JP2010131572A - Coating film forming method and glass substitute - Google Patents

Coating film forming method and glass substitute Download PDF

Info

Publication number
JP2010131572A
JP2010131572A JP2008312571A JP2008312571A JP2010131572A JP 2010131572 A JP2010131572 A JP 2010131572A JP 2008312571 A JP2008312571 A JP 2008312571A JP 2008312571 A JP2008312571 A JP 2008312571A JP 2010131572 A JP2010131572 A JP 2010131572A
Authority
JP
Japan
Prior art keywords
film
coating liquid
coating
thin film
conductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312571A
Other languages
Japanese (ja)
Other versions
JP5364888B2 (en
Inventor
Yasuko Yoshida
康子 吉田
Nobutada Takahashi
伸忠 高橋
Kazumitsu Saeki
和光 佐伯
Sotohiro Takabayashi
外広 高林
Takashi Terasawa
孝志 寺澤
Yoshiyuki Yokoyama
義之 横山
Shigeki Kakiuchi
茂樹 柿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Takagi Seiko Corp
Original Assignee
Toyama Prefecture
Takagi Seiko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture, Takagi Seiko Corp filed Critical Toyama Prefecture
Priority to JP2008312571A priority Critical patent/JP5364888B2/en
Publication of JP2010131572A publication Critical patent/JP2010131572A/en
Application granted granted Critical
Publication of JP5364888B2 publication Critical patent/JP5364888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated product comprising a substrate made of a polymeric material, an electric conductor thin film, and a coating film, and a coating film forming method. <P>SOLUTION: Electromagnetic waves are radiated to a coating liquid film 23 of an object 20<SB>2</SB>to be coated obtained by forming the electric conductor thin film 22 on the surface of the substrate 21 made of the polymeric material and then forming the coating liquid film 23 on the surface of the electric conductor thin film 22. When the electromagnetic waves are radiated, an eddy current is generated in the coating liquid film 23 of the electric conductor thin film 22 by an induction heating effect, and the generated eddy current generates Joule heat to heat the electric conductor thin film 22. The coating liquid film 23 is heated by heat conduction from the electric conductor thin film 22, so that the temperature of the coating liquid film 23 is increased. A solvent in the coating liquid film 23 is heated to its evaporation temperature or higher to be evaporated, whereby the coating liquid film 23 is dried and a coating film 24 is formed to obtain the coated product 20<SB>3</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、機能性樹脂の技術分野にかかり、紙、又はプラスチックなどから成る高分子材料と電気伝導体薄膜と塗布膜から成る塗工品と塗布膜形成方法に関するものである。   The present invention relates to a technical field of functional resins, and relates to a coating material including a polymer material made of paper or plastic, an electric conductor thin film, and a coating film, and a coating film forming method.

ポリエチレンやポリプロピレン等のオレフィン系樹脂は、熱硬化型塗料との密着力は得られ難く、オレフィン系樹脂から成る基材の表面をプラズマ処理し、基材の表面改質をしたうえで、熱硬化型塗料が塗布されている。
熱硬化型塗料が塗布された基材を乾燥するには、その基材を乾燥室に配置し、乾燥室内で、熱硬化型塗料の硬化温度程度の温風を基材に供給することにより、溶媒を蒸発させ、塗料を硬化させている。
Olefin-based resins such as polyethylene and polypropylene are difficult to obtain adhesion to thermosetting paints, and the surface of the substrate made of olefin-based resin is plasma treated to modify the surface of the substrate before thermosetting. Mold paint is applied.
In order to dry the base material to which the thermosetting paint is applied, the base material is placed in a drying chamber, and in the drying chamber, hot air of about the curing temperature of the thermosetting paint is supplied to the base material. The solvent is evaporated and the paint is cured.

金属板に電磁波を照射すると金属板の内部に渦電流が生じ、金属板の内部が加熱されることは、公知であり、金属に対する電磁波の照射は、金属粒の窒化及び酸化処理や金属粒同士の焼結等の目的に用いられている。
出力20W〜20KWの電磁波を水性塗料に照射して、水性塗料を乾燥させる方法が下記文献に記載されているが、120度以上の高温硬化型塗料では、乾燥、硬化しにくい。
特開2004-344860号公報
It is known that when an electromagnetic wave is irradiated on a metal plate, an eddy current is generated inside the metal plate, and the inside of the metal plate is heated. Irradiation of an electromagnetic wave to a metal is performed by nitriding and oxidizing metal particles or between metal particles. It is used for the purpose of sintering.
A method for irradiating a water-based paint with an electromagnetic wave having an output of 20 W to 20 KW to dry the water-based paint is described in the following literature. However, a high-temperature curable paint of 120 ° C. or more is difficult to dry and harden.
JP 2004-344860 A

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、基材を熱変形、溶解せずに、塗布液膜を乾燥、硬化し、塗布膜と電気伝導体薄膜及び、電気伝導体薄膜と基材との密着力を高めることである。   The present invention was created to solve the above-mentioned disadvantages of the prior art, and its purpose is to dry and harden the coating liquid film without thermally deforming and dissolving the base material, and to apply the coating film and the electric conductor. It is to increase the adhesion between the thin film and the electric conductor thin film and the substrate.

上記課題を解決するために、本発明は、高分子材料から成る基材の表面に電気伝導体薄膜を成膜する電気伝導体薄膜成膜工程と、前記電気伝導体薄膜の表面に塗布液膜を成膜する塗布液膜成膜工程と、前記塗布液膜に向けて電磁波を照射して前記塗布液膜側の前記電気伝導体薄膜の表面を発熱させ、前記塗布液膜側の前記電気伝導体薄膜の表面から熱伝導により前記塗布液膜を加熱し、前記塗布液膜を乾燥、硬化させる電磁波加熱工程とを有する塗布膜形成方法である。
本発明は、前記基材は、フィルムであり、前記基材が巻き回されている原反ロールから引き出された前記基材が、巻き取りロールに巻き取られ、前記基材が静止又は、移動しながら前記電気伝導体薄膜成膜工程と、塗布液膜成膜工程と、電磁波加熱工程とを行う塗布膜形成方法である。
本発明は、前記電気伝導体薄膜成膜工程は、前記電気伝導体薄膜をスパッタリングにより成膜する塗布膜形成方法である。
本発明は、前記基材は、板状のポリカーボネイトであり、前記電気伝導体薄膜は、透明なNi-Crであり、前記塗布膜はハードコート塗料であり、塗布膜成膜方法によって得られるガラス代替物である。
In order to solve the above problems, the present invention provides an electric conductor thin film forming step for forming an electric conductor thin film on the surface of a base material made of a polymer material, and a coating liquid film on the surface of the electric conductor thin film. A coating liquid film forming step of forming a film, and radiating an electromagnetic wave toward the coating liquid film to generate heat on the surface of the electric conductor thin film on the coating liquid film side, thereby causing the electric conduction on the coating liquid film side. An electromagnetic wave heating step of heating the coating liquid film by heat conduction from the surface of the body thin film, and drying and curing the coating liquid film.
In the present invention, the base material is a film, and the base material drawn out from an original roll on which the base material is wound is wound on a take-up roll, and the base material is stationary or moved. In the coating film forming method, the electric conductor thin film forming step, the coating liquid film forming step, and the electromagnetic wave heating step are performed.
The present invention is the coating film forming method in which the electric conductor thin film forming step forms the electric conductor thin film by sputtering.
In the present invention, the substrate is a plate-like polycarbonate, the electrical conductor thin film is transparent Ni—Cr, the coating film is a hard coat paint, and the glass obtained by the coating film forming method is used. Is an alternative.

