JP2010133291A - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine Download PDF

Info

Publication number
JP2010133291A
JP2010133291A JP2008308095A JP2008308095A JP2010133291A JP 2010133291 A JP2010133291 A JP 2010133291A JP 2008308095 A JP2008308095 A JP 2008308095A JP 2008308095 A JP2008308095 A JP 2008308095A JP 2010133291 A JP2010133291 A JP 2010133291A
Authority
JP
Japan
Prior art keywords
cooling water
micelles
internal combustion
combustion engine
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008308095A
Other languages
Japanese (ja)
Inventor
Susumu Ishizaki
晋 石崎
Takanobu Sugiyama
孝伸 杉山
Tatsuomi Nakayama
達臣 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008308095A priority Critical patent/JP2010133291A/en
Publication of JP2010133291A publication Critical patent/JP2010133291A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve cooling performance and reduction in flow resistance at a high level, in a water-cooled type cooling device for an internal combustion engine. <P>SOLUTION: Surfactant of critical concentration or more is contained in cooling water, and the flow resistance is reduced by the formation of bar-like micelles 21. A surface of a water jacket wall 12 in contact with cooling water has concave-convex surface structure. Firstly, a flow of the cooling water flowing along a wall face is physically agitated, and the bar-like micelles 21 are broken by a shear force thereof. Secondly, air dissolved in the cooling water is grown as air bubbles by the concavity and convexity of the surface to be easily separated therefrom. Similarly, generation-separation of the air bubbles by nucleate boiling is promoted, and the cooling water is agitated by the dissolved air or air bubbles 23 by subcooled boiling, so that the bar-like micelles are broken and divided into spherical micelles 22. A heat transfer coefficient is recovered by breakage-division of the bar-like micelles 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、冷却水の強制循環によりシリンダヘッドやシリンダブロックの各部を冷却する内燃機関の冷却装置に関する。   The present invention relates to a cooling device for an internal combustion engine that cools each part of a cylinder head and a cylinder block by forced circulation of cooling water.

特許文献1には、車両用内燃機関の冷却装置として、冷却水中の界面活性剤による棒状ミセルが、冷却水の乱流摩擦抵抗を低減し得ることが開示されており、乱流摩擦抵抗の低減によりウォータポンプの動力が低減する一方、ラジエータやヒータコア等の放熱部においては、流れのレイノルズ数が大きいため、棒状ミセルによる乱流摩擦抵抗の低減作用が抑制され、相対的に高い熱交換作用が得られる。   Patent Document 1 discloses that a rod-like micelle using a surfactant in cooling water as a cooling device for an internal combustion engine for a vehicle can reduce turbulent frictional resistance of cooling water. While the power of the water pump is reduced by this, in the heat radiating parts such as radiators and heater cores, since the Reynolds number of the flow is large, the action of reducing the turbulent frictional resistance by the rod-like micelles is suppressed, and a relatively high heat exchange action is achieved. can get.

また特許文献2は、配管抵抗低減のために流体中に形成される棒状ミセルを、加熱することによって破壊し、熱伝達率を回復することが開示されている。
特開平11−173146号公報 特開2006−336944号公報
Patent Document 2 discloses that rod-like micelles formed in a fluid for reducing pipe resistance are destroyed by heating to recover the heat transfer coefficient.
Japanese Patent Laid-Open No. 11-173146 JP 2006-336944 A

特許文献1のように、冷却水中に棒状ミセルを形成して冷却水系での通水抵抗を低減するようにした場合、シリンダ周囲や燃焼室周囲のウォータジャケットは、ラジエータ等と比較して流路断面積が大きいため、層流が維持され、熱伝達率が比較的低い。つまり、棒状ミセルによる乱流摩擦抵抗の低減に伴って、ウォータジャケット壁面から冷却水への熱伝達率が低下し、効果的に熱を除去することができない。   When a rod-like micelle is formed in the cooling water to reduce the water flow resistance in the cooling water system as in Patent Document 1, the water jacket around the cylinder and the combustion chamber has a flow path as compared with a radiator or the like. Since the cross-sectional area is large, laminar flow is maintained and the heat transfer coefficient is relatively low. That is, with the reduction of the turbulent frictional resistance due to the rod-like micelles, the heat transfer rate from the water jacket wall surface to the cooling water decreases, and heat cannot be removed effectively.

また、特許文献2のように加熱することで棒状ミセルを破壊し、熱伝達率を回復する方法は、熱の除去を目的とする冷却装置としては採用できない。   Moreover, the method of destroying rod-like micelles by heating and recovering the heat transfer coefficient as in Patent Document 2 cannot be adopted as a cooling device for the purpose of removing heat.

