JP2010132843A - Resin composition and method for modifying surface of component - Google Patents

Resin composition and method for modifying surface of component Download PDF

Info

Publication number
JP2010132843A
JP2010132843A JP2008312721A JP2008312721A JP2010132843A JP 2010132843 A JP2010132843 A JP 2010132843A JP 2008312721 A JP2008312721 A JP 2008312721A JP 2008312721 A JP2008312721 A JP 2008312721A JP 2010132843 A JP2010132843 A JP 2010132843A
Authority
JP
Japan
Prior art keywords
resin composition
less
inorganic filler
focus ring
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312721A
Other languages
Japanese (ja)
Other versions
JP5430136B2 (en
Inventor
Yukio Eda
幸雄 江田
Toshishige Ibayashi
敏成 伊林
Takuya Okada
拓也 岡田
Shigeo Hiyama
茂雄 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008312721A priority Critical patent/JP5430136B2/en
Publication of JP2010132843A publication Critical patent/JP2010132843A/en
Application granted granted Critical
Publication of JP5430136B2 publication Critical patent/JP5430136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component having reduced contact thermal resistance with other components to improve heat dissipation characteristics of the component in contact with the other components. <P>SOLUTION: The resin composition includes 40-75 vol.% of a polyorganosiloxane having an average molecular weight of ≥10,000 and ≤50,000 and 25-60 vol.% of an inorganic filler having a maximum particle diameter of ≤80 μm and has a viscosity of 500-10,000 mPa s. Preferably, the inorganic filler for the resin composition is one or more substances selected from the group consisting of alumina, silicon carbide, aluminum nitride, boron nitride, silicon nitride, silver, copper, aluminum, carbon, diamond, zinc oxide, magnesia, aluminum hydroxide and magnesium hydroxide. Preferably, the inorganic filler for the resin composition has an average particle diameter of ≥1.5 μm and <4.5 μm and a maximum particle diameter of ≤20 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、接触熱抵抗を低減した部材に関する。特に、半導体ウェハ等の被処理基板にプラズマ処理を施す際に用いられる部材に関する。 The present invention relates to a member with reduced contact thermal resistance. In particular, the present invention relates to a member used when plasma processing is performed on a substrate to be processed such as a semiconductor wafer.

半導体集積回路を製造する際のシリコンウェハをエッチングするための装置として、プラズマエッチング装置が知られており、特許文献1に記載されているようにフォーカスリングおよびフォーカスリングを設置する載置台との間の熱伝導を改善するため、この間に熱伝導シートを介在させ、熱伝導を改善する方法が検討されてきた。 As an apparatus for etching a silicon wafer when manufacturing a semiconductor integrated circuit, a plasma etching apparatus is known and, as described in Patent Document 1, between a focus ring and a mounting table on which the focus ring is installed. In order to improve the heat conduction, a method for improving the heat conduction by interposing a heat conduction sheet therebetween has been studied.

上述のフォーカスリングおよび熱伝導シートの構成では、フォーカスリングおよび熱伝導シート間、熱伝導シートおよび載置台間のそれぞれに少なからず、断熱層である空気層が存在し、必ずしも界面抵抗が低減されことはない。このため、プラズマエッチング処理中のフォーカスリングは、必ずしも適切に放熱されるわけではなく、フォーカスリング自体の劣化が起こりやすかった。
特開2008−244096号公報
In the structure of the focus ring and the heat conductive sheet described above, there is not less than each between the focus ring and the heat conductive sheet, and between the heat conductive sheet and the mounting table, and there is an air layer as a heat insulating layer, and the interface resistance is not necessarily reduced. There is no. For this reason, the focus ring during the plasma etching process does not necessarily radiate heat appropriately, and the focus ring itself is likely to deteriorate.
JP 2008-244096 Gazette

本発明は、部材が他の部材と接触した際の放熱特性を向上させるために、他の部材との接触熱抵抗を低減させた部材を提供することを目的とする。 An object of this invention is to provide the member which reduced the contact thermal resistance with another member, in order to improve the thermal radiation characteristic when a member contacts with another member.