本発明により、従来の塗布膜と基材との密着力と比べ塗布膜と電気伝導体薄膜及び、電気伝導体薄膜と基材との密着力が高くなり、従来の焼き付け塗装と比べて短い時間で塗布液膜を乾燥、硬化することができる。また、本発明のガラス代替物は、ポリカーボネイトと比べて、塗布膜との密着力が高いので寿命が長い。   According to the present invention, the adhesion between the coating film and the electric conductor thin film and the adhesion between the electric conductor thin film and the substrate is higher than the adhesion between the conventional coating film and the substrate, and the time is shorter than the conventional baking coating. The coating liquid film can be dried and cured. In addition, the glass substitute of the present invention has a long life because it has a higher adhesion to the coating film than polycarbonate.

<本発明の第一例>
本発明の塗布膜形成方法の第一例を説明する。
図1(a)の符号21は、高分子材料から成る基材であり、プロセス対象物である。
図2の符号10は電気伝導体薄膜成膜装置である。電気伝導体薄膜成膜装置10は、真空槽11を有しており、真空槽11の内部の天井部分に導電性材料から成るターゲット12が配置されている。ターゲット12にはターゲット電源25が接続され、真空槽11にはガス導入系26と真空排気系27が接続されている。真空排気系27により真空槽11の内部を真空排気して真空雰囲気にし、真空槽11の内部に基材21を配置する。ガス導入系26から真空槽11の内部にスパッタガスを導入し、ターゲット12に電圧を印加し、スパッタガスのプラズマを形成し、ターゲット12をスパッタリングすると、基材21の表面に電気伝導体薄膜22が形成される。
<First example of the present invention>
A first example of the coating film forming method of the present invention will be described.
The code | symbol 21 of Fig.1 (a) is a base material which consists of polymeric materials, and is a process target object.
Reference numeral 10 in FIG. 2 denotes an electric conductor thin film forming apparatus. The electric conductor thin film forming apparatus 10 includes a vacuum chamber 11, and a target 12 made of a conductive material is disposed on a ceiling portion inside the vacuum chamber 11. A target power supply 25 is connected to the target 12, and a gas introduction system 26 and a vacuum exhaust system 27 are connected to the vacuum chamber 11. The inside of the vacuum chamber 11 is evacuated by the evacuation system 27 to make a vacuum atmosphere, and the base material 21 is arranged inside the vacuum chamber 11. When a sputtering gas is introduced from the gas introduction system 26 into the vacuum chamber 11, a voltage is applied to the target 12, a plasma of the sputtering gas is formed, and the target 12 is sputtered, the electric conductor thin film 22 is formed on the surface of the substrate 21. Is formed.

図1(b)の符号201は、基材21と、基材21上に成膜された電気伝導体薄膜22から成る塗工対象物である。
所定膜厚の電気伝導体薄膜22が形成された後、真空槽11内に大気を導入し、塗工対象物201を真空槽11の外部に取り出す。
Figure 1 reference numeral 20 1 (b) comprises a substrate 21, a coating object made of electrically conductive thin film 22 which is deposited on the substrate 21.
After the electrical conductor thin film 22 having a predetermined thickness is formed, and introducing the atmosphere into the vacuum chamber 11, taken out coating object 20 1 to the outside of the vacuum chamber 11.

上記例では、電気伝導体薄膜22の製造方法には、スパッタリングを用いたが、これに限定されるものではなく、真空蒸着、電解及び無電解めっき等の方法を用いて電気伝導体薄膜22を形成してもよい。透明度が得られる薄さの電気伝導体薄膜22の成膜には、スパッタリングが適している。   In the above example, sputtering was used for the method of manufacturing the electric conductor thin film 22, but the method is not limited to this, and the electric conductor thin film 22 is formed using a method such as vacuum deposition, electrolysis, and electroless plating. It may be formed. Sputtering is suitable for forming the thin electric conductor thin film 22 that can provide transparency.

真空槽11の外部に取り出した塗工対象物201を、図3の塗布液膜成膜装置31の下に配置し、塗布液膜成膜装置31の噴出部(不図示)と電気伝導体薄膜22の表面を対面させる。
塗布液膜成膜装置31は、噴出部から塗布液の液滴を噴霧して、電気伝導体薄膜22の表面に着弾させて、塗布液膜23を成膜できるように構成されている。符号36は噴霧された液滴である。
The coating object 20 1 taken out to the outside of the vacuum chamber 11, disposed below the coating solution film forming apparatus 31 of FIG. 3, the ejection portion of the coating solution film forming apparatus 31 (not shown) and the electrical conductor The surface of the thin film 22 is made to face.
The coating liquid film forming apparatus 31 is configured to spray the droplets of the coating liquid from the ejection portion and land on the surface of the electric conductor thin film 22 to form the coating liquid film 23. Reference numeral 36 denotes a sprayed droplet.

塗布液膜23の成膜方法は、これに限定されず、噴出部から染み出した液滴を電気伝導体薄膜22の上に配置してもよく、スクリーン印刷等で塗布液を塗布してもよいし、フィルム状の塗布液膜23を電気伝導体薄膜22の表面に貼付けてもよい。また、電気伝導体薄膜22上に塗布液を塗布した後で、膜厚を調整するために余分な塗布液を除去する装置も本発明の塗布液膜成膜装置31に含まれる。
塗布液と塗布液膜23は溶媒と、溶媒に溶解又は分散された塗布物質で構成されており、溶媒や塗布物質は、基材21と化学反応しない物質であり、電気伝導体薄膜22が薄くて孔が形成され、基材21と塗布液が接触する場合も基材21は溶解されない。
The film formation method of the coating liquid film 23 is not limited to this, and the liquid droplets oozed out from the ejection part may be disposed on the electric conductor thin film 22 or the coating liquid may be applied by screen printing or the like. Alternatively, a film-like coating liquid film 23 may be attached to the surface of the electric conductor thin film 22. Further, the coating liquid film forming apparatus 31 of the present invention also includes an apparatus for removing an excess coating liquid in order to adjust the film thickness after coating the coating liquid on the electric conductor thin film 22.
The coating liquid and the coating liquid film 23 are composed of a solvent and a coating substance dissolved or dispersed in the solvent. The solvent and the coating substance are substances that do not chemically react with the base material 21, and the electric conductor thin film 22 is thin. Thus, the substrate 21 is not dissolved even when the holes are formed and the substrate 21 and the coating liquid come into contact with each other.

図1(c)の符号202は、基材21と、基材21上に成膜された電気伝導体薄膜22と、電気伝導体薄膜22上に成膜された塗布液膜23から成る塗工対象物である。
電気伝導体薄膜22と基材21が加熱され、昇温する場合、電気伝導体薄膜22より基材21の熱膨張率が大きいから、同じ温度に昇温しても、電気伝導体薄膜22より基材21の方が伸びる。基材21に成膜された電気伝導体薄膜22に電磁波を照射した場合に、電気伝導体薄膜22の膜厚が薄いときより厚いときの方が伸びる力が大きいので、電気伝導体薄膜22と基材21が接着する界面にかかる応力が大きくなる。後述する表1より、電気伝導体薄膜22の膜厚が60.0nmを超えた66.7nmでは、基材21と電気伝導体薄膜22が密着する界面に密着力より大きな応力がかかり剥離し、剥離した部分に電荷が溜まりチャージアップして放電する。
電気伝導体薄膜22の膜厚が3.3nm未満の1.7nmでは、電磁波の照射では電気伝導体薄膜22を十分に加熱できない。
Reference numeral 20 2 in FIG. 1 (c), the coating comprising a base material 21, the electrically conductive thin film 22 which is deposited on the substrate 21, the coating liquid film 23 is deposited on the electrically conductive thin film 22 It is a work object.
When the electrical conductor thin film 22 and the base material 21 are heated and the temperature is increased, the thermal expansion coefficient of the base material 21 is larger than that of the electrical conductor thin film 22. The base material 21 extends. When the electric conductor thin film 22 formed on the base material 21 is irradiated with electromagnetic waves, the strength of the electric conductor thin film 22 when it is thicker is larger than when the electric conductor thin film 22 is thin. The stress applied to the interface to which the substrate 21 is bonded increases. From Table 1 to be described later, when the thickness of the electric conductor thin film 22 exceeds 60.0 nm, the interface where the base material 21 and the electric conductor thin film 22 are in close contact with each other is subjected to stress greater than the adhesive force and peels off. Electric charge accumulates in the peeled portion and charges up to discharge.
When the thickness of the electric conductor thin film 22 is 1.7 nm, which is less than 3.3 nm, the electric conductor thin film 22 cannot be heated sufficiently by irradiation with electromagnetic waves.