この発明に係る内燃機関の冷却装置は、棒状ミセルを形成し得る濃度の界面活性剤を含む冷却水を用い、これによって通水抵抗が低減する。そして、この冷却水が循環するウォータジャケットの少なくとも一部の内表面が、棒状ミセルを破壊する凹凸表面構造を備えている。この凹凸表面構造は、単に表面付近の冷却水の流れを物理的に攪拌して棒状ミセルを破壊するのみならず、溶存空気が空気泡として成長したり核沸騰(サブクール沸騰)により気泡が発生したりすることを助長し、これらの気泡によって棒状ミセルを破壊する作用が得られる。このようにウォータジャケットの内表面付近で棒状ミセルを破壊することで、熱伝達率が回復し、ウォータジャケット内表面から冷却水へ効果的に熱が除去される。   The cooling device for an internal combustion engine according to the present invention uses cooling water containing a surfactant having a concentration capable of forming rod-like micelles, thereby reducing water flow resistance. And the inner surface of at least one part of the water jacket through which this cooling water circulates has the uneven surface structure which destroys a rod-like micelle. This uneven surface structure not only simply stirs the flow of the cooling water near the surface to destroy the rod-like micelles, but also the dissolved air grows as air bubbles or bubbles are generated by nucleate boiling (subcool boiling). The action which destroys a rod-like micelle by these bubbles is acquired. Thus, by destroying the rod-like micelles near the inner surface of the water jacket, the heat transfer coefficient is recovered, and heat is effectively removed from the inner surface of the water jacket to the cooling water.

この発明によれば、冷却装置全体として棒状ミセルによる通水抵抗の低減が可能であり、例えばウォータポンプにおける消費エネルギを低減できるとともに、ウォータジャケット内表面から冷却水への熱伝達を良好に維持でき、冷却性能と通水抵抗低減とを高いレベルで両立させることができる。   According to the present invention, it is possible to reduce the water flow resistance by the rod-like micelle as the whole cooling device, for example, it is possible to reduce the energy consumption in the water pump and to maintain the heat transfer from the water jacket inner surface to the cooling water well. In addition, it is possible to achieve both cooling performance and water resistance reduction at a high level.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される内燃機関の冷却装置の基本的な構成の一例を示しており、内燃機関Eのシリンダブロック4とシリンダヘッド5の内部には、周知のように冷却水を通流させるためのウォータジャケットが形成されている。この実施例では、ウォータジャケット内を気筒列方向に沿って冷却水が流れるように構成されており、シリンダヘッド5の機関後端部から取り出された冷却水が、ファン6を備えたラジエータ1に案内され、かつラジエータ1で低温となった冷却水がサーモスタット2およびウォータポンプ3を介してシリンダブロック4の機関前端部に戻されるようになっている。   FIG. 1 shows an example of a basic configuration of a cooling device for an internal combustion engine to which the present invention is applied. Cooling water is introduced into the cylinder block 4 and the cylinder head 5 of the internal combustion engine E as is well known. A water jacket is formed for flow. In this embodiment, the cooling water flows in the water jacket along the cylinder row direction, and the cooling water taken out from the engine rear end of the cylinder head 5 is supplied to the radiator 1 including the fan 6. The cooling water guided and cooled to a low temperature by the radiator 1 is returned to the engine front end portion of the cylinder block 4 via the thermostat 2 and the water pump 3.

ここで、上記冷却水は、例えばエチレングリコールの水溶液いわゆる不凍液であるが、比較的高濃度の界面活性剤を含み、これにより球状ミセルが結合した棒状ミセルが形成されるようになっている。このような棒状ミセルは、その弾性効果により乱流抑制効果ひいては管摩擦抵抗低減作用が得られ、管摩擦係数として、通常の水がレイノルズ数2000を越えたあたりで乱流の特性を示すのに対し、棒状ミセルを含む冷却水では、レイノルズ数20000程度まで層流の摩擦特性を維持する。レイノルズ数が例えば20000を越えると、流れのせん断力によって棒状ミセルが分断されて乱流特性となるため、ウォータジャケット内のレイノルズ数は基本的に20000以下となっている。なお、界面活性剤の一例としては、臭化セチルトリメチルアンモニウムが、60〜70ppm程度の濃度でもって用いられるが、本発明はこれに限定されるものではなく、適宜な界面活性剤がいわゆる臨界的濃度以上の濃度で含まれていればよい。   Here, the cooling water is, for example, an aqueous solution of ethylene glycol, so-called antifreeze, and contains a relatively high concentration of a surfactant, whereby rod-like micelles in which spherical micelles are combined are formed. Such a rod-like micelle has a turbulent flow suppression effect and a tube frictional resistance reducing effect due to its elastic effect, and shows a turbulent flow characteristic when normal water exceeds the Reynolds number 2000 as a tube friction coefficient. On the other hand, in the cooling water containing rod-like micelles, the laminar frictional characteristics are maintained up to about Reynolds number 20000. When the Reynolds number exceeds, for example, 20000, the rod-like micelles are divided by the shearing force of the flow and become turbulent characteristics. Therefore, the Reynolds number in the water jacket is basically 20000 or less. As an example of the surfactant, cetyltrimethylammonium bromide is used at a concentration of about 60 to 70 ppm. However, the present invention is not limited to this, and an appropriate surfactant is so-called critical. It may be contained at a concentration higher than the concentration.

