燃焼性の向上を図るバーナチップ構造において、バーナチップ本体の形状を大型化することなく噴霧媒体を流す混合区間流路に十分な混合距離を確保し、蒸気等の噴霧媒体消費量を増加させることができるバーナチップ構造を提供することにある。
From such a background, in the burner tip structure that improves the combustibility by unbalance the jet direction of the atomized fuel, the shape of the burner tip body is changed when the spray medium consumption rate is increased as the burner combustion amount increases. It is desired to develop a burner tip structure that can secure a sufficient mixing distance without increasing the size.
The present invention has been made in view of the above circumstances, and the object of the present invention is, in particular, the shape of the burner tip body in the burner tip structure for improving the combustibility by unbalance the ejection direction of the atomized fuel. An object of the present invention is to provide a burner tip structure capable of ensuring a sufficient mixing distance in a mixing section flow path for flowing a spray medium without increasing the size and increasing the consumption of a spray medium such as steam.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係るバーナチップ構造は、バーナチップ本体内で燃料油を噴霧媒体により微粒化して炉内へ投入する2流体式のバーナチップ構造において、前記バーナチップ本体の軸中心位置上流側に形成された噴霧媒体主流路と、該噴霧媒体主流路から放射状外向きに分岐して形成された複数の混合区間流路と、前記噴霧媒体主流路の外周に形成され、前記混合区間流路の入口近傍側面に合流するとともに入口開口が周方向へ等ピッチに配置されている複数の燃料油流路とを備え、前記噴霧媒体主流路の内部が下流側端部傾斜面及び段差部傾斜面を形成した2段構造とされ、前記噴霧媒体流路の下流側端部傾斜面に連通して形成された前記混合区間流路の出口開口を狭角噴出孔とし、かつ、前記噴霧媒体流路の段差部傾斜面に連通して形成された前記混合区間流路の出口開口を広角噴出孔としたことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The burner tip structure according to the present invention is a two-fluid burner tip structure in which fuel oil is atomized by a spray medium in a burner tip body and is injected into a furnace, and is formed upstream of the axial center position of the burner tip body. The spray medium main flow path, a plurality of mixing section flow paths formed radially outwardly from the spray medium main flow path, and the vicinity of the inlet of the mixing section flow path formed on the outer periphery of the spray medium main flow path A plurality of fuel oil passages that merge with the side surfaces and that have inlet openings arranged at equal pitches in the circumferential direction, and the inside of the spray medium main passage forms a downstream end inclined surface and a stepped portion inclined surface It has a two-stage structure, and the outlet opening of the mixing section flow path formed in communication with the inclined surface on the downstream end of the spray medium flow path is a narrow-angle jet hole, and the step portion of the spray medium flow path Formed in communication with the inclined surface It is characterized in that the outlet opening of the serial mixing zone passage was wide ejection hole.

このようなバーナチップ構造によれば、バーナチップ本体の軸中心位置上流側に形成された噴霧媒体主流路と、該噴霧媒体主流路から放射状外向きに分岐して形成された複数の混合区間流路と、噴霧媒体主流路の外周に形成され、混合区間流路の入口近傍側面に合流するとともに入口開口が周方向へ等ピッチに配置されている複数の燃料油流路とを備え、噴霧媒体主流路の内部が下流側端部傾斜面及び段差部傾斜面を形成した2段構造とされ、前記噴霧媒体流路の下流側端部傾斜面に連通して形成された前記混合区間流路の出口開口を狭角噴出孔とし、かつ、前記噴霧媒体流路の段差部傾斜面に連通して形成された前記混合区間流路の出口開口を広角噴出孔としたので、バーナチップ本体の寸法形状を大型化することなく混合距離を十分に確保することができる。   According to such a burner tip structure, the spray medium main channel formed on the upstream side of the axial center position of the burner tip main body, and a plurality of mixed section flows formed by branching radially outward from the spray medium main channel. And a plurality of fuel oil passages formed on the outer periphery of the spray medium main flow passage and joined to the side surface in the vicinity of the inlet of the mixing section flow passage, and the inlet openings are arranged at equal pitches in the circumferential direction. The inside of the main flow path has a two-stage structure in which a downstream end inclined surface and a stepped portion inclined surface are formed, and the mixing section flow path formed in communication with the downstream end inclined surface of the spray medium flow path Since the outlet opening is a narrow-angle ejection hole and the outlet opening of the mixing section channel formed in communication with the inclined surface of the step portion of the spray medium channel is a wide-angle ejection hole, the size and shape of the burner tip body Enough mixing distance without increasing the size It can be.

