JP2010133191A - Anti-inundation measure system of sewage facility - Google Patents

Anti-inundation measure system of sewage facility Download PDF

Info

Publication number
JP2010133191A
JP2010133191A JP2008312146A JP2008312146A JP2010133191A JP 2010133191 A JP2010133191 A JP 2010133191A JP 2008312146 A JP2008312146 A JP 2008312146A JP 2008312146 A JP2008312146 A JP 2008312146A JP 2010133191 A JP2010133191 A JP 2010133191A
Authority
JP
Japan
Prior art keywords
rainwater storage
rainfall
inundation
movable
rainwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312146A
Other languages
Japanese (ja)
Other versions
JP5270322B2 (en
Inventor
Shinichiro Ogi
新一郎 苧木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008312146A priority Critical patent/JP5270322B2/en
Publication of JP2010133191A publication Critical patent/JP2010133191A/en
Application granted granted Critical
Publication of JP5270322B2 publication Critical patent/JP5270322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flood damage prevention (anti-inundation measure) means in a sewage facility. <P>SOLUTION: This anti-inundation measure system includes a plurality of movable weirs and an analyzing device which receives information including a plurality of movable weirs, rainfalls at a plurality of points in a drain district, water levels of converging pipes at the plurality of points at present, heights of the plurality of movable weirs, and storage amounts of a plurality of rainfall storage facilities corresponding to the plurality of movable weirs and analyzes data to predict the stored amounts of the rainfall storage facilities in the future and to predict the stored amounts of the rainwater storage facilities corresponding to the movable weirs in the future when heights of the movable weirs are changed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、下水道施設の浸水対策手段に関する。   The present invention relates to inundation countermeasure means for sewer facilities.

一般に、浸水被害は、下水道施設の管渠(合流管を含む)の流下能力を越える雨量の降雨があったときに雨水が管渠から地上に溢れ出たり、雨水が短い時間で水路や河川に流れ込みそれらが氾濫することによって、生じる。都市化によって雨水が地下に浸透する面積が減少していることが、浸水被害の一因とされている。特に汚水と雨水とが合流した下水を処理する合流式下水道施設においては、浸水被害が生じると、環境汚染、公衆衛生上、大きな問題となり得る。   In general, inundation damage is caused by rain overflowing the pipe from the pipe when the rainfall exceeds the flow capacity of the sewerage pipes (including confluence pipes), or rainwater can flow into waterways and rivers in a short time. It is caused by the flooding of them. The decrease in the area where rainwater penetrates underground due to urbanization is considered to be a cause of inundation damage. In particular, in a combined sewerage facility that treats sewage combined with sewage and rainwater, inundation damage can be a major problem in terms of environmental pollution and public health.

これに対し、下水道施設では、多くの場合、排水区内に大きな雨水貯留設備を造り、併せて管渠に分水堰を設け、管渠の流下能力を越える雨量の降雨があった場合には、分水堰の高さを越えた雨水を一時的に雨水貯留設備に貯めておき、その貯めた雨水を通常時(晴天時)に少量ずつ放流する、といった浸水対策が施されている。   On the other hand, sewerage facilities often have large rainwater storage facilities in the drainage basin, and also have a diversion weir in the drainage basin. Inundation measures are taken such that rainwater exceeding the height of the diversion weir is temporarily stored in a rainwater storage facility, and the stored rainwater is discharged little by little during normal (fine weather) times.

尚、関連する先行文献として、例えば、特許文献1〜3を挙げることが出来る。
特開2002−298063号公報 特開平11−190056号公報 特開2007−146423号公報
In addition, as a related prior document, patent documents 1-3 can be mentioned, for example.
JP 2002-298063 A Japanese Patent Laid-Open No. 11-190056 JP 2007-146423 A

しかしながら、従来の下水道施設では、上記のような雨水貯留設備及び分水堰が備わっていても、浸水被害が防げない場合があった。   However, in the conventional sewerage facilities, even if the rainwater storage facilities and the diversion weirs as described above are provided, inundation damage may not be prevented.

本発明は、このような事情に鑑みてなされたものであり、その課題は、下水道施設における浸水被害防止(浸水対策)手段を提供することである。   This invention is made | formed in view of such a situation, The subject is providing the inundation damage prevention (inundation countermeasure) means in a sewer facility.

調査の結果、近年、局地的な豪雨が頻発していることと相まって、雨水貯留設備及び分水堰が、総合的に有効利用されていないことが、浸水被害が防げない原因のひとつであることがわかった。   As a result of the survey, coupled with the frequent occurrence of local heavy rains in recent years, the fact that rainwater storage facilities and diversion weirs are not used in an effective manner is one of the reasons why flood damage cannot be prevented. I understood it.

例えば、管渠の上流と下流に、それぞれ雨水貯留設備及び分水堰があった場合に、既述のように近年の豪雨は局地的に発生することが多いため、上流の雨水貯留設備が空であるようなときにも、下流の雨水貯留設備では満水になって雨水が地上に溢れ出て、下流では浸水被害となるケースも発生していた。これは、従来、排水区内に複数の雨水貯留設備及び分水堰が存在していても、それらは固定堰であっても可動堰であっても単独で管理されており、雨が降っていない上流の雨水貯留設備で、下流側の状況を把握し考慮して、雨水を貯めることは出来なかったためである。   For example, if there are rainwater storage facilities and diversion weirs on the upstream and downstream sides of the pipe, recent heavy rains often occur locally as described above. Even when it was empty, there were cases where the downstream rainwater storage facilities were full and rainwater overflowed to the ground, causing inundation damage downstream. Conventionally, even if there are multiple rainwater storage facilities and diversion weirs in the drainage area, they are managed independently, whether they are fixed weirs or movable weirs. This is because there was no upstream rainwater storage facility, and it was not possible to store rainwater in consideration of the situation on the downstream side.

研究が重ねられた結果、複数地点における降雨情報、管渠の水位情報等を収集し、これらの情報を解析して、任意地点の管渠内の水位や、管渠内を流れる雨水を含む下水の流量を予測し、その予測結果を基に、排水区内の複数の分水堰を総合的に制御して、排水区内の複数の雨水貯留設備能力を最大限に有効利用する手段の提供によって、上記課題が解決されることが見出された。   As a result of repeated research, it collects rainfall information at multiple points, water level information of pipes, etc., and analyzes such information to analyze the water level in pipes at arbitrary points and sewage including rainwater flowing through pipes. Provision of the means to make the most effective use of multiple rainwater storage facilities in the drainage area by comprehensively controlling the multiple diversion weirs in the drainage area based on the prediction results It has been found that the above problems can be solved.

即ち、本発明によれば、下水道施設の下水管に設けられ、その下水管から、対応する雨水貯留設備へ取り込むべき雨水を主とする下水の流量を調節する、複数の可動堰と、現在の、排水区内における複数地点の降雨量、複数地点の前記下水管の水位、複数の可動堰の高さ、その複数の可動堰のそれぞれに対応した複数の雨水貯留設備の貯留量、を含む情報を入力し、これらの情報を解析して、(可動堰の高さが現状のままであるときの(即ち固定堰と同じであるときの))将来の、複数の雨水貯留設備の貯留量を予測するとともに、可動堰の高さを変更したときの、将来の、可動堰に対応した雨水貯留設備の貯留量を予測する解析装置と、を備える浸水対策システムが提供される。   That is, according to the present invention, a plurality of movable weirs that are provided in a sewer pipe of a sewerage facility and adjust the flow rate of sewage mainly containing rainwater to be taken into a corresponding rainwater storage facility from the sewer pipe, , Information including the amount of rainfall at a plurality of points in the drainage area, the water level of the sewer pipes at a plurality of points, the height of the plurality of movable weirs, and the amount of storage of a plurality of rainwater storage facilities corresponding to each of the plurality of movable weirs And analyze this information to determine the amount of storage in multiple rainwater storage facilities in the future (when the height of the movable weir remains the same (ie, when it is the same as the fixed weir)) An inundation countermeasure system is provided that includes an analysis device that predicts and predicts the storage amount of a rainwater storage facility corresponding to the movable weir in the future when the height of the movable weir is changed.

本発明に係る浸水対策システムにおいては、解析装置が、将来に、複数の雨水貯留設備のうちの全て又は何れか2以上の貯留量が最大になるような、複数の可動堰のそれぞれの高さを求める手段を有することが好ましい。   In the inundation countermeasure system according to the present invention, the height of each of the plurality of movable weirs is such that the analysis device has the maximum amount of all or any two or more of the plurality of rainwater storage facilities in the future. It is preferable to have a means for obtaining.

本発明に係る浸水対策システムにおいては、解析装置と可動堰とを結ぶ通信手段を備え、解析装置の結果に基づいて、可動堰の高さを制御することが好ましい。   In the inundation countermeasure system according to the present invention, it is preferable that communication means for connecting the analysis device and the movable weir is provided, and the height of the movable weir is controlled based on the result of the analysis device.