(1)平均分子量が10000以上50000以下のポリオルガノシロキサン40〜75体積%、最大粒子径が80μm以下の無機充填材25〜60体積%を含有し、粘度が500〜10000mPa・sであることを特徴とする樹脂組成物。
(2)無機充填材がアルミナ、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、銀、銅、アルミニウム、カーボン、ダイヤモンド、酸化亜鉛、マグネシア、水酸化アルミニウムおよび水酸化マグネシウムからなる群より選ばれた1種以上を含む前記(1)に記載の樹脂組成物。
(3)無機充填材の平均粒径が1.5μm以上4.5μm未満で、かつ最大粒子径が20μm以下であることを特徴とする前記(1)又は(2)に記載の樹脂組成物。
(4)無機充填材の粒度分布が、4.5μm以上〜6.5μm未満、1.5μm以上4.5μm未満及び0.3μm以上0.8μm未満の粒度範囲に少なくとも2つの極大値を有することを特徴とする前記(1)〜(3)に記載の樹脂組成物。
(5)表面粗さが0.1μm以上10μm以下の部材表面に前記(1)〜(4)に記載の樹脂組成物を塗布する部材表面の改質方法。
(6)部材がフォーカスリングであることを特徴とする前記(5)の部材表面の改質方法。
(7)部材を回転させて、前記(1)〜(4)に記載の樹脂組成物を塗布することを特徴とする請求項5又は6に記載の部材表面の改質方法。
(1) It contains 40 to 75% by volume of polyorganosiloxane having an average molecular weight of 10,000 or more and 50,000 or less, 25 to 60% by volume of an inorganic filler having a maximum particle size of 80 μm or less, and a viscosity of 500 to 10,000 mPa · s. A resin composition characterized.
(2) The inorganic filler is selected from the group consisting of alumina, silicon carbide, aluminum nitride, boron nitride, silicon nitride, silver, copper, aluminum, carbon, diamond, zinc oxide, magnesia, aluminum hydroxide and magnesium hydroxide. The resin composition as described in said (1) containing 1 or more types.
(3) The resin composition as described in (1) or (2) above, wherein the inorganic filler has an average particle size of 1.5 μm or more and less than 4.5 μm and a maximum particle size of 20 μm or less.
(4) The particle size distribution of the inorganic filler has at least two maximum values in the particle size ranges of 4.5 μm to less than 6.5 μm, 1.5 μm to less than 4.5 μm, and 0.3 μm to less than 0.8 μm. The resin composition as described in (1) to (3) above.
(5) A method for modifying a member surface, wherein the resin composition according to (1) to (4) is applied to a member surface having a surface roughness of 0.1 μm or more and 10 μm or less.
(6) The method for modifying a member surface according to (5), wherein the member is a focus ring.
(7) The method for reforming a member surface according to claim 5 or 6, wherein the resin composition according to (1) to (4) is applied by rotating the member.

本発明の樹脂組成物を表面に有する部材は、他の部材と接触した際の熱伝導性に優れている。 The member having the resin composition of the present invention on the surface is excellent in thermal conductivity when it comes into contact with other members.

本発明の部材とは、放熱が必要な部材であり、例えば、半導体部材、ヒートシンク、ヒートスプレッダー、発光部材及びフォーカスリングなどが挙げられる。このなかでも、部材がフォーカスリングであることが好ましい。 The member of the present invention is a member that requires heat dissipation, and examples thereof include a semiconductor member, a heat sink, a heat spreader, a light emitting member, and a focus ring. Of these, the member is preferably a focus ring.

本発明のポリオルガノシロキサンとは、平均分子量が10000以上50000以下のポリオルガノシロキサンである。ポリオルガノシロキサンの内では熱硬化のものが好ましく、主材のポリオルガノシロキサンポリマーに加えて、硬化剤(架橋性ポリオルガノシロキサン)を用いることが好ましい。
ポリオルガノシロキサンの粘度は、粘度が500〜10000mPa・sである。
The polyorganosiloxane of the present invention is a polyorganosiloxane having an average molecular weight of 10,000 to 50,000. Among the polyorganosiloxanes, heat-cured ones are preferable, and it is preferable to use a curing agent (crosslinkable polyorganosiloxane) in addition to the main polyorganosiloxane polymer.
The viscosity of the polyorganosiloxane is 500 to 10,000 mPa · s.