本発明のバーナチップ構造は、バーナチップ本体内で燃料油を噴霧媒体により微粒化して炉内へ投入する2流体式のバーナチップ構造において、前記バーナチップ本体の軸中心位置上流側に形成された噴霧媒体主流路と、該噴霧媒体主流路から放射状外向きに分岐して形成された複数の混合区間流路と、前記噴霧媒体主流路の外周に形成され、前記混合区間流路の入口近傍側面に合流するとともに入口開口が周方向へ等ピッチに配置されている複数の燃料油流路とを備え、前記噴霧媒体主流路の内部が下流側端部傾斜面及び段差部傾斜面を形成した2段構造とされ、前記噴霧媒体流路の下流側端部傾斜面に連通して形成された前記混合区間流路の出口開口を広角噴出孔とし、かつ、前記噴霧媒体流路の段差部傾斜面に連通して形成された前記混合区間流路の出口開口を狭角噴出孔としたことを特徴とするものである。   The burner tip structure of the present invention is a two-fluid burner tip structure in which fuel oil is atomized by a spray medium in a burner tip body and is introduced into a furnace, and is formed upstream of the axial center position of the burner tip body. A spray medium main channel, a plurality of mixing section channels formed by branching radially outward from the spray medium main channel, and a side surface near the inlet of the mixing section channel formed on the outer periphery of the spray medium main channel And a plurality of fuel oil passages whose inlet openings are arranged at equal pitches in the circumferential direction, and the inside of the spray medium main passage forms a downstream end inclined surface and a stepped portion inclined surface. The outlet opening of the mixing section channel formed in a step structure and communicating with the inclined surface on the downstream side of the spray medium channel is a wide-angle jet hole, and the stepped portion inclined surface of the spray medium channel Formed in communication with Is characterized in that the outlet opening of the case section passage with a narrow angle injection holes.

このようなバーナチップ構造によれば、バーナチップ本体の軸中心位置上流側に形成された噴霧媒体主流路と、該噴霧媒体主流路から放射状外向きに分岐して形成された複数の混合区間流路と、噴霧媒体主流路の外周に形成され、混合区間流路の入口近傍側面に合流するとともに入口開口が周方向へ等ピッチに配置されている複数の燃料油流路とを備え、噴霧媒体主流路の内部が下流側端部傾斜面及び段差部傾斜面を形成した2段構造とされ、前記噴霧媒体流路の下流側端部傾斜面に連通して形成された前記混合区間流路の出口開口を広角噴出孔とし、かつ、前記噴霧媒体流路の段差部傾斜面に連通して形成された前記混合区間流路の出口開口を狭角噴出孔としたので、バーナチップ本体の寸法形状を大型化することなく混合距離を十分に確保することができる。   According to such a burner tip structure, the spray medium main channel formed on the upstream side of the axial center position of the burner tip main body, and a plurality of mixed section flows formed by branching radially outward from the spray medium main channel. And a plurality of fuel oil passages formed on the outer periphery of the spray medium main flow passage and joined to the side surface in the vicinity of the inlet of the mixing section flow passage, and the inlet openings are arranged at equal pitches in the circumferential direction. The inside of the main flow path has a two-stage structure in which a downstream end inclined surface and a stepped portion inclined surface are formed, and the mixing section flow path formed in communication with the downstream end inclined surface of the spray medium flow path Since the outlet opening is a wide-angle ejection hole and the outlet opening of the mixing section channel formed in communication with the inclined surface of the stepped portion of the spray medium channel is a narrow-angle ejection hole, the size and shape of the burner tip body Enough mixing distance without increasing the size It can be.

上述した本発明のバーナチップ構造によれば、特に微粒化燃料の噴出方向をアンバランスさせて燃焼性の向上を図るバーナチップ構造において、バーナチップ本体の形状を大型化することなく噴霧媒体を流す混合区間流路に十分な混合距離を確保し、蒸気等の噴霧媒体消費量を増加させることができる。このような蒸気消費量の増加が可能になると、燃料油としてアスファルトやVR等の粗悪燃料を含む重質油等を使用する油焚きボイラにおいても、燃料油の微粒化を促進して煤塵やNOx の排出量を低減することができる。   According to the above-described burner tip structure of the present invention, in particular, in the burner tip structure that improves the combustibility by unbalance the jet direction of the atomized fuel, the spray medium is allowed to flow without increasing the size of the burner tip body. A sufficient mixing distance can be secured in the mixing section flow path, and the consumption of the spray medium such as steam can be increased. When such steam consumption can be increased, even in oil-fired boilers that use heavy oil or the like containing poor fuel such as asphalt or VR as fuel oil, the atomization of fuel oil is promoted and dust or NOx is promoted. Can be reduced.