本発明に係る浸水対策システムは、複数の可動堰と、解析装置(制御装置)と、好ましくは通信手段と、を備えるものである。複数の可動堰はそれぞれ雨水貯留設備に対応して、下水道施設の下水管に設けられている。下水道施設において、降雨により、下水管の水位が上昇し、可動堰の高さを越えたら、雨水を主とする下水は、その可動堰に対応した雨水貯留設備に貯留される。   The inundation countermeasure system according to the present invention includes a plurality of movable weirs, an analysis device (control device), and preferably communication means. A plurality of movable weirs are provided in the sewer pipes of sewer facilities corresponding to the rainwater storage facilities. In the sewerage facility, when the water level of the sewer pipe rises due to rain and exceeds the height of the movable weir, the sewage mainly composed of rainwater is stored in the rainwater storage facility corresponding to the movable weir.

本明細書における雨水貯留設備は、浸水対策用として、排水区内に複数備わる雨水貯留設備である。浸水対策とは、浸水に至る流量の下水が放流されないように(雨水を主とする下水を)貯留することを意味する。   The rainwater storage facility in this specification is a rainwater storage facility that is provided in plurality in a drainage area as a countermeasure against inundation. Inundation countermeasures mean storing sewage (sewage mainly composed of rainwater) so as not to be discharged.

本発明に係る浸水対策システムは、複数の可動堰と、(可動堰の高さが現状のままであるときの(即ち固定堰と同じであるときの))将来の雨水貯留設備の貯留量を予測するとともに可動堰の高さを変更したときの将来の雨水貯留設備の貯留量を予測する解析装置と、を備えるので、その予測された雨水貯留設備の貯留量に基づいて、可動堰の高さを調節するという運用をすることが出来る。例えば、局地的に発生した豪雨により、(下水管の)下流側の雨水貯留設備では、将来、満水になって雨水が地上に溢れ出て浸水被害となることが予測される場合に、上流側の可動堰の高さを下げて雨水を主とする下水を上流側の雨水貯留設備へ貯留して、下流側における浸水被害、ひいては環境汚染を防止し又は軽減することが可能である。   The inundation countermeasure system according to the present invention includes a plurality of movable weirs and a storage amount of a future rainwater storage facility (when the height of the movable weir remains as it is (that is, the same as the fixed weir)). And an analysis device that predicts the storage amount of the rainwater storage facility in the future when the height of the movable weir is changed, and based on the predicted storage amount of the rainwater storage facility, It can be used to adjust the height. For example, in the case of a heavy rain that occurs locally, the rainwater storage facility on the downstream side (of the sewer pipe) will be flooded when it is predicted that it will become full and the rainwater will overflow to the ground in the future. By reducing the height of the movable weir on the side, sewage mainly composed of rainwater can be stored in the rainwater storage facility on the upstream side to prevent or reduce inundation damage on the downstream side, and hence environmental pollution.

本発明に係る浸水対策システムは、好ましくは通信手段を備えるので、予測された雨水貯留設備の貯留量に基づいて、可動堰の高さを、遠隔操作によって手動又は半自動で制御するという運用をすることが出来、それによって、下流側における浸水被害を防止し又は軽減することが可能である。   Since the inundation countermeasure system according to the present invention preferably includes communication means, the height of the movable weir is controlled manually or semi-automatically by remote operation based on the predicted storage amount of the rainwater storage facility. It is possible to prevent or mitigate flood damage on the downstream side.

本発明に係る浸水対策システムは、好ましくは、解析装置が将来に複数の雨水貯留設備のうちの全て又は何れか2以上の貯留量が最大になるような複数の可動堰のそれぞれの高さを求める手段を有するので、その求められた高さを実現するように動堰を制御することによって、複数の雨水貯留設備の浸水対策能力を最大化することが可能である。   In the inundation countermeasure system according to the present invention, preferably, the height of each of the plurality of movable weirs is such that the analysis device maximizes all or any two or more of the plurality of rainwater storage facilities in the future. Since it has the means to obtain, it is possible to maximize the inundation countermeasure capability of a plurality of rainwater storage facilities by controlling the dynamic weir so as to realize the obtained height.

本発明に係る浸水対策システムは、好ましくは、通信手段を備え、更に、上記したように解析装置が将来に複数の雨水貯留設備のうちの全て又は何れか2以上の貯留量が最大になるような複数の可動堰のそれぞれの高さを求める手段を有するので、その求められた高さを実現するように、遠隔操作によって自動で複数の可動堰を制御するといった運用をすることが出来、それによって、下流側における浸水被害を防止し又は軽減することが可能である。   The inundation countermeasure system according to the present invention preferably includes communication means, and further, as described above, the analysis device is configured to maximize the storage amount of all or any two or more of the plurality of rainwater storage facilities in the future. In order to realize the required height, it is possible to operate a plurality of movable weirs automatically by remote control so that the required height can be obtained. Therefore, it is possible to prevent or reduce flood damage on the downstream side.

例えば、合流式下水道施設の合流管が敷設された排水区内に、雨水貯留設備A、B、C、Dが設けられており、それら雨水貯留設備A、B、C、Dへ接続されるように、合流管に可動堰A、B、C、Dが設けられていて、雨水貯留設備A及び可動堰Aが下流側に存在し、それから分岐した上流側に、雨水貯留設備B、C、D及び可動堰B、C、Dが存在する場合において、下流側のみにおいて局地的に豪雨が発生し、雨水貯留設備Aがオーバーフローして浸水被害が発生すると予測される場合には、上流側において降雨がなくても降雨があっても、上流側の可動堰B、C、Dの全て又は何れか1又は2の高さを下げて、雨水貯留設備B、C、Dの全て又は何れか1又は2へ、下水を貯留し、下流側における浸水被害を防止し又は軽減することが可能である。上流側の可動堰B、C、Dの全て又は何れか1又は2の高さを下げることについての選択は、上流側における降雨の状況や、可動堰B、C、Dの高さを下げた場合における雨水貯留設備B、C、Dの将来の貯留量の予測値基に決定すればよい。   For example, rainwater storage facilities A, B, C, and D are provided in a drainage area where a junction pipe of a combined sewerage facility is laid, and the rainwater storage facilities A, B, C, and D are connected to the drainage area. In addition, the movable weirs A, B, C, and D are provided in the junction pipe, the rainwater storage facility A and the movable weir A are present on the downstream side, and the rainwater storage facilities B, C, and D are branched to the upstream side. In the case where the movable weirs B, C, and D are present, if it is predicted that heavy rain occurs locally only on the downstream side, and the rainwater storage facility A overflows to cause inundation damage, Even if there is no rain or rain, all or any one of the rainwater storage facilities B, C, D are lowered by reducing the height of all or any one or any of the movable weirs B, C, D on the upstream side. Or, store sewage to 2 to prevent or reduce inundation damage on the downstream side Possible it is. The choice of reducing the height of all or any one or two of the upstream movable weirs B, C, D reduced the rainfall situation on the upstream side and the height of the movable weirs B, C, D What is necessary is just to determine based on the predicted value base of the future storage amount of the rainwater storage equipment B, C, D in the case.

以下、本発明について、適宜、図面を参酌しながら、実施形態を説明するが、本発明はこれらに限定されて解釈されるべきものではない。本発明に係る要旨を損なわない範囲で、当業者の知識に基づいて、種々の変更、修正、改良、置換を加え得るものである。例えば、図面は、好適な本発明に係る実施形態を表すものであるが、本発明は図面に表される態様や図面に示される情報により制限されない。本発明を実施し又は検証する上では、本明細書中に記述されたものと同様の手段若しくは均等な手段が適用され得るが、好適な手段は、以下に記述される手段である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate, but the present invention should not be construed as being limited thereto. Various changes, modifications, improvements, and substitutions can be added based on the knowledge of those skilled in the art without departing from the scope of the present invention. For example, the drawings show preferred embodiments of the present invention, but the present invention is not limited by the modes shown in the drawings or the information shown in the drawings. In practicing or verifying the present invention, the same means as described in this specification or equivalent means can be applied, but preferred means are those described below.

[浸水対策システム]先ず、本発明に係る浸水対策システムについて、その浸水対策システムが含まれる合流式下水道施設を示しながら、従来の浸水対策手段と対比させて、説明する。   [Inundation Countermeasure System] First, the inundation countermeasure system according to the present invention will be described in comparison with conventional inundation countermeasure means while showing a combined sewerage facility including the inundation countermeasure system.

図1及び図2は、合流式下水道施設を表す模式図であり、図1は、本発明に係る浸水対策システムが採用された合流式下水道施設であり、それによって浸水被害が発生していない様子が表され、図2には、従来の浸水対策手段によって下流側で浸水被害が発生した様子が表されている。   1 and 2 are schematic diagrams showing a combined sewerage facility, and FIG. 1 is a combined sewerage facility in which the inundation countermeasure system according to the present invention is adopted, so that no inundation damage has occurred. FIG. 2 shows a state in which flood damage has occurred on the downstream side by the conventional flood countermeasure means.

図2に示される従来の浸水対策手段による合流式下水道施設は、下水処理場と、その下水処理場が受け持つ排水区内に敷設された合流管と、その合流管に設けられた固定堰A、B、C、Dと、それら固定堰に対応して設けられた雨水貯留設備A、B、C、Dと、を有する。   The combined sewerage facility by the conventional inundation countermeasure means shown in FIG. 2 includes a sewage treatment plant, a merging pipe laid in a drainage area that is handled by the sewage treatment plant, and a fixed weir A provided in the merging pipe, B, C, D, and rainwater storage facilities A, B, C, D provided corresponding to these fixed weirs.