図2は、本発明におけるウォータジャケット11および該ウォータジャケット11を構成するウォータジャケット壁(シリンダブロック4あるいはシリンダヘッド5の一部として鋳造される)12の拡大断面図(a)と、このウォータジャケット11内を流れる冷却水における棒状ミセルの割合(b)とを対比して示したものであり、本発明では、ウォータジャケット壁12が、棒状ミセルを破壊する微細な凹凸表面構造を備えている。この凹凸表面構造は、シリンダブロック4およびシリンダヘッド5のウォータジャケットの全体に亘って形成してもよく、あるいは、熱伝達の向上が必要な特定の部分、例えば熱負荷の高い部分のみに部分的に形成してもよい。   FIG. 2 is an enlarged sectional view (a) of a water jacket 11 and a water jacket wall (cast as a part of the cylinder block 4 or the cylinder head 5) 12 constituting the water jacket 11 according to the present invention, and the water jacket. 11 shows a comparison with the ratio (b) of the rod-like micelles in the cooling water flowing in the water 11, and in the present invention, the water jacket wall 12 has a fine uneven surface structure that breaks the rod-like micelles. The uneven surface structure may be formed over the entire water jacket of the cylinder block 4 and the cylinder head 5, or may be partially only on a specific portion that requires improved heat transfer, for example, a portion with a high heat load. You may form in.

ウォータジャケット11を流れる冷却水に含まれるミセルは、ウォータジャケット11の壁面(凹凸表面構造)から離れた位置では棒状ミセルであり、流れは層流を維持する。これに対し、凹凸表面構造に近い位置では、流れが攪拌されて棒状ミセルが球状ミセルへと分断され、流れは乱流となる。このため、ウォータジャケット壁12から冷却水への熱伝達が回復し、良好な冷却が行われる。   The micelles contained in the cooling water flowing through the water jacket 11 are rod-like micelles at positions away from the wall surface (uneven surface structure) of the water jacket 11, and the flow maintains a laminar flow. On the other hand, at a position close to the concavo-convex surface structure, the flow is agitated to divide the rod-like micelles into spherical micelles, and the flow becomes turbulent. For this reason, heat transfer from the water jacket wall 12 to the cooling water is restored, and good cooling is performed.

図3は、棒状ミセルの破壊・分断のメカニズムを説明する図であって、ウォータジャケット壁12の凹凸表面構造は、第1に、壁面に沿って流れようとする冷却水の流れを物理的に攪拌し、そのせん断力でもって棒状ミセル21を破壊する。そして、第2には、表面の凹凸によって、冷却水中の溶存空気が空気泡として成長し、かつ離脱し易くなる。同様に、核沸騰(サブクール沸騰)による気泡の発生・離脱が助長され、これらの溶存空気やサブクール沸騰による気泡23によって冷却水が攪拌される結果、棒状ミセル21が破壊され、球状ミセル22へと分断される。   FIG. 3 is a diagram for explaining the mechanism of destruction and fragmentation of rod-like micelles. The uneven surface structure of the water jacket wall 12 firstly physically flows the cooling water that is about to flow along the wall surface. Stir and break the rod-like micelle 21 with the shearing force. Second, due to the surface irregularities, the dissolved air in the cooling water grows as air bubbles and becomes easy to leave. Similarly, the generation and separation of bubbles due to nucleate boiling (subcool boiling) is promoted, and the cooling water is stirred by these dissolved air and bubbles 23 due to subcool boiling. As a result, the rod-like micelles 21 are destroyed and turned into spherical micelles 22. Divided.