以下、本発明に係るバーナチップ構造の一実施形態を図面に基づいて説明する。
<第1の実施形態>
図1に示す実施形態のバーナチップ構造は、燃料油を燃焼させる油焚きボイラに適用されるものであり、蒸気や空気を噴霧媒体として燃料油を微粒化した後、微粒化燃料を炉内へ投入する2流体式である。この場合の燃料油は、重油等の一般的な油種はもちろんのこと、たとえばアスファルトやVR等のように、低燃焼性及び高粘度の重質化した粗悪燃料を含むものとする。
Hereinafter, an embodiment of a burner chip structure according to the present invention will be described with reference to the drawings.
<First Embodiment>
The burner tip structure of the embodiment shown in FIG. 1 is applied to an oil-fired boiler that burns fuel oil. After atomizing fuel oil using steam or air as a spray medium, the atomized fuel is fed into the furnace. It is a two-fluid type to be charged. The fuel oil in this case includes not only general oil types such as heavy oil, but also low-combustibility and high-viscosity heavy crude fuel such as asphalt and VR.

図1のバーナチップ構造は、バーナチップ本体10内で燃料油を噴霧媒体の蒸気により微粒化して炉内へ投入する2流体式である。なお、以下の説明では、噴霧媒体として蒸気を使用するものとする。
図示のバーナチップ本体10は、軸中心位置上流側に形成された蒸気主流路11と、蒸気主流路11から放射状外向きに分岐して形成された複数の混合区間流路12A,12Bと、蒸気主流路11の外周に形成され、混合区間流路12A,12Bの入口近傍側面に合流するとともに入口開口13aが周方向へ等ピッチに配置されている複数の燃料油流路13A,13Bとを備えている。なお、蒸気主流路11と混合区間流路12A,12Bとの間には、それぞれ蒸気連通路14が設けられている。
The burner tip structure of FIG. 1 is a two-fluid type in which fuel oil is atomized by the vapor of the spray medium in the burner tip body 10 and is injected into the furnace. In the following description, steam is used as the spray medium.
The illustrated burner tip body 10 includes a steam main channel 11 formed on the upstream side of the axial center position, a plurality of mixing section channels 12A and 12B formed by branching radially outward from the steam main channel 11, steam, A plurality of fuel oil passages 13A and 13B formed on the outer periphery of the main passage 11 and joined to the side surfaces in the vicinity of the inlets of the mixing section passages 12A and 12B and having the inlet openings 13a arranged at equal pitches in the circumferential direction. ing. A steam communication path 14 is provided between each of the steam main flow path 11 and the mixing section flow paths 12A and 12B.

上述した蒸気主流路11の内部は、下流側端部傾斜面11a及び段差部傾斜面11bを形成した2段構造とされる。そして、蒸気主流路11の下流側端部傾斜面11aに蒸気連通路14を介して連通するよう形成された混合区間流路12Aの出口開口を狭角噴出孔15Aとし、かつ、蒸気主流路11の段差部傾斜面11bに蒸気流路14を介して連通するよう形成された混合区間流路12Bの出口開口を広角噴出孔15Bとする。
この場合の狭角噴出孔15A及び広角噴出孔15Bは、バーナチップ本体10の軸中心を基準とする微粒化燃料の炉内への投入角度について、広角噴出孔15Bが狭角噴出孔15Aより外向きに広がる大きな(広い)角度となるように設定されている。
The interior of the steam main channel 11 described above has a two-stage structure in which a downstream end inclined surface 11a and a stepped portion inclined surface 11b are formed. The outlet opening of the mixing section flow path 12A formed so as to communicate with the downstream end inclined surface 11a of the steam main flow path 11 via the steam communication path 14 serves as a narrow-angle jet hole 15A, and the steam main flow path 11 The outlet opening of the mixing section channel 12B formed so as to communicate with the stepped portion inclined surface 11b via the steam channel 14 is defined as a wide-angle jet hole 15B.
In this case, the narrow-angle jet hole 15A and the wide-angle jet hole 15B are arranged so that the wide-angle jet hole 15B is outside the narrow-angle jet hole 15A with respect to the injection angle of the atomized fuel into the furnace with reference to the axial center of the burner tip body 10. It is set to have a large (wide) angle that spreads in the direction.