塗工対象物202の上に、図4の電磁波照射装置35を配置する。塗布液膜23に向けて電磁波を照射すると電気伝導体薄膜22内部に渦電流が発生し、ジュール熱が発生する。電磁波の周波数が300MHz〜30GHzの範囲では、誘導加熱効果により、電気伝導体薄膜22を加熱することが可能と考えられる。 On the coating object 20 2, placing the electromagnetic wave irradiation device 35 of FIG. 4. When an electromagnetic wave is irradiated toward the coating liquid film 23, an eddy current is generated inside the electric conductor thin film 22, and Joule heat is generated. It is considered that the electric conductor thin film 22 can be heated by the induction heating effect when the frequency of the electromagnetic wave is in the range of 300 MHz to 30 GHz.

塗工対象物202の上に、図4の電磁波照射装置35を配置する。塗布液膜23に向けて電磁波を照射すると電気伝導体薄膜22内部に渦電流が発生し、ジュール熱が発生する。
電磁波の周波数が2.45GHzでは、渦電流が集中する表皮深さは、ニッケルでは約3μmであり、電気伝導体薄膜22の厚さはこれより充分に小さいことから、電気伝導体薄膜22の内部では、ほぼ均一に渦電流が発生するものと考えられる。
On the coating object 20 2, placing the electromagnetic wave irradiation device 35 of FIG. 4. When an electromagnetic wave is irradiated toward the coating liquid film 23, an eddy current is generated inside the electric conductor thin film 22, and Joule heat is generated.
When the frequency of electromagnetic waves is 2.45 GHz, the skin depth where eddy currents are concentrated is about 3 μm for nickel, and the thickness of the electric conductor thin film 22 is sufficiently smaller than this. Then, it is considered that eddy currents are generated almost uniformly.

電気伝導体薄膜22内部の電磁波が照射された表面に近い部分を塗布液側領域221とし、基材21に近い部分を基材側領域222とすると、塗布液側領域221および基材側領域222において渦電流のジュール熱が発生する。 When a portion close to the surface irradiated with electromagnetic waves in the electric conductor thin film 22 is a coating liquid side region 22 1 and a portion close to the base material 21 is a base material side region 22 2 , the coating liquid side region 22 1 and the base material In the side region 22 2 , eddy current Joule heat is generated.

塗布液側領域221は塗布液膜23と接触しており、塗布液側領域221で発生した熱は塗布液膜23を加熱し、塗布液膜中の溶媒を蒸発させる。
この溶媒の蒸発によって塗布液膜23は冷却されるので、塗布液側領域221から塗布液膜23へ熱が伝導され易くなっている。
塗布液膜23の中の溶媒が蒸発温度以上に加熱されると溶媒は蒸発し、塗布液膜23は乾燥、硬化し、電気伝導体薄膜22上に塗布膜24が形成される。
The coating liquid side area 22 1 is in contact with the coating liquid film 23, and the heat generated in the coating liquid side area 22 1 heats the coating liquid film 23 to evaporate the solvent in the coating liquid film.
Since the coating liquid film 23 is cooled by the evaporation of the solvent, heat is easily conducted from the coating liquid side region 22 1 to the coating liquid film 23.
When the solvent in the coating liquid film 23 is heated above the evaporation temperature, the solvent evaporates, the coating liquid film 23 is dried and cured, and a coating film 24 is formed on the electric conductor thin film 22.

基材側領域222は基材21と接触しており、基材側領域222で発生した熱は熱伝導により基材21の表面を加熱する。しかし、加熱される基材21の領城は、基材側領域222との接触面から数μmの深さの範囲であり、基材21全体の厚さからすると充分に小さく、基材21全体が過熱されることではないため、熱変形しない。 The base material side region 22 2 is in contact with the base material 21, and the heat generated in the base material side region 22 2 heats the surface of the base material 21 by heat conduction. However, the region of the base material 21 to be heated is in the range of a depth of several μm from the contact surface with the base material side region 22 2, and is sufficiently small from the thickness of the whole base material 21. Since the whole is not overheated, it is not thermally deformed.

塗布液膜23の中の溶媒が蒸発温度以上に加熱されると溶媒は蒸発し、塗布液膜23は乾燥、硬化し、電気伝導体薄膜22上に塗布膜24が形成される。
符号37は、照射された電磁波を示している。
図1(d)の符号203は、基材21と、基材21上に成膜された電気伝導体薄膜22と、電気伝導体薄膜22上に成膜された塗布膜24から成る塗工品である。
この塗工品203の電気伝導体薄膜22と基材21との密着力は、電磁波照射前より強くなっており、その理由は、基材21の表面が改質されたからと考えられる。
本発明において、電磁波の照射回数は一回に限定されず、複数回に分けて照射してもよい。
When the solvent in the coating liquid film 23 is heated above the evaporation temperature, the solvent evaporates, the coating liquid film 23 is dried and cured, and a coating film 24 is formed on the electric conductor thin film 22.
Reference numeral 37 indicates an irradiated electromagnetic wave.
Numeral 20 of FIG. 1 (d) 3 includes a substrate 21, an electrically conductive thin film 22 which is deposited on the substrate 21, the coating comprising a coating film 24 which is deposited on the electrically conductive thin film 22 It is a product.
Adhesion between the electrically conductive thin film 22 and the substrate 21 of the coating article 20 3 is stronger than before microwave irradiation, because the surface of the base material 21 is considered because modified.
In the present invention, the number of times of electromagnetic wave irradiation is not limited to one time, and irradiation may be performed in a plurality of times.

本発明の第一例では、温風による乾燥の替わりに電磁波を照射して塗布液膜を乾燥、硬化したが、温風による本乾燥の前に仮乾燥として塗工対象物202に電磁波を照射してもよい。 In a first example of the present invention, instead dried by irradiating the coating liquid film electromagnetic waves to the drying by hot air, was cured, the electromagnetic wave coating object 20 2 as temporarily dried prior to the drying by hot air It may be irradiated.

<実施例1>
本発明の第一例で、基材21に厚さ1mm、縦5cm、横5cmの板状のポリエチレンを用い、電気伝導体薄膜22として3.3nm、13.3nm、20.0nm又は26.7nmのNi-Cr膜を成膜し、塗布液にオキツモ株式会社製のCL−200を用い、塗布液膜23の膜厚を5μmとし、電磁波の照射電力を100W、150W、300W、500W、照射時間を30秒として、塗工品203を得た。
予め、電磁波照射前に塗布液膜23の重量を測定しておき、照射後に塗布膜24の重量を測定し、電磁波照射前と後の塗布液膜23の重量変化率を求めた。
<Example 1>
In the first example of the present invention, a plate-like polyethylene having a thickness of 1 mm, a length of 5 cm, and a width of 5 cm is used for the base material 21 and the electric conductor thin film 22 is 3.3 nm, 13.3 nm, 20.0 nm, or 26.7 nm. A Ni-Cr film is formed, CL-200 manufactured by Okitsumo Co., Ltd. is used as the coating liquid, the film thickness of the coating liquid film 23 is 5 μm, and the irradiation power of electromagnetic waves is 100 W, 150 W, 300 W, 500 W, irradiation time as 30 seconds, to obtain a coated article 20 3.
The weight of the coating liquid film 23 was measured in advance before the electromagnetic wave irradiation, the weight of the coating film 24 was measured after the irradiation, and the weight change rate of the coating liquid film 23 before and after the electromagnetic wave irradiation was obtained.