本発明の無機充填材とは、アルミナ、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、銀、銅、アルミニウム、カーボン、ダイヤモンド、酸化亜鉛、マグネシア、水酸化アルミニウムおよび水酸化マグネシウムである。
無機充填材は球形の構造をもつものが好ましく、伝熱特性として形状に異方性があるものは伝熱特性を最大にするように配向させることが好ましい。
この中で好ましい無機充填材は、この中でも、アルミナ、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、銀、銅、アルミニウム、カーボン、ダイヤモンド、酸化亜鉛である。
The inorganic filler of the present invention is alumina, silicon carbide, aluminum nitride, boron nitride, silicon nitride, silver, copper, aluminum, carbon, diamond, zinc oxide, magnesia, aluminum hydroxide and magnesium hydroxide.
The inorganic filler preferably has a spherical structure, and those having anisotropy in shape as heat transfer characteristics are preferably oriented so as to maximize the heat transfer characteristics.
Among these, preferred inorganic fillers are alumina, silicon carbide, aluminum nitride, boron nitride, silicon nitride, silver, copper, aluminum, carbon, diamond, and zinc oxide.

無機充填材の平均粒径は1.5μm以上4.5μm未満であることが好ましい。 The average particle size of the inorganic filler is preferably 1.5 μm or more and less than 4.5 μm.

無機充填材の最大粒子径は、80μm以下である。最大粒子径は20μm以下であることが好ましい。 The maximum particle size of the inorganic filler is 80 μm or less. The maximum particle size is preferably 20 μm or less.

無機充填材の粒度分布は、4.5μm以上〜6.5μm未満、1.5μm以上4.5μm未満及び0.3μm以上0.8μm未満の粒度範囲に少なくとも2つの極大値を有することが好ましい。 The particle size distribution of the inorganic filler preferably has at least two maximum values in the particle size ranges of 4.5 μm to less than 6.5 μm, 1.5 μm to less than 4.5 μm, and 0.3 μm to less than 0.8 μm.

ポリオルガノシロキサンと無機充填材の配合は、ポリオルガノシロキサン40〜75体積%、無機充填材25〜60体積%である。 The blend of the polyorganosiloxane and the inorganic filler is 40 to 75% by volume of the polyorganosiloxane and 25 to 60% by volume of the inorganic filler.

部材の表面粗さは、0.1μm以上10μm以下であることが好ましい。 The surface roughness of the member is preferably 0.1 μm or more and 10 μm or less.

樹脂組成物の部材表面への被覆又は塗布方法は、部材を回転させて、部材表面に樹脂組成物を被覆又は塗布することが好ましい。 As a method for coating or applying the resin composition to the member surface, the member is preferably rotated to coat or apply the resin composition to the member surface.

樹脂組成物の部材表面への被覆又は塗布の厚さは、被覆又は塗布の厚さが100μm以下であることが、放熱特性の面から好ましい。 The thickness of the coating or coating on the member surface of the resin composition is preferably 100 μm or less from the viewpoint of heat dissipation characteristics.

本発明の樹脂組成物は、上記の材料を万能混合攪拌機、ニーダー、ハイブリッドミキサー等で混練りすることによって製造することができる The resin composition of the present invention can be produced by kneading the above materials with a universal mixing stirrer, kneader, hybrid mixer or the like.

本発明の実施態様について、図で説明する。図1には、本発明の樹脂組成物を有するフォーカスリングの一例を、図2に本発明の樹脂組成物を有するフォーカスリングの分割片の一例を示す。フォーカスリングをプラズマエッチング装置に設置する際、載置台と接するフォーカスリングの面1の上に、樹脂組成物2で構成されている。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a focus ring having the resin composition of the present invention, and FIG. 2 shows an example of a split piece of the focus ring having the resin composition of the present invention. When the focus ring is installed in the plasma etching apparatus, the resin composition 2 is formed on the surface 1 of the focus ring in contact with the mounting table.