蒸気主流路11から狭角噴出孔15Aに至る蒸気及び燃料油は、下記の経路及び経過を経て微粒化燃料となる。
蒸気主流路11に導入された蒸気は、複数の蒸気連通路14に分流して一部が混合区間流路12Aに流入する。一方、燃料油流路13Aから導入された燃料油は、混合区間流路12Aの入口側近傍において、すなわち蒸気連通路14から混合区間流路12Aに流入した直後の蒸気の流れに対して、流路側面の斜め後方から流入する。こうして混合区間流路12Aの上流側で蒸気及び燃料油が合流することにより、合流時の衝突や撹拌により燃料油が微粒化されて微粒化燃料となり、この微粒化燃料が混合区間流路12Aの下流側に開口する狭角噴出孔15Aから炉内へ向けて広角に投入される。
The steam and fuel oil from the steam main flow path 11 to the narrow-angle jet hole 15A become the atomized fuel through the following path and process.
The steam introduced into the steam main flow path 11 is divided into a plurality of steam communication paths 14, and a part thereof flows into the mixing section flow path 12A. On the other hand, the fuel oil introduced from the fuel oil flow path 13A flows in the vicinity of the inlet side of the mixing section flow path 12A, that is, with respect to the flow of steam immediately after flowing from the steam communication path 14 into the mixing section flow path 12A. It flows from diagonally behind the road side. In this way, when the steam and the fuel oil merge on the upstream side of the mixing section flow path 12A, the fuel oil is atomized by the collision and agitation at the time of merging to become the atomized fuel, and this atomized fuel becomes the atomized fuel in the mixing section flow path 12A. A narrow angle injection hole 15A that opens to the downstream side is introduced into the furnace at a wide angle.

蒸気主流路11から広角噴出孔15Bに至る蒸気及び燃料油は、下記の経路及び経過を経て微粒化燃料となる。
蒸気主流路11に導入された蒸気は、複数の蒸気連通路14に分流して一部が混合区間流路12Bに流入する。一方、燃料油流路13Bから導入された燃料油は、混合区間流路12Bの入口側近傍において、すなわち蒸気連通路14から混合区間流路12Bに流入した直後の蒸気の流れに対して、流路側面の略側面から流入する。こうして混合区間流路12Bの上流側で蒸気及び燃料油が合流することにより、合流時の衝突や撹拌により燃料油が微粒化されて微粒化燃料となり、この微粒化燃料が混合区間流路12Bの下流側に開口する狭角噴出孔15Bから炉内へ向けて広角に投入される。
The steam and fuel oil from the steam main flow path 11 to the wide-angle jet hole 15B become the atomized fuel through the following route and process.
The steam introduced into the steam main flow path 11 is divided into a plurality of steam communication paths 14 and a part thereof flows into the mixing section flow path 12B. On the other hand, the fuel oil introduced from the fuel oil flow path 13B flows in the vicinity of the inlet side of the mixing section flow path 12B, that is, with respect to the flow of steam immediately after flowing into the mixing section flow path 12B from the steam communication path 14. It flows in from the side of the road side. In this way, when the steam and the fuel oil merge on the upstream side of the mixing section flow path 12B, the fuel oil is atomized by the collision and agitation at the time of the merge, and becomes the atomized fuel. A narrow angle injection hole 15B that opens to the downstream side is introduced into the furnace at a wide angle.