雨水貯留設備A及び固定堰Aは下流側に存在し、それから分岐した各上流側に、雨水貯留設備B、C、D及び固定堰B、C、Dが存在する。汚水と雨水とが合流した下水は、上流側から、順次、合流管に入り、合流管を流下して下水処理場へ流れ込み、そこで、放流可能な水質に処理される。降雨等によって下水の量が増加して合流管の流下能力を越えたら、下水は何れかの固定堰を越えて対応する雨水貯留設備へ流入して貯留され、通常時(晴天時)に下水の量が低下した際に、ポンプ等によって合流管に戻され、流下して下水処理場で処理される。   The rainwater storage facility A and the fixed weir A exist on the downstream side, and the rainwater storage facilities B, C, and D and the fixed weirs B, C, and D exist on each upstream side branched therefrom. The sewage in which sewage and rainwater join together enters the joining pipe in order from the upstream side, flows down the joining pipe and flows into the sewage treatment plant, where it is processed into water that can be discharged. If the amount of sewage increases due to rainfall, etc. and exceeds the flow capacity of the merge pipe, the sewage will flow into one of the corresponding rainwater storage facilities through one of the fixed weirs and will be stored. When the amount decreases, it is returned to the junction pipe by a pump or the like, and flows down and is treated at the sewage treatment plant.

通常、固定堰は、それが備わる合流管部分の流下能力を越えたら、対応する雨水貯留設備へ下水が流入するように高さが設定されている。上流側の固定堰B、C、Dの高さは一定であるから、下流側の降雨状況や雨水貯留設備Aの貯留状態によらず、合流管の流下能力以内であれば、下水は合流管を流下し、下水処理場へ向かう。そのため、例えば、前回の降雨のために雨水貯留設備Aの貯留量が満水である状態で、下流側で局地的な豪雨が発生したり、上流側で発生した降雨による多量の雨水が下流に集まったり、あるいはそれらの両方が生じた場合には、合流管から固定堰Aを越えた下水が行き場をなくし、地上に溢れ出て、下流において浸水を引き起こす。上流側では、合流管の流下能力以内であれば、下水は合流管を流下しているから、下流側で浸水被害が生じていても、上流側の雨水貯留設備B、C、Dの貯留量には余裕がある場合がある。尚、固定堰A、B、C、Dが可動堰であっても、下流側の降雨状況や雨水貯留設備Aの貯留状態を考慮せずに高さを調節すれば、同様な問題は起こり得る。   Usually, the fixed weir is set so that the sewage flows into the corresponding rainwater storage facility when it exceeds the flow capacity of the merging pipe portion provided with the fixed weir. Since the heights of the fixed weirs B, C, and D on the upstream side are constant, the sewage will flow into the merging pipe as long as it is within the spilling capacity of the merging pipe regardless of the downstream rainfall situation or the storage state of the rainwater storage facility A. Down to the sewage treatment plant. Therefore, for example, in the state where the storage amount of the rainwater storage facility A is full due to the previous rainfall, local heavy rain occurs on the downstream side, or a large amount of rainwater due to the rainfall generated on the upstream side is downstream. When they gather or both occur, the sewage from the junction pipe beyond the fixed weir A loses its place and overflows to the ground, causing inundation downstream. On the upstream side, if it is within the flow capacity of the merging pipe, the sewage flows down the merging pipe. Therefore, even if inundation damage occurs on the downstream side, the storage amount of the upstream rainwater storage facilities B, C, D May have some room. Even if the fixed weirs A, B, C, and D are movable weirs, the same problem can occur if the height is adjusted without considering the downstream rainfall situation or the storage state of the rainwater storage facility A. .

本発明に係る浸水対策システムを備える合流式下水道施設であれば、このような問題は生じない。図1に示される合流式下水道施設は、下水処理場と、その下水処理場が受け持つ排水区内に敷設された合流管と、雨水貯留設備A、B、C、Dと、本発明に係る浸水対策システムと、を有する。本発明に係る浸水対策システムは、合流管に設けられた可動堰A、B、C、Dと、解析装置と、その解析装置と可動堰A、B、C、Dとを結ぶ(例えば有線の)通信装置を備える。可動堰A、B、C、Dと雨水貯留設備A、B、C、Dとは対応して設けられている。解析装置は、情報処理装置(コンピュータ)で構成され、下水処理場内の制御盤内や、下水処理場外の管理室に設置される。   Such a problem does not occur in a combined sewerage facility provided with the inundation countermeasure system according to the present invention. The combined sewerage facility shown in FIG. 1 includes a sewage treatment plant, a merging pipe laid in a drainage area handled by the sewage treatment plant, rainwater storage facilities A, B, C, and D, and an inundation according to the present invention. And a countermeasure system. The inundation countermeasure system according to the present invention connects the movable weirs A, B, C, and D provided in the junction pipe, the analysis device, and the analysis device and the movable weirs A, B, C, and D (for example, wired connection). ) Provide communication device. The movable weirs A, B, C, D and the rainwater storage facilities A, B, C, D are provided correspondingly. The analysis device is configured by an information processing device (computer), and is installed in a control panel in the sewage treatment plant or in a management room outside the sewage treatment plant.

雨水貯留設備A及び可動堰Aは下流側に存在し、それから分岐した各上流側に、雨水貯留設備B、C、D及び可動堰B、C、Dが存在する。汚水と雨水とが合流した下水は、上流側から、順次、合流管に入り、合流管を流下して下水処理場へ流れ込み、そこで、放流可能な水質に処理される。降雨等によって下水の量が増加して合流管の流下能力を越えたら、下水は何れかの可動堰を越えて対応する雨水貯留設備へ流入して貯留され、通常時(晴天時)に下水の量が低下した際に、ポンプ等によって合流管に戻され、流下して下水処理場で処理される。この点は、従来の浸水対策手段による合流式下水道施設と同じである。   The rainwater storage facility A and the movable weir A are present on the downstream side, and the rainwater storage facilities B, C, D and the movable weirs B, C, D are present on the upstream sides branched therefrom. The sewage in which sewage and rainwater join together enters the joining pipe in order from the upstream side, flows down the joining pipe and flows into the sewage treatment plant, where it is processed into water that can be discharged. When the amount of sewage increases due to rainfall, etc. and exceeds the flow capacity of the merge pipe, the sewage flows into one of the corresponding rainwater storage facilities through one of the movable weirs and is stored. When the amount decreases, it is returned to the junction pipe by a pump or the like, and flows down and is treated at the sewage treatment plant. This point is the same as the combined sewage facility by the conventional measures against flooding.

可動堰A、B、C、Dは、対応する雨水貯留設備A、B、C、Dへ取り込むべき下水の流量を調節する堰であり、好ましくは外部からの信号によって、電気式に又は機械式に、高さが調整可能なものである。解析装置は、排水区内における複数地点の降雨量、複数地点の合流管の水位、複数の可動堰の高さ、その複数の可動堰のそれぞれに対応した複数の雨水貯留設備の貯留量を含む情報を入力し、これらの情報を解析して将来の複数の雨水貯留設備の貯留量を予測するとともに、可動堰の高さを変更したときの将来の可動堰に対応した雨水貯留設備の貯留量を予測することが出来る。更に、解析装置は、将来に雨水貯留設備A、B、C、Dのうちの全て又は何れか2以上の貯留量が最大になるような可動堰A、B、C、Dのそれぞれの高さを求めることが出来、例えば、この求めた高さとなるような制御信号を、通信装置を介して、可動堰A、B、C、Dへ送信すれば、解析装置の結果に基づき可動堰A、B、C、Dの高さを自動制御することが出来る。   The movable weirs A, B, C, and D are weirs that adjust the flow rate of sewage to be taken into the corresponding rainwater storage facilities A, B, C, and D, preferably electrically or mechanically by an external signal. In addition, the height can be adjusted. The analysis device includes the amount of rainfall at multiple points in the drainage basin, the level of the junction pipe at the multiple points, the height of the multiple movable weirs, and the amount of storage of multiple rainwater storage facilities corresponding to each of the multiple movable weirs Input information and analyze this information to predict the amount of future rainwater storage facilities, and the amount of rainwater storage facilities corresponding to future movable weirs when the height of the movable weir is changed Can be predicted. In addition, the analysis device can measure the height of each of the movable weirs A, B, C, and D so that the storage amount of all or any two or more of the rainwater storage facilities A, B, C, and D will be maximized in the future. For example, if a control signal having the obtained height is transmitted to the movable weirs A, B, C, D via the communication device, the movable weir A, The heights of B, C, and D can be automatically controlled.