部材の表面に熱伝導性の優れた樹脂組成物を被覆又は塗布することにより、部材が他の部材と接触した際の接触熱抵抗を低減させることができ、部材からの放熱特性を向上することができる。なお、ここでいう、フォーカスリングの表面とは、フォーカスリングを例えばプラズマエッチング装置に設置する際、載置台と接する面のことをいい、接触熱抵抗とは、一般に、2種の異なる物質を接するように配置したとき、2種の異なる物質の境界には微視的にみて空気層が存在する。この空気層が伝熱時に抵抗となり、熱伝導を悪化させる。この空隙による熱伝導悪化の影響を言う。 By coating or applying a resin composition with excellent thermal conductivity on the surface of the member, the contact thermal resistance when the member comes into contact with another member can be reduced, and the heat dissipation characteristics from the member can be improved. Can do. Here, the surface of the focus ring refers to a surface that comes into contact with the mounting table when the focus ring is installed in, for example, a plasma etching apparatus, and the contact thermal resistance generally contacts two different substances. When arranged in such a manner, an air layer exists microscopically at the boundary between two different substances. This air layer becomes a resistance during heat transfer and deteriorates heat conduction. The influence of the heat conduction deterioration by this space | gap is said.

表1及び表2の配合の樹脂組成物をハイブリッドミキサー(シンキー製AR−250)で合計60秒間、混練した。できた樹脂組成物をフォーカスリングの表面に塗布し、硬化させたもの。また、本発明の樹脂組成物をシート化して、フォーカスリングの上部表面に積載したものについて、それぞれ、ポリオルガノシロキサンの物性および無機充填材を配合した場合の熱特性を評価した。その結果を表1及ぶ表2に示す。シート化して、フォーカスリングの上部表面に積載したものに比較して、本発明により構成されるフォーカスリングは表面温度が低くなり、放熱特性が優れていた。本発明の樹脂組成物を被覆したフォーカスリングは、従来のフォーカスリングおよび放熱シートを上部表面に積載したフォーカスリングと比較して、接触熱抵抗が低減していることを意味しており、放熱特性に優れた、部材を提供することができた。但し、被覆又は塗布厚さが200μmでは放熱効果が低下する結果となった。 The resin compositions having the formulations shown in Tables 1 and 2 were kneaded for a total of 60 seconds using a hybrid mixer (AR-250 manufactured by Sinky). The resulting resin composition is applied to the surface of the focus ring and cured. In addition, regarding the resin composition of the present invention formed into a sheet and loaded on the upper surface of the focus ring, the physical properties of polyorganosiloxane and the thermal characteristics when an inorganic filler was blended were evaluated. The results are shown in Table 1 and Table 2. The focus ring constructed according to the present invention has a lower surface temperature and is superior in heat dissipation characteristics than a sheet formed and loaded on the upper surface of the focus ring. The focus ring coated with the resin composition of the present invention means that the contact thermal resistance is reduced as compared with the conventional focus ring and the focus ring in which the heat radiating sheet is loaded on the upper surface. It was possible to provide an excellent member. However, when the coating or coating thickness was 200 μm, the heat dissipation effect was reduced.

(1)サンプルの作製方法
測定に用いたシートのサンプルは離型フィルム上にバーコーターを用い所定の厚さに塗布し、硬化させることで、シートを作成し、フォーカスリングの部材上面に積載した。一方、直接フォーカスリング部材を回転させつつ、樹脂組成物を滴下することにより、円形状に塗布し硬化させ、本発明のサンプルとした。両方法によるフォーカスリングの評価を行った。
(2)粘度
粘度はブルックフィールド社製回転粘度計RVDV1にてJIS Z 8803に基づいて測定した。
(3)塗布厚さ
塗布厚さの測定は、大塚電子製MCPD−28Cを用い、センサーは測定したいフォーカスリングよび樹脂組成物に対し、垂直に入射するようにセンサーを設置し、部材表面および樹脂組成物表面における反射派の位相差から厚みを計測した。
(4)熱伝導率
熱伝導率はフォーカスリング表面および樹脂組成物表面に温度計測用の熱電対(二宮電機製テフロン被覆熱電対:線径0.1μmおよびキーエンス製データロガーNR−600)を設置し、これら温度をより計測し、厚さ勘案して算出した。
(5)表面粗さ
フォーカスリングの表面粗さは、3次元レーザー顕微鏡(キーエンス製VK−9700)によりフォーカスリングの部材表面を連続的にスキャンすることにより測定した。
(1) Sample preparation method A sheet sample used for measurement was applied to a predetermined thickness on a release film using a bar coater and cured to create a sheet, which was then placed on the upper surface of the focus ring member. . On the other hand, the resin composition was dropped while directly rotating the focus ring member, whereby the resin composition was applied in a circular shape and cured to obtain a sample of the present invention. The focus ring was evaluated by both methods.
(2) Viscosity was measured based on JIS Z 8803 with a rotational viscometer RVDV1 manufactured by Brookfield.
(3) Coating thickness The coating thickness was measured using MCPD-28C manufactured by Otsuka Electronics, and the sensor was placed so that the sensor was perpendicularly incident on the focus ring and resin composition to be measured. The thickness was measured from the phase difference of the reflection group on the composition surface.
(4) Thermal conductivity Thermal conductivity is a thermocouple for temperature measurement (Teflon-coated thermocouple manufactured by Ninomiya Electric Co., Ltd .: wire diameter 0.1 μm and Keyence data logger NR-600) on the focus ring surface and resin composition surface. These temperatures were further measured and calculated by taking thickness into consideration.
(5) Surface roughness The surface roughness of the focus ring was measured by continuously scanning the surface of the focus ring member with a three-dimensional laser microscope (VK-9700 manufactured by Keyence).