ここで、段差部傾斜面11bは、下流側端部傾斜面11aの一部を蒸気主流路11の入口側へ後退させたものである。すなわち、段差部傾斜面11bは、広角噴出孔15Bを備えた混合区間流路12Bに連通する蒸気連通路14が開口する蒸気主流路11の下流側先端部を凸状に後退させて傾斜面を形成したものである。従って、蒸気主流路11内の下流側先端部は、下流側端部傾斜面11aが形成された凹部と、段差部傾斜面11bが形成された凸部とが凹凸を形成する2段構造となっている。
また、下流側端部傾斜面11a及び段差部傾斜面11bの傾斜角度については、それぞれの傾斜面が蒸気連通路14の軸線と直交するか、あるいはできるだけ直交に近づけることが望ましい。このような傾斜角度の設定により、蒸気主流路11から複数の蒸気連通路14へ分岐して流れる蒸気量を略均一化することができる。
Here, the stepped portion inclined surface 11 b is obtained by retreating a part of the downstream end inclined surface 11 a toward the inlet side of the steam main channel 11. In other words, the stepped portion inclined surface 11b is formed so that the downstream end portion of the steam main flow passage 11 where the steam communication passage 14 communicating with the mixing section flow passage 12B having the wide-angle ejection hole 15B opens is convexly retreated. Formed. Accordingly, the downstream end portion in the steam main flow path 11 has a two-stage structure in which the concave portion in which the downstream end inclined surface 11a is formed and the convex portion in which the step inclined surface 11b is formed form irregularities. ing.
In addition, regarding the inclination angles of the downstream end inclined surface 11a and the stepped portion inclined surface 11b, it is desirable that each inclined surface is orthogonal to the axis of the steam communication passage 14 or as close to orthogonal as possible. By setting such an inclination angle, the amount of steam flowing from the steam main flow path 11 to the plurality of steam communication paths 14 can be made substantially uniform.

そして、広角噴出孔15Bを凸部の段差部傾斜面11b側に形成したので、傾斜面の後退分だけ混合区間流路12Bの流路長さが延長される。この結果、混合区間流路12Bの入口側近傍に燃料油流路13Bを連通させることで、従来構造では広角噴出孔側の混合距離L2を確保しにくいという問題が解消され、十分な長さの混合距離L2を確保することができる。この場合、バーナチップ本体10の改良点は、蒸気主流路11の空間内であるから、バーナチップ本体10の外径については寸法形状を大型化する必要はない。   And since the wide-angle jet hole 15B was formed in the step part inclined surface 11b side of a convex part, the flow path length of the mixing area flow path 12B is extended by the retreating part of an inclined surface. As a result, by connecting the fuel oil flow path 13B in the vicinity of the inlet side of the mixing section flow path 12B, the problem that it is difficult to secure the mixing distance L2 on the wide-angle injection hole side in the conventional structure is solved, and a sufficient length is achieved. The mixing distance L2 can be ensured. In this case, since the improvement of the burner tip body 10 is in the space of the steam main flow path 11, it is not necessary to increase the size and shape of the outer diameter of the burner tip body 10.

<第2の実施形態>
次に、本発明に係るバーナチップ構造について、第2の実施形態を図2に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図2のバーナチップ構造は、バーナチップ本体10A内で燃料油を噴霧媒体の蒸気により微粒化して炉内へ投入する2流体式であり、噴霧媒体としては、蒸気を使用するものとする。
<Second Embodiment>
Next, a second embodiment of the burner chip structure according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
The burner tip structure of FIG. 2 is a two-fluid type in which fuel oil is atomized by the vapor of the spray medium in the burner chip main body 10A and introduced into the furnace, and steam is used as the spray medium.

図示のバーナチップ本体10Aは、軸中心位置上流側に形成された蒸気主流路11と、蒸気主流路11から放射状外向きに分岐して形成された複数の混合区間流路12C,12Dと、蒸気主流路11の外周に形成され、混合区間流路12C,12Dの入口近傍側面に合流するとともに入口開口13aが周方向へ等ピッチに配置されている複数の燃料油流路13A,13Bとを備えている。なお、蒸気主流路11と混合区間流路12A,12Bとの間には、それぞれ蒸気連通路14が設けられている。   The illustrated burner tip body 10A includes a steam main channel 11 formed on the upstream side of the axial center position, a plurality of mixing section channels 12C and 12D formed by branching radially outward from the steam main channel 11, steam, A plurality of fuel oil passages 13A and 13B formed on the outer periphery of the main passage 11 and joined to the side surfaces in the vicinity of the inlets of the mixing section passages 12C and 12D and having the inlet openings 13a arranged at equal pitches in the circumferential direction. ing. A steam communication path 14 is provided between the steam main flow path 11 and the mixing section flow paths 12A and 12B.