図1に示される合流式下水道施設は、本発明に係る浸水対策システムを備えるので、下流側の降雨状況や、雨水貯留設備Aの現在の貯留状態、及び予測された雨水貯留設備Aの将来の貯留量の増加状況に基づいて、例えば、上流側において降雨がなく、上流側における下水の量が合流管の流下能力以内であっても、前回の降雨のために雨水貯留設備Aの貯留量が満水であったり、下流側で局地的な豪雨が発生したり、あるいはそれらの両方が生じている場合には、可動堰B、C、Dの高さを下げ、下水を合流管で下流側へ流下させずに、上流側の雨水貯留設備B、C、Dに貯留させる選択を採り得る。そのため、下流において、下水が行き場をなくして地上に溢れ出て浸水を引き起こすおそれは小さい。本発明に係る浸水対策システムを備えていれば、仮に最終的に、何れかの場所で浸水が発生するとしても、全ての雨水貯留設備A、B、C、Dが概ね満水になって能力を最大限に、ないしはそれに近い能力を、発揮した後のことである。   Since the combined sewerage facility shown in FIG. 1 includes the inundation countermeasure system according to the present invention, the downstream rainfall situation, the current storage state of the rainwater storage facility A, and the predicted future of the rainwater storage facility A Based on the increase in the amount of storage, for example, even if there is no rainfall on the upstream side and the amount of sewage on the upstream side is within the flow capacity of the merge pipe, the amount of storage in the rainwater storage facility A for the previous rainfall is If the water is full or if there is a local heavy rain on the downstream side or both of them, the height of the movable weirs B, C, and D is lowered, and the sewage is connected to the downstream side with a merge pipe. It is possible to take the option of storing the rainwater storage facilities B, C, and D on the upstream side without flowing down. Therefore, in the downstream, there is little risk that sewage will lose its place and overflow to the ground and cause inundation. If the inundation countermeasure system according to the present invention is provided, even if inundation occurs at any place, all the rainwater storage facilities A, B, C, and D are almost fully filled with capacity. It is after demonstrating the ability to the maximum or close to it.

[解析装置]次に、本発明に係る浸水対策システムの解析装置について説明する。   [Analyzer] Next, an analyzer of the inundation countermeasure system according to the present invention will be described.

本発明に係る浸水対策システムを運用する上では、現在の、排水区内における雨水貯留設備A、B、C、D及び可動堰A、B、C、Dがそれぞれ備わる区域毎の各地点の降雨量、同じく区域毎の各地点の合流管の水位、可動堰A、B、C、Dの高さ、雨水貯留設備A、B、C、Dの貯留量、を含む情報の授受と、これらの情報の解析が重要であり、それを担うのが解析装置である。又、浸水対策にかかる情報は、市民へ公開することが必要であるから、本発明に係る浸水対策システムにおいては、必要に応じ、気象情報や解析結果を含む浸水に関するデータを公開する手段を備えることが好ましい。   In operating the inundation countermeasure system according to the present invention, the current rainfall at each point in each area where the rainwater storage facilities A, B, C, D and movable weirs A, B, C, D are provided in the drainage area. Exchange of information including the amount, the water level of the junction pipe at each point in each area, the height of the movable weirs A, B, C, D, the storage amount of the rainwater storage facilities A, B, C, D, and Analysis of information is important, and the analysis device takes charge of it. In addition, since it is necessary to disclose the information on flood countermeasures to citizens, the flood countermeasure system according to the present invention includes means for disclosing data on flooding including weather information and analysis results as necessary. It is preferable.

本発明に係る浸水対策システムにおける情報の授受及び解析は、例えば、下水処理場の管理室に配設される制御盤内のコンピュータや、下水処理場内又は外部に配設される情報収集サーバ、情報提供サーバ(解析装置を含む)、及び一般公開用サーバで構成されるネットワークシステムにおいて、以下のように行なわれる。   Information exchange and analysis in the inundation countermeasure system according to the present invention is performed by, for example, a computer in a control panel disposed in a management room of a sewage treatment plant, an information collection server disposed in or outside the sewage treatment plant, information In a network system including a providing server (including an analysis apparatus) and a public server, the following is performed.

図5は、本発明に係る浸水対策システムにおける情報処理を表す図であり、情報の流れが上から下へ示されたフロー図である。本発明に係る浸水対策システムを適切に運用するために必要な情報として、例えば、気象データ(地点毎の天気予報等)、降雨データ(地点毎の降雨量等)、水位データ(地点毎の合流管内の水位、放流先(河川、海域等)の水位等)、施設運転データ(各種ポンプ(汚水ポンプ、雨水ポンプ等)の運転状況、可動堰の高さ等)を挙げることが出来る。これらの情報は、例えば制御盤内のコンピュータを経て、情報収集サーバに入力される。気象データは、時差をなくすため、直接、情報収集サーバへ入力することが好ましい。これらの気象データや降雨データは、例えば、気象庁、民間気象会社、(直接に)レーダ等より集められる。水位データや施設運転データは、それぞれの場所に設けられた検出器や、制御用コンピュータ、ポンプ動力盤等より集められる。   FIG. 5 is a diagram showing information processing in the inundation countermeasure system according to the present invention, and is a flowchart showing the flow of information from top to bottom. Information necessary for properly operating the inundation countermeasure system according to the present invention includes, for example, meteorological data (weather forecast for each point), rainfall data (rainfall amount for each point, etc.), water level data (joint for each point) The water level in the pipe, the water level of the discharge destination (river, sea area, etc.), and facility operation data (operating status of various pumps (sewage pump, rainwater pump, etc.), height of movable weir, etc.). These pieces of information are input to the information collection server via, for example, a computer in the control panel. It is preferable to input the weather data directly to the information collecting server in order to eliminate the time difference. These meteorological data and rainfall data are collected from, for example, the Japan Meteorological Agency, private weather companies, (directly) radar, and the like. Water level data and facility operation data are collected from detectors, control computers, pump power panels, etc. provided at the respective locations.

具体的な入力データとしては、降雨データは、例えば、雨水貯留設備A、B、C、D及び可動堰A、B、C、Dがそれぞれ備わる区域毎の各地点における10分毎の降雨量(mm/10分間)であり、水位データは、例えば、同じく区域毎の各地点における10分毎の水位(m、TP(東京湾平均海面))であり、施設運転データは、可動堰A、B、C、Dの高さである。   As specific input data, for example, the rainfall data is, for example, the amount of rainfall every 10 minutes at each point in each area provided with rainwater storage facilities A, B, C, D and movable weirs A, B, C, D ( The water level data is, for example, the water level (m, TP (Tokyo Bay average sea level)) at each point in each area, and the facility operation data are movable weirs A and B. , C, D height.

各種データは、情報収集サーバから、情報提供サーバへ送られ、そこで、種々の解析がなされる。そして、必要な情報が関係各部署へ送られるとともに、住民へ開示すべき情報は一般公開用サーバを介して公開される。関係各部署へ送られる情報としては、流量データ(合流管内の任意地点の流量、下水処理場における沈砂池(ポンプ場)の流量等)、(例えば)雨水貯留設備の貯留量データ(現在及び将来の貯留量)を挙げることが出来る。又、住民へ開示すべき情報は、例えば浸水位データである。   Various data is sent from the information collection server to the information providing server, where various analysis is performed. Necessary information is sent to the related departments, and information to be disclosed to the residents is disclosed via a public server. Information sent to the relevant departments includes flow rate data (flow rate at any point in the merge pipe, flow rate of the sedimentation basin (pump station) at the sewage treatment plant, etc.), (for example) storage data for the rainwater storage facilities (current and future) Storage amount). The information to be disclosed to the residents is, for example, inundation level data.

具体的な出力データとしては、雨水貯留設備の貯留量データは、例えば、貯槽の10分間毎の貯留量(m)であり、流量データは、例えば、雨水貯留設備A、B、C、D及び可動堰A、B、C、Dがそれぞれ備わる区域毎の各地点における10分毎の瞬時の合流管内流量(m/秒)であり、浸水位データは、例えば、同じく区域毎の各地点における10分毎の浸水位(m)である。 As specific output data, the storage amount data of the rainwater storage facility is, for example, the storage amount (m 3 ) of the storage tank every 10 minutes, and the flow rate data is, for example, the rainwater storage facility A, B, C, D And the instantaneous flow rate (m 3 / sec) in the merging pipe every 10 minutes at each point in each area provided with movable weirs A, B, C, and D. Is the inundation level (m) every 10 minutes.

関係各部署へ送られる情報及び住民へ開示すべき情報は、送られた降雨データ、水位データ、施設運転データを基に、解析装置において、降雨量予測モデル、地表面流出モデル、管内水理モデル、地表面氾濫モデル等によって解析され、出力すべき流量データ、雨水貯留設備の貯留量データ、浸水位データとなる。尚、図5には示されていないが、既述のように、将来に雨水貯留設備A、B、C、Dのうちの全て又は何れか2以上の貯留量が最大になるような可動堰A、B、C、Dのそれぞれの高さを、逆算して、求め、これを関係各部署へ送り、あるいは、直接に、可動堰を制御するための信号として出力することが出来る。   The information sent to each department and the information to be disclosed to the residents are based on the sent rainfall data, water level data, and facility operation data. It is analyzed by the ground surface inundation model, etc., and becomes flow rate data to be output, storage amount data of rainwater storage facilities, and inundation level data. Although not shown in FIG. 5, as described above, the movable weir that will maximize the storage amount of all or any of the rainwater storage facilities A, B, C, and D in the future. The respective heights of A, B, C, and D can be calculated by back calculation and sent to the relevant departments, or directly output as a signal for controlling the movable weir.