また本発明では、ウォータジャケット壁12に凹凸表面構造を設けて、気泡の発生・離脱を助長すること自体によっても熱伝達率が向上する。図4は、ウォータジャケット壁12近傍の冷却水温度と熱流束との関係を示したものであり、図示するように、特定の温度を境界にして熱流束が急激に増大する特性が得られる。これは、微細な凹凸表面は、冷却水を取り囲む表面積が増大することから、冷却水に溶存していた気体が気泡へと成長しやすく、さらに、その気泡が膜に成長する前に素早く離脱するためである。すなわち、表面近傍の冷却水温度がある温度を超えると、気泡が次々に発生・離脱するようになって、熱伝達率が向上する。また、表面近傍の冷却水温度が局部的に飽和温度を超える核沸騰でも同様の現象が生じる。   In the present invention, the heat transfer rate is also improved by providing the water jacket wall 12 with an uneven surface structure to promote the generation and separation of bubbles. FIG. 4 shows the relationship between the cooling water temperature in the vicinity of the water jacket wall 12 and the heat flux. As shown in the figure, the characteristic that the heat flux rapidly increases at a specific temperature as a boundary is obtained. This is because the minute uneven surface increases the surface area surrounding the cooling water, so that the gas dissolved in the cooling water is likely to grow into bubbles, and further, the bubbles quickly leave before growing into the film. Because. That is, when the cooling water temperature near the surface exceeds a certain temperature, bubbles are generated and detached one after another, and the heat transfer rate is improved. The same phenomenon occurs even when the boiling water temperature near the surface locally exceeds the saturation temperature.

図5は、内燃機関が発生する熱負荷とウォータジャケット壁12近傍の冷却水温度との関係を、機関回転数毎(例えば2000rpm、4000rpm、6000rpm)に示したものである。点線は、各機関回転数での冷却水の飽和温度を示しているが、機関回転数によってウォータジャケット11内の圧力が定まるので、各機関回転数毎に飽和温度は一定である。これに対し、ウォータジャケット壁12近傍の冷却水温度は、熱負荷に伴って上昇するが、低速回転数(2000rpm)では、内燃機関が全負荷となってもウォータジャケット壁12近傍の冷却水温度は飽和温度よりも低く、従って、沸騰は生じない。これに対し、中速回転数(4000rpm)ないし高速回転数(6000rpm)では、内燃機関の高負荷時に、ウォータジャケット壁12近傍の冷却水温度が飽和温度よりも高くなり、局部的な沸騰が生じる。これにより、潜熱による効果的な冷却が行われるとともに、前述したような棒状ミセルの破壊・分断が促進され、熱伝達率が向上する。   FIG. 5 shows the relationship between the heat load generated by the internal combustion engine and the coolant temperature near the water jacket wall 12 for each engine speed (for example, 2000 rpm, 4000 rpm, 6000 rpm). The dotted line shows the saturation temperature of the cooling water at each engine speed, but the pressure in the water jacket 11 is determined by the engine speed, so the saturation temperature is constant for each engine speed. On the other hand, the cooling water temperature near the water jacket wall 12 rises with a heat load, but at a low speed (2000 rpm), the cooling water temperature near the water jacket wall 12 even when the internal combustion engine is fully loaded. Is below the saturation temperature and therefore no boiling occurs. On the other hand, at medium speed (4000 rpm) to high speed (6000 rpm), the cooling water temperature near the water jacket wall 12 becomes higher than the saturation temperature when the internal combustion engine is heavily loaded, and local boiling occurs. . As a result, effective cooling by latent heat is performed, and the destruction and division of the rod-like micelles as described above are promoted, and the heat transfer rate is improved.

従って、低速低負荷側では過冷却を防止して燃費向上が図れ、高速高負荷側では内燃機関の熱を確実に外部へ移動させることができる。また、実用域では冷却水が局部的な沸騰に至る頻度は少ないので、冷却水の沸騰による劣化は少ない。   Accordingly, overcooling can be prevented on the low speed and low load side to improve fuel efficiency, and heat of the internal combustion engine can be reliably transferred to the outside on the high speed and high load side. Moreover, since the frequency that the cooling water reaches the local boiling is low in the practical area, the deterioration due to the boiling of the cooling water is small.