上述した蒸気主流路11の内部は、下流側端部傾斜面11a及び段差部傾斜面11cを形成した2段構造とされる。そして、蒸気主流路11の下流側端部傾斜面11aに蒸気連通路14を介して連通するよう形成された混合区間流路12Dの出口開口を広角噴出孔15Bとし、かつ、蒸気主流路11の段差部傾斜面11cに蒸気流路14を介して連通するよう形成された混合区間流路12Cの出口開口を広角噴出孔15Aとする。
この場合の段差部傾斜面11cは、蒸気主流路11の入口開口を部分的に広げるようにして、すなわち、蒸気主流路11の側壁面を部分的に除去して形成されており、この段差部傾斜面11cに狭角噴出孔15Aを連通させている。
The inside of the steam main flow path 11 described above has a two-stage structure in which a downstream end inclined surface 11a and a stepped portion inclined surface 11c are formed. The outlet opening of the mixing section channel 12D formed so as to communicate with the downstream end inclined surface 11a of the steam main channel 11 via the steam communication passage 14 is a wide-angle jet hole 15B, and the steam main channel 11 The exit opening of the mixing section flow path 12C formed so as to communicate with the stepped portion inclined surface 11c via the vapor flow path 14 is defined as a wide-angle jet hole 15A.
In this case, the stepped portion inclined surface 11c is formed so as to partially widen the inlet opening of the steam main flow channel 11, that is, by partially removing the side wall surface of the steam main flow channel 11. A narrow-angle jet hole 15A communicates with the inclined surface 11c.

このような段差部傾斜面11cを有する2段構造の蒸気主流路11とし、かつ、バーナチップ本体10Aに対する傾斜角度が小さい狭角噴出孔15Aを形成したので、段差部傾斜面11cを後退させた分だけ混合区間流路12Cの流路長さを延長できる。さらに、段差部傾斜面11c側に形成される混合区間流路12Cが狭角噴出孔15Aであるから、傾斜角度が小さい分だけ混合区間流路12Cの流路長さを延長できる。従って、狭角噴出孔15A側については、十分な混合距離L1を確保できるようになる。
一方、従来構造では混合距離を確保しにくい広角噴出孔側については、もともと混合距離を確保しやすい下流側端部傾斜面11a側に配置を形成したので、十分な長さの混合距離L2を確保することができる。
Since the steam main flow path 11 having such a two-stage structure having the stepped portion inclined surface 11c and the narrow-angle injection hole 15A having a small inclination angle with respect to the burner tip body 10A are formed, the stepped portion inclined surface 11c is retracted. The channel length of the mixing section channel 12C can be extended by the same amount. Furthermore, since the mixing section flow path 12C formed on the side of the stepped portion inclined surface 11c is a narrow-angle ejection hole 15A, the flow path length of the mixing section flow path 12C can be extended by a small inclination angle. Therefore, a sufficient mixing distance L1 can be secured on the narrow-angle jet hole 15A side.
On the other hand, on the wide-angle jet hole side where it is difficult to secure the mixing distance in the conventional structure, the arrangement is formed on the downstream end inclined surface 11a side where the mixing distance is easy to secure originally, so a sufficiently long mixing distance L2 is secured. can do.

この結果、従来構造では広角側に十分な混合距離確保できないという問題を解消し、狭角側及び広角側の両方で十分な長さの混合距離L2を確保することができる。この場合、バーナチップ本体10の改良点は、蒸気主流路11の空間内であるから、バーナチップ本体10の外径については寸法形状を大型化する必要はない。   As a result, the problem that the conventional structure cannot secure a sufficient mixing distance on the wide-angle side can be solved, and a sufficiently long mixing distance L2 can be ensured on both the narrow-angle side and the wide-angle side. In this case, since the improvement of the burner tip body 10 is in the space of the steam main flow path 11, it is not necessary to increase the size and shape of the outer diameter of the burner tip body 10.

このように、上述した本発明のバーナチップ構造によれば、バーナチップ本体の形状、特に外径寸法を大型化することなく蒸気等の噴霧媒体を流す流路径を拡大し、混合区間流路に十分な混合距離を確保して燃料油の良好な微粒化が可能になる。すなわち、流路径D1,D2に対して2〜3倍以上の混合距離L1,L2を確保することができる。従って、微粒化燃料の噴射投入方向をアンバランスさせて燃焼性を向上させる場合においても、蒸気消費量の増加が可能となる。そして、このような蒸気消費量の増加が可能になると、燃料油としてアスファルトやVR等の粗悪燃料を含む重質油等を使用する油焚きボイラにおいても、燃料油の微粒化を促進して煤塵やNOx の排出量を低減することができる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the burner tip structure of the present invention described above, the diameter of the burner tip body, in particular, the diameter of the flow path for flowing the spray medium such as steam without increasing the outer diameter is increased, and the mixing section flow path is formed. A sufficient mixing distance is ensured, and the fuel oil can be finely atomized. That is, the mixing distances L1 and L2 that are two to three times as large as the flow path diameters D1 and D2 can be secured. Therefore, even when the injection direction of the atomized fuel is unbalanced to improve the combustibility, the steam consumption can be increased. And if such an increase in steam consumption becomes possible, even in oil-fired boilers that use heavy oil or the like containing poor fuel such as asphalt or VR as fuel oil, the atomization of the fuel oil will be promoted and dust will be promoted. And NOx emissions can be reduced.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

