JP2010131629A - Apparatus and method of monitoring deformation of weld structure - Google Patents

Apparatus and method of monitoring deformation of weld structure Download PDF

Info

Publication number
JP2010131629A
JP2010131629A JP2008309496A JP2008309496A JP2010131629A JP 2010131629 A JP2010131629 A JP 2010131629A JP 2008309496 A JP2008309496 A JP 2008309496A JP 2008309496 A JP2008309496 A JP 2008309496A JP 2010131629 A JP2010131629 A JP 2010131629A
Authority
JP
Japan
Prior art keywords
deformation
welding
welded structure
amount
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008309496A
Other languages
Japanese (ja)
Inventor
Kazuhiro Saito
和宏 齊藤
Satoru Asai
知 浅井
Shinsaku Sato
晋作 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008309496A priority Critical patent/JP2010131629A/en
Publication of JP2010131629A publication Critical patent/JP2010131629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control execution of welding and heat treatment by monitoring stepwise, during the execution, deformation and stress of a weld structure which is being executed for welding and heat treatment. <P>SOLUTION: The monitoring apparatus includes: a displacement gauge 11 for measuring displacement on the surface of a weld structure 1; a deformation calculating device 12 for calculating deformation amount of the weld structure from the data or the like of the displacement gauge; a thermometer 13 for measuring the surface temperature of the weld structure; a temperature distribution calculating device 14 for measuring temperature distribution of the weld structure from the data or the like of the thermometer; and a determining device 15 for determining a welding deformation of the weld structure during the execution of the welding. The determining device is composed of: a first arithmetic unit 18 for estimating thermal deformation amount by linear expansion of the weld structure; a second arithmetic unit for computing true welding deformation amount by subtracting the estimation of the thermal deformation amount from the deformation amount of the weld structure; and a determining unit 20 for determining success or failure of welding by comparing the true welding deformation amount and an allowable value of the welding deformation amount. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶接構造物の溶接時における溶接変形や、熱処理時の応力、変形を監視する溶接構造物の変形監視装置及び方法に関する。   The present invention relates to a welding structure deformation monitoring apparatus and method for monitoring welding deformation during welding of a welded structure, stress during heat treatment, and deformation.

通常行われている溶接構造物の溶接変形管理では、図8に示すように、溶接構造物100の変形を管理するために必要な代表点について、変位計101が変位を計測する。本図では非接触の変位計を想定しているが、接触式の変位計も多用されている。溶接構造物100における複数の点の変位を変位計101が計測することにより、この計測値から相対変位計算装置102が相対変位を計算する。判定装置103は、データベース104に予め格納された相対変位の許容値と、相対変位計算装置102が変位計測値から計算した相対変位とを比較して、溶接変形に関する合否、溶接変形の修正方法(例えば溶接順序の変更、溶接後に入熱して変形を修正)などを判定する。通常、データベース104に格納される許容値データは図面データであり、判定装置103は、図面に指示された寸法と相対変位との比較により、溶接変形の合否を判定する。   In the welding deformation management of a welded structure that is normally performed, as shown in FIG. 8, the displacement meter 101 measures the displacement at a representative point necessary for managing the deformation of the welded structure 100. In this figure, a non-contact displacement meter is assumed, but a contact displacement meter is also frequently used. When the displacement meter 101 measures the displacement of a plurality of points in the welded structure 100, the relative displacement calculation device 102 calculates the relative displacement from this measured value. The determination device 103 compares the relative displacement allowable value stored in advance in the database 104 with the relative displacement calculated by the relative displacement calculation device 102 from the displacement measurement value, and determines whether the welding deformation is acceptable or not, and a welding deformation correcting method ( For example, it is determined whether the welding sequence is changed, heat is input after welding, and deformation is corrected). Normally, the allowable value data stored in the database 104 is drawing data, and the determination device 103 determines whether the welding deformation is acceptable or not by comparing the dimensions indicated in the drawing with the relative displacement.

また、溶接構造物の溶接変形や残留応力を予測する方法として様々な解析手法が提案されている。そのなかでも、溶接変形を引き起こす力を固有歪みとして溶接部に分布させて、溶接変形や残留応力を求める計算方法(固有歪み法)は、複雑な構造物の溶接変形や残留応力を簡便に予測できる方法であり、これまでにも、固有歪みの推定方法(特許文献1参照)や、固有歪み法を汎用の構造解析プログラムを用いて実行する方法(特許文献2参照)等が提案されている。   Various analysis methods have been proposed as a method for predicting welding deformation and residual stress of a welded structure. Among them, the calculation method for calculating the welding deformation and residual stress by distributing the forces that cause welding deformation to the weld as inherent strain (inherent strain method) can easily predict the welding deformation and residual stress of complex structures. In the past, methods for estimating the inherent strain (see Patent Document 1), methods for executing the inherent strain method using a general-purpose structural analysis program (see Patent Document 2), and the like have been proposed. .

この固有歪みの考え方を用いると、溶接構造物の最適設計や変形制御を施工計画段階で実行することができる。例えば、特許文献3及び4では溶接変形の予測を、固有歪み法を用いて溶接施工前に行うことで、溶接線の配置、溶接順序、変形拘束方法などの溶接設計や、溶接変形を修正するためなどの局所加熱方法等を最適化できる。
特開2005−201677号公報 特開2003−121273号公報 特開2004−122222号公報 特開2004−114064号公報
Using this concept of inherent strain, optimal design and deformation control of the welded structure can be executed at the construction planning stage. For example, in Patent Documents 3 and 4, prediction of welding deformation is performed before welding using the inherent distortion method, thereby correcting the welding design such as the arrangement of welding lines, the welding sequence, the deformation restraint method, and the welding deformation. Therefore, the local heating method can be optimized.
Japanese Patent Laying-Open No. 2005-201677 JP 2003-121273 A JP 2004-122222 A Japanese Patent Laid-Open No. 2004-114064

ところで、溶接構造物の一般的な製造手順としては、(a)仮組立、(b)点付け溶接、(c)初層から数層の溶接、(d)全パス溶接、(e)変形計測、(f)変形修正と熱処理、(g)変形計測と変形修正、(h)機械加工、(i)最終検査といった工程を経る。   By the way, as a general manufacturing procedure of a welded structure, (a) temporary assembly, (b) spot welding, (c) several layers of welding from the first layer, (d) all-pass welding, (e) deformation measurement , (F) deformation correction and heat treatment, (g) deformation measurement and deformation correction, (h) machining, and (i) final inspection.

溶接変形は溶接初期に生じやすいこともあり、(a)と(b)の工程は、変形が一部の溶接部に集中しないように特に注意して行われる。ある程度溶接が進むと変形は小さくなるため、(a)と(b)、(b)と(c)の工程の間に拘束具の除去の作業が入ることがある。   Welding deformation is likely to occur in the initial stage of welding, and the steps (a) and (b) are performed with particular care so that the deformation does not concentrate on some welds. Since the deformation becomes smaller as welding progresses to some extent, the removal of the restraint tool may be performed between the steps (a) and (b), and (b) and (c).

また、溶接変形の修正に関しては、溶接開先を確保するために、(a)、(b)の段階で局部的な変形計測と変形修正が行われる場合がある。しかし、溶接構造物全体としての変形計測と変形修正は、全パスの溶接が終了してから行われることが多い。薄板を組み合せた溶接構造物の場合には、溶接終了後に溶接部を局所加熱することで比較的簡単に溶接変形を修正できる。   In addition, with regard to correction of welding deformation, local deformation measurement and deformation correction may be performed at the stages (a) and (b) in order to secure a welding groove. However, deformation measurement and deformation correction for the entire welded structure are often performed after all passes have been welded. In the case of a welded structure in which thin plates are combined, welding deformation can be corrected relatively easily by locally heating the welded portion after the end of welding.

一方、より厚肉で剛構造の溶接構造物の場合には、溶接が完了してから局所入熱によって目的の変形を生じさせることは困難である。より初期の(a)、(b)の段階では、変形の修正が容易であるが、溶接変形の予測が難しいといった問題があり、実用が困難である。即ち、特に厚肉で剛構造の溶接構造物においては、溶接施工中の溶接変形をモニタリングして施工管理するための方法を確立することが課題であった。   On the other hand, in the case of a thicker and more rigid welded structure, it is difficult to cause the desired deformation by local heat input after the welding is completed. In the earlier stages (a) and (b), the deformation can be easily corrected, but there is a problem that it is difficult to predict the welding deformation, which is difficult to put into practical use. That is, particularly in a thick and rigid welded structure, it has been a problem to establish a method for monitoring and managing the welding deformation during the welding operation.

本発明の目的は、上述の事情を考慮してなされたものであり、溶接施工中または熱処理施工中の溶接構造物の変形や応力をこれらの施工中に段階的にモニタリングして、溶接施工や熱処理施工を管理できる溶接構造物の変形監視装置及び方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and monitoring the deformation and stress of the welded structure during welding construction or heat treatment construction step by step during these constructions. An object of the present invention is to provide a deformation monitoring apparatus and method for a welded structure capable of managing heat treatment construction.

本発明に係る溶接構造物の変形監視装置は、溶接構造物の溶接変形を監視する溶接構造物の変形監視装置であって、前記溶接構造物の表面の変位を計測する変位計と、この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算する変形量計算装置と、前記溶接構造物の表面温度を計測する温度計と、この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定する温度分布計算装置と、前記溶接構造物の溶接変形に関する判定を溶接施工中に行う判定装置とを備え、前記判定装置は、前記温度分布計算装置にて求めた前記溶接構造物の温度分布から、この溶接構造物の線膨張による熱変形量を推定する第1演算部と、前記変形量計算装置により求められた前記溶接構造物の変形量から、前記第1演算部にて得られた熱変形量の推定値を差し引いて真の溶接変形量を演算する第2演算部と、溶接プロセス毎の溶接変形量の許容値を予め格納するデータベースと、前記第2演算部にて求めた真の溶接変形量と前記溶接変形量の許容値とを比較して、溶接変形の合否を判定する判定部と、を有することを特徴とするものである。   A welding structure deformation monitoring device according to the present invention is a welding structure deformation monitoring device that monitors welding deformation of a welding structure, and includes a displacement meter that measures the displacement of the surface of the welding structure, and the displacement A deformation amount calculation device for calculating a deformation amount of the welded structure from position information on the data from the meter and a displacement measurement point, a thermometer for measuring the surface temperature of the welded structure, and data and temperature from the thermometer A temperature distribution calculation device that estimates a temperature distribution of the welded structure from position information about a measurement point; and a determination device that performs a determination related to welding deformation of the welded structure during welding. The determination device includes the temperature From the temperature distribution of the welded structure obtained by a distribution calculation device, a first calculation unit that estimates the amount of thermal deformation due to linear expansion of the welded structure, and the welded structure obtained by the deformation amount calculation device Strange A second calculation unit for calculating a true welding deformation amount by subtracting an estimated value of the thermal deformation amount obtained by the first calculation unit from the amount, and an allowable value of the welding deformation amount for each welding process are stored in advance. And a determination unit for comparing the true welding deformation amount obtained by the second calculation unit and the allowable value of the welding deformation amount to determine whether the welding deformation is acceptable or not. It is.

また、本発明に係る溶接構造物の変形監視装置は、溶接構造物の熱処理時の応力緩和、変形を監視する溶接構造物の変形監視装置であって、前記溶接構造物の表面の変位を計測する変位計と、この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算する変形量計算装置と、前記溶接構造物の表面温度を計測する温度計と、この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定する温度分布計算装置と、熱処理時の応力緩和、変形に関する判定を熱処理施工中に行う判定装置とを備え、前記判定装置は、前記溶接構造物の温度分布から溶接構造物の線膨張による熱変形量を推定する第1演算部と、前記変形量計算装置により求められた前記溶接構造物の変形量から、前記第1演算部にて得られた熱変形量の推定値を差し引いて真の熱処理変形量を演算する第2演算部と、熱処理プロセスにおける熱処理変形量の許容値を予め格納するデータベースと、前記第2演算部にて求めた真の熱処理変形量と前記熱処理変形量の許容値とを比較して、熱処理変形の合否を判定する判定部と、を有することを特徴とするものである。   The welding structure deformation monitoring apparatus according to the present invention is a welding structure deformation monitoring apparatus that monitors stress relaxation and deformation during heat treatment of the welded structure, and measures the displacement of the surface of the welded structure. A displacement meter, a deformation amount calculation device for calculating a deformation amount of the welded structure from position information on the data from the displacement meter and a displacement measurement point, a thermometer for measuring the surface temperature of the welded structure, A temperature distribution calculation device that estimates the temperature distribution of the welded structure from position information related to data and temperature measurement points from a thermometer, and a determination device that performs determination on stress relaxation and deformation during heat treatment during heat treatment, The determination device includes a first calculation unit that estimates a thermal deformation amount due to linear expansion of a welded structure from a temperature distribution of the welded structure, and a deformation amount of the welded structure obtained by the deformation amount calculation device, in front A second calculation unit for calculating a true heat treatment deformation amount by subtracting an estimated value of the heat deformation amount obtained by the first calculation unit; a database for storing in advance a permissible value of the heat treatment deformation amount in the heat treatment process; And a determination unit that determines whether the heat treatment deformation is acceptable by comparing the true heat treatment deformation amount obtained by the calculation unit with an allowable value of the heat treatment deformation amount.

更に、本発明に係る溶接構造物の変形監視方法は、溶接構造物の溶接変形を監視する溶接構造物の変形監視方法であって、前記溶接構造物の表面の変位を変位計が計測し、この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算し、前記溶接構造物の表面温度を温度計が計測し、この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定し、前記溶接構造物の温度分布からこの溶接構造物の線膨張による熱変形量を推定し、前記溶接構造物の変形量から前記熱変形量の推定値を差し引いて真の溶接変形量を演算し、この真の溶接変形量と予め用意された溶接変形量の許容値とを比較して溶接変形の合否を判定し、この溶接構造物の溶接変形に関する判定を溶接施工中に行うことを特徴とするものである。   Furthermore, the deformation monitoring method for a welded structure according to the present invention is a method for monitoring the deformation of a welded structure for monitoring the weld deformation of the welded structure, and a displacement meter measures the displacement of the surface of the welded structure, The amount of deformation of the welded structure is calculated from the data from the displacement meter and the position information about the displacement measurement point, the thermometer measures the surface temperature of the welded structure, and the data from the thermometer and the temperature measurement point are related. The temperature distribution of the welded structure is estimated from position information, the amount of thermal deformation due to linear expansion of the welded structure is estimated from the temperature distribution of the welded structure, and the amount of thermal deformation is calculated from the amount of deformation of the welded structure. The true welding deformation amount is calculated by subtracting the estimated value, and the true welding deformation amount is compared with a predetermined welding deformation allowable value to determine whether the welding deformation is acceptable or not. Judgment regarding deformation during welding It is characterized in.

また、本発明に係る溶接構造物の変形監視方法は、溶接構造物の熱処理時の応力緩和、変形を監視する溶接構造物の変形監視方法であって、前記溶接構造物の表面の変位を変位計が計測し、この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算し、前記溶接構造物の表面温度を温度計が計測し、この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定し、前記溶接構造物の温度分布から溶接構造物の線膨張による熱変形量を推定し、前記溶接構造物の変形量から前記熱変形量の推定値を差し引いて真の熱処理変形量を演算し、この真の熱処理変形量と予め用意された熱処理変形量の許容値とを比較して熱処理変形の合否を判定し、この熱処理時の応力緩和、変形に関する判定を熱処理施工中に行うことを特徴とするものである。   The deformation monitoring method for a welded structure according to the present invention is a deformation monitoring method for a welded structure that monitors stress relaxation and deformation during heat treatment of the welded structure, and displaces the displacement of the surface of the welded structure. The meter measures, the deformation amount of the welded structure is calculated from the data from the displacement meter and the position information on the displacement measurement point, the thermometer measures the surface temperature of the welded structure, and the data from the thermometer And the temperature distribution of the welded structure from the position information on the temperature measurement point, the amount of thermal deformation due to the linear expansion of the welded structure from the temperature distribution of the welded structure, and the amount of deformation of the welded structure The true heat treatment deformation amount is calculated by subtracting the estimated value of the heat deformation amount, and the true heat treatment deformation amount is compared with an allowable value of the heat treatment deformation amount prepared in advance to determine whether the heat treatment deformation is acceptable or not. Stress relaxation and deformation It is characterized in that a determination that during the heat treatment installation.

本発明に係る溶接構造物の変形監視装置及び方法によれば、溶接施工中または熱処理施工中の溶接構造物の変形をこれらの施工中に段階的にモニタリングすることで、溶接変形または熱処理変形の合否をこれらの施工中の最適な段階で判定するなど、溶接施工や熱処理施工を好適に管理することができる。   According to the apparatus and method for monitoring a deformation of a welded structure according to the present invention, the deformation of the welded structure during welding or heat treatment is monitored stepwise during the construction, so that the welding deformation or heat treatment deformation can be detected. It is possible to suitably manage welding construction and heat treatment construction, such as determining pass / fail at an optimal stage during the construction.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。但し、本発明は、これらの実施の形態に限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

[A]第1の実施の形態(図1)
図1は、本発明に係る溶接構造物の変形監視装置における第1の実施の形態が適用された溶接構造物の溶接変形監視装置を示す構成斜視図である。
[A] First embodiment (FIG. 1)
FIG. 1 is a configuration perspective view showing a welding deformation monitoring device for a welded structure to which the first embodiment of the welding structure deformation monitoring device according to the present invention is applied.

本実施の形態における、溶接構造物の変形監視装置としての溶接構造物の溶接変形監視装置10は、溶接構造物1の溶接変形を、溶接施工中及び溶接施工後(特に溶接施工中)に監視するものであり、変位計11、変形量計算装置12、温度計13、温度分布計算装置14及び判定装置15を有して構成される。   In this embodiment, a welding deformation monitoring device 10 for a welded structure as a welding structure deformation monitoring device monitors the welding deformation of the welded structure 1 during and after welding (particularly during welding). And includes a displacement meter 11, a deformation amount calculation device 12, a thermometer 13, a temperature distribution calculation device 14, and a determination device 15.

ここで、溶接構造物1は、例えば板材2に板材3を溶接機16を用いて溶接し、この板材3に板材4を、同様にして溶接機16により溶接して構成されるものである。符号5は溶接金属を示す。溶接機16は、溶接制御装置17により溶接プロセス毎に制御される。   Here, the welded structure 1 is configured, for example, by welding the plate material 3 to the plate material 2 using the welding machine 16 and welding the plate material 4 to the plate material 3 by the welding machine 16 in the same manner. Reference numeral 5 denotes a weld metal. The welding machine 16 is controlled for each welding process by the welding control device 17.

変位計11は複数存在し、それぞれが、溶接構造物1の表面の変位を溶接施工中及び溶接施工後に計測する。変形量計算装置12は、複数の変位計11からの変位データと変位計測点に関する位置情報から、溶接構造物1の変形量を、溶接施工中及び溶接施行後に計算する。   There are a plurality of displacement meters 11, each measuring the displacement of the surface of the welded structure 1 during and after welding. The deformation amount calculation device 12 calculates the deformation amount of the welded structure 1 from the displacement data from the plurality of displacement meters 11 and the position information regarding the displacement measurement points during and after welding.

温度計13は複数存在し、それぞれが、溶接構造物1の表面温度を溶接施工中及び溶接施行後に計測する。温度分布計算装置14は、複数の温度計13からの温度データと温度計測点に関する位置情報から、溶接施工中及び溶接施行後に溶接構造物1の温度分布を推定する。   There are a plurality of thermometers 13 and each measures the surface temperature of the welded structure 1 during and after welding. The temperature distribution calculation device 14 estimates the temperature distribution of the welded structure 1 during and after welding from the temperature data from the plurality of thermometers 13 and the position information regarding the temperature measurement points.

判定装置15は、溶接構造物1の溶接変形に関する判定を溶接施行中及び溶接施行後に実行し、第1演算部18、第2演算部19、判定部20、演算装置21、表示装置22及びデータベース23を有する。   The determination device 15 executes determination regarding welding deformation of the welded structure 1 during and after welding, and includes a first calculation unit 18, a second calculation unit 19, a determination unit 20, a calculation device 21, a display device 22, and a database. 23.

第1演算部18は、温度分布計算装置14にて求められた溶接構造物1の温度分布データから、この溶接構造物1の線膨張による熱変形量を、溶接施行中及び溶接施行後に推定する。第2演算部19は、変形量計算装置12にて求められた溶接構造物1の変形量データから、第1演算部18にて求められた熱変形量の推定値を差し引いて、溶接施行中及び溶接施行後に真の溶接変形量を演算する。   The first calculation unit 18 estimates the amount of thermal deformation due to linear expansion of the welded structure 1 from the temperature distribution data of the welded structure 1 obtained by the temperature distribution calculation device 14 during and after welding. . The second calculation unit 19 subtracts the estimated value of the thermal deformation amount obtained by the first calculation unit 18 from the deformation amount data of the welded structure 1 obtained by the deformation amount calculation device 12, and is performing welding. And after welding is performed, the true welding deformation amount is calculated.

ここで、真の溶接変形量について説明する。溶接中の溶接構造物1においては温度分布が発生し、特に大型構造物では温度の不均一による熱変形が大きい。溶接施工後、常温近くまで溶接構造物1の温度が低下してから行う通常の変形計測では、均一温度になっているので、線膨張による熱変形は問題にならない。しかしながら、溶接プロセスの途中の変形をモニタリングする場合には、計測により直接観察できる変形量から、温度分布に起因する線膨張による熱変形量を差し引き、溶接部の弾塑性変形によって生じる真の溶接変形量を求める必要がある。この真の溶接変形量は、全体温度が均一となっても残る変形量のことである。   Here, the true welding deformation amount will be described. A temperature distribution occurs in the welded structure 1 during welding, and thermal deformation due to temperature non-uniformity is particularly large in large structures. In the normal deformation measurement performed after the welding operation is performed after the temperature of the welded structure 1 is lowered to near normal temperature, the temperature is uniform, so thermal deformation due to linear expansion does not cause a problem. However, when monitoring deformation during the welding process, the amount of thermal deformation due to linear expansion due to temperature distribution is subtracted from the amount of deformation that can be observed directly by measurement, so that true welding deformation caused by elasto-plastic deformation of the weld The amount needs to be determined. This true amount of welding deformation is the amount of deformation that remains even if the overall temperature is uniform.

更に、真の溶接変形量は、溶接の進捗状況や拘束治具の除去など、溶接プロセスの進行に伴い変化する値であるため、後述の如く、溶接変形の合否の判定や、溶接プロセスの溶接条件の変更、修正の判断においては、最終的な図面との比較ではなく、溶接プロセスの途中での変形量の許容値や予測値と比較することになる。   Furthermore, the true welding deformation amount is a value that changes with the progress of the welding process, such as the progress of welding and removal of the restraining jig. In the determination of the change or correction of the conditions, it is not a comparison with the final drawing but a comparison with an allowable value or a predicted value of the deformation amount during the welding process.

一方、データベース23には、溶接プロセス毎の溶接変形量の許容値及び予測値が予め格納されている。これらの許容値及び予測値は、演算装置21により、固有歪み法を用いた演算によって、溶接プロセス毎に予め算出される。この固有歪み法は、溶接変形や熱処理変形を引き起こす歪みを代表した固有歪みを、溶接構造物1の全体モデルに分布して付与し、有限要素法(FEM:Finite Element Method)を用いた弾性解析を行うことで、溶接構造物1の溶接変形や熱処理変形を推定するものである。   On the other hand, the database 23 stores in advance an allowable value and a predicted value of the welding deformation amount for each welding process. These allowable values and predicted values are calculated in advance for each welding process by the calculation device 21 by calculation using the inherent strain method. In this inherent strain method, inherent strain representative of strain that causes welding deformation and heat treatment deformation is distributed and applied to the entire model of the welded structure 1, and an elastic analysis using a finite element method (FEM) is performed. By performing the above, welding deformation and heat treatment deformation of the welded structure 1 are estimated.

判定部20は、溶接施行中及び溶接施行後に、第2演算部19にて求められた溶接構造物1における真の溶接変形量と、データベース23に格納され、且つ溶接制御装置17から提供される溶接プロセスに該当する溶接プロセスの溶接変形量許容値及び溶接変形量予測値とをそれぞれ比較する。判定部20は、溶接構造物1における真の溶接変形量と溶接変形量許容値とを比較することにより、該当する溶接プロセスにおける溶接変形の合否を判定する。   The determination unit 20 is stored in the database 23 and is provided from the welding control device 17 during the welding operation and after the welding operation, and is stored in the database 23 and the true welding deformation amount in the welded structure 1. The welding deformation allowance value and the welding deformation amount prediction value of the welding process corresponding to the welding process are respectively compared. The determination unit 20 determines the pass / fail of the welding deformation in the corresponding welding process by comparing the true welding deformation amount in the welded structure 1 and the welding deformation amount allowable value.

更に、判定部20は、溶接構造物1における真の溶接変形量と溶接変形量予測値とを比較することにより、後続の溶接プロセスの溶接条件を変更し修正するための機能を実行する。この後続の溶接プロセスの溶接条件の変更、修正のための機能は、後続の溶接プロセスにおいて、溶接変形の修正が必要であるか否かの判断と、修正が必要であると判断した場合における、修正を目的とした溶接条件の変更内容の決定とである。この溶接条件の変更内容は、後続の溶接プロセスにおいて、例えば溶接順序の見直し、入熱による溶接変形の修正、溶接入熱量や溶接速度の変更などである。   Furthermore, the determination unit 20 executes a function for changing and correcting the welding conditions of the subsequent welding process by comparing the true welding deformation amount in the welded structure 1 and the welding deformation amount prediction value. The function for changing and correcting the welding conditions of this subsequent welding process is the determination of whether or not the welding deformation needs to be corrected in the subsequent welding process, and when it is determined that the correction is necessary. It is the determination of the change contents of the welding conditions for the purpose of correction. The change contents of the welding conditions include, for example, review of the welding sequence, correction of welding deformation due to heat input, change of the welding heat input amount and welding speed in the subsequent welding process.

判定部20が実行する後続の溶接プロセスの溶接条件の変更、修正のための機能は、固有歪み法による計算機能を用いる。つまり、真の溶接変形量を溶接変形量予測値に一致させるために必要な変形量に対応する固有歪みを求め、この固有歪みを生じさせるための溶接プロセスの溶接条件(例えば入熱量など)を求めるものである。   The function for changing or correcting the welding conditions of the subsequent welding process executed by the determination unit 20 uses a calculation function based on the inherent distortion method. In other words, the inherent distortion corresponding to the deformation amount necessary to match the true welding deformation amount with the predicted welding deformation amount is obtained, and the welding conditions (for example, heat input) of the welding process for generating the inherent distortion are determined. It is what you want.

尚、前述の溶接変形の合否内容及び後続の溶接プロセスの溶接条件の変更修正内容は、表示装置22により表示される。そして、溶接プロセスの溶接条件の変更、修正内容に応じて、溶接制御装置17が溶接機16を制御する。   Note that the above-described welding pass / fail content and the welding condition change / correction content of the subsequent welding process are displayed on the display device 22. And the welding control apparatus 17 controls the welding machine 16 according to the change of the welding conditions of a welding process, and the content of correction.

従って、本実施の形態によれば、次の効果(1)を奏する。   Therefore, according to the present embodiment, the following effect (1) is obtained.

(1)判定装置15の第1演算部18は、特に溶接施行中の温度分布から溶接構造物1の線膨張による熱変形量を推定し、判定装置15の第2演算部19は、特に溶接施行中の溶接構造物1の変形量から前記熱変形量の推定値を差し引いて、溶接プロセスにおける真の溶接変形量を算出する。そして、判定装置15の判定部20は、溶接プロセスの真の溶接変形量と、該当する溶接プロセスにおける予め用意された溶接変形量の許容値とを比較して、その溶接プロセスにおける溶接変形の合否を判定する。更に判定部20は、溶接プロセスの真の溶接変形量と、該当する溶接プロセスにおける予め用意された溶接変形量の予測値とを比較して、後続の溶接プロセスの溶接条件を変更し修正するための機能を実行する。   (1) The first calculation unit 18 of the determination device 15 estimates the amount of thermal deformation due to the linear expansion of the welded structure 1 from the temperature distribution in particular during welding. The true welding deformation amount in the welding process is calculated by subtracting the estimated value of the thermal deformation amount from the deformation amount of the welded structure 1 being executed. Then, the determination unit 20 of the determination device 15 compares the true welding deformation amount of the welding process with an allowable value of the welding deformation amount prepared in advance in the corresponding welding process, and determines whether the welding deformation in the welding process is acceptable. Determine. Further, the determination unit 20 compares the true welding deformation amount of the welding process with a predicted value of the welding deformation amount prepared in advance in the corresponding welding process, and changes and corrects the welding condition of the subsequent welding process. Perform the function.

このように、溶接施行中の溶接構造物1の溶接変形を、この溶接施行中に段階的にモニタリングすることで、溶接プロセス毎に溶接変形の合否の判定や、後続の溶接プロセスの溶接条件の変更、修正のための機能の実行を、溶接施行中の最適な段階で実施でき、従って、溶接施行を好適に管理することができる。   In this way, by monitoring the welding deformation of the welded structure 1 during the welding operation step by step during the welding operation, it is possible to determine whether or not the welding deformation is acceptable for each welding process and to determine the welding conditions of the subsequent welding process. Execution of the function for change and correction can be performed at an optimal stage during welding execution, and therefore the welding execution can be suitably managed.

[B]第2の実施の形態(図2)
図2は、本発明に係る溶接構造物の変形監視装置における第2の実施の形態が適用された溶接構造物の溶接変形監視装置を示す構成斜視図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 2)
FIG. 2 is a perspective view showing a welding deformation monitoring device for a welded structure to which the second embodiment of the welding structure deformation monitoring device according to the present invention is applied. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態における、溶接構造物の変形監視装置としての溶接構造物の溶接変形監視装置25が前記第1の実施の形態と異なる点は、溶接構造物1の変位拘束部位26の範囲に関する位置データと、変位拘束部位26の変位拘束条件に関するデータとを加味して、溶接構造物1の変形量及び真の溶接変形量を算出し、これにより、溶接プロセスにおける溶接変形の合否を判定し、後述の溶接プロセスの溶接条件の変更、修正のための機能を実行する点である。   In this embodiment, the welding deformation monitoring device 25 of the welded structure as a welding structure deformation monitoring device is different from the first embodiment in that the position relating to the range of the displacement restraint portion 26 of the welding structure 1. In consideration of the data and the data related to the displacement constraint condition of the displacement constraint portion 26, the deformation amount and the true welding deformation amount of the welded structure 1 are calculated, thereby determining whether or not the welding deformation is successful in the welding process, This is to execute a function for changing or correcting the welding conditions of the welding process described later.

つまり、実際の溶接構造物1の溶接においては、全体の変位を拘束しているとみなせる箇所がある場合がある。このような場合には、変位拘束部位26を計測点の一つにすること、及び変位拘束部位26の拘束条件に関する情報(例えば変位拘束部位26の表面温度、変位を基準点とすること、溶接構造物1がいずれの方向に移動可能かなど)を変形量計算装置27、及び判定装置15の第1演算部28に与える。   That is, in actual welding of the welded structure 1, there may be a portion where it can be considered that the entire displacement is constrained. In such a case, the displacement restraint part 26 is set as one of the measurement points, and information on the restraint conditions of the displacement restraint part 26 (for example, the surface temperature and displacement of the displacement restraint part 26 are used as reference points, welding In which direction the structure 1 can move) is given to the deformation amount calculation device 27 and the first calculation unit 28 of the determination device 15.

具体的には、変形量計算装置27は、溶接構造物1の変位拘束部位26の範囲に関する位置データと、変位拘束部位26の変位拘束条件に関するデータ(変位拘束部位26の位置を基準点としたこと、溶接構造物1がいずれの方向に移動可能かなど)と、変位拘束部位26における変位を含めた変位計11からのデータと、変位計側位置に関する位置情報とから、溶接構造物1の変位量を計算する。   Specifically, the deformation amount calculation device 27 is configured to include position data relating to the range of the displacement restraint portion 26 of the welded structure 1 and data relating to the displacement restraint conditions of the displacement restraint portion 26 (using the position of the displacement restraint portion 26 as a reference point). And in which direction the welded structure 1 can move), the data from the displacement meter 11 including the displacement in the displacement restraint portion 26, and the position information on the displacement meter side position. Calculate the displacement.

また、判定装置15の第1演算部28は、溶接構造物1の変位拘束部位26の範囲に関する位置データと、変位拘束部位26の変位拘束条件に関するデータと、温度分布計算装置14にて求められた、変位拘束部位26の温度を加味した溶接構造物1の温度分布データとから、この溶接構造物1の線膨張による熱変形量を推定する。更に、判定装置15の第2演算部19は、変形量計算装置27により求められた溶接構造物1の変形量から、第1演算部28にて得られた熱変形量の推定値を差し引いて真の溶接変形量を演算する。   Further, the first calculation unit 28 of the determination device 15 is obtained by the position distribution data regarding the range of the displacement restricting portion 26 of the welded structure 1, the data regarding the displacement restricting condition of the displacement restricting portion 26, and the temperature distribution calculating device 14. In addition, the amount of thermal deformation due to linear expansion of the welded structure 1 is estimated from the temperature distribution data of the welded structure 1 taking into account the temperature of the displacement restraint portion 26. Further, the second calculation unit 19 of the determination device 15 subtracts the estimated value of the thermal deformation amount obtained by the first calculation unit 28 from the deformation amount of the welded structure 1 obtained by the deformation amount calculation device 27. The true welding deformation amount is calculated.

判定装置15の判定部20は、前記実施の形態と同様にして、第2演算部19にて得られた真の溶接変形量を、溶接変形量の許容値、予測値とそれぞれ比較し、溶接プロセス毎の溶接変形の合否を判定し、後続の溶接プロセスの溶接条件を変更し修正するための機能を実行する。   The determination unit 20 of the determination device 15 compares the true welding deformation amount obtained by the second calculation unit 19 with the allowable value and the predicted value of the welding deformation amount, respectively, in the same manner as in the above-described embodiment. A function for determining whether or not welding deformation for each process is accepted and changing and correcting the welding conditions of the subsequent welding process is executed.

従って、本実施の形態によれば、次の効果(2)を奏する。   Therefore, according to the present embodiment, the following effect (2) is obtained.

(2)実際の溶接構造物1に全体の変位を拘束している変位拘束部位26がある場合に、その変位拘束部位26の変位、温度を取り込むことで、変形量計算装置27が算出する溶接構造物1の変形量、判定装置15の第1演算部28が推定する熱変形量が正確になり、判定装置15の第2演算部19が求める溶接構造物1の真の溶接変形量を高精度に演算できる。この結果、溶接プロセス毎の溶接変形の合否の判定や、後続の溶接プロセスの溶接条件の変更、修正の精度を向上させることができる。   (2) When the actual welded structure 1 includes the displacement restraint portion 26 that restrains the entire displacement, the welding calculated by the deformation amount calculation device 27 by taking in the displacement and temperature of the displacement restraint portion 26. The deformation amount of the structure 1 and the thermal deformation amount estimated by the first calculation unit 28 of the determination device 15 become accurate, and the true welding deformation amount of the welded structure 1 obtained by the second calculation unit 19 of the determination device 15 is increased. Can be calculated accurately. As a result, it is possible to improve the accuracy of the determination of the pass / fail of the welding deformation for each welding process and the change or correction of the welding conditions in the subsequent welding process.

[C]第3の実施の形態(図3)
図3は、本発明に係る溶接構造物の変形監視装置における第3の実施の形態が適用された溶接構造物の溶接変形監視装置を示す構成斜視図である。この第3の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 3)
FIG. 3 is a structural perspective view showing a welding deformation monitoring device for a welded structure to which the third embodiment of the welding structure deformation monitoring device according to the present invention is applied. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態における、溶接構造物の変形監視装置としての溶接構造物の溶接変形監視装置30が前記第1の実施の形態と異なる点は、次の通りである。つまり、変位と歪みは同一の計測系ではあるが、部分的な変位計測データから局所的な歪みを求めることは実際には困難である。本実施の形態では、歪み計31及び歪み量計算装置32を、第1の実施の形態の溶接変形監視装置10に追加したものである。   The welding deformation monitoring device 30 for a welded structure as a welding structure deformation monitoring device in the present embodiment is different from the first embodiment as follows. That is, although displacement and strain are the same measurement system, it is actually difficult to obtain local strain from partial displacement measurement data. In the present embodiment, a strain gauge 31 and a strain amount calculation device 32 are added to the welding deformation monitoring device 10 of the first embodiment.

歪み計31は複数存在し、それぞれが溶接構造物1の表面の歪みを、溶接施工中及び溶接施工後に計測する。歪み量計算装置32は、複数の歪み計31からの歪みデータと歪み計測点に関する位置情報から、溶接施工中及び溶接施工後に、溶接構造物1の歪み量を計算する。   There are a plurality of strain gauges 31, each of which measures the distortion of the surface of the welded structure 1 during and after welding. The strain amount calculation device 32 calculates the strain amount of the welded structure 1 during and after welding from the strain data from the plurality of strain gauges 31 and position information regarding strain measurement points.

判定装置15の第1演算部33は、溶接施工中及び溶接施工後に、温度分布計算装置14にて求められた溶接構造物1の温度分布データから、この溶接構造物1の線膨張による熱変形量を推定すると共に、この熱変形量に基づいて歪み量を推定する。   The first calculation unit 33 of the determination device 15 performs thermal deformation due to linear expansion of the welded structure 1 from the temperature distribution data of the welded structure 1 obtained by the temperature distribution calculation device 14 during and after welding. The amount is estimated and the amount of strain is estimated based on the amount of thermal deformation.

判定装置15の第2演算部34は、第2演算部19と同様にして、溶接施工中及び溶接施工後に真の溶接変形量を演算すると共に、歪み量計算装置32により求められた歪み量から、第1演算部33にて得られた歪み量の推定値を差し引いて、溶接施工中及び溶接施工後に真の溶接歪み量を演算する。   The second calculation unit 34 of the determination device 15 calculates the true welding deformation amount during and after the welding operation in the same manner as the second calculation unit 19 and from the distortion amount obtained by the distortion amount calculation device 32. Then, the estimated value of the distortion amount obtained by the first calculation unit 33 is subtracted to calculate the true welding distortion amount during and after the welding operation.

判定装置15のデータベース36には、溶接プロセス毎の溶接変形量の許容値及び予測値と共に、溶接プロセス毎の溶接歪み量の許容値が予め格納されている。この溶接歪み量の許容値も、溶接変形量の許容値及び予測値と同様に、演算装置37により、固有歪み法を用いた演算によって溶接プロセス毎に予め算出される。   In the database 36 of the determination device 15, the allowable value of the welding distortion amount for each welding process is stored in advance together with the allowable value and the predicted value of the welding deformation amount for each welding process. The allowable value of the welding distortion amount is also calculated in advance for each welding process by calculation using the inherent distortion method by the calculation device 37, similarly to the allowable value and predicted value of the welding deformation amount.

判定装置15の判定部35は、溶接施工中及び溶接施工後に、判定部20と同様にして、溶接プロセス毎の溶接変形の合否を判定し、更に、後続の溶接プロセスの溶接条件の変更、修正のための機能を実行すると共に、データベース36に格納された溶接プロセス毎の溶接歪み量の許容値と前記真の溶接歪み量とを比較して、溶接歪みの適否を判定する。そして、判定部35は、この溶接歪みの適否から溶接構造物1の残留応力を評価する。   The determination unit 35 of the determination device 15 determines whether or not the welding deformation is different for each welding process in the same manner as the determination unit 20 during and after the welding operation, and further changes and corrections in the welding conditions of the subsequent welding process. In addition to executing the function for the above, the allowable value of the welding distortion amount for each welding process stored in the database 36 is compared with the true welding distortion amount to determine the suitability of the welding distortion. And the determination part 35 evaluates the residual stress of the welded structure 1 from the suitability of this welding distortion.

従って、本実施の形態によれば、前記第1の実施の形態の効果(1)と同様な効果を奏する他、次の効果(3)を奏する。   Therefore, according to the present embodiment, the following effect (3) is obtained in addition to the same effect as the effect (1) of the first embodiment.

(3)歪み計31により溶接構造物1の表面の歪みが計測され、歪み量計算装置32により溶接構造物1の歪み量が計算され、判定装置15の第1演算部33、第2演算部34及び判定部35により、溶接プロセス毎の溶接歪みの適否が判定される。このため、溶接プロセス毎の溶接変形の合否や、後続の溶接プロセスの溶接条件の変更、修正ばかりでなく、溶接歪みの適否を求めることで、溶接構造物1の残留応力を評価することができる。   (3) The strain on the surface of the welded structure 1 is measured by the strain gauge 31, the strain amount of the welded structure 1 is calculated by the strain amount calculation device 32, and the first calculation unit 33 and the second calculation unit of the determination device 15 are calculated. 34 and the determination unit 35 determine whether the welding distortion is appropriate for each welding process. For this reason, the residual stress of the welded structure 1 can be evaluated by determining the suitability of the welding distortion as well as the success or failure of the welding deformation for each welding process and the change or correction of the welding conditions of the subsequent welding process. .

[D]第4の実施の形態(図4)
図4は、本発明に係る溶接構造物の溶接変形監視装置における第4の実施の形態が適用された溶接構造物の熱処理時応力・変形監視装置を示す構成斜視図である。この第4の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 4)
FIG. 4 is a structural perspective view showing a stress / deformation monitoring device during heat treatment of a welded structure to which the fourth embodiment of the weld deformation monitoring device for a welded structure according to the present invention is applied. In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態における、溶接構造物の変形監視装置としての溶接構造物の熱処理時応力・変形監視装置40が、前記第1実施の形態と異なる点は、溶接後の溶接構造物1を熱処理炉41内で均一温度に加熱し熱処理するときに生ずる応力緩和(残留応力の緩和を含む)、変形を監視する点であり、従って第1の実施形態の溶接機16、溶接制御装置17が、それぞれ熱処理炉41、熱処理制御装置42に変更されている。   The stress / deformation monitoring device 40 at the time of heat treatment of a welded structure as a deformation monitor of the welded structure in the present embodiment differs from the first embodiment in that the welded structure 1 after welding is subjected to a heat treatment furnace. 41 is a point of monitoring stress relaxation (including residual stress relaxation) and deformation generated when heating to a uniform temperature and heat treatment within 41, and accordingly, the welding machine 16 and the welding control device 17 of the first embodiment respectively The heat treatment furnace 41 and the heat treatment control device 42 are changed.

通常、熱処理工程においては温度分布が均一であるため、線膨張による熱変形量を考慮する必要は無い。しかしながら、異なる材質の材料を溶接等により接合してなる構造物においては、それぞれの材料の線膨張率やヤング率などの物理量や、高温下における応力緩和特性などが異なっている。そこで、本実施の形態の熱処理時応力・変形監視装置40では、線膨張による熱変形量を考慮すべく、熱処理中の温度と変形を同時にモニタリングしている。   Usually, since the temperature distribution is uniform in the heat treatment step, it is not necessary to consider the amount of thermal deformation due to linear expansion. However, in a structure formed by joining materials of different materials by welding or the like, physical quantities such as linear expansion coefficient and Young's modulus of each material, stress relaxation characteristics at high temperatures, and the like are different. Therefore, in the heat treatment stress / deformation monitoring device 40 of the present embodiment, the temperature and deformation during the heat treatment are simultaneously monitored in order to take into account the amount of thermal deformation due to linear expansion.

従って、本実施の形態の熱処理時応力・変形監視装置40が取り扱う溶接構造物1は、異なる材質の材料が溶接された溶接構造物である。また、本実施の形態においても、変位計11、変形量計算装置12、温度計13、温度分布計算装置14及び判定装置15を有してなり、更に判定装置15は、第1演算部18、第2演算部19、判定部20、演算装置21、表示装置22及びデータベース23を有して構成される。   Therefore, the welded structure 1 handled by the stress / deformation monitoring device 40 during heat treatment of the present embodiment is a welded structure in which materials of different materials are welded. Also in the present embodiment, the displacement meter 11, the deformation amount calculation device 12, the thermometer 13, the temperature distribution calculation device 14, and the determination device 15 are included, and the determination device 15 further includes the first calculation unit 18, The second calculation unit 19, the determination unit 20, the calculation device 21, the display device 22, and the database 23 are configured.

変位計11は複数存在し、それぞれが、溶接構造物1の表面の変位を熱処理施工中及び熱処理施工後に計測する。変形量計算装置12は、複数の変位計11からの変位データと変位計測点に関する位置情報から、溶接構造物1の変形量を、熱処理施工中及び熱処理施行後に計算する。   There are a plurality of displacement meters 11, each of which measures the displacement of the surface of the welded structure 1 during and after the heat treatment. The deformation amount calculation device 12 calculates the deformation amount of the welded structure 1 from the displacement data from the plurality of displacement meters 11 and the position information regarding the displacement measurement points during and after the heat treatment.

温度計13は複数存在し、それぞれが、溶接構造物1の表面温度を熱処理施工中及び熱処理施行後に計測する。温度分布計算装置14は、複数の温度計13からの温度データと温度計測点に関する位置情報から、熱処理施工中及び熱処理施行後に溶接構造物1の温度分布を推定する。   There are a plurality of thermometers 13 and each measures the surface temperature of the welded structure 1 during and after the heat treatment. The temperature distribution calculation device 14 estimates the temperature distribution of the welded structure 1 during the heat treatment and after the heat treatment from the temperature data from the plurality of thermometers 13 and the position information regarding the temperature measurement points.

判定装置15は、溶接構造物1について熱処理時の応力緩和(残留応力の緩和を含む)、変形に関する判定を熱処理施行中及び熱処理施行後に実行する。   The determination device 15 executes determination regarding stress relaxation (including residual stress relaxation) and deformation of the welded structure 1 during heat treatment during and after heat treatment.

第1演算部18は、温度分布計算装置14にて求められた溶接構造物1の温度分布データから、この溶接構造物1の線膨張による熱変形量を、熱処理施行中及び熱処理施行後に推定する。第2演算部19は、変形量計算装置12にて求められた溶接構造物1の変形量データから、第1演算部18にて求められた熱変形量の推定値を差し引いて、熱処理施行中及び熱処理施行後に真の熱処理変形量を演算する。   The first calculation unit 18 estimates the amount of thermal deformation due to linear expansion of the welded structure 1 from the temperature distribution data of the welded structure 1 obtained by the temperature distribution calculation device 14 during and after the heat treatment. . The second calculation unit 19 subtracts the estimated value of the amount of thermal deformation obtained by the first calculation unit 18 from the deformation amount data of the welded structure 1 obtained by the deformation amount calculation device 12, and is performing heat treatment. And the true heat treatment deformation amount is calculated after the heat treatment.

一方、データベース23には、熱処理プロセスにおける熱処理変形量の許容値が予め格納されている。この許容値は、演算装置21により、固有歪み法を用いた演算によって、熱処理プロセスについて予め算出される。この熱処理変形量の許容値は、熱処理施行によって溶接構造物1に所望の応力緩和(残留応力の緩和を含む)、変形がなされたか否かを判定する際の指標となる。   On the other hand, the database 23 stores in advance an allowable value of the heat treatment deformation amount in the heat treatment process. This allowable value is calculated in advance for the heat treatment process by the calculation device 21 by calculation using the inherent strain method. The allowable value of the heat treatment deformation amount serves as an index for determining whether or not desired stress relaxation (including relaxation of residual stress) and deformation have been performed on the welded structure 1 by performing heat treatment.

判定部20は、熱処理施行中及び熱処理施行後に、第2演算部19にて求められた溶接構造物1における真の熱処理変形量と、データベース23に格納された熱処理プロセスの熱処理変形量許容値とを比較して、熱処理変形の合否を判定する。即ち、真の熱処理変形量が熱処理変形量許容値の範囲内にあれば、この熱処理プロセスの熱処理条件によって予想した応力緩和(残留応力の緩和を含む)、変形が溶接構造物1になされたと判定できる。   The determination unit 20 includes the true heat treatment deformation amount in the welded structure 1 obtained by the second arithmetic unit 19 and the heat treatment deformation amount allowable value of the heat treatment process stored in the database 23 during and after the heat treatment. Are compared to determine whether the heat treatment deformation is acceptable. That is, if the true heat treatment deformation amount is within the allowable range of heat treatment deformation, it is determined that the stress relaxation (including residual stress relaxation) predicted by the heat treatment conditions of this heat treatment process and the deformation has been made to the welded structure 1. it can.

更に判定部20は、真の熱処理変形量と熱処理変形量許容値との差に基づいて、熱処理プロセスにおける熱処理条件を変更し修正するための判断を実行する。即ち、真の熱処理変形量が熱処理変形量許容値の範囲内にないときには、この熱処理プロセスにおける熱処理条件、例えば熱処理時間や熱処理温度を変更するための判断を行う。   Further, the determination unit 20 executes a determination for changing and correcting the heat treatment condition in the heat treatment process based on the difference between the true heat treatment deformation amount and the heat treatment deformation amount allowable value. That is, when the true heat treatment deformation amount is not within the range of the heat treatment deformation amount allowable value, a judgment is made to change the heat treatment conditions in this heat treatment process, such as the heat treatment time and the heat treatment temperature.

尚、熱処理変形の合否の内容や熱処理条件の変更、修正内容は、表示装置22に表示される。そして、熱処理条件の変更、修正内容に応じて、熱処理制御装置42が熱処理炉41を制御する。   It should be noted that the contents of pass / fail of heat treatment deformation, changes in heat treatment conditions, and correction contents are displayed on the display device 22. Then, the heat treatment control device 42 controls the heat treatment furnace 41 in accordance with the change and correction contents of the heat treatment conditions.

従って、本実施の形態によれば、次の効果(4)を奏する。   Therefore, according to the present embodiment, the following effect (4) is obtained.

(4)判定装置15の第1演算部18は、特に熱処理施行中の温度分布から溶接構造物1の線膨張による熱変形量を推定し、判定装置15の第2演算部19は、特に熱処理施行中の溶接構造物1の変形量から前記熱変形量の推定値を差し引いて、熱処理プロセスにおける真の熱処理変形量を算出する。そして、判定装置15の判定部20は、熱処理プロセスの真の熱処理変形量と、熱処理プロセスにおける予め用意された熱処理変形量の許容値とを比較して、熱処理変形の合否を判定し、更に熱処理プロセスの熱処理条件を変更し修正するための判断を実行する。   (4) The first calculation unit 18 of the determination device 15 estimates the amount of thermal deformation due to the linear expansion of the welded structure 1 from the temperature distribution particularly during the heat treatment, and the second calculation unit 19 of the determination device 15 particularly performs the heat treatment. The true heat treatment deformation amount in the heat treatment process is calculated by subtracting the estimated value of the heat deformation amount from the deformation amount of the welded structure 1 being executed. Then, the determination unit 20 of the determination device 15 compares the true heat treatment deformation amount of the heat treatment process with an allowable value of the heat treatment deformation amount prepared in advance in the heat treatment process, determines whether the heat treatment deformation is acceptable, and further performs the heat treatment. Make decisions to change and modify the heat treatment conditions of the process.

このように、異なる材質からなる溶接構造物1について、熱処理施行中の熱処理変形を段階的にモニタリングして、熱処理プロセスの熱処理条件によって、溶接構造物1に予想した応力緩和(残留応力の緩和を含む)、変形がなされたか否かを、熱処理施行中の最適な段階で実施でき、場合によって熱処理条件を変更するなど、熱処理施行を好適に管理できる。   In this way, for the welded structure 1 made of different materials, the heat treatment deformation during the heat treatment is monitored step by step, and the stress relaxation (residual stress relaxation) expected for the welded structure 1 is determined according to the heat treatment conditions of the heat treatment process. Whether or not the deformation has been made can be carried out at an optimal stage during the heat treatment, and the heat treatment can be suitably managed, for example, by changing the heat treatment conditions.

尚、温度分布が一様な熱処理炉41内で行われる熱処理においては、温度計13及び温度分布計算装置14を省略し、熱処理制御装置42によって得られた温度の値を温度分布データとしてもよい。   In the heat treatment performed in the heat treatment furnace 41 having a uniform temperature distribution, the thermometer 13 and the temperature distribution calculation device 14 may be omitted, and the temperature value obtained by the heat treatment control device 42 may be used as temperature distribution data. .

[E]第5の実施の形態(図5)
図5は、本発明に係る溶接構造物の変形監視装置における第5の実施の形態が適用された水車ランナの溶接変形監視装置を示す構成斜視図である。この第5の実施の形態において、前記第1及び第4の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 5)
FIG. 5 is a structural perspective view showing a welding deformation monitoring device for a turbine runner to which a fifth embodiment of the deformation monitoring device for a welded structure according to the present invention is applied. In the fifth embodiment, parts similar to those in the first and fourth embodiments are denoted by the same reference numerals, and description thereof is simplified or omitted.

本実施の形態における溶接構造物の変形監視装置は、溶接構造物1が、ランナクラウン52とランナバンド53との間に複数枚のランナブレード54を備えた水車ランナ51の場合であり、この水車ランナ51について、溶接時の変形監視を第1の実施形態を用いて実施し、熱処理時の応力、変形の監視を第4の実施形態を用いて実施するものであるが、特に溶接時の変形監視について以下に述べる。   The deformation monitoring apparatus for a welded structure in the present embodiment is a case where the welded structure 1 is a water turbine runner 51 having a plurality of runner blades 54 between a runner crown 52 and a runner band 53. The runner 51 is subjected to deformation monitoring during welding using the first embodiment, and stress and deformation monitoring during heat treatment is performed using the fourth embodiment. The monitoring is described below.

本実施の形態における、溶接構造物の変形監視装置としての水車ランナ51の溶接変形監視装置55では、変位計は、ランナブレード変位計56A、ランナバンド変位計56B及びランナクラウン変位計56Cを有する。ランナブレード変位計56Aは、1枚のランナブレード54について少なくとも3個設けられ、それぞれがランナブレード54の表面のそれぞれの位置の変位を計測する。ランナバンド変位計56Bは、ランナバンド53の表面の変位を計測する。ランナクラウン変位計56Cは、ランナクラウン52の表面の変位を計測する。これらのランナブレード変位計56A、ランナバンド変位計56B、ランナクラウン変位計56Cからの変位データと変位計点に関する位置情報から、変形量計算装置12が水車ランナ51の変形量を計算する。   In the weld deformation monitoring device 55 of the turbine runner 51 as the weld structure deformation monitoring device in the present embodiment, the displacement meter includes a runner blade displacement meter 56A, a runner band displacement meter 56B, and a runner crown displacement meter 56C. At least three runner blade displacement meters 56A are provided for one runner blade 54, and each of them measures the displacement of each position on the surface of the runner blade 54. The runner band displacement meter 56 </ b> B measures the displacement of the surface of the runner band 53. The runner crown displacement meter 56 </ b> C measures the displacement of the surface of the runner crown 52. From the displacement data from the runner blade displacement meter 56A, the runner band displacement meter 56B, and the runner crown displacement meter 56C and the positional information regarding the displacement meter point, the deformation amount calculation device 12 calculates the deformation amount of the turbine runner 51.

また、温度計は、ランナブレード54の表面温度を計測するランナブレード温度計57Aと、ランナバンド53の表面温度を計測するランナバンド温度計57Bと、ランナクラウン52の表面温度を計測するランナクラウン温度計57Cとを有して構成される。これらのランナブレード温度計57A、ランナバンド温度計57B、ランナクラウン温度計57Cからの温度データと温度計測点に関する位置情報から、温度分布計算装置14が水車ランナ51の温度分布を計測する。   The thermometer includes a runner blade thermometer 57A that measures the surface temperature of the runner blade 54, a runner band thermometer 57B that measures the surface temperature of the runner band 53, and a runner crown temperature that measures the surface temperature of the runner crown 52. 57C in total. From the temperature data from the runner blade thermometer 57A, runner band thermometer 57B, and runner crown thermometer 57C and the position information regarding the temperature measurement point, the temperature distribution calculation device 14 measures the temperature distribution of the turbine runner 51.

ここで、水車ランナ51は複数枚のランナブレード54を備えるため、ランナブレード変位計56A及びランナブレード温度計57Aは、ランナブレード54毎に準備することが望ましい。しかしながら、これらのランナブレード変位計56A及びランナブレード温度計57Aは、実用上、例えば90度ピッチなど、変位計側管理に必要なランナブレード54の枚数に合わせて設置すればよい。   Here, since the water turbine runner 51 includes a plurality of runner blades 54, it is desirable to prepare the runner blade displacement meter 56A and the runner blade thermometer 57A for each runner blade 54. However, the runner blade displacement meter 56A and the runner blade thermometer 57A may be installed according to the number of runner blades 54 required for displacement meter side management, such as a 90-degree pitch.

判定装置15の第1演算部18は、溶接施行中及び溶接施行後、特に溶接施行中の温度分布から水車ランナ51の線膨張による熱変形量を推定する。判定装置15の第2演算部19は、特に溶接施行中の水車ランナ51の、変形量計算装置12が算出した変形量から前記熱変形量の推定値を差し引いて、この溶接プロセスにおける真の溶接変形量を算出する。   The first calculation unit 18 of the determination device 15 estimates the amount of thermal deformation due to the linear expansion of the water turbine runner 51 from the temperature distribution during and after welding, in particular during welding. The second calculation unit 19 of the determination device 15 subtracts the estimated value of the thermal deformation amount from the deformation amount calculated by the deformation amount calculation device 12 of the turbine runner 51 that is in particular performing welding, and performs true welding in this welding process. The amount of deformation is calculated.

判定装置15の判定部20は、溶接プロセスの真の溶接変形量と、該当する溶接プロセスにおける予め用意された溶接変形量の許容値とを比較して、その溶接プロセスにおける溶接変形の合否を判定する。更に判定部20は、溶接プロセスの真の溶接変形量と、該当する溶接プロセスにおける予め用意された溶接変形量の予測値とを比較して、後続の溶接プロセスの溶接条件を変更し修正するための機能を実行する。この後続の溶接プロセスの変更修正に応じて、溶接制御装置17が溶接機16を制御する。   The determination unit 20 of the determination device 15 compares the true welding deformation amount of the welding process with an allowable value of the welding deformation amount prepared in advance in the corresponding welding process, and determines whether the welding deformation in the welding process is acceptable. To do. Further, the determination unit 20 compares the true welding deformation amount of the welding process with a predicted value of the welding deformation amount prepared in advance in the corresponding welding process, and changes and corrects the welding condition of the subsequent welding process. Perform the function. The welding control device 17 controls the welding machine 16 in accordance with the modification of the subsequent welding process.

従って、本実施の形態によれば、溶接施行中の水車ランナ51の溶接変形を溶接施行中に段階的にモニタリングして、溶接プロセス毎に溶接変形の合否の判定や、後続の溶接プロセスの溶接条件の変更、修正のための機能の実行を、溶接施行中の最適な段階で実施でき、この結果、溶接施行を好適に管理できる。   Therefore, according to the present embodiment, the welding deformation of the water turbine runner 51 during welding is monitored step by step during welding, and it is determined whether or not the welding deformation has passed for each welding process, and welding in the subsequent welding process. The execution of the function for changing and correcting the conditions can be performed at an optimum stage during the welding operation. As a result, the welding operation can be suitably managed.

[F]第6の実施の形態(図6、図7)
図6は、本発明に係る溶接構造物の変形監視装置における第6の実施の形態が適用されたタービンロータの熱処理時応力・変形監視装置を示す構成斜視図である。この第6の実施の形態において、前記第1及び第4の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[F] Sixth embodiment (FIGS. 6 and 7)
FIG. 6 is a structural perspective view showing a stress / deformation monitoring apparatus during heat treatment of a turbine rotor to which a sixth embodiment of the welding structure deformation monitoring apparatus according to the present invention is applied. In the sixth embodiment, the same parts as those in the first and fourth embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態における、溶接構造物の変形監視装置は、溶接構造物1が、異なる材質からなる複数のロータ構成部材62、63及び64を溶接して構成されたタービンロータ61の場合であり、このタービンロータ61について、溶接時の変形監視を第1の実施形態を用いて実施し、熱処理時の応力、変形の監視を第4の実施形態を用いて実施するものであるが、特に、熱処理炉41を用いた熱処理時の変形監視について以下に述べる。   The deformation monitoring device for a welded structure in the present embodiment is a case where the welded structure 1 is a turbine rotor 61 configured by welding a plurality of rotor constituent members 62, 63 and 64 made of different materials. The turbine rotor 61 is subjected to deformation monitoring at the time of welding using the first embodiment, and stress and deformation at the time of heat treatment are monitored using the fourth embodiment. Deformation monitoring during heat treatment using the furnace 41 will be described below.

本実施の形態における、溶接構造物の変形監視装置としてのタービンロータ61の熱処理時応力・変形監視装置65では、変位計は、ロータ構成部材62に対応して少なくとも一つ設けられ、このロータ構成部材62の表面変位を計測する変位計66Aと、ロータ構成部材63に対応して少なくとも一つ設けられ、このロータ構成部材63の表面変位を計測する変位計66Bと、ロータ構成部材64に対応して少なくとも一つ設けられ、このロータ構成部材64の表面変位を計測する変位計66Cとを有して構成される。これらの変位計66A、66B、66Cからの変位データと変位計測点に関する位置情報から、変形量計算装置12がタービンロータ61の変形量を計算する。   In the heat treatment stress / deformation monitoring device 65 for the turbine rotor 61 as a deformation monitoring device for a welded structure in the present embodiment, at least one displacement meter is provided corresponding to the rotor constituent member 62. At least one displacement meter 66 </ b> A for measuring the surface displacement of the member 62 is provided corresponding to the rotor constituent member 63. The displacement meter 66 </ b> B for measuring the surface displacement of the rotor constituent member 63 and the rotor constituent member 64 are provided. And a displacement meter 66C for measuring the surface displacement of the rotor constituting member 64. The deformation amount calculation device 12 calculates the deformation amount of the turbine rotor 61 from the displacement data from these displacement meters 66A, 66B, 66C and the position information regarding the displacement measurement points.

また、温度計は、タービンロータ61の両端にそれぞれ設けられ、これらのロータ両端部の表面温度をそれぞれ計測する温度計67A、67Bを有して構成される。これらの温度計67A及び67Bからの温度データと温度計測点に関する位置情報から、温度分布計算装置14がタービンロータ61の温度分布を推定する。   The thermometers are provided at both ends of the turbine rotor 61 and have thermometers 67A and 67B for measuring the surface temperatures at both ends of the rotor, respectively. The temperature distribution calculation device 14 estimates the temperature distribution of the turbine rotor 61 from the temperature data from these thermometers 67A and 67B and the position information regarding the temperature measurement points.

判定装置15の第1演算部18は、熱処理施行中及び熱処理施行後、特に熱処理施行中の温度分布からタービンロータ61の線膨張による熱変形量を推定する。判定装置15の第2演算部19は、特に熱処理施行中のタービンロータ61の、変形量計算装置12が算出した変形量から前記熱変形量の推定値を差し引いて、この熱処理接プロセスにおける真の熱処理変形量を算出する。   The first calculation unit 18 of the determination device 15 estimates the amount of thermal deformation due to linear expansion of the turbine rotor 61 from the temperature distribution during the heat treatment and after the heat treatment, and particularly from the temperature distribution during the heat treatment. The second calculation unit 19 of the determination device 15 subtracts the estimated value of the thermal deformation amount from the deformation amount calculated by the deformation amount calculation device 12 of the turbine rotor 61 that is in particular performing the heat treatment, The amount of heat treatment deformation is calculated.

判定装置15の判定部20は、熱処理プロセスの真の熱処理変形量と、熱処理プロセスにおける予め用意された熱処理変形量の許容値とを比較して、その熱処理プロセスにおける熱処理変形の合否を判定し、熱処理プロセスの熱処理条件を変更し修正するための判断を実行する。この熱処理条件の変更、修正に応じて、熱処理制御装置42が熱処理炉41を制御する。   The determination unit 20 of the determination device 15 compares the true heat treatment deformation amount of the heat treatment process with the allowable value of the heat treatment deformation amount prepared in advance in the heat treatment process to determine whether the heat treatment deformation in the heat treatment process is acceptable or not, A judgment for changing and correcting the heat treatment condition of the heat treatment process is executed. The heat treatment control device 42 controls the heat treatment furnace 41 in accordance with the change or correction of the heat treatment conditions.

従って、本実施の形態によれば、異なる材質のロータ構成部材62、63及び64からなるタービンロータ61について、熱処理施行中の熱処理変形を段階的にモニタリングし、熱処理プロセスの熱処理条件によってタービンロータ61に予想した応力緩和(残留応力緩和を含む)、変形がなされたか否かを、熱処理施行中の最適な段階で判断でき、場合によっては、熱処理条件を変更するなど、熱処理施行を好適に管理できる。   Therefore, according to the present embodiment, the turbine rotor 61 composed of the rotor constituent members 62, 63 and 64 of different materials is monitored in stages for the heat treatment deformation during the heat treatment, and the turbine rotor 61 depends on the heat treatment conditions of the heat treatment process. Whether or not the stress relaxation (including residual stress relaxation) and deformation expected in the process can be judged at the optimal stage during the heat treatment, and in some cases, the heat treatment can be favorably managed by changing the heat treatment conditions. .

尚、本実施の形態において、タービンロータ61を収容して均一温度に加熱処理する熱処理炉41を用いず、図7に示すように、タービンロータ61の溶接部68を局所的に加熱するバンドヒータやバーナーなどの、単一または複数の局所加熱手段69を用いてもよい。このとき、局所加熱手段69が複数の場合には、例えば判定装置15の判定部20が判断した熱処理条件の変更、修正の内容に応じて、熱処理制御装置42が複数の局所加熱手段69を個別に制御する。   In the present embodiment, as shown in FIG. 7, a band heater that locally heats the welded portion 68 of the turbine rotor 61 without using the heat treatment furnace 41 that houses the turbine rotor 61 and heat-treats to a uniform temperature. A single or a plurality of local heating means 69 such as burners or burners may be used. At this time, when there are a plurality of local heating means 69, for example, the heat treatment control device 42 individually identifies the plurality of local heating means 69 according to the content of the change or correction of the heat treatment conditions determined by the determination unit 20 of the determination apparatus 15. To control.

本発明に係る溶接構造物の変形監視装置における第1の実施の形態が適用された溶接構造物の溶接変形監視装置を示す構成斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The structure perspective view which shows the welding deformation monitoring apparatus of the welding structure to which 1st Embodiment in the deformation monitoring apparatus of the welding structure which concerns on this invention was applied. 本発明に係る溶接構造物の変形監視装置における第2の実施の形態が適用された溶接構造物の溶接変形監視装置を示す構成斜視図。The structure perspective view which shows the welding deformation monitoring apparatus of the welding structure to which 2nd Embodiment in the deformation monitoring apparatus of the welding structure which concerns on this invention was applied. 本発明に係る溶接構造物の変形監視装置における第3の実施の形態が適用された溶接構造物の溶接変形監視装置を示す構成斜視図。The structure perspective view which shows the welding deformation monitoring apparatus of the welding structure to which 3rd Embodiment in the deformation monitoring apparatus of the welding structure which concerns on this invention was applied. 本発明に係る溶接構造物の溶接変形監視装置における第4の実施の形態が適用された溶接構造物の熱処理時応力・変形監視装置を示す構成斜視図。The structure perspective view which shows the stress and deformation | transformation monitoring apparatus at the time of the heat processing of the welding structure to which 4th Embodiment in the welding deformation monitoring apparatus of the welding structure which concerns on this invention was applied. 本発明に係る溶接構造物の変形監視装置における第5の実施の形態が適用された水車ランナの溶接変形監視装置を示す構成斜視図。The structure perspective view which shows the welding deformation monitoring apparatus of the turbine runner to which 5th Embodiment in the deformation monitoring apparatus of the welded structure which concerns on this invention was applied. 本発明に係る溶接構造物の変形監視装置における第6の実施の形態が適用されたタービンロータの熱処理時応力・変形監視装置を示す構成斜視図。The structural perspective view which shows the stress / deformation monitoring apparatus at the time of the heat processing of the turbine rotor to which 6th Embodiment in the deformation monitoring apparatus of the welded structure which concerns on this invention was applied. 図6におけるタービンロータの熱処理時応力・変形監視装置の変形形態を示す構成斜視図。The structure perspective view which shows the deformation | transformation form of the stress and deformation | transformation monitoring apparatus at the time of the heat processing of the turbine rotor in FIG. 従来の溶接構造物の変形監視装置を示す構成斜視図。The structure perspective view which shows the deformation | transformation monitoring apparatus of the conventional welding structure.

符号の説明Explanation of symbols

1 溶接構造物
10 溶接変形監視装置(変形監視装置)
11 変位計
12 変形量計算装置
13 温度計
14 温度分布計算装置
15 判定装置
16 溶接機
17 溶接制御装置
18 第1演算部
19 第2演算部
20 判定部
21 演算装置
23 データベース
25 溶接変形監視装置(変形監視装置)
26 変位拘束部位
27 変形量計算装置
28 第1演算部
30 溶接変形監視装置(変形監視装置)
31 歪み計
32 歪み量計算装置
33 第1演算部
34 第2演算部
35 判定部
36 データベース
40 熱処理時応力・変形監視装置(変形監視装置)
41 熱処理炉
42 熱処理制御装置
51 水車ランナ(溶接構造物)
52 ランナクラウン
53 ランナバンド
54 ランナブレード
55 溶接変形監視装置(変形監視装置)
56A ランナブレード変位計
56B ランナバンド変位計
56C ランナクラウン変位計
57A ランナブレード温度計
57B ランナバンド温度計
57C ランナクラウン温度計
61 タービンロータ(溶接構造物)
62、63、64 ロータ構成部材
65 熱処理時応力・変形監視装置(変形監視装置)
66A、66B、66C 変位計
67A、67B 温度計
68 溶接部
69 局所加熱手段
1 Welded Structure 10 Welding Deformation Monitoring Device (Deformation Monitoring Device)
DESCRIPTION OF SYMBOLS 11 Displacement meter 12 Deformation amount calculation apparatus 13 Thermometer 14 Temperature distribution calculation apparatus 15 Judgment apparatus 16 Welding machine 17 Welding control apparatus 18 1st calculation part 19 2nd calculation part 20 Determination part 21 Calculation apparatus 23 Database 25 Welding deformation monitoring apparatus ( Deformation monitoring device)
26 Displacement restriction part 27 Deformation amount calculation device 28 First calculation unit 30 Welding deformation monitoring device (deformation monitoring device)
31 strain meter 32 strain amount calculation device 33 first calculation unit 34 second calculation unit 35 determination unit 36 database 40 heat treatment stress / deformation monitoring device (deformation monitoring device)
41 Heat treatment furnace 42 Heat treatment control device 51 Water wheel runner (welded structure)
52 Runner Crown 53 Runner Band 54 Runner Blade 55 Welding Deformation Monitoring Device (Deformation Monitoring Device)
56A Runner blade displacement meter 56B Runner band displacement meter 56C Runner crown displacement meter 57A Runner blade thermometer 57B Runner band thermometer 57C Runner crown thermometer 61 Turbine rotor (welded structure)
62, 63, 64 Rotor component 65 Heat treatment stress / deformation monitoring device (deformation monitoring device)
66A, 66B, 66C Displacement meter 67A, 67B Thermometer 68 Welding part 69 Local heating means

Claims (15)

溶接構造物の溶接変形を監視する溶接構造物の変形監視装置であって、
前記溶接構造物の表面の変位を計測する変位計と、
この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算する変形量計算装置と、
前記溶接構造物の表面温度を計測する温度計と、
この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定する温度分布計算装置と、
前記溶接構造物の溶接変形に関する判定を溶接施工中に行う判定装置とを備え、
前記判定装置は、前記温度分布計算装置にて求めた前記溶接構造物の温度分布から、この溶接構造物の線膨張による熱変形量を推定する第1演算部と、
前記変形量計算装置により求められた前記溶接構造物の変形量から、前記第1演算部にて得られた熱変形量の推定値を差し引いて真の溶接変形量を演算する第2演算部と、
溶接プロセス毎の溶接変形量の許容値を予め格納するデータベースと、
前記第2演算部にて求めた真の溶接変形量と前記溶接変形量の許容値とを比較して、溶接変形の合否を判定する判定部と、を有することを特徴とする溶接構造物の変形監視装置。
A welding structure deformation monitoring device for monitoring welding deformation of a welded structure,
A displacement meter for measuring the displacement of the surface of the welded structure;
A deformation amount calculation device for calculating the deformation amount of the welded structure from the position information on the data from the displacement meter and the displacement measurement point;
A thermometer for measuring the surface temperature of the welded structure;
A temperature distribution calculation device for estimating the temperature distribution of the welded structure from the position information on the data from the thermometer and the temperature measurement point; and
A determination device for performing determination regarding welding deformation of the welded structure during welding construction,
The determination device is configured to estimate a thermal deformation amount due to linear expansion of the welded structure from a temperature distribution of the welded structure obtained by the temperature distribution calculation device;
A second calculation unit for calculating a true welding deformation amount by subtracting an estimated value of the thermal deformation amount obtained by the first calculation unit from the deformation amount of the welded structure obtained by the deformation amount calculation device; ,
A database that stores in advance the allowable value of the welding deformation amount for each welding process;
A determination unit that compares the true welding deformation amount obtained by the second calculation unit with an allowable value of the welding deformation amount and determines whether the welding deformation is acceptable or not. Deformation monitoring device.
前記データベースには、溶接プロセス毎の溶接変形量の予測値が予め格納され、
前記判定装置の判定部は、前記溶接変形量の予測値と真の溶接変形量との差に基づいて、後続の溶接プロセスを変更し修正するための機能を有することを特徴とする請求項1に記載の溶接構造物の変形監視装置。
In the database, a predicted value of welding deformation amount for each welding process is stored in advance,
The determination unit of the determination apparatus has a function for changing and correcting a subsequent welding process based on a difference between a predicted value of the welding deformation amount and a true welding deformation amount. Deformation monitoring device for a welded structure according to claim 1.
前記判定装置は、データベースに格納される溶接変形量の許容値及び予測値を、固有ひずみ法を用いた演算によって溶接プロセス毎に算出する演算装置を有することを特徴とする請求項1または2に記載の溶接構造物の変形監視装置。 The said determination apparatus has a calculating apparatus which calculates the allowable value and prediction value of the welding deformation amount stored in a database for every welding process by the calculation using an intrinsic strain method. Deformation monitoring device for the welded structure as described. 前記判定装置の判定部が実施する後続の溶接プロセスの変更修正のための機能は、固有ひずみ法による計算機能を用いることを特徴とする請求項2に記載の溶接構造物の変形監視装置。 The apparatus for monitoring deformation of a welded structure according to claim 2, wherein a function for changing and correcting a subsequent welding process performed by the determination unit of the determination apparatus uses a calculation function based on an inherent strain method. 前記変形量計算装置は、溶接構造物の変位拘束部位の範囲に関する位置データと、前記変位拘束部位の変位拘束条件に関するデータと、変位計からのデータと、変位計測点に関する位置情報とから、前記溶接構造物の変形量を計算することを特徴とする請求項1に記載の溶接構造物の変形監視装置。 The deformation amount calculation device includes position data relating to a range of a displacement restraint portion of a welded structure, data relating to a displacement restraint condition of the displacement restraint portion, data from a displacement meter, and position information relating to a displacement measurement point. The deformation monitoring apparatus for a welded structure according to claim 1, wherein the deformation amount of the welded structure is calculated. 前記判定装置は、第1演算部が、溶接構造物の変位拘束部位の範囲に関する位置データと、前記変位拘束部位の変位拘束条件に関するデータと、温度分布計算装置にて求めた前記溶接構造物の温度分布から、この溶接構造物の線膨張による熱変形量を推定し、
第2演算部が、請求項5に記載の変形量計算装置により求めた前記溶接構造物の変形量から、前記第1演算部にて得られた熱変形量の推定値を差し引いて真の溶接変形量を演算するよう構成されたことを特徴とする請求項1に記載の溶接構造物の変形監視装置。
In the determination apparatus, the first calculation unit includes the position data relating to the range of the displacement restraint portion of the welded structure, the data relating to the displacement restraint condition of the displacement restraint portion, and the welding structure obtained by the temperature distribution calculation device. From the temperature distribution, the amount of thermal deformation due to linear expansion of this welded structure is estimated,
The second calculation unit subtracts an estimated value of the amount of thermal deformation obtained by the first calculation unit from the deformation amount of the welded structure obtained by the deformation amount calculation device according to claim 5 to perform true welding. The deformation monitoring apparatus for a welded structure according to claim 1, wherein the deformation monitoring apparatus is configured to calculate a deformation amount.
前記溶接構造物の表面の歪みを計測する歪み計と、
この歪み計からのデータと歪み計測点に関する位置情報から前記溶接構造物の歪み量を計算する歪み量計算装置とを更に備え、
判定装置の第1演算部が、温度分布計算装置にて求めた前記溶接構造物の温度分布からこの溶接構造物の線膨張による熱変形量を推定すると共に、この熱変形量に基づいて歪み量を推定し、
前記判定装置の第2演算部が、前記歪み量計算装置により求められた歪み量から、前記第1演算部にて得られた歪み量の推定値を差し引いて真の溶接歪み量を演算し、
前記判定装置の判定部が、データベースに格納された溶接プロセス毎の溶接歪み量の許容値と前記真の溶接歪み量とを比較して溶接歪みの適否を判定すると共に、この歪みの適否から残留応力を評価することを特徴とする請求項1に記載の溶接構造物の変形監視装置。
A strain gauge for measuring the distortion of the surface of the welded structure;
A strain amount calculating device that calculates the strain amount of the welded structure from the position information on the strain gauge and the data from the strain gauge,
The first calculation unit of the determination device estimates the amount of thermal deformation due to linear expansion of the welded structure from the temperature distribution of the welded structure obtained by the temperature distribution calculation device, and the amount of strain based on the amount of thermal deformation. Estimate
The second calculation unit of the determination device calculates the true welding strain amount by subtracting the estimated value of the strain amount obtained by the first calculation unit from the strain amount obtained by the strain amount calculation device,
The determination unit of the determination apparatus determines the suitability of the weld distortion by comparing the allowable value of the weld strain amount for each welding process stored in the database with the true weld strain amount, and the residual from the suitability of the strain. The apparatus for monitoring deformation of a welded structure according to claim 1, wherein stress is evaluated.
溶接構造物の熱処理時の応力緩和、変形を監視する溶接構造物の変形監視装置であって、
前記溶接構造物の表面の変位を計測する変位計と、
この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算する変形量計算装置と、
前記溶接構造物の表面温度を計測する温度計と、
この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定する温度分布計算装置と、
熱処理時の応力緩和、変形に関する判定を熱処理施工中に行う判定装置とを備え、
前記判定装置は、前記溶接構造物の温度分布から溶接構造物の線膨張による熱変形量を推定する第1演算部と、
前記変形量計算装置により求められた前記溶接構造物の変形量から、前記第1演算部にて得られた熱変形量の推定値を差し引いて真の熱処理変形量を演算する第2演算部と、
熱処理プロセスにおける熱処理変形量の許容値を予め格納するデータベースと、
前記第2演算部にて求めた真の熱処理変形量と前記熱処理変形量の許容値とを比較して、熱処理変形の合否を判定する判定部と、を有することを特徴とする溶接構造物の変形監視装置。
A welding structure deformation monitoring device for monitoring stress relaxation and deformation during heat treatment of a welded structure,
A displacement meter for measuring the displacement of the surface of the welded structure;
A deformation amount calculation device for calculating the deformation amount of the welded structure from the position information on the data from the displacement meter and the displacement measurement point;
A thermometer for measuring the surface temperature of the welded structure;
A temperature distribution calculation device for estimating the temperature distribution of the welded structure from the position information on the data from the thermometer and the temperature measurement point; and
With a judgment device that performs judgment on stress relaxation and deformation during heat treatment during heat treatment construction,
The determination apparatus is configured to estimate a thermal deformation amount due to linear expansion of a welded structure from a temperature distribution of the welded structure;
A second calculation unit for calculating a true heat treatment deformation amount by subtracting an estimated value of the thermal deformation amount obtained by the first calculation unit from the deformation amount of the welded structure obtained by the deformation amount calculation device; ,
A database that stores in advance the allowable value of the heat treatment deformation amount in the heat treatment process;
A determination unit that compares the true heat treatment deformation amount obtained by the second calculation unit with the allowable value of the heat treatment deformation amount to determine whether the heat treatment deformation is acceptable or not. Deformation monitoring device.
前記判定装置の判定部は、真の熱処理変形量と熱処理変形量の許容値との差に基づいて、熱処理プロセスにおける熱処理条件を変更し修正するための判断を実行することを特徴とする請求項8に記載の溶接構造物の変形監視装置。 The determination unit of the determination device performs a determination for changing and correcting a heat treatment condition in a heat treatment process based on a difference between a true heat treatment deformation amount and an allowable value of the heat treatment deformation amount. The welding structure deformation monitoring device according to claim 8. 前記判定装置は、熱処理プロセスにおける熱処理変形量の許容値を、固有ひずみ法を用いた演算によって算出する演算装置を有することを特徴とする請求項8に記載の溶接構造物の変形監視装置。 9. The apparatus for monitoring deformation of a welded structure according to claim 8, wherein the determination device includes a calculation device that calculates an allowable value of a heat treatment deformation amount in a heat treatment process by a calculation using an inherent strain method. 前記溶接構造物が、ランナクラウンとランナバンドとの間に複数枚のランナブレードを備えた水車ランナであり、
変位計は、1枚の前記ランナブレードについて少なくとも3箇所の表面変位を計測するランナブレード変形計と、前記ランナバンドの表面の変位を計測するランナバンド変形計と、前記ランナクラウンの表面の変位を計測するランナクラウン変形計とを有し、
温度計は、前記ランナブレードの表面温度を計測するランナブレード温度計と、前記ランナバンドの表面温度を計測するランナバンド温度計と、前記ランナクラウンの表面温度を計測するランナクラウン温度計とを有し、
変形量計算装置は、前記各変位計からのデータと変位計測点に関する位置情報から前記水車ランナの変形量を計算し、
温度分布計算装置は、前記各温度計からのデータと温度計測点に関する位置情報から前記水車ランナの温度分布を推定するよう構成されたことを請求項1または請求項8に記載の溶接構造物の変形監視装置。
The welded structure is a turbine runner having a plurality of runner blades between a runner crown and a runner band;
The displacement meter includes a runner blade deformation meter that measures at least three surface displacements of one runner blade, a runner band deformation meter that measures the displacement of the surface of the runner band, and a displacement of the surface of the runner crown. A runner crown deformometer for measuring,
The thermometer has a runner blade thermometer that measures the surface temperature of the runner blade, a runner band thermometer that measures the surface temperature of the runner band, and a runner crown thermometer that measures the surface temperature of the runner crown. And
The deformation amount calculation device calculates the deformation amount of the turbine runner from the data from each displacement meter and the position information on the displacement measurement point,
The temperature distribution calculation device is configured to estimate the temperature distribution of the turbine runner from the data from each thermometer and the position information regarding the temperature measurement point. The welding structure according to claim 1 or 8, Deformation monitoring device.
前記溶接構造物が、異なる材質からなる複数のロータ構成部材を溶接して構成されたタービンロータであり、
変位計は、前記ロータ構成部材毎に少なくとも1つ設けられて、前記各ロータ構成部材の表面の変位を計測し、
温度計は、前記タービンロータの両端にそれぞれ設けられて、このロータ端部の表面温度を計測し、
変形量計算装置は、前記各変位計からのデータと変位計測点に関する位置情報から前記タービンロータの変形量を計算し、
温度分布計算装置は、前記各温度計からのデータと温度計測点に関する位置情報から前記タービンロータの温度分布を推定するよう構成されたことを請求項1または請求項8に記載の溶接構造物の変形監視装置。
The welded structure is a turbine rotor configured by welding a plurality of rotor constituent members made of different materials,
At least one displacement meter is provided for each rotor component member, and measures the displacement of the surface of each rotor component member,
Thermometers are provided at both ends of the turbine rotor, respectively, and measure the surface temperature of the rotor end,
The deformation amount calculation device calculates the deformation amount of the turbine rotor from the data from each displacement meter and position information on the displacement measurement point,
9. The welding structure according to claim 1, wherein the temperature distribution calculation device is configured to estimate a temperature distribution of the turbine rotor from data from each thermometer and position information regarding a temperature measurement point. Deformation monitoring device.
前記熱処理は、溶接構造物を収容して均一温度に加熱する熱処理炉、または前記溶接構造物の溶接部を局所的に加熱する単一または複数の局所加熱手段によって施工され、
前記複数の局所加熱手段は、熱処理温度が個別に制御可能に構成されたことを特徴とする請求項8に記載の溶接構造物の変形監視装置。
The heat treatment is performed by a heat treatment furnace that accommodates the welded structure and heats it to a uniform temperature, or a single or a plurality of local heating means that locally heat the welded portion of the welded structure,
The apparatus for monitoring deformation of a welded structure according to claim 8, wherein the plurality of local heating means are configured such that the heat treatment temperatures can be individually controlled.
溶接構造物の溶接変形を監視する溶接構造物の変形監視方法であって、
前記溶接構造物の表面の変位を変位計が計測し、この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算し、
前記溶接構造物の表面温度を温度計が計測し、この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定し、
前記溶接構造物の温度分布からこの溶接構造物の線膨張による熱変形量を推定し、前記溶接構造物の変形量から前記熱変形量の推定値を差し引いて真の溶接変形量を演算し、この真の溶接変形量と予め用意された溶接変形量の許容値とを比較して溶接変形の合否を判定し、この溶接構造物の溶接変形に関する判定を溶接施工中に行うことを特徴とする溶接構造物の変形監視方法。
A method for monitoring deformation of a welded structure for monitoring weld deformation of the welded structure,
A displacement meter measures the displacement of the surface of the welded structure, and calculates the amount of deformation of the welded structure from the data from the displacement meter and position information on the displacement measurement point,
A thermometer measures the surface temperature of the welded structure, and estimates the temperature distribution of the welded structure from the data from the thermometer and position information regarding the temperature measurement point,
Estimating the amount of thermal deformation due to linear expansion of the welded structure from the temperature distribution of the welded structure, subtracting the estimated value of the amount of thermal deformation from the amount of deformation of the welded structure to calculate the true amount of weld deformation, The true welding deformation amount is compared with an allowable value of the welding deformation amount prepared in advance to determine whether the welding deformation is acceptable or not, and the determination regarding the welding deformation of the welded structure is performed during welding. Deformation monitoring method for welded structures.
溶接構造物の熱処理時の応力緩和、変形を監視する溶接構造物の変形監視方法であって、
前記溶接構造物の表面の変位を変位計が計測し、この変位計からのデータと変位計測点に関する位置情報から前記溶接構造物の変形量を計算し、
前記溶接構造物の表面温度を温度計が計測し、この温度計からのデータと温度計測点に関する位置情報から前記溶接構造物の温度分布を推定し、
前記溶接構造物の温度分布から溶接構造物の線膨張による熱変形量を推定し、前記溶接構造物の変形量から前記熱変形量の推定値を差し引いて真の熱処理変形量を演算し、この真の熱処理変形量と予め用意された熱処理変形量の許容値とを比較して熱処理変形の合否を判定し、この熱処理時の応力緩和、変形に関する判定を熱処理施工中に行うことを特徴とする溶接構造物の変形監視方法。
A method for monitoring deformation of a welded structure for monitoring stress relaxation and deformation during heat treatment of the welded structure,
A displacement meter measures the displacement of the surface of the welded structure, and calculates the amount of deformation of the welded structure from the data from the displacement meter and position information on the displacement measurement point,
A thermometer measures the surface temperature of the welded structure, and estimates the temperature distribution of the welded structure from the data from the thermometer and position information regarding the temperature measurement point,
The amount of thermal deformation due to linear expansion of the welded structure is estimated from the temperature distribution of the welded structure, and the true amount of heat treatment deformation is calculated by subtracting the estimated value of the amount of thermal deformation from the amount of deformation of the welded structure. The true heat treatment deformation amount is compared with an allowable value of the heat treatment deformation amount prepared in advance to determine whether the heat treatment deformation is acceptable or not, and the judgment regarding stress relaxation and deformation during the heat treatment is performed during the heat treatment construction. Deformation monitoring method for welded structures.
JP2008309496A 2008-12-04 2008-12-04 Apparatus and method of monitoring deformation of weld structure Pending JP2010131629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309496A JP2010131629A (en) 2008-12-04 2008-12-04 Apparatus and method of monitoring deformation of weld structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309496A JP2010131629A (en) 2008-12-04 2008-12-04 Apparatus and method of monitoring deformation of weld structure

Publications (1)

Publication Number Publication Date
JP2010131629A true JP2010131629A (en) 2010-06-17

Family

ID=42343496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309496A Pending JP2010131629A (en) 2008-12-04 2008-12-04 Apparatus and method of monitoring deformation of weld structure

Country Status (1)

Country Link
JP (1) JP2010131629A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143986A1 (en) 2011-04-18 2012-10-26 トヨタ自動車株式会社 Method and device for manufacturing driving force transmission device for vehicle
KR101390230B1 (en) * 2012-05-09 2014-05-27 삼성중공업 주식회사 Curved surface heating carrige
CN104275560A (en) * 2014-10-29 2015-01-14 武船重型工程股份有限公司 Steel girder welding method
CN104384733A (en) * 2014-10-23 2015-03-04 武汉船用机械有限责任公司 Welding deformation control process used for manufacturing plug type hoisting platform pile leg
KR20160072376A (en) * 2014-12-12 2016-06-23 삼성중공업 주식회사 Measuring system and measuring method
KR20160149896A (en) * 2015-06-19 2016-12-28 삼성중공업 주식회사 Welding strain simulator and simulation method using a different kind material
KR20170109657A (en) * 2015-03-05 2017-09-29 가부시키가이샤 고베 세이코쇼 Residual stress estimation method and residual stress estimation apparatus
CN109848626A (en) * 2019-03-22 2019-06-07 宝胜系统集成科技股份有限公司 A kind of Welding Angular Deformation control tooling of built up column
RU2696121C1 (en) * 2018-07-13 2019-07-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method for 3d printing on cnc equipment with intelligent optimization of modes
US10590508B2 (en) 2014-10-10 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing shaft body
JP2021116689A (en) * 2020-01-22 2021-08-10 株式会社東芝 Bending correction method for junction type turbine rotor
CN114131233A (en) * 2021-09-29 2022-03-04 中国石油大学(华东) Dynamic bending deformation experiment system and method for flat plate single-side welding

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120184B2 (en) 2011-04-18 2015-09-01 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing vehicle power transmission device
EP2700847A1 (en) * 2011-04-18 2014-02-26 Toyota Jidosha Kabushiki Kaisha Method and device for manufacturing driving force transmission device for vehicle
WO2012143986A1 (en) 2011-04-18 2012-10-26 トヨタ自動車株式会社 Method and device for manufacturing driving force transmission device for vehicle
EP2700847A4 (en) * 2011-04-18 2015-11-11 Toyota Motor Co Ltd Method and device for manufacturing driving force transmission device for vehicle
KR101390230B1 (en) * 2012-05-09 2014-05-27 삼성중공업 주식회사 Curved surface heating carrige
US10590508B2 (en) 2014-10-10 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing shaft body
CN104384733A (en) * 2014-10-23 2015-03-04 武汉船用机械有限责任公司 Welding deformation control process used for manufacturing plug type hoisting platform pile leg
CN104275560A (en) * 2014-10-29 2015-01-14 武船重型工程股份有限公司 Steel girder welding method
KR20160072376A (en) * 2014-12-12 2016-06-23 삼성중공업 주식회사 Measuring system and measuring method
KR101644516B1 (en) * 2014-12-12 2016-08-11 삼성중공업(주) Measuring system and measuring method
KR102003145B1 (en) 2015-03-05 2019-07-23 가부시키가이샤 고베 세이코쇼 Residual stress estimation method and residual stress estimation apparatus
KR20170109657A (en) * 2015-03-05 2017-09-29 가부시키가이샤 고베 세이코쇼 Residual stress estimation method and residual stress estimation apparatus
KR20160149896A (en) * 2015-06-19 2016-12-28 삼성중공업 주식회사 Welding strain simulator and simulation method using a different kind material
KR101722085B1 (en) 2015-06-19 2017-03-31 삼성중공업 주식회사 Welding strain simulator and simulation method using a different kind material
RU2696121C1 (en) * 2018-07-13 2019-07-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method for 3d printing on cnc equipment with intelligent optimization of modes
CN109848626A (en) * 2019-03-22 2019-06-07 宝胜系统集成科技股份有限公司 A kind of Welding Angular Deformation control tooling of built up column
CN109848626B (en) * 2019-03-22 2023-10-31 宝胜系统集成科技股份有限公司 Welding angle deformation control tool for steel pipe combined column
JP2021116689A (en) * 2020-01-22 2021-08-10 株式会社東芝 Bending correction method for junction type turbine rotor
JP7305567B2 (en) 2020-01-22 2023-07-10 株式会社東芝 Bending Correction Method for Bonded Turbine Rotor
CN114131233A (en) * 2021-09-29 2022-03-04 中国石油大学(华东) Dynamic bending deformation experiment system and method for flat plate single-side welding
CN114131233B (en) * 2021-09-29 2023-09-22 中国石油大学(华东) Flat plate single-side welding dynamic bending deformation experiment system and method

Similar Documents

Publication Publication Date Title
JP2010131629A (en) Apparatus and method of monitoring deformation of weld structure
JP4418818B2 (en) Welding deformation calculation device and computer program
JP5063768B2 (en) Deformation estimation method, program, and recording medium
JP2009036669A (en) Welding residual stress analysis method and welding residual stress analysis system
KR100955097B1 (en) Method for decision of deformation by temperature difference
US20120092179A1 (en) System and Method for Turbine Bucket Tip Shroud Deflection Measurement
CN104956178A (en) Distance measurement system and distance measurement method
JP2005066646A (en) Method for estimating deformation and residual stress in welded structure and apparatus therefor
JP5387508B2 (en) Continuous casting method, continuous casting control device and program
JP5241991B2 (en) Deformation estimation method, program, and recording medium
JP2013122411A (en) Pipe creep life evaluation method
JP2015108588A (en) Stress analysis system and stress analysis method of piping system welded portion
JP2014052211A (en) Welded part evaluation apparatus and welded part evaluation method
JP5310144B2 (en) Thick steel plate surface temperature measuring device and material judgment method
JP2008134095A (en) Lifetime evaluation device of high temperature apparatus, and lifetime evaluation method of high temperature apparatus
JP2005293169A (en) Apparatus for calculating operating state of plant, computer for plant simulation, system and method for optimizing plant operation, and program
JP4931511B2 (en) Evaluation Method of Creep Remaining Life of High Temperature Member by Inverse Analysis Considering Stress Relaxation
TW201939417A (en) Maintenance management menu determination method and plant maintenance management method
JP2010203812A (en) Method for evaluating life time of high strength ferritic steel
JP2015190950A (en) Life evaluation method and life evaluation device
JP7263806B2 (en) Welding method for cast steel members
Kamaya Monitoring of inside surface crack growth by strain measurements of the outside surface: Application of multiple strain measurements technique to fatigue crack growth
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
US20210341402A1 (en) Method for calculating the strength and the service life of a process apparatus through which fluid flows
JP5427765B2 (en) Creep damage diagnostic system for piping system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100424

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD01 Notification of change of attorney

Effective date: 20111217

Free format text: JAPANESE INTERMEDIATE CODE: A7421