図6は、解析装置において用いられる降雨量予測モデルの一例(簡易式)の概要を示すグラフである。実測された過去の雨量データから降雨量の上昇率を算出し、その上昇率に時間を乗じることで、予測雨量を求めることが出来る。例えば、グラフ上において、2分前から現在値までを直線で結び、これを15分先まで伸ばし、15分先からは30分先に降雨量が0(零)となるように直線を引けば、30分先までの合計の雨量を予測することが出来る。   FIG. 6 is a graph showing an outline of an example (simple formula) of a rainfall prediction model used in the analysis apparatus. The predicted rainfall can be obtained by calculating the rate of increase in rainfall from the actually measured past rainfall data and multiplying that rate by time. For example, on the graph, if you connect the current value to the current value from 2 minutes before, extend it to 15 minutes ahead, and draw a straight line so that the rainfall will be 0 (zero) 30 minutes from 15 minutes ahead The total rainfall up to 30 minutes ahead can be predicted.

図7A〜図11は、解析装置において用いられる地表面流出モデルの一例の概要を示す図である。この地表面流出モデルは、降雨損失要素を組み込んだ有効降雨モデルと、有効降雨を流入マンホール地点でのハイドログラフに変換する地表面流下モデルと、の2つから構成される。   7A to 11 are diagrams showing an outline of an example of a ground surface runoff model used in the analysis apparatus. This ground surface runoff model is composed of two types: an effective rainfall model incorporating a rainfall loss factor and a ground surface flow model that converts effective rainfall into a hydrograph at the inflow manhole point.

図7A〜図7Cは、有効降雨モデルの一例の概念を示す説明図であり、図8A〜図8Dは、有効降雨モデルの一例の概念を示すグラフである。図7A〜図7C及び図8A〜図8Cに示されるように、有効降雨(降雨量)は、実降雨のあった場所が、浸透域、半浸透域、不浸透域の何れであるかによって異なり、又、有効降雨(降雨量)を求めるに際しては、凹地貯留(損失)分が除外される。例えば、100mmの実降雨があったとして、不浸透面積率が50%である不浸透域(図7A及び図8Aを参照)では、浸透損失がないので、50mm(=100mm×50%)から、凹地貯留損失3.00mmを減じた47.00mmが有効降雨となり、有効降雨は多い。しかし、例えば、不浸透面積率が30%である浸透域(図7C及び図8Cを参照)では、30mm(=100mm×30%)のうち凹地貯留損失1.80mmを減じた28.20mm全てが浸透し、(地域全体としての)有効降雨は少ない。又、不浸透面積率が20%である半浸透域(図7B及び図8Bを参照)では有効降雨もその中間になる。即ち、20mm(=100mm×20%)のうち凹地貯留損失1.20mmを減じた18.80mmの半分である9.40mmが浸透する。   FIG. 7A to FIG. 7C are explanatory diagrams showing an example of an effective rainfall model, and FIG. 8A to FIG. 8D are graphs showing an example of an effective rainfall model. As shown in FIG. 7A to FIG. 7C and FIG. 8A to FIG. 8C, the effective rainfall (rainfall amount) varies depending on whether the place where the actual rainfall occurred is an infiltration area, a semi-infiltration area, or an impermeable area. In addition, when obtaining effective rainfall (rainfall), concave storage (loss) is excluded. For example, if there is actual rainfall of 100 mm, there is no penetration loss in the impervious area where the impervious area rate is 50% (see FIG. 7A and FIG. 8A), so from 50 mm (= 100 mm × 50%), The effective rainfall is 47.00 mm, which is a reduction of the concave storage loss of 3.00 mm, and there is a lot of effective rainfall. However, for example, in the infiltration area where the impervious area ratio is 30% (see FIG. 7C and FIG. 8C), all 28.20 mm obtained by reducing the concave storage loss 1.80 mm out of 30 mm (= 100 mm × 30%) Permeates and has less effective rainfall (as a whole area). Further, in the semi-penetrated area (see FIGS. 7B and 8B) where the impervious area ratio is 20%, the effective rainfall is in the middle. That is, 9.40 mm which is a half of 18.80 mm obtained by subtracting 1.20 mm of the concave storage loss permeates 20 mm (= 100 mm × 20%).

尚、図7Aと図8Aは、不浸透域における有効降雨を説明するための図であるが、概念を説明するための図であり、図7Aと図8Aは同じ状況を示しているわけではない。図7Bと図8B(半浸透域)、図7Cと図8C(浸透域)についても、同様である。又、図8Dは、浸透域、半浸透域、不浸透域を合わせた、流域全体の有効降雨モデルを表している。   7A and 8A are diagrams for explaining the effective rainfall in the impermeable area, but are diagrams for explaining the concept, and FIG. 7A and FIG. 8A do not show the same situation. . The same applies to FIGS. 7B and 8B (semi-penetration zone) and FIGS. 7C and 8C (penetration zone). Moreover, FIG. 8D represents the effective rainfall model of the whole basin combining the infiltration area, the semi-infiltration area, and the non-infiltration area.

具体的には、有効降雨モデルにおける有効降雨R(t)は、実降雨Rr(t)から初期損失Qiniである凹地貯留(損失)を差し引き、浸透損失を考慮した不浸透面積率を乗じて算定することが出来る。有効降雨R(t)は、実降雨Rr(t)が初期損失Qini以下であるときは0(零)であり、実降雨Rr(t)が初期損失Qini超えたときに、次の(1)式で求められる。(1)式において、実流域で観測された流出率と、不浸透面積率と、の比を低減係数と定義すると、(2)式が求められる。換言すれば、低減係数は、流出率と、地図等から推定した不浸透面積率と、を整合させるための補正係数である。又、(2)式における不浸透面積率は、(3)式で求められる。 Specifically, the effective rainfall R (t) in the effective rainfall model is obtained by subtracting the concave storage (loss), which is the initial loss Qini , from the actual rainfall Rr (t) and multiplying by the impervious area rate considering the infiltration loss. Can be calculated. Effective rainfall R (t), when the actual rainfall Rr (t) is less than the initial loss Q ini is 0 (zero), when the actual rainfall Rr (t) exceeds the initial loss Q ini, the following ( It is obtained by the equation (1). In equation (1), if the ratio between the outflow rate observed in the actual watershed and the impervious area rate is defined as a reduction factor, equation (2) is obtained. In other words, the reduction coefficient is a correction coefficient for matching the outflow rate with the impervious area rate estimated from a map or the like. Further, the impervious area ratio in the equation (2) is obtained by the equation (3).

有効降雨R(t) = 実降雨Rr(t)×流出率 ・・・(1) Effective rainfall R (t) = Actual rainfall Rr (t) x Runoff rate (1)

有効降雨R(t) = 実降雨Rr(t)×不浸透面積率Imp×低減係数Qred
・・・(2)
Effective rainfall R (t) = actual rainfall Rr (t) × impervious area ratio I mp × reduction factor Q red
... (2)

Figure 2010133191
Figure 2010133191

図9及び図11は、地表面流下モデルの一例の概念を示すグラフであり、図10は、地表面流下モデルの一例の概念を示す説明図である。地表面流下モデルでは、先に算定された有効降雨に基づいて、流域形状、流入時間を考慮した時間/面積曲線により、流入ハイドロの算定を行なう。流域は、流入マンホールを中心点とする同心円状の多くのセルに分割される。図9には、流入時間を区分した単位時間(シミュレーション時間間隔Δt)あたりの有効降雨(降雨量)が表されており、図10には、流入マンホールまでの到達時間が等しい時間(上記の単位時間(シミュレーション時間間隔Δt))毎の流域が表されており(即ち、図10は等到達時間域図であり)、図11には、流入ハイドロの算定が表されている。   9 and 11 are graphs showing the concept of an example of the ground surface flow model, and FIG. 10 is an explanatory diagram showing the concept of an example of the ground surface flow model. In the ground surface flow model, the inflow hydro is calculated by the time / area curve considering the basin shape and the inflow time based on the previously calculated effective rainfall. The basin is divided into many concentric cells centered on the inflow manhole. FIG. 9 shows the effective rainfall (rainfall amount) per unit time (simulation time interval Δt) into which the inflow time is divided, and FIG. 10 shows the time (the above-described unit of arrival time to the inflow manhole). The basin for each time (simulation time interval Δt) is shown (that is, FIG. 10 is an equi-arrival time zone diagram), and FIG. 11 shows the calculation of inflow hydro.

具体的には、セル数nは、次の(4)式から算定され、流入ハイドロは、(5)式で求められる。   Specifically, the number of cells n is calculated from the following equation (4), and the inflow hydro is determined by equation (5).

Figure 2010133191
Figure 2010133191

Figure 2010133191
Figure 2010133191

合流管内の流れを計算する管内水理モデルは、サンブナン式(Dynamic wave法)を用いて構築することが出来る、サンブナン式は、質量と運動量の保存則から、次の(6)式(連続の式)、(7)式(運動方程式)で表される。   The in-pipe hydraulic model for calculating the flow in the confluence pipe can be constructed by using the Samvenin formula (Dynamic wave method). The Sambunan formula is based on the conservation law of mass and momentum, and the following formula (6) (continuous (Expression), (7) (Expression of motion).