使用材料
ポリオルガノシロキサン
(1)XE14−B8530(A) :モメンティブパフォーマンスマテリアルズ合同会社
(2)XE14−B8530(B) :モメンティブパフォーマンスマテリアルズ合同会社
(3)XE14−B1057(A) :モメンティブパフォーマンスマテリアルズ合同会社
(4)XE14−B1057(B) :モメンティブパフォーマンスマテリアルズ合同会社
(5)TSE3450(A) :モメンティブパフォーマンスマテリアルズ合同会社
(6)TSE3450(B) :モメンティブパフォーマンスマテリアルズ合同会社
ポリオルガノシロキサン(硬化剤)
(7)RD−1 :東レ・ダウコーニングシリコーン
アルミナ
(8)DAM70 :電気化学工業
(9)DAM45 :電気化学工業
(10)DAM5 :電気化学工業
(11)Al (#600) :ミナルコ
(12)AX3 :マイクロン
窒化アルミニウム
(13)AlN(Hグレード) :トクヤマ
酸化亜鉛
(14)ZnO(一種) :堺化学
Materials used Polyorganosiloxane (1) XE14-B8530 (A): Momentive Performance Materials LLC (2) XE14-B8530 (B): Momentive Performance Materials LLC (3) XE14-B1057 (A): Momentive Performance Materials (4) XE14-B1057 (B): Momentive Performance Materials LLC (5) TSE3450 (A): Momentive Performance Materials LLC (6) TSE3450 (B): Polyorganosiloxane (Curing agent)
(7) RD-1: Toray Dow Corning Silicone Alumina (8) DAM70: Electrochemical Industry (9) DAM45: Electrochemical Industry (10) DAM5: Electrochemical Industry (11) Al (# 600): Minalco (12) AX3: Micron aluminum nitride (13) AlN (H grade): Tokuyama zinc oxide (14) ZnO (one type): Sakai Chemical




フォーカスリングと樹脂組成物の一例を示す概略図。Schematic which shows an example of a focus ring and a resin composition. フォーカスリングと樹脂組成物の一例を示す概略図(分割片)。Schematic which shows an example of a focus ring and a resin composition (divided piece).

符号の説明Explanation of symbols

(図1)
1 フォーカスリング
2 樹脂硬化物
(Figure 1)
1 Focus ring 2 Hardened resin

(図2)
1 フォーカスリング
2 樹脂硬化物

(Figure 2)
1 Focus ring 2 Hardened resin

Claims (7)