本発明に係るバーナチップ構造について、第1の実施形態を示す内部構造例の断面図(図3のA−A断面図)である。It is sectional drawing (AA sectional drawing of FIG. 3) of the example of an internal structure which shows 1st Embodiment about the burner chip | tip structure which concerns on this invention. 本発明に係るバーナチップ構造について、第2の実施形態を示す内部構造例の断面図(図3のA−A断面図)である。It is sectional drawing (AA sectional drawing of FIG. 3) of the example of an internal structure which shows 2nd Embodiment about the burner chip | tip structure which concerns on this invention. 微粒化燃料の噴射投入方向をアンバランスさせた従来のバーナチップ構造を先端部側から見た外形図である。It is the external view which looked at the conventional burner tip structure which unbalanced the injection injection direction of atomization fuel from the front-end | tip part side. 図3に示す従来のバーナチップ構造について、内部構造例を示す断面図である。It is sectional drawing which shows the example of an internal structure about the conventional burner chip | tip structure shown in FIG.

符号の説明Explanation of symbols

10,10A バーナチップ本体
11 蒸気主流路
11a 下流側端部傾斜面
11b,11c 段差部傾斜面
12A,12B,12C,12D 混合区間流路
13A,13B 燃料油流路
15A 狭角噴出孔
15B 広角噴出孔
10, 10A Burner tip body 11 Steam main flow path 11a Downstream end inclined surface 11b, 11c Stepped portion inclined surface 12A, 12B, 12C, 12D Mixed section flow path 13A, 13B Fuel oil flow path 15A Narrow angle injection hole 15B Wide angle injection Hole

Claims (2)

バーナチップ本体内で燃料油を噴霧媒体により微粒化して炉内へ投入する2流体式のバーナチップ構造において、
前記バーナチップ本体の軸中心位置上流側に形成された噴霧媒体主流路と、該噴霧媒体主流路から放射状外向きに分岐して形成された複数の混合区間流路と、前記噴霧媒体主流路の外周に形成され、前記混合区間流路の入口近傍側面に合流するとともに入口開口が周方向へ等ピッチに配置されている複数の燃料油流路とを備え、
前記噴霧媒体主流路の内部が下流側端部傾斜面及び段差部傾斜面を形成した2段構造とされ、前記噴霧媒体流路の下流側端部傾斜面に連通して形成された前記混合区間流路の出口開口を狭角噴出孔とし、かつ、前記噴霧媒体流路の段差部傾斜面に連通して形成された前記混合区間流路の出口開口を広角噴出孔としたことを特徴とするバーナチップ構造。
In the two-fluid burner tip structure in which fuel oil is atomized by a spray medium in the burner tip body and is injected into the furnace.
A spray medium main channel formed upstream of the axial center position of the burner tip body, a plurality of mixing section channels formed by branching radially outward from the spray medium main channel, and the spray medium main channel A plurality of fuel oil passages formed on the outer periphery, joined to the side surface near the inlet of the mixing section flow passage, and the inlet openings are arranged at an equal pitch in the circumferential direction,
The mixing section in which the inside of the spray medium main flow path has a two-stage structure in which a downstream end inclined surface and a stepped portion inclined surface are formed and communicated with the downstream end inclined surface of the spray medium flow path. The outlet opening of the mixing section channel formed in communication with the inclined surface of the stepped portion of the spray medium channel is a wide-angle ejection hole. Burner tip structure.
バーナチップ本体内で燃料油を噴霧媒体により微粒化して炉内へ投入する2流体式のバーナチップ構造において、
前記バーナチップ本体の軸中心位置上流側に形成された噴霧媒体主流路と、該噴霧媒体主流路から放射状外向きに分岐して形成された複数の混合区間流路と、前記噴霧媒体主流路の外周に形成され、前記混合区間流路の入口近傍側面に合流するとともに入口開口が周方向へ等ピッチに配置されている複数の燃料油流路とを備え、
前記噴霧媒体主流路の内部が下流側端部傾斜面及び段差部傾斜面を形成した2段構造とされ、前記噴霧媒体流路の下流側端部傾斜面に連通して形成された前記混合区間流路の出口開口を広角噴出孔とし、かつ、前記噴霧媒体流路の段差部傾斜面に連通して形成された前記混合区間流路の出口開口を狭角噴出孔としたことを特徴とするバーナチップ構造。
In the two-fluid burner tip structure in which fuel oil is atomized by a spray medium in the burner tip body and is injected into the furnace.
A spray medium main channel formed upstream of the axial center position of the burner tip body, a plurality of mixing section channels formed by branching radially outward from the spray medium main channel, and the spray medium main channel A plurality of fuel oil passages formed on the outer periphery, joined to the side surface near the inlet of the mixing section flow passage, and the inlet openings are arranged at an equal pitch in the circumferential direction,
The mixing section in which the inside of the spray medium main flow path has a two-stage structure in which a downstream end inclined surface and a stepped portion inclined surface are formed and communicated with the downstream end inclined surface of the spray medium flow path. The outlet opening of the flow path is a wide-angle jet hole, and the outlet opening of the mixing section flow path formed in communication with the stepped portion inclined surface of the spray medium flow path is a narrow-angle jet hole Burner tip structure.
JP2008311304A 2008-12-05 2008-12-05 Burner tip structure Withdrawn JP2010133664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311304A JP2010133664A (en) 2008-12-05 2008-12-05 Burner tip structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311304A JP2010133664A (en) 2008-12-05 2008-12-05 Burner tip structure