Figure 2010133191
Figure 2010133191

Figure 2010133191
Figure 2010133191

図12及び図13は、地表面氾濫モデルの一例の概念を示す説明図である。地表面氾濫モデルによれば、降雨量が多いために、合流管から溢れた下水(主に初期汚濁水)が地表面を流下し移動する態様(流路、流量)を求めることが出来る。合流管から溢れた下水は、地盤の高低差によって、流下、移動するが、地表面氾濫モデルでは、流域の地形をデータ(標高を持った2次元の地表面データ)として備え、その流域の地形を考慮して、浸水の移動を表現(再現)することが出来る。地表面氾濫モデルは、質量保存式(連続式)、運動方程式(X方向及びY方向)によって表現することが可能である。   12 and 13 are explanatory diagrams showing the concept of an example of the ground surface flooding model. According to the ground surface inundation model, since the amount of rainfall is large, it is possible to obtain a mode (flow path, flow rate) in which sewage overflowing from the junction pipe (mainly initial polluted water) flows down the ground surface and moves. The sewage overflowing from the merging pipe flows down and moves depending on the ground level difference, but the surface inundation model has the terrain of the basin as data (two-dimensional surface data with elevation), and the terrain of the basin. Can be used to express (reproduce) the inundation movement. The ground surface inundation model can be expressed by a mass conservation equation (continuous equation) and a motion equation (X direction and Y direction).

以下、本発明を、シミュレーション(本明細書における実施例とする)により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described by simulation (referred to as examples in the present specification), but the present invention is not limited to these examples.

(比較例1)図2に示される下水道施設において、排水区内の雨水貯留設備Aが受け持つ流域の面積を100ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Aの容量を10000m、合流管の流下能力を40mm/hとした。同様に、雨水貯留設備Bが受け持つ流域の面積を120ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Bの容量を12000m、合流管の流下能力を40mm/hとし、雨水貯留設備Cが受け持つ流域の面積を150ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Cの容量を15000m、合流管の流下能力を40mm/hとし、雨水貯留設備Dが受け持つ流域の面積を200ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Dの容量を20000m、合流管の流下能力を40mm/hとした。 (Comparative Example 1) In the sewerage facility shown in FIG. 2, the area of the basin that the rainwater storage facility A in the drainage area is responsible for is 100ha, and the outflow rate (impervious area ratio × reduction factor) in the basin is 0.5, initial. The loss was 0 (zero), the capacity of the rainwater storage facility A was 10,000 m 3 , and the flow capacity of the junction pipe was 40 mm / h. Similarly, the area of the basin that the rainwater storage facility B is responsible for is 120 ha, the outflow rate (impervious area rate × reduction factor) in the basin is 0.5, the initial loss is 0 (zero), and the capacity of the rainwater storage facility B is 12000 m. 3. The flow capacity of the merging pipe is 40 mm / h, the area of the basin that the rainwater storage facility C is responsible for is 150 ha, the outflow rate (impervious area ratio × reduction factor) in that basin is 0.5, and the initial loss is 0 (zero) ) The capacity of the rainwater storage facility C is 15000 m 3 , the flow capacity of the confluence pipe is 40 mm / h, the area of the basin that the rainwater storage facility D is responsible for is 200 ha, and the outflow rate (impervious area rate x reduction factor) in the basin 0.5, the initial loss was 0 (zero), the capacity of the rainwater storage facility D was 20000 m 3 , and the flow capacity of the junction pipe was 40 mm / h.

上記条件において、午前8:00から、雨水貯留設備A及び固定堰Aが備わる区域に合流管の流下能力を25mm/h越える雨量の降雨があり、同様に、雨水貯留設備B及び固定堰Bが備わる区域に合流管の流下能力を20mm/h越える雨量の降雨があり、雨水貯留設備C及び固定堰Cが備わる区域に合流管の流下能力を15mm/h越える雨量の降雨があり、雨水貯留設備D及び固定堰Dが備わる区域に合流管の流下能力を10mm/h越える雨量の降雨があった場合の、合流管内の流量の推移、及び、雨水貯留設備の貯留量の推移を求めた。結果を、図3A〜図3D及び図4A〜図4D並びに表1に示す。図3Aは、固定堰Aの近傍の合流管内の流量の推移を表すグラフであり、図4Aは、雨水貯留設備Aの貯留量の推移を表すグラフである。同様に、図3Bは、固定堰Bの近傍の合流管内の流量の推移を表すグラフであり、図4Bは、雨水貯留設備Bの貯留量の推移を表すグラフである。図3Cは、固定堰Cの近傍の合流管内の流量の推移を表すグラフであり、図4Cは、雨水貯留設備Cの貯留量の推移を表すグラフである。図3Dは、固定堰Dの近傍の合流管内の流量の推移を表すグラフであり、図4Dは、雨水貯留設備Dの貯留量の推移を表すグラフである。   Under the above conditions, from 8:00 am, there is rainfall with a rainfall exceeding 25 mm / h in the area where the rainwater storage facility A and the fixed weir A are provided. Similarly, the rainwater storage facility B and the fixed weir B There is rainfall of 20 mm / h or more in the area where the merging pipe flows, and rain water storage equipment in which the storm water storage facility C and the fixed weir C have rainfall of 15 mm / h or more. In the area where D and the fixed weir D are provided, the change in the flow rate in the merging pipe and the change in the storage amount of the rainwater storage facility when there was rainfall of 10 mm / h or more in the area where the merging pipe flowed down were obtained. The results are shown in FIGS. 3A to 3D and FIGS. 4A to 4D and Table 1. 3A is a graph showing the transition of the flow rate in the junction pipe in the vicinity of the fixed weir A, and FIG. 4A is a graph showing the transition of the storage amount of the rainwater storage facility A. Similarly, FIG. 3B is a graph showing the transition of the flow rate in the junction pipe near the fixed weir B, and FIG. 4B is a graph showing the transition of the storage amount of the rainwater storage facility B. 3C is a graph showing the transition of the flow rate in the junction pipe near the fixed weir C, and FIG. 4C is a graph showing the transition of the storage amount of the rainwater storage facility C. FIG. 3D is a graph showing the transition of the flow rate in the junction pipe near the fixed weir D, and FIG. 4D is a graph showing the transition of the storage amount of the rainwater storage facility D.

図3A〜図3D及び図4A〜図4Dに示されるように、排水区内全てにおいて合流管の流下能力を越える雨量の降雨があったため、固定堰A、B、C、Dにおいて、何れも午前10:00頃には、雨水を主とする下水を流下させるのに必要な流速は、合流管の流下能力を越えてしまった。即ち、下水は、固定堰A、B、C、Dを越えて、雨水貯留設備A、B、C、Dに流入した。そして、合流管の流下能力を越える雨量が最も大きかった区域に備わる雨水貯留設備Aでは、約40分後に満水となり、その後オーバーフローして、当該区域(下流)に、浸水量2500mの浸水被害が発生した。 As shown in FIG. 3A to FIG. 3D and FIG. 4A to FIG. 4D, since there was rainfall exceeding the flow capacity of the merge pipe in all drainage areas, all of the fixed weirs A, B, C, and D Around 10:00, the flow velocity required to flow down the sewage, mainly rainwater, exceeded the flow down capacity of the junction pipe. That is, the sewage flowed into the rainwater storage facilities A, B, C, D beyond the fixed weirs A, B, C, D. Then, in the rainwater storage facility A provided in the area where the rainfall exceeding the flow capacity of the junction pipe is the largest, the water becomes full after about 40 minutes, and then overflows, and the area (downstream) is inundated with an inundation amount of 2500 m 3. Occurred.

Figure 2010133191
Figure 2010133191

(実施例1)図1に示される下水道施設において、比較例1に準じて、排水区内の雨水貯留設備Aが受け持つ流域の面積を100ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Aの容量を10000m、合流管の流下能力を40mm/hとした。同様に、雨水貯留設備Bが受け持つ流域の面積を120ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Bの容量を12000m、合流管の流下能力を40mm/hとし、雨水貯留設備Cが受け持つ流域の面積を150ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Cの容量を15000m、合流管の流下能力を40mm/hとし、雨水貯留設備Dが受け持つ流域の面積を200ha、その流域における流出率(不浸透面積率×低減係数)を0.5、初期損失を0(零)、雨水貯留設備Dの容量を20000m、合流管の流下能力を40mm/hとした。 (Embodiment 1) In the sewerage facility shown in FIG. 1, according to Comparative Example 1, the area of the basin that the rainwater storage facility A in the drainage area is responsible for is 100ha, and the runoff rate in that basin (impervious area ratio × reduction factor) ) Is 0.5, the initial loss is 0 (zero), the capacity of the rainwater storage facility A is 10000 m 3 , and the flow capacity of the junction pipe is 40 mm / h. Similarly, the area of the basin that the rainwater storage facility B is responsible for is 120 ha, the outflow rate (impervious area rate × reduction factor) in the basin is 0.5, the initial loss is 0 (zero), and the capacity of the rainwater storage facility B is 12000 m. 3. The flow capacity of the merging pipe is 40 mm / h, the area of the basin that the rainwater storage facility C is responsible for is 150 ha, the outflow rate (impervious area ratio × reduction factor) in that basin is 0.5, and the initial loss is 0 (zero) ) The capacity of the rainwater storage facility C is 15000 m 3 , the flow capacity of the confluence pipe is 40 mm / h, the area of the basin that the rainwater storage facility D is responsible for is 200 ha, and the outflow rate (impervious area rate x reduction factor) in the basin 0.5, the initial loss was 0 (zero), the capacity of the rainwater storage facility D was 20000 m 3 , and the flow capacity of the junction pipe was 40 mm / h.