また、本発明は、特に、図1に示したように冷却水の主流が気筒列方向に沿って流れる構成において有利となる。図6は、冷却水入口から冷却水出口へと気筒列方向に流れる各部での冷却水温度等の変化を示したものであり、冷却水は、ウォータジャケット11内を流れるにつれて熱を受け、温度上昇するので、下流ほど冷却水温度は高い。従って、ウォータジャケット壁12との間での伝熱面温度差ΔTは下流ほど小さい。一方、熱伝達率αは、従来のものでは、破線に示すように一定であるので、両者の積(α×ΔT)で示される熱流束は、従来は、破線に示すように、下流ほど小さくなってしまい、冷却性が悪化する。つまり、冷却水出口に近い機関後端の気筒は熱的に不利となる。   The present invention is particularly advantageous in a configuration in which the main flow of cooling water flows along the cylinder row direction as shown in FIG. FIG. 6 shows changes in the cooling water temperature and the like at each part flowing in the cylinder row direction from the cooling water inlet to the cooling water outlet. The cooling water receives heat as it flows through the water jacket 11, and the temperature Since it rises, the cooling water temperature is higher in the downstream. Therefore, the heat transfer surface temperature difference ΔT between the water jacket wall 12 and the downstream is smaller. On the other hand, since the heat transfer coefficient α is constant as shown by the broken line in the conventional one, the heat flux indicated by the product (α × ΔT) of the both is conventionally smaller as shown in the broken line as it is shown downstream. As a result, the cooling performance deteriorates. That is, the cylinder at the rear end of the engine near the coolant outlet is thermally disadvantageous.

これに対し、本発明では、ウォータジャケット壁12近傍の棒状ミセルの数(割合)が下流ほど少なくなる。つまり、棒状ミセルの破壊・分断が、流れの下流側では、時間的余裕もあることから上流側よりも相対的に進行し、棒状ミセルが減少する。これに伴い、熱伝達率αは、実線のように、下流ほど高くなる。従って、熱流束は実線のように下流側でも高く維持され、冷却水出口に近い機関後端の気筒を機関前端の気筒と同様に冷却できる。   On the other hand, in the present invention, the number (ratio) of rod-like micelles in the vicinity of the water jacket wall 12 decreases toward the downstream. In other words, the rod-like micelles are broken and divided on the downstream side of the flow with a time margin, so that the rod-like micelles are relatively advanced as compared with the upstream side. Along with this, the heat transfer coefficient α becomes higher toward the downstream as shown by the solid line. Accordingly, the heat flux is maintained high on the downstream side as indicated by the solid line, and the cylinder at the rear end of the engine close to the coolant outlet can be cooled in the same manner as the cylinder at the front end of the engine.

上記ウォータジャケット壁12における凹凸表面構造の一例としては、図7(a),(b)に示すように、ウォータジャケット壁12表面に多数の微細な柱状凹部32を備える酸化物皮膜31が設けられている。これは、シリンダブロック4ないしシリンダヘッド5の母材自体の陽極酸化膜処理によって形成される。上記柱状凹部32の大きさとしては、その平均直径dが、25nm≦d≦1μmの範囲にあることが望ましい。25nmよりも小さいと、内部に気泡がない状態でも凹部32内に冷却水が侵入しにくく、1μmよりも大きいと、冷却水を局部的に加熱する熱浴としての効果が小さくなる。さらに詳しくは、平均直径dが40nm≦d≦450nmの範囲にあることが望ましい。40nmよりも小さいと、内部に気泡がある状態では凹部32内に冷却水が侵入しにくい。また450nmよりも大きいと、内部に気泡があっても熱浴としての効果が小さい。   As an example of the uneven surface structure in the water jacket wall 12, as shown in FIGS. 7A and 7B, an oxide film 31 having a large number of minute columnar recesses 32 is provided on the surface of the water jacket wall 12. ing. This is formed by anodic oxide film treatment of the base material itself of the cylinder block 4 or the cylinder head 5. As for the size of the columnar recess 32, the average diameter d is preferably in the range of 25 nm ≦ d ≦ 1 μm. If it is smaller than 25 nm, it is difficult for the cooling water to enter the recess 32 even when there is no bubble inside, and if it is larger than 1 μm, the effect as a heat bath for locally heating the cooling water is reduced. More specifically, the average diameter d is desirably in the range of 40 nm ≦ d ≦ 450 nm. If it is smaller than 40 nm, it is difficult for the cooling water to enter the recess 32 when there are bubbles inside. If it is larger than 450 nm, the effect as a heat bath is small even if bubbles are present inside.