Publications (1)

Publication Number Publication Date
JP2010133664A true JP2010133664A (en) 2010-06-17

Family

ID=42345116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311304A Withdrawn JP2010133664A (en) 2008-12-05 2008-12-05 Burner tip structure

Country Status (1)

Country Link
JP (1) JP2010133664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206283A1 (en) * 2016-06-01 2017-12-07 中油锐思技术开发有限责任公司 Combustion nozzle and ejection method thereof, generator head construction, pure oxygen composite heat carrier generator, and method for generating composite heat carrier
CN107726312A (en) * 2017-10-19 2018-02-23 山东辰跃节能科技有限公司 A kind of two-stage steam atomization oil gun

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206283A1 (en) * 2016-06-01 2017-12-07 中油锐思技术开发有限责任公司 Combustion nozzle and ejection method thereof, generator head construction, pure oxygen composite heat carrier generator, and method for generating composite heat carrier
EA035825B1 (en) * 2016-06-01 2020-08-17 Сиенписи Глобал Солюшнс Лтд. Combustion nozzle and ejection method, generator head construction, pure oxygen composite heat carrier generator and method for generating composite heat carrier
CN107726312A (en) * 2017-10-19 2018-02-23 山东辰跃节能科技有限公司 A kind of two-stage steam atomization oil gun
CN107726312B (en) * 2017-10-19 2024-03-22 山东辰跃节能科技有限公司 Two-stage steam atomization oil gun

Similar Documents

Publication Publication Date Title
JP5468812B2 (en) Combustor assembly and fuel nozzle for gas turbine engine
CN101446419B (en) Burner tip, burner and improvement method of burner
US7320440B2 (en) Low cost pressure atomizer
CN100590359C (en) Combustor
JP2009192214A (en) Fuel nozzle for gas turbine engine and method for fabricating the same
JP2007046886A (en) Gas turbine combustor
JP6400181B2 (en) Multifunctional fuel nozzle with atomizer array
CN103672891B (en) Premix burner
JP6962804B2 (en) Nozzle to flow compound fuel in the radial direction
CN105705863A (en) Liquid fuel cartridge for a fuel nozzle
JP2009531642A (en) Burner for heat generator operation
JP2009052795A (en) Gas turbine combustor
US20080229752A1 (en) Fuel lance
JP2010133664A (en) Burner tip structure
US10378758B2 (en) Burner tip, combustion burner, and boiler
WO2019107355A1 (en) Burner device and multi-tube through-flow boiler device
JP6071828B2 (en) Burner tip and combustion burner and boiler
JP2010127518A (en) Burner tip
JP4400135B2 (en) Combustor for fuel reformer
JPH09287714A (en) Atomizer for slurry fuel
JP7274891B2 (en) gas atomizing burner nozzle
KR100708445B1 (en) Pre-mixing structure of burner for gas
WO2016104430A1 (en) Burner tip, combustion burner, and boiler
JP2010133683A (en) Burner tip structure
CN101235969B (en) Reverse current jet mechanism with coaxial fuel-air passageway

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207