平均分子量が10000以上50000以下のポリオルガノシロキサン40〜75体積%、最大粒子径が80μm以下の無機充填材25〜60体積%を含有し、粘度が500〜10000mPa・sであることを特徴とする樹脂組成物。 It contains 40 to 75% by volume of polyorganosiloxane having an average molecular weight of 10,000 or more and 50,000 or less, 25 to 60% by volume of an inorganic filler having a maximum particle size of 80 μm or less, and a viscosity of 500 to 10,000 mPa · s. Resin composition. 無機充填材がアルミナ、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、銀、銅、アルミニウム、カーボン、ダイヤモンド、酸化亜鉛、マグネシア、水酸化アルミニウムおよび水酸化マグネシウムからなる群より選ばれた1種以上を含む請求項1に記載の樹脂組成物。 One or more inorganic fillers selected from the group consisting of alumina, silicon carbide, aluminum nitride, boron nitride, silicon nitride, silver, copper, aluminum, carbon, diamond, zinc oxide, magnesia, aluminum hydroxide and magnesium hydroxide The resin composition according to claim 1, comprising: 無機充填材の平均粒径が1.5μm以上4.5μm未満で、かつ最大粒子径が20μm以下であることを特徴とする請求項1又は2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the inorganic filler has an average particle size of 1.5 μm or more and less than 4.5 μm and a maximum particle size of 20 μm or less. 無機充填材の粒度分布が、4.5μm以上〜6.5μm未満、1.5μm以上4.5μm未満及び0.3μm以上0.8μm未満の粒度範囲に少なくとも2つの極大値を有することを特徴とする請求項1−3に記載の樹脂組成物。 The particle size distribution of the inorganic filler has at least two maximum values in particle size ranges of 4.5 μm or more to less than 6.5 μm, 1.5 μm or more and less than 4.5 μm, and 0.3 μm or more and less than 0.8 μm. The resin composition according to claim 1-3. 表面粗さが0.1μm以上10μm以下の部材表面に請求項1〜4に記載の樹脂組成物を塗布する部材表面の改質方法。 A method for modifying a member surface, wherein the resin composition according to claim 1 is applied to a member surface having a surface roughness of 0.1 μm or more and 10 μm or less. 部材がフォーカスリングであることを特徴とする請求項5の部材表面の改質方法。 6. The method for modifying a member surface according to claim 5, wherein the member is a focus ring. 部材を回転させて、請求項1〜4に記載の樹脂組成物を塗布することを特徴とする請求項5又は6に記載の部材表面の改質方法。
The method for reforming a member surface according to claim 5 or 6, wherein the resin composition according to any one of claims 1 to 4 is applied by rotating the member.
JP2008312721A 2008-12-08 2008-12-08 A method for modifying the surface of a member. Expired - Fee Related JP5430136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312721A JP5430136B2 (en) 2008-12-08 2008-12-08 A method for modifying the surface of a member.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312721A JP5430136B2 (en) 2008-12-08 2008-12-08 A method for modifying the surface of a member.

Publications (2)

Publication Number Publication Date
JP2010132843A true JP2010132843A (en) 2010-06-17
JP5430136B2 JP5430136B2 (en) 2014-02-26

Family

ID=42344437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312721A Expired - Fee Related JP5430136B2 (en) 2008-12-08 2008-12-08 A method for modifying the surface of a member.

Country Status (1)