酸化物皮膜31を表面に形成するシリンダブロック4ないしシリンダヘッド5の母材としては、純アルミニウムあるいはアルミニウム合金が、酸化物皮膜としてアルミナを陽極酸化によって容易に形成できるため、好ましい。酸化物皮膜31を形成する工程の一例としては、表面の研磨工程、陽極酸化工程およびエッチング工程を有する。   As a base material of the cylinder block 4 or the cylinder head 5 on which the oxide film 31 is formed, pure aluminum or an aluminum alloy is preferable because alumina can be easily formed by anodic oxidation as an oxide film. As an example of the process of forming the oxide film 31, it has a surface polishing process, an anodic oxidation process, and an etching process.

研磨工程においては、シリンダブロック4ないしシリンダヘッド5のウォータージャケット壁12の表面に、バフ研磨および電解研磨が施され、表面形状が調整される。バフ研磨および電解研磨の一方を、適宜省略することも可能である。   In the polishing step, buffing and electrolytic polishing are performed on the surface of the water jacket wall 12 of the cylinder block 4 or the cylinder head 5 to adjust the surface shape. One of buffing and electropolishing can be omitted as appropriate.

陽極酸化工程においては、表面形状が調整された内壁面が、電解液に浸漬され、電圧が印加されることで陽極酸化膜が形成される。電解液は、例えば、酸系である。印加電圧は、例えば、70〜80Vである。陽極酸化膜は、アルミナからなる酸化物皮膜であり、微細孔を有する。この微細孔が前述した柱状凹部32となる。   In the anodizing step, the inner wall surface whose surface shape is adjusted is immersed in the electrolytic solution, and a voltage is applied to form an anodized film. The electrolytic solution is, for example, an acid system. The applied voltage is, for example, 70 to 80V. The anodic oxide film is an oxide film made of alumina and has fine pores. This fine hole becomes the columnar recess 32 described above.

エッチング工程においては、酸化物皮膜が形成された内壁面が、清浄表面を露出させるために、エッチング液に浸漬される。エッチング液は、例えば、酸系である。浸漬時間は、例えば、15分である。   In the etching step, the inner wall surface on which the oxide film is formed is immersed in an etching solution in order to expose the clean surface. The etchant is, for example, acid-based. The immersion time is, for example, 15 minutes.

これにより、図7(a),(b)に示すように、多数の微細な柱状凹部32を備える酸化物皮膜31が得られる。このような陽極酸化によれば、広範囲にわたって容易かつ廉価に柱状凹部32を形成することができ、好ましい。特に、ウォータージャケット11の内壁のように、外部から直接に機械加工することが困難な箇所において有効である。なお、柱状凹部32となる微細孔の平均直径および平均深さは、アルミニウム基材の成分組成の選定、電解液の成分組成の選定、陽極酸化条件などを制御することによって、調整可能である。   Thereby, as shown in FIGS. 7A and 7B, an oxide film 31 having a large number of fine columnar recesses 32 is obtained. Such anodization is preferable because the columnar recesses 32 can be easily and inexpensively formed over a wide range. In particular, it is effective in places where it is difficult to machine directly from the outside, such as the inner wall of the water jacket 11. In addition, the average diameter and average depth of the micropores used as the columnar recessed part 32 can be adjusted by controlling selection of the component composition of the aluminum base material, selection of the component composition of the electrolytic solution, anodizing conditions, and the like.

次に、図8は、棒状ミセル21が形成される冷却水に、さらに、凹凸表面構造の凹凸よりも大きな平均粒径(例えば数10μmから数100μm程度)の微細粒子41を混入した実施例を示している。この微細粒子41としては、例えば蓄熱潜熱材を内部に包含したマイクロカプセルなどが用いられ、その大きさからシリンダヘッド壁12の柱状凹部32内に入ることなくウォータジャケット11内を冷却水とともに流れるが、上述したシリンダヘッド壁12表面での攪拌作用を受けると、この微細粒子41によって棒状ミセル21の破壊・分断がより促進される。なお、冷却水が層流となって流れている箇所では、微細粒子41も棒状ミセル21とともに円滑に流れるので、棒状ミセル21を破壊・分断することはない。なお、微細粒子41としてマイクロカプセル内に蓄熱潜熱材を包含したものでは、その熱容量によって冷却水主流の温度上昇を抑制できる。   Next, FIG. 8 shows an embodiment in which fine particles 41 having an average particle size (for example, about several tens of μm to several hundreds of μm) larger than the irregularities of the irregular surface structure are mixed in the cooling water in which the rod-like micelles 21 are formed. Show. As the fine particles 41, for example, a microcapsule containing a heat storage latent heat material is used, and due to its size, it flows in the water jacket 11 together with cooling water without entering the columnar recess 32 of the cylinder head wall 12. When the above-described stirring action on the surface of the cylinder head wall 12 is received, the destruction and division of the rod-like micelle 21 are further promoted by the fine particles 41. In addition, in the location where the cooling water flows as a laminar flow, the fine particles 41 also flow smoothly together with the rod-like micelles 21, so that the rod-like micelles 21 are not broken or divided. In addition, when the heat storage latent heat material is included in the microcapsule as the fine particles 41, the temperature increase of the cooling water mainstream can be suppressed by the heat capacity.