上記条件において、午前8:00から、雨水貯留設備A及び可動堰Aが備わる区域に合流管の流下能力を25mm/h越える雨量の降雨があり、同様に、雨水貯留設備B及び可動堰Bが備わる区域に合流管の流下能力を20mm/h越える雨量の降雨があり、雨水貯留設備C及び可動堰Cが備わる区域に合流管の流下能力を15mm/h越える雨量の降雨があり、雨水貯留設備D及び可動堰Dが備わる区域に合流管の流下能力を10mm/h越える雨量の降雨があった場合の、合流管内の流量の推移、及び、雨水貯留設備の貯留量の推移を求めた。但し、実施例1においては、雨水貯留設備A及び可動堰Aが備わる区域において合流管の流下能力を越える雨量が最も大きかったことから、下水が可動堰Aを越えて、雨水貯留設備Aに流入し始めた時点(午前10:00頃)から、最も貯留量に余裕があった雨水貯留設備Dに対応する可動堰Dの高さを下げて、より多量の下水が、上流側である雨水貯留設備Dに貯留されるようにした。結果を、図3A〜図3D及び図4A〜図4Dに比較例1の結果と重ねて示すとともに、表1に示す。図3Aは、可動堰Aの近傍の合流管内の流量(流速)の推移を表すグラフであり、図4Aは、雨水貯留設備Aの貯留量の推移を表すグラフである。同様に、図3Bは、可動堰Bの近傍の合流管内の流量の推移を表すグラフであり、図4Bは、雨水貯留設備Bの貯留量の推移を表すグラフである。図3Cは、可動堰Cの近傍の合流管内の流量の推移を表すグラフであり、図4Cは、雨水貯留設備Cの貯留量の推移を表すグラフである。図3Dは、可動堰Dの近傍の合流管内の流量の推移を表すグラフであり、図4Dは、雨水貯留設備Dの貯留量の推移を表すグラフである。図3A、図3D、図4A、及び図4Dにおいて太線の部分が、比較例1と異なるところであり、それ以外は比較例1と同じである。   Under the above conditions, from 8:00 am, there is rainfall with a rainfall amount exceeding 25 mm / h in the area where the rainwater storage facility A and the movable weir A are provided. Similarly, the rainwater storage facility B and the movable weir B There is rainfall of 20 mm / h or more in the area where the merging pipe flows, and rain water storage equipment where the storm water storage facility C and the movable weir C have rainfall of 15 mm / h or more in the area where the merging pipe flows. In the area where D and the movable weir D are provided, the transition of the flow rate in the merging pipe and the transition of the storage amount of the storm water storage facility when there was rainfall of 10 mm / h exceeding the spilling capacity of the merging pipe were obtained. However, in Example 1, the amount of rain exceeding the flow capacity of the junction pipe was the largest in the area where the rainwater storage facility A and the movable weir A were provided, so that the sewage flows into the rainwater storage facility A through the movable weir A. From the time when it started to run (around 10:00 am), the height of the movable weir D corresponding to the rainwater storage facility D with the most storage capacity was lowered, and a larger amount of sewage was stored on the upstream side. It was made to be stored in equipment D. The results are shown in Table 1 while being superimposed on the results of Comparative Example 1 in FIGS. 3A to 3D and FIGS. 4A to 4D. 3A is a graph showing the transition of the flow rate (velocity) in the junction pipe near the movable weir A, and FIG. 4A is a graph showing the transition of the storage amount of the rainwater storage facility A. Similarly, FIG. 3B is a graph showing the transition of the flow rate in the junction pipe near the movable weir B, and FIG. 4B is a graph showing the transition of the storage amount of the rainwater storage facility B. 3C is a graph showing the transition of the flow rate in the junction pipe near the movable weir C, and FIG. 4C is a graph showing the transition of the storage amount of the rainwater storage facility C. 3D is a graph showing the transition of the flow rate in the junction pipe near the movable weir D, and FIG. 4D is a graph showing the transition of the storage amount of the rainwater storage facility D. 3A, FIG. 3D, FIG. 4A, and FIG. 4D, the thick line portion is different from Comparative Example 1, and the rest is the same as Comparative Example 1.

図3A、図3D、図4A、及び図4Dに示されるように、上流側の雨水貯留設備Dで雨水を主とする下水を貯留した(吸収した)ので、下流側の雨水貯留設備Aがオーバーフローするまでには至らず、合流管の流下能力を越える雨量が最も大きかった区域における浸水被害の発生を防止することが出来た。   As shown in FIG. 3A, FIG. 3D, FIG. 4A, and FIG. 4D, the rainwater storage facility A on the downstream side overflows because the sewage mainly containing rainwater is stored (absorbed) in the rainwater storage facility D on the upstream side. In the meantime, it was possible to prevent the occurrence of inundation damage in the area where the rainfall that exceeded the flow capacity of the junction pipe was the largest.

本発明に係る浸水対策システムは、合流式下水道施設における浸水対策手段として、好適に利用される。   The inundation countermeasure system according to the present invention is suitably used as an inundation countermeasure means in a combined sewer facility.

本発明に係る浸水対策システムが採用された合流式下水道施設を示す模式図である。It is a schematic diagram which shows the confluence | merging type sewer facility by which the inundation countermeasure system which concerns on this invention was employ | adopted. 従来の浸水対策手段による合流式下水道施設を示す模式図である。It is a schematic diagram which shows the confluence | merging type sewer facility by the conventional inundation countermeasure means. 実施例の結果を示す図であり、合流管内の流量の推移を表すグラフである。It is a figure which shows the result of an Example, and is a graph showing transition of the flow volume in a merging pipe. 実施例の結果を示す図であり、合流管内の流量の推移を表すグラフである。It is a figure which shows the result of an Example, and is a graph showing transition of the flow volume in a merging pipe. 実施例の結果を示す図であり、合流管内の流量の推移を表すグラフである。It is a figure which shows the result of an Example, and is a graph showing transition of the flow volume in a merging pipe. 実施例の結果を示す図であり、合流管内の流量の推移を表すグラフである。It is a figure which shows the result of an Example, and is a graph showing transition of the flow volume in a merging pipe. 実施例の結果を示す図であり、雨水貯留設備の貯留量の推移を表すグラフである。It is a figure which shows the result of an Example and is a graph showing transition of the storage amount of rainwater storage equipment. 実施例の結果を示す図であり、雨水貯留設備の貯留量の推移を表すグラフである。It is a figure which shows the result of an Example and is a graph showing transition of the storage amount of rainwater storage equipment. 実施例の結果を示す図であり、雨水貯留設備の貯留量の推移を表すグラフである。It is a figure which shows the result of an Example and is a graph showing transition of the storage amount of rainwater storage equipment. 実施例の結果を示す図であり、雨水貯留設備の貯留量の推移を表すグラフである。It is a figure which shows the result of an Example and is a graph showing transition of the storage amount of rainwater storage equipment. 本発明に係る浸水対策システムにおける情報処理を表すフロー図である。It is a flowchart showing the information processing in the inundation countermeasure system which concerns on this invention. 本発明に係る浸水対策システムにおける解析装置で用いられる降雨量予測モデルの一例(簡易式)の概要を示すグラフである。It is a graph which shows the outline | summary of an example (simple formula) of the precipitation prediction model used with the analyzer in the inundation countermeasure system which concerns on this invention. 本発明に係る浸水対策システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示す説明図であり、不浸透域における損失(凹地貯留、浸透)をイメージで表した図である。It is explanatory drawing which shows the concept of an example of the effective rainfall model used with the analyzer in the inundation countermeasure system which concerns on this invention, and is the figure showing the loss (concave storage, infiltration) in an impermeable area with the image. 本発明に係る浸水対策システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示す説明図であり、半浸透域における損失(凹地貯留、浸透)をイメージで表した図である。It is explanatory drawing which shows the concept of an example of the effective rainfall model used with the analyzer in the inundation countermeasure system which concerns on this invention, and is the figure showing the loss (recessed land storage, infiltration) in a semi-infiltration area by the image. 本発明に係る浸水対策システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示す説明図であり、浸透域における損失(凹地貯留、浸透)をイメージで表した図である。It is explanatory drawing which shows the concept of an example of the effective rainfall model used with the analyzer in the inundation countermeasure system which concerns on this invention, and is the figure which represented the loss (concave storage, infiltration) in an infiltration area with an image. 本発明に係る浸水対策システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、不浸透域における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analysis apparatus in the inundation countermeasure system which concerns on this invention, and is the graph which represented the loss (concave storage, infiltration) in the impervious area with the rainfall every time passage. is there. 本発明に係る浸水対策システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、半浸透域における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analysis apparatus in the inundation countermeasure system which concerns on this invention, and is the graph which represented the loss (concave storage, infiltration) in a semi-penetration area by the rainfall every time passage. is there. 本発明に係る浸水対策システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、浸透域における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analyzer in the inundation countermeasure system which concerns on this invention, and is the graph which represented the loss (concave storage, infiltration) in an infiltration area by the amount of rainfall for every time passage. . 本発明に係る浸水対策システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、全域(流域全体)における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analysis apparatus in the inundation countermeasure system which concerns on this invention, and represented the loss (concave storage, infiltration) in the whole area (whole basin) with the rainfall every time passage. It is a graph. 本発明に係る浸水対策システムにおける解析装置で用いられる地表面流下モデルの一例の概念を示すグラフである。It is a graph which shows the concept of an example of the ground surface downflow model used with the analyzer in the inundation countermeasure system which concerns on this invention. 本発明に係る浸水対策システムにおける解析装置で用いられる地表面流下モデルの一例の概念を示す説明図である。It is explanatory drawing which shows the concept of an example of the ground surface downflow model used with the analyzer in the inundation countermeasure system which concerns on this invention. 本発明に係る浸水対策システムにおける解析装置で用いられる地表面流下モデルの一例の概念を示すグラフである。It is a graph which shows the concept of an example of the ground surface downflow model used with the analyzer in the inundation countermeasure system which concerns on this invention. 本発明に係る浸水対策システムにおける解析装置で用いられる地表面氾濫モデルの一例の概念を示す説明図である。It is explanatory drawing which shows the concept of an example of the ground surface inundation model used with the analyzer in the inundation countermeasure system which concerns on this invention. 本発明に係る浸水対策システムにおける解析装置で用いられる地表面氾濫モデルの一例の概念を示す説明図である。It is explanatory drawing which shows the concept of an example of the ground surface inundation model used with the analyzer in the inundation countermeasure system which concerns on this invention.