図5に、Ni-Cr膜の膜厚が、3.3nm、13.3nm、20.0nm、26.7nmの場合の測定結果をグラフ上に符号◆、■、●、▲で示す。
比較例として、膜厚が、3.3nm、13.3nm、20.0nm、26.7nmのNi-Cr膜上の塗布液膜23に対し、電磁波照射による塗布液膜23の加熱に替え、温度70℃の温風に10分間曝して加熱し、他の条件は実施例1と同じにして得た結果をそれぞれ同じ符号(◆、■、●、▲)で示す。
In FIG. 5, the measurement results when the film thickness of the Ni—Cr film is 3.3 nm, 13.3 nm, 20.0 nm, and 26.7 nm are indicated by symbols ◆, ■, ●, and ▲ on the graph.
As a comparative example, the coating liquid film 23 on the Ni—Cr film having a film thickness of 3.3 nm, 13.3 nm, 20.0 nm, and 26.7 nm is replaced with heating of the coating liquid film 23 by electromagnetic wave irradiation, and the temperature is changed. The sample was heated by exposure to warm air at 70 ° C. for 10 minutes, and the other conditions were the same as in Example 1. The results obtained are the same (♦, ■, ●, ▲).

また、ガラス上に膜厚5μmのCL−200から成る塗布液膜を形成し、乾燥室内で180℃の温風に20分間曝して乾燥させた場合の乾燥前と乾燥後の塗布液膜の重量変化率(約−30%)を得た。図5中に、この重量変化率の値を通り、横軸と平行な基準線Kを点線で記載した。
CL−200は、キシレン、N−ブタノール、シクロヘキサン、シリコーン等から構成されており、約180℃の温風に20分間曝すと乾燥し、硬化する熱硬化型塗料であるから、180℃で加熱するのが望ましいが、基材21がプラスチックから成る高分子材料では変形や剥離が起こり、望ましくない。
図5から、本発明の実施例1の重量変化率が、比較例の重量変化率より基準線Kに近い場合は、塗布液膜は180℃近くの温度で加熱されたと考えられるが、変形は生じておらず、望ましい。
それに対し、膜厚が13.3nmで300Wの電磁波を照射した場合と、膜厚が13.3nmと26.7nmで500Wの電磁波を照射した場合では、重量変化率の絶対値が30%より大きく、Ni-Cr膜が加熱され過ぎて塗布膜24が昇温し、塗布膜24が分解したと考えられ、望ましくない。
Also, the weight of the coating liquid film before and after drying when a coating liquid film made of CL-200 having a film thickness of 5 μm is formed on glass and exposed to hot air of 180 ° C. for 20 minutes in a drying chamber. A rate of change (about -30%) was obtained. In FIG. 5, a reference line K passing through the value of the weight change rate and parallel to the horizontal axis is indicated by a dotted line.
CL-200 is composed of xylene, N-butanol, cyclohexane, silicone, and the like, and is a thermosetting paint that dries and hardens when exposed to hot air of about 180 ° C. for 20 minutes, and is heated at 180 ° C. However, it is not desirable for the polymer material of the base material 21 made of plastic to be deformed or peeled off.
From FIG. 5, when the weight change rate of Example 1 of the present invention is closer to the reference line K than the weight change rate of the comparative example, it is considered that the coating liquid film was heated at a temperature close to 180 ° C. It does not occur and is desirable.
On the other hand, the absolute value of the weight change rate is larger than 30% when the electromagnetic wave of 300 W is irradiated with the film thickness of 13.3 nm and when the electromagnetic wave of 500 W is irradiated with the film thickness of 13.3 nm and 26.7 nm. The Ni—Cr film is heated too much and the temperature of the coating film 24 rises, and the coating film 24 is considered to be decomposed, which is not desirable.

<実施例2>
本発明の第一例で、基材21に厚さ1mm、縦5cm、横5cmの板状のポリエチレンを用い、電気伝導体薄膜22として20.0nmのNi-Cr膜を成膜し、塗布液にCL−200を用い、電磁波の照射電力を150Wとして、塗工品203を得た。
電磁波を照射後に塗布膜24の表面温度を測定した。図6に、その測定結果をグラフ上に符号Mで示す。
これに対して電気伝導体薄膜22の表面温度を測定するために、ポリエチレンの基材21上に0nm、又は20.0nmのNi-Cr膜を成膜した後、Ni-Cr膜に向けて照射電力を100W〜300Wの電磁波を照射し、電磁波の照射後にNi-Cr膜の表面温度を測定した。
<Example 2>
In the first example of the present invention, a plate-like polyethylene having a thickness of 1 mm, a length of 5 cm, and a width of 5 cm is used as the base material 21, and a 20.0 nm Ni—Cr film is formed as the electric conductor thin film 22. The coated product 20 3 was obtained using CL-200 for the irradiation power of 150 W for the electromagnetic wave.
The surface temperature of the coating film 24 was measured after irradiation with electromagnetic waves. In FIG. 6, the measurement result is indicated by a symbol M on the graph.
On the other hand, in order to measure the surface temperature of the electric conductor thin film 22, a Ni—Cr film having a thickness of 0 nm or 20.0 nm is formed on the polyethylene substrate 21 and then irradiated toward the Ni—Cr film. An electromagnetic wave having a power of 100 W to 300 W was irradiated, and the surface temperature of the Ni—Cr film was measured after the irradiation of the electromagnetic wave.

図6に、膜厚が、0nm、又は20.0nmのNi-Cr膜の温度の測定結果を符号L1、L2で示す。
図5から、実施例2のNi-Cr膜厚の膜厚条件及び加熱条件と同一条件で求められた重量変化率の絶対値は、30%に近いので、図6で、塗布膜24の温度が180℃以上になっていればCL−200は乾燥、硬化できると考えられる。
In FIG. 6, the measurement results of the temperature of the Ni—Cr film having a film thickness of 0 nm or 20.0 nm are indicated by symbols L 1 and L 2 .
From FIG. 5, the absolute value of the weight change rate obtained under the same conditions as the Ni—Cr film thickness condition and heating condition of Example 2 is close to 30%. If the temperature is 180 ° C. or higher, CL-200 can be dried and cured.

図6において、実施例2の塗布膜24の温度と、塗布液膜23を成膜していない以外は、実施例2と同一条件のNi-Cr膜の温度を比較すると、その温度差は10℃程度なので、塗布液膜23を成膜していなくても、符号L2から塗布膜24が形成された場合の塗布膜24の表面温度を推定することができる。
また、図6には図示していないが、Ni-Cr膜の表面が250℃以上に上昇することを確認した。
In FIG. 6, when the temperature of the coating film 24 of Example 2 and the temperature of the Ni—Cr film under the same conditions as in Example 2 are compared except that the coating liquid film 23 is not formed, the temperature difference is 10 Since it is about 0 ° C., even if the coating liquid film 23 is not formed, the surface temperature of the coating film 24 when the coating film 24 is formed can be estimated from the symbol L 2 .
Although not shown in FIG. 6, it was confirmed that the surface of the Ni—Cr film rose to 250 ° C. or higher.

<実施例3>
本発明の第一例で基材21に、ポリエチレン又は、ポリプロピレンを用い、電気伝導体薄膜22として3.3nm、6.7nm、13.3nm、20.0nm、26.7nm、33.3nm、40.0nm、50.0nm、又は60.0nmの膜厚のNi-Cr膜を成膜し、塗布液にCL−200を用い、電磁波の照射電力を100W、照射時間を30秒として、塗工品203を得た。
Ni-Cr膜の膜厚の条件に対する、塗布液膜23の加熱の状況を示す表1を得た。
<Example 3>
In the first example of the present invention, polyethylene or polypropylene is used as the base material 21 and the electric conductor thin film 22 is 3.3 nm, 6.7 nm, 13.3 nm, 20.0 nm, 26.7 nm, 33.3 nm, 40 A Ni—Cr film having a thickness of 0.0 nm, 50.0 nm, or 60.0 nm is formed, CL-200 is used as a coating solution, the irradiation power of electromagnetic waves is 100 W, the irradiation time is 30 seconds, and the coated product. 20 3 was obtained.
Table 1 showing the heating state of the coating liquid film 23 with respect to the Ni-Cr film thickness condition was obtained.