Country Link
JP (1) JP5430136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512926A (en) * 2008-12-19 2012-06-07 シーカ・テクノロジー・アーゲー Liquid membranes based on silane-terminated polymers
CN108727822A (en) * 2017-04-19 2018-11-02 松下知识产权经营株式会社 Resin combination and use its electronic unit and electronic equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337267A (en) * 1989-06-22 1991-02-18 Dow Corning Corp Composition consisting of polymer and filler
JPH10110179A (en) * 1996-08-09 1998-04-28 Shin Etsu Chem Co Ltd Thermoconductive silicone composition, thermoconductive material and thermoconductive silicone grease
JP2005054099A (en) * 2003-08-06 2005-03-03 Denki Kagaku Kogyo Kk Thermally conductive grease
JP2005070409A (en) * 2003-08-25 2005-03-17 Shin Etsu Chem Co Ltd High thermal conductive silicone rubber composition, fixing roll and fixing belt
WO2006043334A1 (en) * 2004-10-18 2006-04-27 Nippon Koyu Ltd. Silicone composition for heat dissipation
JP2007503506A (en) * 2003-08-25 2007-02-22 ゼネラル・エレクトリック・カンパニイ Bondline thin silicone adhesive composition and method for producing the same
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof
JP2008056761A (en) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and cured material of the same
JP2008143980A (en) * 2006-12-07 2008-06-26 Wacker Asahikasei Silicone Co Ltd Composition for heat radiation silicone gel and heat radiation silicone sheet obtained by curing the same
JP2008244096A (en) * 2007-03-27 2008-10-09 Tokyo Electron Ltd Heat-conducting sheet and placement device of substrate to be treated using it
JP2011511475A (en) * 2008-02-08 2011-04-07 ラム リサーチ コーポレーション Protective coating for parts of plasma processing chamber and method of use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337267A (en) * 1989-06-22 1991-02-18 Dow Corning Corp Composition consisting of polymer and filler
JPH10110179A (en) * 1996-08-09 1998-04-28 Shin Etsu Chem Co Ltd Thermoconductive silicone composition, thermoconductive material and thermoconductive silicone grease
JP2005054099A (en) * 2003-08-06 2005-03-03 Denki Kagaku Kogyo Kk Thermally conductive grease
JP2005070409A (en) * 2003-08-25 2005-03-17 Shin Etsu Chem Co Ltd High thermal conductive silicone rubber composition, fixing roll and fixing belt
JP2007503506A (en) * 2003-08-25 2007-02-22 ゼネラル・エレクトリック・カンパニイ Bondline thin silicone adhesive composition and method for producing the same
WO2006043334A1 (en) * 2004-10-18 2006-04-27 Nippon Koyu Ltd. Silicone composition for heat dissipation
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof
JP2008056761A (en) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and cured material of the same
JP2008143980A (en) * 2006-12-07 2008-06-26 Wacker Asahikasei Silicone Co Ltd Composition for heat radiation silicone gel and heat radiation silicone sheet obtained by curing the same
JP2008244096A (en) * 2007-03-27 2008-10-09 Tokyo Electron Ltd Heat-conducting sheet and placement device of substrate to be treated using it
JP2011511475A (en) * 2008-02-08 2011-04-07 ラム リサーチ コーポレーション Protective coating for parts of plasma processing chamber and method of use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512926A (en) * 2008-12-19 2012-06-07 シーカ・テクノロジー・アーゲー Liquid membranes based on silane-terminated polymers
JP2014159590A (en) * 2008-12-19 2014-09-04 Sika Technology Ag Fluid film based on silane-terminated polymers
US8912260B2 (en) 2008-12-19 2014-12-16 Sika Technology Ag Liquid film based on silane-terminated polymers
US9957415B2 (en) 2008-12-19 2018-05-01 Sika Technology Ag Liquid film based on silane-terminated polymers
CN108727822A (en) * 2017-04-19 2018-11-02 松下知识产权经营株式会社 Resin combination and use its electronic unit and electronic equipment
CN108727822B (en) * 2017-04-19 2022-02-18 松下知识产权经营株式会社 Resin composition, and electronic component and electronic device using same

Also Published As

Publication number Publication date
JP5430136B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5422413B2 (en) Heat dissipation member and manufacturing method thereof
JP5283346B2 (en) Thermally conductive cured product and method for producing the same
TW201621256A (en) Thermally conductive sheet, method for producing the same, heat dissipation member, and semiconductor device
TW201837093A (en) Heat-conductive sheet and method for manufacturing same
TWI637050B (en) Heat conductive molded article
WO2007086443A1 (en) Heat dissipating member and semiconductor device using same
KR20170118883A (en) Thermal Conductive Sheet and Electronic Device
JP6314915B2 (en) Heat dissipation putty sheet
TWI834752B (en) Thermal conductive composition, thermal conductive member, manufacturing method of thermal conductive member, heat dissipation structure, heat generating composite member, heat dissipation composite member
TW202003236A (en) Electronic apparatus and electromagnetic wave-shielding heat dissipation sheet
CN110739223A (en) Method for manufacturing thermally conductive sheet
JP2014003141A (en) Thermally conductive sheet, and electronic apparatus
JPWO2019150944A1 (en) Heat conductive composition and heat conductive molded article
JP5430136B2 (en) A method for modifying the surface of a member.
US20220306863A1 (en) Thermally conductive silicone composition and thermally conductive silicone material
JP2005197609A (en) Heat radiating sheet
WO2021085593A1 (en) Resin composition, cured product, composite molded body and semiconductor device
JP6796569B2 (en) Method for manufacturing a thermally conductive composite sheet
TWI724156B (en) Thermally conductive composite sheet
JP2010199578A (en) Semiconductor device
JP2022191990A (en) Thermally conductive sheet and thermally conductive sheet production method
JP2011034685A (en) Electrical insulating heat conductive sheet and method of manufacturing the same
JPWO2020075663A1 (en) Resin composition, resin cured product and composite molded product
JP2021031602A (en) Heat-conductive resin and heat dissipation structure
KR102167547B1 (en) Inorganic filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

LAPS Cancellation because of no payment of annual fees