Claims (3)

下水道施設の下水管に設けられ、その下水管から、対応する雨水貯留設備へ取り込むべき雨水を主とする下水の流量を調節する、複数の可動堰と、
現在の、排水区内における複数地点の降雨量、複数地点の前記下水管の水位、前記複数の可動堰の高さ、その複数の可動堰のそれぞれに対応した複数の雨水貯留設備の貯留量、を含む情報を入力し、これらの情報を解析して、将来の、前記複数の雨水貯留設備の貯留量を予測するとともに、前記可動堰の高さを変更したときの、将来の、前記可動堰に対応した雨水貯留設備の貯留量を予測する解析装置と、
を備える浸水対策システム。
A plurality of movable weirs that are provided in a sewer pipe of a sewerage facility and adjust the flow rate of sewage mainly from rainwater to be taken into a corresponding rainwater storage facility;
The amount of rainfall at a plurality of points in the drainage area, the water level of the sewer pipes at a plurality of points, the height of the plurality of movable weirs, the amount of storage of a plurality of rainwater storage facilities corresponding to each of the plurality of movable weirs, In addition to predicting the future storage amount of the plurality of rainwater storage facilities and changing the height of the movable weir, the future movable weir An analysis device for predicting the storage amount of rainwater storage equipment corresponding to
Inundation countermeasure system equipped with.
前記解析装置が、将来に、前記複数の雨水貯留設備のうちの全て又は何れか2以上の貯留量が最大になるような、前記複数の可動堰のそれぞれの高さを求める手段を有する請求項1に記載の浸水対策システム。   The said analysis apparatus has a means which calculates | requires each height of these several movable weirs so that the storage amount of all or any two or more of these several rainwater storage facilities may become the maximum in the future. The inundation countermeasure system according to 1. 前記解析装置と前記可動堰とを結ぶ通信手段を備え、前記解析装置の結果に基づいて、前記可動堰の高さを制御する請求項1又は2に記載の浸水対策システム。   The inundation countermeasure system according to claim 1, further comprising a communication unit that connects the analysis device and the movable weir, and controlling a height of the movable weir based on a result of the analysis device.
JP2008312146A 2008-12-08 2008-12-08 Sewerage facility inundation countermeasure system Active JP5270322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312146A JP5270322B2 (en) 2008-12-08 2008-12-08 Sewerage facility inundation countermeasure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312146A JP5270322B2 (en) 2008-12-08 2008-12-08 Sewerage facility inundation countermeasure system

Publications (2)

Publication Number Publication Date
JP2010133191A true JP2010133191A (en) 2010-06-17
JP5270322B2 JP5270322B2 (en) 2013-08-21

Family

ID=42344722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312146A Active JP5270322B2 (en) 2008-12-08 2008-12-08 Sewerage facility inundation countermeasure system

Country Status (1)

Country Link
JP (1) JP5270322B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505749A (en) * 2011-09-30 2012-06-20 江苏大学 Combined sewage pipe network time-staggered flow distribution control system and control method
JP2016130435A (en) * 2015-01-14 2016-07-21 富士通株式会社 Method, program and system of determining sensing point in sewerage system
JP2017194344A (en) * 2016-04-20 2017-10-26 株式会社東芝 Flooding risk diagnosis apparatus, flooding risk diagnostic method, controller, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298947A (en) * 1997-04-28 1998-11-10 Sagamiharashi Drain flow control system for regulating pond
JPH11190056A (en) * 1997-12-25 1999-07-13 Toshiba Corp Storage equipment operation supporting device in sewerage system
JPH11256666A (en) * 1998-03-13 1999-09-21 Kurimoto Ltd Flood control system
JP2006274786A (en) * 2005-02-25 2006-10-12 Toshiba Corp Rainwater drain support and control system
JP2007146423A (en) * 2005-11-25 2007-06-14 Toshiba Corp Rainwater storage facility operational system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298947A (en) * 1997-04-28 1998-11-10 Sagamiharashi Drain flow control system for regulating pond
JPH11190056A (en) * 1997-12-25 1999-07-13 Toshiba Corp Storage equipment operation supporting device in sewerage system
JPH11256666A (en) * 1998-03-13 1999-09-21 Kurimoto Ltd Flood control system
JP2006274786A (en) * 2005-02-25 2006-10-12 Toshiba Corp Rainwater drain support and control system
JP2007146423A (en) * 2005-11-25 2007-06-14 Toshiba Corp Rainwater storage facility operational system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505749A (en) * 2011-09-30 2012-06-20 江苏大学 Combined sewage pipe network time-staggered flow distribution control system and control method
CN102505749B (en) * 2011-09-30 2013-11-20 江苏大学 Combined sewage pipe network time-staggered flow distribution control system and control method
JP2016130435A (en) * 2015-01-14 2016-07-21 富士通株式会社 Method, program and system of determining sensing point in sewerage system
JP2017194344A (en) * 2016-04-20 2017-10-26 株式会社東芝 Flooding risk diagnosis apparatus, flooding risk diagnostic method, controller, and computer program

Also Published As

Publication number Publication date
JP5270322B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
KR101253532B1 (en) System for moniterring and controlling sewer pipe
Park et al. Optimal design of stormwater detention basin using the genetic algorithm
KR101381192B1 (en) Intelligent management system and method for rainwater based on real time control
Morales et al. Innovative modeling framework for combined sewer overflows prediction
JP2007146638A (en) Rainwater storage facility
Bennis et al. Hydraulic performance index of a sewer network
Filipova Urban flooding in Gothenburg-A MIKE 21 study
JP5270322B2 (en) Sewerage facility inundation countermeasure system
Wu et al. A novel approach for determining integrated water discharge from the ground surface to trunk sewer networks for fast prediction of urban floods
KR101670918B1 (en) Realtime analysis method for ground and underground flooding
JP4488970B2 (en) Operation management system for combined sewage systems
Wright et al. Investigation and numerical modelling of roof drainage systems under extreme events
Duncker et al. Hydrology of and current monitoring issues for the Chicago Area Waterway System, Northeastern Illinois
Sanders et al. Passive and active control of diversions to an off-line reservoir for flood stage reduction
CN110990659A (en) Urban waterlogging management method based on three-dimensional real scene
Kim et al. Flood inundation analysis resulting from two parallel reservoirs’ failure
Méndez Hydraulic analysis of urban drainage systems with conventional solutions and sustainable technologies: Case study in Quito, Ecuador
KR101849681B1 (en) A water-loop operating system for allocationing and supplying multy-water source using SD
JP6503745B2 (en) Method, program and apparatus for determining sensing location of sewer network
JP3625367B2 (en) Sewer system storage facility operation support device
JP2000276235A (en) Wide area rainwater drainage system supporting device
JP4190788B2 (en) Inundation depth prediction system, inundation depth prediction method, inundation depth prediction program and recording medium recording inundation depth prediction program
Barkhordari et al. A practical method for rehabilitation of stormwater collecting system by node flooding detection and regional hydraulic redesign: a case study of eastern Tehran metropolis
Chen et al. Analysis of the Sanchung inundation during Typhoon Aere, 2004
Blackler et al. Field test of paved area reduction factors using a storm water management model and water quality test site

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250