Figure 2010131572
Figure 2010131572

表1の○は、電磁波照射によってNi-Cr膜が所望の温度(塗布液の硬化温度程度)に加熱されていることを示している。表1のBは、火花が発生したことを示している。火花が発生したのは、基材21とNi-Cr膜が剥離し、その間で放電が起こったからである。
比較例として、電気伝導体薄膜22として0nm、1.7nm、66.7nm、105nm、133nm、200nmの膜厚のNi-Cr膜を成膜して、塗布液膜23を成膜後に電磁波を照射して、塗布液膜23の加熱の状況を調べた。
The circles in Table 1 indicate that the Ni—Cr film is heated to a desired temperature (about the curing temperature of the coating solution) by electromagnetic wave irradiation. B in Table 1 indicates that a spark has occurred. The spark was generated because the base material 21 and the Ni—Cr film were separated, and electric discharge occurred between them.
As a comparative example, a Ni—Cr film having a thickness of 0 nm, 1.7 nm, 66.7 nm, 105 nm, 133 nm, and 200 nm is formed as the electric conductor thin film 22, and an electromagnetic wave is irradiated after the coating liquid film 23 is formed. Then, the heating state of the coating liquid film 23 was examined.

表1のAは、Ni-Cr膜が、加熱されず、塗布液膜23が昇温していないことを示している。
Ni-Cr膜の膜厚が1.7nmの場合に、電気伝導体薄膜22の表面が発熱しないのは、膜厚が薄くて電磁波による誘導加熱効果が生じ難いからと考えられる。
実施例3より、Ni-Cr膜の膜厚は、3.3nm〜60.0nmの範囲が望ましい。
表1のスパッタ時間は、Ni-Cr膜の成膜に要する時間を示し、表1のNi-Cr膜の光の透過率は、Ni-Cr膜の各膜厚に対する光( 波長が2000nm)の透過率である。Ni-Cr膜の膜厚が3.3nmのときの光の透過率は、80%に近いので、後述する本発明の第二例のガラス代替品の製造に用いることができる。
A in Table 1 indicates that the Ni—Cr film is not heated and the coating liquid film 23 is not heated.
The reason why the surface of the electric conductor thin film 22 does not generate heat when the film thickness of the Ni—Cr film is 1.7 nm is thought to be because the film thickness is thin and the induction heating effect due to electromagnetic waves hardly occurs.
From Example 3, the thickness of the Ni—Cr film is preferably in the range of 3.3 nm to 60.0 nm.
The sputtering time in Table 1 indicates the time required for forming the Ni—Cr film, and the light transmittance of the Ni—Cr film in Table 1 indicates the light (wavelength is 2000 nm) for each film thickness of the Ni—Cr film. Transmittance. Since the light transmittance when the film thickness of the Ni—Cr film is 3.3 nm is close to 80%, it can be used for the production of the glass substitute of the second example of the present invention described later.

表1とは別に、300Wの電磁波を用いて、他は表1の0nm〜1.7nmのNi-Cr膜と同一条件で塗布液膜23に照射したところNi-Cr膜は、昇温したが、所望の温度までは昇温しなかった。電磁波の照射電力を上げると電気伝導体薄膜表面に渦電流は生じるが、塗布液膜23を乾燥することはできなかった。膜厚が105nmと200nmの場合のNi-Cr膜の体積抵抗率は、それぞれ2.17×10−4Ωcm、1.62×10−4Ωcmである。
Ni-Cr膜の膜厚が13.3nmの場合に、100Wの電磁波を塗布液膜23に照射し、予め、電磁波照射前に測定しておいた塗布液膜の重量から、電磁波を照射後の塗布膜の重量の減少量を測定したところ、減少量は30秒で飽和した。従って、塗布液がCL−200の場合の電磁波の照射時間は30秒間が望ましい。
Separately from Table 1, when 300 W electromagnetic waves were used and the coating liquid film 23 was irradiated under the same conditions as the Ni—Cr film of 0 nm to 1.7 nm in Table 1, the Ni—Cr film was heated. The temperature was not raised to the desired temperature. When the electromagnetic wave irradiation power is increased, an eddy current is generated on the surface of the electric conductor thin film, but the coating liquid film 23 cannot be dried. When the film thickness is 105 nm and 200 nm, the volume resistivity of the Ni—Cr film is 2.17 × 10 −4 Ωcm and 1.62 × 10 −4 Ωcm, respectively.
When the film thickness of the Ni—Cr film is 13.3 nm, the coating liquid film 23 is irradiated with an electromagnetic wave of 100 W, and from the weight of the coating liquid film measured before the electromagnetic wave irradiation, the electromagnetic wave is irradiated. When the reduction amount of the weight of the coating film was measured, the reduction amount was saturated in 30 seconds. Therefore, the electromagnetic wave irradiation time when the coating solution is CL-200 is preferably 30 seconds.

<実施例4>
本発明の第一例で、基材21に表面積が25cm2のポリエチレンを用い、電気伝導体薄膜22として、膜厚13.3nmのNi-Cr膜を成膜し、塗布液に、CL−200を用い、塗布液膜成膜装置31に、回転速度が200r.p.m.及び2000r.p.m.のスピンコートを用いて、重さが、0.1203g、又は0.0174gであり、膜厚が、30.0μm又は、5.0μmの塗布液膜23を成膜した。電磁波の照射電力を100W、150W、300W、500W、照射時間を30秒として、塗工品203を得た。
<Example 4>
In the first example of the present invention, polyethylene having a surface area of 25 cm 2 is used as the base material 21, a Ni—Cr film having a thickness of 13.3 nm is formed as the electric conductor thin film 22, and CL-200 is applied to the coating liquid. The coating liquid film forming apparatus 31 has a rotation speed of 200 r. p. m. And 2000r. p. m. The coating liquid film 23 having a weight of 0.1203 g or 0.0174 g and a film thickness of 30.0 μm or 5.0 μm was formed using the above spin coat. The irradiation power of the electromagnetic wave 100W, 150 W, 300 W, 500 W, irradiation time of 30 seconds to obtain a coating product 20 3.

予め、電磁波照射前に測定した塗布液膜23の重量と電磁波照射後の塗布膜24の重量から、塗布液膜23の重量変化率を求めた。電磁波照射前の塗布液膜23の重量は、常温で大気に10分間曝した後に測定した。
電磁波の照射電力の条件と、塗布液膜23の重量の条件を替えて表2を得た。
The weight change rate of the coating liquid film 23 was obtained in advance from the weight of the coating liquid film 23 measured before the electromagnetic wave irradiation and the weight of the coating film 24 after the electromagnetic wave irradiation. The weight of the coating liquid film 23 before electromagnetic wave irradiation was measured after exposure to the atmosphere for 10 minutes at room temperature.
Table 2 was obtained by changing the condition of the irradiation power of the electromagnetic wave and the condition of the weight of the coating liquid film 23.

Figure 2010131572
Figure 2010131572

表2のPE1、PE2は、ポリエチレンを表している。
比較例としてガラスの表面にスピンコートによって、重さが0.014gのCL−200から成る塗布液膜23を形成し、180℃の温風に20分間曝して塗布液膜23を乾燥し、硬化させた。
PE1 and PE2 in Table 2 represent polyethylene.
As a comparative example, a coating liquid film 23 made of CL-200 having a weight of 0.014 g is formed on a glass surface by spin coating, and the coating liquid film 23 is dried by being exposed to hot air of 180 ° C. for 20 minutes to be cured. I let you.