この発明が適用される内燃機関の冷却装置の基本的な構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Basic structure explanatory drawing of the cooling device of the internal combustion engine to which this invention is applied. ウォータジャケットおよびウォータジャケット壁の拡大断面図(a)と棒状ミセルの割合(b)とを対比して示した図。The figure which contrasted and showed the expanded sectional view (a) of a water jacket and a water jacket wall, and the ratio (b) of a rod-shaped micelle. 棒状ミセルの破壊・分断のメカニズムを説明する説明図。Explanatory drawing explaining the mechanism of destruction and parting of a rod-like micelle. ウォータジャケット壁近傍の冷却水温度と熱流束との関係を示した特性図。The characteristic view which showed the relationship between the cooling water temperature near a water jacket wall, and a heat flux. 内燃機関が発生する熱負荷とウォータジャケット壁近傍の冷却水温度との関係を、機関回転数毎に示した特性図。The characteristic view which showed the relationship between the thermal load which an internal combustion engine generate | occur | produces, and the cooling water temperature of the water jacket wall vicinity for every engine speed. 冷却水入口から冷却水出口へと気筒列方向に流れる各部での冷却水温度等の変化を示した特性図。The characteristic view which showed the change of the cooling water temperature etc. in each part which flows into a cylinder row direction from a cooling water inlet to a cooling water outlet. ウォータジャケット壁表面部分の拡大した平面図(a)および断面図(b)。The top view (a) and sectional drawing (b) which the water jacket wall surface part expanded. 微細粒子を混入した実施例を示す図3と同様の説明図。Explanatory drawing similar to FIG. 3 which shows the Example which mixed the fine particle.

符号の説明Explanation of symbols

11…ウォータジャケット
12…ウォータジャケット壁
21…棒状ミセル
22…球状ミセル
32…柱状凹部
41…微細粒子
DESCRIPTION OF SYMBOLS 11 ... Water jacket 12 ... Water jacket wall 21 ... Rod-like micelle 22 ... Spherical micelle 32 ... Columnar recessed part 41 ... Fine particle

Claims (7)

棒状ミセルを形成し得る濃度の界面活性剤を含む冷却水を用いるとともに、この冷却水が循環するウォータジャケットの少なくとも一部の内表面が、棒状ミセルを破壊する凹凸表面構造を備えていることを特徴とする内燃機関の冷却装置。   The cooling water containing a surfactant having a concentration capable of forming rod-like micelles is used, and at least a part of the inner surface of the water jacket through which the cooling water circulates has an uneven surface structure that breaks the rod-like micelles. A cooling device for an internal combustion engine characterized by the above. 上記凹凸表面構造として、上記内表面が、多数の微細な柱状凹部を備えていることを特徴とする請求項1に記載の内燃機関の冷却装置。   2. The cooling apparatus for an internal combustion engine according to claim 1, wherein the inner surface has a number of fine columnar recesses as the uneven surface structure. 上記柱状凹部の平均直径dが、25nm≦d≦1μmの範囲にあることを特徴とする請求項2に記載の内燃機関の冷却装置。   3. The cooling apparatus for an internal combustion engine according to claim 2, wherein an average diameter d of the columnar recesses is in a range of 25 nm ≦ d ≦ 1 μm. 上記柱状凹部の平均直径dが、40nm≦d≦450nmの範囲にあることを特徴とする請求項2に記載の内燃機関の冷却装置。   The cooling apparatus for an internal combustion engine according to claim 2, wherein an average diameter d of the columnar recesses is in a range of 40 nm ≤ d ≤ 450 nm. 上記凹凸表面構造が、微細な孔を有する陽極酸化膜からなることを特徴とする請求項1〜4のいずれかに記載の内燃機関の冷却装置。   The cooling apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the uneven surface structure is made of an anodized film having fine holes. 上記凹凸表面構造の凹凸よりも大きな平均粒径の微細粒子を上記冷却水に混入させたことを特徴とする請求項1〜5のいずれかに記載の内燃機関の冷却装置。   The cooling apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein fine particles having an average particle size larger than the unevenness of the uneven surface structure are mixed in the cooling water. ウォータジャケット内を流れる冷却水の主流が、気筒列方向に流れることを特徴とする請求項1〜6のいずれかに記載の内燃機関の冷却装置。   The cooling apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein a main flow of the cooling water flowing in the water jacket flows in a cylinder row direction.
JP2008308095A 2008-12-03 2008-12-03 Cooling device for internal combustion engine Pending JP2010133291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308095A JP2010133291A (en) 2008-12-03 2008-12-03 Cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308095A JP2010133291A (en) 2008-12-03 2008-12-03 Cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010133291A true JP2010133291A (en) 2010-06-17

Family

ID=42344804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308095A Pending JP2010133291A (en) 2008-12-03 2008-12-03 Cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010133291A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155634A1 (en) 2010-06-10 2011-12-15 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
WO2015177964A1 (en) * 2014-05-23 2015-11-26 株式会社デンソー Heat transport system
WO2016038783A1 (en) * 2014-09-12 2016-03-17 株式会社デンソー Heat transport system
WO2016047017A1 (en) * 2014-09-24 2016-03-31 株式会社デンソー Heat transport system
WO2016051658A1 (en) * 2014-09-30 2016-04-07 株式会社デンソー Heat transport system
EP3379132A1 (en) * 2017-03-24 2018-09-26 Toyota Jidosha Kabushiki Kaisha Cooling device for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155634A1 (en) 2010-06-10 2011-12-15 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
WO2015177964A1 (en) * 2014-05-23 2015-11-26 株式会社デンソー Heat transport system
JP2015222149A (en) * 2014-05-23 2015-12-10 株式会社デンソー Heat transport system
CN106164613A (en) * 2014-05-23 2016-11-23 株式会社电装 Heated conveying system
WO2016038783A1 (en) * 2014-09-12 2016-03-17 株式会社デンソー Heat transport system
JP2016057035A (en) * 2014-09-12 2016-04-21 株式会社デンソー Heat transport system
WO2016047017A1 (en) * 2014-09-24 2016-03-31 株式会社デンソー Heat transport system
JP2016065654A (en) * 2014-09-24 2016-04-28 株式会社デンソー Heat transport system
WO2016051658A1 (en) * 2014-09-30 2016-04-07 株式会社デンソー Heat transport system
JP2016070170A (en) * 2014-09-30 2016-05-09 株式会社デンソー Heat transport system
EP3379132A1 (en) * 2017-03-24 2018-09-26 Toyota Jidosha Kabushiki Kaisha Cooling device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2010133291A (en) Cooling device for internal combustion engine
Xie et al. Review of critical-heat-flux enhancement methods
JP4876975B2 (en) Cooling device and heat receiving member for electronic equipment
Sharma et al. Thermohydraulic characterization of flow boiling in a nanostructured microchannel heat sink with vapor venting manifold
Hoang et al. A review of recent developments in pumped two-phase cooling technologies for electronic devices
Jiang et al. High performance heat sink with counter flow diverging microchannels
JP2013506996A (en) Cold plate with pin
JP6440822B2 (en) Cooler, power conversion device and cooling system
TW201424569A (en) Cooling system and electric device using same
Liu et al. Effects of microstructured surface and mixed surfactants on the heat transfer performance of pulsed spray cooling
Yin et al. Subcooled flow boiling in an expanding microgap with a hybrid microstructured surface
JPWO2007102498A1 (en) Boiling cooling method, boiling cooling device, flow channel structure, and application product thereof
JPWO2008090726A1 (en) Heat exchanger
Chen et al. Enhanced boiling heat transfer performance on mini-pin-finned copper surfaces in FC-72
JP3780953B2 (en) Electronic circuit device with cooling device
JP2008091700A (en) Semiconductor device
Jiang et al. Achieving ultra-high coefficient of performance of two-phase microchannel heat sink with uniform void fraction
JP2010209882A (en) Internal combustion engine
WO2020226115A1 (en) Heat-transfer member and cooling system
JP2017058103A (en) Heat transfer surface and heat transfer member
US20180249596A1 (en) Cooler, power conversion apparatus, and cooling system
Baldwin et al. Toward optimizing enhanced surfaces for passive immersion cooled heat sinks
JP2008275190A (en) Cooler
US20050061481A1 (en) Methods for stabilizing flow in channels and systems thereof
JP4766428B2 (en) Boiling cooling method, boiling cooling apparatus and applied products thereof