表2のG1はガラスを示している。G1に、塗布液膜23を成膜するのに回転数が2000r.p.m.のスピンコートを用いた。
比較例から、温風により、塗布液膜23が乾燥し、硬化した場合の重量変化率の絶対値は30%程度である。
G1 in Table 2 indicates glass. A rotational speed of 2000 r.s. is used to form the coating liquid film 23 on G1. p. m. Spin coating was used.
From the comparative example, the absolute value of the weight change rate when the coating liquid film 23 is dried and cured by warm air is about 30%.

PE1に、100W、150W、300W、500Wの電磁波を照射した場合の重量変化率の絶対値は、30%より小さいので、塗布液膜23は、乾燥するほど十分には加熱されていないことがわかる。PE1が加熱されないのは、実施例1と比較すると塗布液膜23の膜厚が厚いので、Ni-Cr膜の表面から塗布液膜23の表面まで熱が伝わり難いからと考えられる。電磁波の照射電力が、100Wの場合のPE1の重量変化率の絶対値は30%より小さいので、塗布液膜23は、十分に加熱されておらず、望ましくない。PE1が加熱されないのは、100Wの場合のPE2と比べ塗布液膜23の膜厚が大きく重量も大きいので、Ni-Cr膜の表面から塗布液膜23の表面まで熱が伝わり難いからと考えられる。150Wの場合のPE2の重量変化率の絶対値は30%に近く、塗布液膜23は、乾燥し、硬化していると考えられ、望ましい。300Wと500Wの場合のPE2の重量変化率の絶対値は、30%より大きく、電気伝導体薄膜22が過度に加熱され、基材21が熱変形したり、塗布膜24が昇温し、塗布膜24が分解したと考えられ、望ましくない。   Since the absolute value of the weight change rate when PE1 is irradiated with electromagnetic waves of 100 W, 150 W, 300 W, and 500 W is smaller than 30%, it can be seen that the coating liquid film 23 is not sufficiently heated to dry. . The reason why PE1 is not heated is considered to be that heat is not easily transmitted from the surface of the Ni—Cr film to the surface of the coating liquid film 23 because the coating liquid film 23 is thicker than in the first embodiment. Since the absolute value of the weight change rate of PE1 when the irradiation power of electromagnetic waves is 100 W is smaller than 30%, the coating liquid film 23 is not sufficiently heated and is not desirable. It is considered that PE1 is not heated because the coating liquid film 23 is thicker and heavier than PE2 in the case of 100 W, so that it is difficult to transfer heat from the surface of the Ni—Cr film to the surface of the coating liquid film 23. . The absolute value of the weight change rate of PE2 in the case of 150 W is close to 30%, and the coating liquid film 23 is considered to be dried and hardened, which is desirable. The absolute value of the weight change rate of PE2 in the case of 300 W and 500 W is larger than 30%, the electric conductor thin film 22 is excessively heated, the base material 21 is thermally deformed, the coating film 24 is heated, and the coating is performed. It is believed that the membrane 24 has degraded and is undesirable.

実施例4より、塗布液膜23に照射される電磁波の照射電力は、1cm2当たり4W〜20Wの範囲が、電気伝導体薄膜22を加熱し、塗布液膜23を乾燥、硬化できると考えられる。 From Example 4, it is considered that the irradiation power of the electromagnetic wave applied to the coating liquid film 23 is in the range of 4 W to 20 W per 1 cm 2 by heating the electric conductor thin film 22 and drying and curing the coating liquid film 23. .

<本発明の第二例>
本発明の第一例の塗工品203は、自動車及び電気電子部品及び住宅等の工業用品や日用雑貨品で用いられている樹脂やガラスの代替品として利用が可能である。
例えば、自動車の窓ガラスとして使用するときは、本発明の第一例の工程で基材21に、板状のポリカーボネイトを用い、電気伝導体薄膜22として透明なNi-Crを成膜し、塗布液膜23の塗布物質は、SiO2から成るハードコート塗料として、塗布液膜23に電磁波を照射し、塗布膜24を形成して得られる塗工品203は、自動車や建物の窓ガラスとして利用可能である。電気伝導体薄膜22としては、ITO等の透明な導電体薄膜を用いてもよい。
<Second example of the present invention>
Coated article 20 3 of the first example of the present invention can be used as a replacement for automobiles and electric and electronic components and resin or glass that is used in industrial products and daily commodities such as houses.
For example, when used as a window glass of an automobile, a plate-like polycarbonate is used for the base material 21 in the process of the first example of the present invention, and a transparent Ni—Cr film is formed as the electric conductor thin film 22 and applied. coating material of the liquid film 23, as a hard coating composition consisting of SiO 2, an electromagnetic wave is irradiated to the coating solution film 23, the coating product 20 3 obtained by forming a coating film 24, as a window glass for automobiles and buildings Is available. As the electric conductor thin film 22, a transparent conductor thin film such as ITO may be used.

<本発明の第三例>
本発明の塗布膜形成方法の第二例を説明する。
図7の符号60は、樹脂フィルム塗工装置であり、ロール55と、電気伝導体薄膜成膜装置16と、塗布液膜成膜装置31と、電磁波照射装置35と、を有している。
ロール55には、紙、又はフィルム状の樹脂から成る基材51が巻き回されている。
電気伝導体薄膜成膜装置16は、前室17と、成膜室18と、後室19とを有しており、各室は、基材51を通す細長孔152、153で接続されている。
<Third example of the present invention>
A second example of the coating film forming method of the present invention will be described.
Reference numeral 60 in FIG. 7 denotes a resin film coating apparatus, which includes a roll 55, an electric conductor thin film forming apparatus 16, a coating liquid film forming apparatus 31, and an electromagnetic wave irradiation apparatus 35.
A substrate 51 made of paper or film-like resin is wound around the roll 55.
The electric conductor thin film forming apparatus 16 has a front chamber 17, a film forming chamber 18, and a rear chamber 19, and each chamber is connected by elongated holes 15 2 and 15 3 through which the substrate 51 passes. ing.

前室17は、成膜室18の前段に配置され、後室19は、成膜室18の後段に配置されている。ロール55は、前室17の前段に配置されており、ロール55から基材51を引き出すと、前室17から成膜室18を通り、後室19から外部に引き出せるように構成されている。
後室19の後段には、塗布液膜成膜装置31と電磁波照射装置35がこの順序で並んで配置されており、引き出された基材51は、塗布液膜成膜装置31の下と電磁波照射装置35の下を通過し、巻き取り装置39に巻き取られるように構成されている。
各室17〜19は、真空排気系27〜29により真空排気されており、成膜室18の圧力は、前室17と後室19内部の圧力より低くなるように構成されている。
The front chamber 17 is disposed upstream of the film formation chamber 18, and the rear chamber 19 is disposed downstream of the film formation chamber 18. The roll 55 is disposed in the front stage of the front chamber 17, and is configured such that when the base material 51 is pulled out from the roll 55, the roll 55 can be pulled out from the rear chamber 19 through the film formation chamber 18.
A coating liquid film forming apparatus 31 and an electromagnetic wave irradiation apparatus 35 are arranged in this order at the rear stage of the rear chamber 19, and the drawn base material 51 is placed under the coating liquid film forming apparatus 31 and electromagnetic waves. It passes under the irradiation device 35 and is configured to be wound around the winding device 39.
The chambers 17 to 19 are evacuated by evacuation systems 27 to 29, and the pressure in the film forming chamber 18 is configured to be lower than the pressure in the front chamber 17 and the rear chamber 19.

基材51の先端を巻き取り装置39に保持し、巻き取り装置39を動作させると、基材51はロール55から引き出される。引き出された基材51は移動しながら細長孔151を通り、前室17の内部に入る。基材51は前室17と成膜室18の間の細長孔152を通り、成膜室18の内部に入る。
成膜室18の内部の天井部分にはターゲット12が配置されており、成膜室18内部にスパッタガスを導入し、スパッタガスのプラズマを形成し、ターゲットをスパッタリングすると、移動しながら基材51の表面にフィルム状の電気伝導体薄膜52が成膜される。
電気伝導体薄膜52が成膜された基材51は、成膜室18と後室19の間の細長孔153を通り、後室19の内部に入る。
When the leading end of the base material 51 is held by the winding device 39 and the winding device 39 is operated, the base material 51 is pulled out from the roll 55. Substrate 51 drawn in through the elongated hole 15 1 while moving, into the interior of the front chamber 17. Through the elongated hole 15 2 between the front chamber 17 and the film-forming chamber 18 the substrate 51 enters the inside of the film forming chamber 18.
The target 12 is disposed on the ceiling portion inside the film forming chamber 18. When the sputtering gas is introduced into the film forming chamber 18 to form plasma of the sputtering gas and the target is sputtered, the substrate 51 moves while moving. A film-like electric conductor thin film 52 is formed on the surface of the film.
The base material 51 on which the electric conductor thin film 52 is formed passes through the elongated hole 15 3 between the film forming chamber 18 and the rear chamber 19 and enters the rear chamber 19.

基材51は、後室19の内部を移動しながら基材51の出口となる細長孔154を通り、後室19の外部に出る。
基材51は、塗布液膜成膜装置31の下迄到達する。基材51の電気伝導体薄膜52側から電気伝導体薄膜52に向けて塗布液膜成膜装置31の噴出部から塗布液の液滴が噴出されると、基材51は、移動しながら電気伝導体薄膜52の表面上に液滴が着弾し、フィルム状の塗布液膜53が形成される。
Substrate 51 passes through the elongated hole 15 4 serving as the outlet of the substrate 51 while moving inside the rear chamber 19 and exits to the outside of the rear chamber 19.
The base material 51 reaches the bottom of the coating liquid film forming apparatus 31. When a droplet of the coating liquid is ejected from the ejection portion of the coating liquid film forming apparatus 31 from the electric conductor thin film 52 side of the base material 51 toward the electric conductor thin film 52, the base material 51 is electrically moved while moving. The droplets land on the surface of the conductor thin film 52, and a film-like coating liquid film 53 is formed.

最表層に塗布液膜53が形成された基材51は、塗布液膜成膜装置31の下を通過し、電磁波照射装置35の下迄到達する。基材51の塗布液膜53側へ電磁波を照射すると、基材51は移動しながら誘導加熱効果により、塗布液膜53側の電気伝導体薄膜52の表面が加熱され、熱伝導により塗布液膜53が昇温すると、乾燥、硬化し、塗布液膜53は、フィルム状の塗布膜54と成る。塗布膜54が形成された後、基材51は、電磁波照射装置35の下を通過する。   The substrate 51 on which the coating liquid film 53 is formed on the outermost layer passes under the coating liquid film forming apparatus 31 and reaches below the electromagnetic wave irradiation apparatus 35. When the electromagnetic wave is irradiated to the coating liquid film 53 side of the base material 51, the surface of the electric conductor thin film 52 on the coating liquid film 53 side is heated by the induction heating effect while the base material 51 moves, and the coating liquid film is heated. When the temperature rises, the coating liquid film 53 becomes a film-like coating film 54. After the coating film 54 is formed, the substrate 51 passes under the electromagnetic wave irradiation device 35.

符号57は、この製造方法によって得られた塗工フィルムであり、塗工フィルム57は、巻き取り装置39に巻き取られると塗工フィルムロール59が生成される。上述した塗布膜形成方法の第二例では、基材51は、移動しながら工程を行ったが、静止する間に電気伝導体薄膜の成膜工程と電磁波照射による加熱の工程を行ってもよい。   Reference numeral 57 denotes a coating film obtained by this manufacturing method. When the coating film 57 is wound around the winding device 39, a coating film roll 59 is generated. In the second example of the coating film forming method described above, the base material 51 is subjected to the process while moving. However, while the substrate 51 is stationary, the process of forming the electric conductor thin film and the process of heating by electromagnetic wave irradiation may be performed. .

符号56は、接着剤が配置された剥離フィルム58から成る接着フィルムロールであり、接着フィルムロール56から剥離フィルム58を引き出して、貼り合わせローラー38上で、基材51の裏面に接触し、剥離フィルム58を貼り合わせて、塗工フィルム57に接着層を作ることもできる。   Reference numeral 56 denotes an adhesive film roll composed of a release film 58 on which an adhesive is disposed. The release film 58 is pulled out from the adhesive film roll 56, contacts the back surface of the substrate 51 on the bonding roller 38, and peels off. An adhesive layer can be formed on the coating film 57 by laminating the film 58.

また、剥離フィルム58を貼り合わせるのではなく、電磁波を照射し、塗布液膜53を乾燥後、生成された塗工フィルム57を裏返し、塗布液膜54が形成されていない面に接着剤から成る塗布液を塗布して接着層を形成してもよい。接着層が形成された後に、接着層に向けて電磁波を照射させて接着剤を硬化させることもできる。   In addition, instead of attaching the release film 58, it is irradiated with electromagnetic waves, and after the coating liquid film 53 is dried, the produced coating film 57 is turned over, and the adhesive film is formed on the surface where the coating liquid film 54 is not formed. An adhesive layer may be formed by applying a coating solution. After the adhesive layer is formed, the adhesive can be cured by irradiating the electromagnetic wave toward the adhesive layer.

<本発明の第四例>
本発明の第三例の塗工フィルム57は、成膜対象物に貼付けて使用でき、成膜するには困難な立体的な曲面形状の成膜対象物に貼り付けて利用することも可能である。本発明の第三例の塗布液膜の成膜工程で塗布液膜53の塗布物質にSiO2又はSiNを用いて得られた塗工フィルム57は、アルミサッシやガソリンタンク等に貼り付けて保護用フィルムとして利用可能であり、塗布液に塗料を用いて得られた塗工フィルム57は、携帯電話の筺体等の装飾に利用が可能であり、塗布膜54に機能性フィルムを用いて得られた塗工フィルム57は、防汚、防カビ、脱臭等の様々な用途に利用可能である。
<Fourth Example of the Present Invention>
The coating film 57 of the third example of the present invention can be used by being affixed to a film formation target, and can also be used by being affixed to a film formation target having a three-dimensional curved shape that is difficult to form a film. is there. The coating film 57 obtained by using SiO 2 or SiN as a coating material of the coating liquid film 53 in the coating liquid film forming process of the third example of the present invention is protected by being attached to an aluminum sash, a gasoline tank or the like. The coating film 57 obtained by using a coating material as a coating liquid can be used for decoration of a mobile phone casing and the like, and can be obtained by using a functional film as the coating film 54. The coated film 57 can be used for various purposes such as antifouling, mold prevention, and deodorization.

<その他>
上記例では、電磁波照射によって塗布液膜23、53を乾燥、硬化させたが、電磁波照射によって塗布液の溶媒を蒸発すると共に化学反応を生じさせて塗布液膜23、53を硬化させてもよい。
<Others>
In the above example, the coating liquid films 23 and 53 are dried and cured by electromagnetic wave irradiation, but the coating liquid films 23 and 53 may be cured by evaporating the solvent of the coating liquid and causing a chemical reaction by electromagnetic wave irradiation. .

(a)〜(c):本発明の塗工対象物を説明するための図、(d):本発明の塗工品を説明するための図(A)-(c): The figure for demonstrating the coating target object of this invention, (d): The figure for demonstrating the coated article of this invention 本発明の基材に成膜する成膜装置の例Example of film forming apparatus for forming a film on a substrate of the present invention 本発明の塗工対象物と電気伝導体薄膜に塗布液膜を形成する塗布液膜成膜装置の例Example of coating liquid film forming apparatus for forming coating liquid film on coating object and electric conductor thin film of the present invention 本発明の塗工対象物と電気伝導体薄膜を加熱する電磁波照射装置の例An example of an electromagnetic wave irradiation apparatus for heating an object to be coated and an electric conductor thin film of the present invention 塗布液膜の重量変化率を説明するためのグラフGraph for explaining the rate of change in weight of coating liquid film 塗布液膜及び電気伝導体薄膜の温度特性を説明するためのグラフGraph for explaining temperature characteristics of coating liquid film and electric conductor thin film 本発明の他の例Other examples of the present invention

符号の説明Explanation of symbols

201 、202……塗工対象物 203……塗工品 21、51……基材 22、52……電気伝導体薄膜 23、53……塗布液膜 24、54……塗布膜 10、16……電気伝導体薄膜成膜装置 31……塗布液膜成膜装置 35……電磁波照射装置 57……塗工フィルム 20 1, 20 2 ...... coating object 20 3 ...... coated article 21, 51 ...... substrate 22, 52 ...... electrically conductive thin film 23, 53 ...... coating liquid film 24, 54 ...... coating film 10 , 16 ... Electric conductor thin film deposition apparatus 31 ... Coating liquid film deposition apparatus 35 ... Electromagnetic wave irradiation apparatus 57 ... Coating film

Claims (4)

高分子材料から成る基材の表面に電気伝導体薄膜を成膜する電気伝導体薄膜成膜工程と、
前記電気伝導体薄膜の表面に塗布液膜を成膜する塗布液膜成膜工程と、
前記塗布液膜に向けて電磁波を照射して前記塗布液膜側の前記電気伝導体薄膜の表面を発熱させ、前記塗布液膜側の前記電気伝導体薄膜の表面から熱伝導により前記塗布液膜を加熱し、前記塗布液膜を乾燥、硬化させる電磁波加熱工程とを有する塗布膜形成方法。
An electric conductor thin film forming step of forming an electric conductor thin film on the surface of a base material made of a polymer material;
A coating liquid film forming step of forming a coating liquid film on the surface of the electric conductor thin film;
The coating liquid film is irradiated with electromagnetic waves toward the coating liquid film to cause heat generation on the surface of the electric conductor thin film on the coating liquid film side, and the coating liquid film by heat conduction from the surface of the electric conductor thin film on the coating liquid film side. And an electromagnetic wave heating step of drying and curing the coating liquid film.
前記基材は、フィルムであり、前記基材が巻き回されている原反ロールから引き出された前記基材が、巻き取りロールに巻き取られ、前記基材が静止又は、移動しながら前記電気伝導体薄膜成膜工程と、
塗布液膜成膜工程と、
電磁波加熱工程とを行う請求項1記載の塗布膜形成方法。
The base material is a film, and the base material drawn out from an original roll on which the base material is wound is wound on a take-up roll, and the electric power is transferred while the base material is stationary or moving. A conductor thin film forming step;
A coating liquid film forming step;
The coating film formation method of Claim 1 which performs an electromagnetic wave heating process.
前記電気伝導体薄膜成膜工程は、前記電気伝導体薄膜をスパッタリングにより成膜する請求項1記載の塗布膜形成方法。   2. The coating film forming method according to claim 1, wherein the electric conductor thin film forming step forms the electric conductor thin film by sputtering. 前記基材は、板状のポリカーボネイトであり、前記電気伝導体薄膜は、透明なNi-Crであり、前記塗布膜はハードコート塗料であり、請求項1記載の塗布膜成膜方法によって得られるガラス代替物。   The said base material is a plate-shaped polycarbonate, the said electrical conductor thin film is transparent Ni-Cr, the said coating film is a hard-coat paint, It is obtained by the coating film film-forming method of Claim 1 Glass substitute.
JP2008312571A 2008-12-08 2008-12-08 Coating film forming method, glass substitute Expired - Fee Related JP5364888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312571A JP5364888B2 (en) 2008-12-08 2008-12-08 Coating film forming method, glass substitute

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312571A JP5364888B2 (en) 2008-12-08 2008-12-08 Coating film forming method, glass substitute

Publications (2)

Publication Number Publication Date
JP2010131572A true JP2010131572A (en) 2010-06-17
JP5364888B2 JP5364888B2 (en) 2013-12-11

Family

ID=42343450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312571A Expired - Fee Related JP5364888B2 (en) 2008-12-08 2008-12-08 Coating film forming method, glass substitute

Country Status (1)

Country Link
JP (1) JP5364888B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692053A (en) * 1979-12-27 1981-07-25 Toyoda Gosei Kk Soft glinting product
JPS5925823A (en) * 1982-08-04 1984-02-09 Toyoda Gosei Co Ltd Coating
JP2007001247A (en) * 2005-06-27 2007-01-11 Kojima Press Co Ltd Decorated product and its manufacturing method
JP2007313804A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Laminate for resin glass, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692053A (en) * 1979-12-27 1981-07-25 Toyoda Gosei Kk Soft glinting product
JPS5925823A (en) * 1982-08-04 1984-02-09 Toyoda Gosei Co Ltd Coating
JP2007001247A (en) * 2005-06-27 2007-01-11 Kojima Press Co Ltd Decorated product and its manufacturing method
JP2007313804A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Laminate for resin glass, and its manufacturing method

Also Published As

Publication number Publication date
JP5364888B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP6258303B2 (en) Resin base film for heating and baking by light irradiation, substrate and heating and baking method
JP5341966B2 (en) Pattern transfer method and pattern transfer apparatus, flexible display panel using the same, flexible solar cell, electronic book, thin film transistor, electromagnetic wave shielding sheet, flexible printed circuit board
KR101563391B1 (en) Multilayer body, method for producing same, electronic device member, and electronic device
US20110209749A1 (en) Pattern transfer method and apparatus, flexible display panel, flexible solar cell, electronic book, thin film transistor, electromagnetic-shielding sheet, and flexible printed circuit board applying thereof
CN107012450A (en) A kind of method of polymeric substrate surface metallization and application thereof
RU2011139139A (en) METHOD FOR PRODUCING HYPERTHERMAL HYDROGEN MOLECULES AND THEIR APPLICATION FOR SELECTIVE RELATIONSHIP OF С-Н AND / OR SI-H MOLECULES NEAR OR ON THE SURFACE OF THE SUBSTRATE
TWI584708B (en) Structure of conductive lines and method of manufacturing the same
TW201515015A (en) Copper particulate dispersion, conductive film forming method, and circuit board
You et al. Electroless plating of a 5G copper antenna on polyimide patterned with laser-induced selective activation and curing of metal–organic catalyst
JP5769216B2 (en) Manufacturing method of structure having metal film, mother die used therefor, and structure manufactured thereby
JP6520133B2 (en) Laminate, method of manufacturing conductive substrate using the same, and method of manufacturing electronic device
KR20140136940A (en) Transparent conductive coatings on an elastomeric substrate
JP5364888B2 (en) Coating film forming method, glass substitute
EP0310656A1 (en) Surface treatment of polymers.
KR101164061B1 (en) Pattern fabricating method and pattern transferring apparatus, flexible display panel, flexible solar cell, electronic book, thin film transistor, electromagnetic-shielding sheet, flexible printed circuit board applying thereof
CN106113732A (en) A kind of preparation method of Graphene resin film
JP5151622B2 (en) Method for manufacturing conductive substrate and conductive substrate
JP6321906B2 (en) Conductive pattern forming substrate, conductive pattern forming substrate, and manufacturing method thereof
US20120126460A1 (en) Apparatus and method for manufacturing board for production of metal flake
JP2007335619A (en) Manufacturing method of electromagnetic wave shield molding
CN102953032A (en) Method and device for vacuum evaporation of silver film
US20130248232A1 (en) Conductive pattern film substrate and manufacturing method
JP2011005678A (en) Hard coat transfer foil
JP2004058049A (en) Film formation method
Fitz-Gerald et al. Matrix assisted pulsed laser evaporation direct write (MAPLE DW): a new method to rapidly prototype active and passive electronic circuit elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121127

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5364888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees