JP2010130064A - DeltaSigma MODULATED DA CONVERTER AND DeltaSigma MODULATOR - Google Patents

DeltaSigma MODULATED DA CONVERTER AND DeltaSigma MODULATOR Download PDF

Info

Publication number
JP2010130064A
JP2010130064A JP2008299472A JP2008299472A JP2010130064A JP 2010130064 A JP2010130064 A JP 2010130064A JP 2008299472 A JP2008299472 A JP 2008299472A JP 2008299472 A JP2008299472 A JP 2008299472A JP 2010130064 A JP2010130064 A JP 2010130064A
Authority
JP
Japan
Prior art keywords
class
output
converter
amplification unit
emulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299472A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Murahashi
善光 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008299472A priority Critical patent/JP2010130064A/en
Publication of JP2010130064A publication Critical patent/JP2010130064A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for improving tone quality in a ΔΣ modulated DA converter, while suppressing cost rise as much as possible. <P>SOLUTION: At an audio processing apparatus 10, a digital signal is modulated by a ΔΣ modulator 20 and amplified by a class D amplifier 60 to output to a load 12 such as a speaker. At this point, the output of the class D amplifier 60 is fed back to the ΔΣ modulator 20 indirectly. In order to remove distortion component using a comparatively low speed AD converter as an AD converter needed in the feedback, a class D amplifier emulator 30 is arranged at the ΔΣ modulator 20, wherein the emulator simulates the class D amplifier 60 where distortion generates. In addition, the class D amplifier emulator 30 updates various parameters by learning so that they may become suitable. Thereby, distortion compensation can be performed more effectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ΔΣ変調型DA変換器及びΔΣ変調器に係り、D級増幅部を備え出力に接続された負荷に電力を供給することが可能なΔΣ変調型DA変換器及び入力信号に対してΔΣ変調を施しD級増幅部に出力するΔΣ変調器に関する。   The present invention relates to a delta-sigma modulation DA converter and a delta-sigma modulator, and includes a delta-sigma modulation DA converter and an input signal that have a class D amplifier and can supply power to a load connected to an output. The present invention relates to a ΔΣ modulator that performs ΔΣ modulation and outputs it to a class D amplifier.

液晶テレビを始めとする薄型テレビは、激しい競争に晒されており、製造各社は性能向上をさせつつ一層のコストダウンをすることが求められている。そのような中、オーディオアンプも例外ではない。テレビ放送波にあってはデジタル放送の開始に伴い、TV回路のほとんどがデジタル化されるようになっており、オーディオアンプもデジタル信号を入力とするデバイスが求められている。最終的にはデジタル回路を1チップ化し、省スペース、低コスト化が行われている。   LCD TVs and other flat-screen TVs are exposed to intense competition, and manufacturers are required to further reduce costs while improving performance. Under such circumstances, audio amplifiers are no exception. In the case of television broadcast waves, with the start of digital broadcasting, most TV circuits are digitized, and audio amplifiers are also required to have devices that receive digital signals. Eventually, digital circuits are integrated into one chip to save space and reduce costs.

ところで、オーディオなどに応用されるΔΣ変調型DA変換器では、デジタル回路で構成される変調部と、電力を供給するD級増幅部に分けて構成される。D級増幅部は電力スイッチング部のデットタイムやオン抵抗、電源インピーダンスによる電圧降下、他負荷の影響による電源変動によるなどによって、理想的なD級増幅とならないために歪が発生してしまい、音質劣化を招くという課題がある。   By the way, a ΔΣ modulation DA converter applied to audio and the like is configured by being divided into a modulation section constituted by a digital circuit and a class D amplification section for supplying power. The class D amplifier does not achieve ideal class D amplification due to the dead time, on-resistance of the power switching unit, voltage drop due to power supply impedance, power supply fluctuation due to the influence of other loads, etc., and distortion occurs, resulting in sound quality. There is a problem of causing deterioration.

図1に、現在実現されているΔΣ変調型DA変換器について5種類例示する。図1(a)は、初期のΔΣ変調型DA変換器の構成例であり、デジタル信号をDA変換器においてアナログ信号に変換し、アナログのΔΣ変調器により変調し、D級増幅部で増幅している。また、D級増幅部の出力は、ΔΣ変調器にフィードバックされている。この構成のΔΣ変調型DA変換器の場合、特性面では優れているが、消費電力の改善のための新たなアルゴリズムの検討が困難であったり、また、コストが比較的高くなってしまうという課題がある。   FIG. 1 illustrates five types of ΔΣ modulation DA converters currently implemented. FIG. 1A shows an example of the configuration of an initial ΔΣ modulation type DA converter. A digital signal is converted into an analog signal by a DA converter, modulated by an analog ΔΣ modulator, and amplified by a class D amplification unit. ing. The output of the class D amplifier is fed back to the ΔΣ modulator. The ΔΣ modulation DA converter with this configuration is excellent in characteristics, but it is difficult to study a new algorithm for improving power consumption, and the cost is relatively high. There is.

図1(b)のΔΣ変調型DA変換器では、ΔΣ変調器の前段のDA変換器が省かれ、デジタル信号をそのまま変調するΔΣ変調器とD級増幅部とから構成されている。このΔΣ変調型DA変換器では、アルゴリズムの検証の容易性が大幅に改善されたが、D級増幅部で発生する歪みがそのまま出力されてしまうという課題があった。   In the ΔΣ modulation type DA converter of FIG. 1B, the DA converter in the preceding stage of the ΔΣ modulator is omitted, and the ΔΣ modulation DA converter includes a ΔΣ modulator that modulates a digital signal as it is and a class D amplification unit. In this ΔΣ modulation DA converter, the ease of verification of the algorithm is greatly improved, but there is a problem that distortion generated in the class D amplification unit is output as it is.

図1(c)のΔΣ変調型DA変換器では、図1(b)のΔΣ変調型DA変換器の課題を解決するために、ΔΣ変調器の前段に歪補償回路を設けることで、歪特性の改善がなされている。ただし、このΔΣ変調型DA変換器を採用した場合であっても、例えば、電源リプルなどを十分に補償できないという課題がある。近年、製品のコストダウンが進む結果、電源の耐電源リプルの弱点が顕在化してしまうことがあった。   In the ΔΣ modulation type DA converter of FIG. 1C, in order to solve the problem of the ΔΣ modulation type DA converter of FIG. 1B, a distortion compensation circuit is provided in the previous stage of the ΔΣ modulator, thereby providing distortion characteristics. Improvements have been made. However, even when this ΔΣ modulation DA converter is employed, there is a problem that, for example, power ripple cannot be sufficiently compensated. In recent years, as a result of the cost reduction of products, the weak point of the power supply ripple resistance of the power supply sometimes becomes apparent.

図1(d)のΔΣ変調型DA変換器では、図1(c)のΔΣ変調型DA変換器の課題を解決するために、D級増幅部に供給する電力のリプル除去回路を設けている。   In the ΔΣ modulation DA converter of FIG. 1D, in order to solve the problem of the ΔΣ modulation DA converter of FIG. 1C, a ripple removal circuit for power supplied to the class D amplification unit is provided. .

また、歪補償によって特性を改善する技術は、様々提案されている。例えば、歪補償された送信信号がDA変換器のダイナミックレンジを超えないように、事前に歪み補償係数の大きさを、その位相を維持したまま補正する技術がある(例えば、特許文献1参照)。
特開2001−251148号公報
Various techniques for improving characteristics by distortion compensation have been proposed. For example, there is a technique for correcting the magnitude of a distortion compensation coefficient in advance while maintaining its phase so that a distortion-compensated transmission signal does not exceed the dynamic range of the DA converter (see, for example, Patent Document 1). .
JP 2001-251148 A

ところで、特許文献1に記載の技術では、原理的に、入力信号x(t)との因果性に関する歪特性しか補正されなかった。したがって、比較的大きな電力を制御するDA変換器のように、DA変換器のスイッチングパターンや電源変動などが無視できないアプリケーションでは、これらで発生する歪要因が補正できないため、フィードバックによる性能向上に限界があった。また、図1(d)に示した技術では、耐電源リプルを高めることで、ΔΣ変調型DA変換器の特性を改善することができるが、結局はコストが高くなってしまい、電源のコストダウンとΔΣ変調型DA変換器のコストアップとが相殺されてしまうという課題があった。また、図1(e)に、図1(b)のD級増幅部の出力をΔΣ変調器にフィードバックするΔΣ変調型DA変換器について示している。この構成が理想的であるが、フィードバックの際に高速かつ高精度のAD変換器が必要であった。上述のように激しいコスト競争に晒されている現状にあっては、高速かつ高精度のAD変換器の採用は現実的でなく、別の技術が求められていた。   By the way, in the technique described in Patent Document 1, in principle, only the distortion characteristic related to the causality with the input signal x (t) is corrected. Therefore, in applications where DA converter switching patterns and power supply fluctuations cannot be ignored, such as DA converters that control relatively large power, distortion factors that occur in these applications cannot be corrected. there were. Further, in the technique shown in FIG. 1D, the characteristics of the ΔΣ modulation DA converter can be improved by increasing the power supply ripple, but eventually the cost is increased and the cost of the power supply is reduced. And the cost increase of the ΔΣ modulation DA converter is offset. FIG. 1E shows a ΔΣ modulation DA converter that feeds back the output of the class D amplification unit of FIG. 1B to the ΔΣ modulator. This configuration is ideal, but a high-speed and high-accuracy AD converter is required for feedback. As described above, under the current situation of intense cost competition, the adoption of a high-speed and high-precision AD converter is not practical, and another technique has been demanded.

本発明の目的は、上記課題に鑑み、ΔΣ変調型DA変換器において、コストアップをできるだけ抑えながら、音質改善を達成する技術を提案することにある。   In view of the above problems, an object of the present invention is to propose a technique for achieving an improvement in sound quality while suppressing an increase in cost as much as possible in a ΔΣ modulation DA converter.

本発明に係る装置は、ΔΣ変調型DA変換器に関する。この装置は、積分器と前記積分器からの出力にもとづいて前記積分器の出力の分解能より低い分解能に変換する量子化器とを備えたΔΣ変調器とD級増幅部とを備え出力に接続された負荷に電力を供給することが可能なΔΣ変調型DA変換器であって、前記D級増幅部の出力をエミュレートするためのD級増幅部エミュレータと、前記D級増幅部の出力と前記D級増幅部エミュレータの出力の信号をもとにフィードバック信号を生成するフィードバック部と、を備える。
また、前記D級増幅部エミュレータは、前記D級増幅部の歪特性をエミュレートしてもよい。
また、前記D級増幅部エミュレータは、前記フィードバック部の出力をもとに、当該D級増幅部エミュレータの出力と前記D級増幅部の出力がもっとも近くなるように前記D級増幅部エミュレータ自身の特性を逐次更新してもよい。
また、前記フィードバック部は、前記D級増幅部の出力を濾波するアナログフィルタと、前記アナログフィルタで濾波された前記D級増幅部の出力をAD変換するAD変換器と、前記ΔΣ変調器の出力を、前記D級増幅部とは異なる経路にて取得して濾波するデジタルフィルタとを備えてもよい。
また、前記D級増幅部エミュレータは、前記AD変換器の出力と、前記デジタルフィルタの出力をもとに、当該D級増幅部エミュレータの出力と前記AD変換器における変換後の前記D級増幅部の出力とがもっとも近くなるように前記D級増幅部エミュレータ自身の特性を逐次更新してもよい。
また、前記ΔΣ変調器は、前記D級増幅部エミュレータの出力と当該ΔΣ変調型DA変換器への入力との差分を求める第1の減算器を備え、前記積分器に前記第1の減算器の出力が入力されてもよい。
また、前記D級増幅部は、前記量子化器の信号にもとづいて前記D級増幅部の出力に接続された負荷を十分に駆動できるだけの電力を供給してもよい。
また、前記ΔΣ変調型DA変換器は、外乱成分を擬似的に発生させる模擬外乱発生器を備えてもよい。
また、前記アナログフィルタは、前記D級増幅部の出力のうち歪成分推定に必要な信号成分のみを濾波してもよい。
また、前記デジタルフィルタは、前記D級増幅部エミュレータの出力のうち歪成分推定に必要な信号成分のみを濾波してもよい。
また、前記AD変換器の出力と前記デジタルフィルタの出力の差分を演算する演算手段を備えてもよい。
また、前記D級増幅部エミュレータは、前記模擬外乱発生器、入力信号、及び前記量子化器の出力と因果性のある歪成分のパラメータを同定し、前記D級増幅部の歪特性を模擬してもよい。
また、前記歪成分の前記パラメータは、前記AD変換器の出力と前記デジタルフィルタの出力との差分を求める第2の減算器の出力、前記模擬外乱発生器の出力、前記入力信号、及び前記量子化器の出力にもとづき逐次更新され、前記D級増幅部と前記D級増幅部エミュレータの歪成分が一致したときにパラメータの更新が収束してもよい。
また、前記AD変換器は、前記ΔΣ変調器の駆動速度に比較して、低速で駆動してもよい。
本発明の別の態様は、ΔΣ変調器に関する。この装置は、積分器と、前記積分器からの出力にもとづいて、前記積分器の出力の分解能より低い分解能に変換する量子化器と、出力先のD級増幅部の歪特性を模擬し、前記積分器へ帰還出力するD級増幅部エミュレータと、外乱成分を擬似的に発生させる模擬外乱発生器とを備え、前記D級増幅部エミュレータは、前記D級増幅部の出力がAD変換された後のデジタル信号と前記D級増幅部エミュレータの帰還出力との差信号、前記量子化器からの信号、及び前記模擬外乱発生器の信号をもとに、前記模擬外乱発生器、入力信号及び前記量子化器の出力と因果性のある歪成分のパラメータを同定し、かつ前記D級増幅部の出力が前記AD変換された後のデジタル信号と前記D級増幅部エミュレータの帰還出力との差信号が小さくなるように、逐次前記パラメータを更新する。
The apparatus according to the present invention relates to a ΔΣ modulation DA converter. This device includes a ΔΣ modulator including a integrator and a quantizer that converts the output from the integrator to a resolution lower than the resolution of the integrator based on the output from the integrator, and a class D amplifier, and is connected to the output. A delta-sigma modulation DA converter capable of supplying electric power to a load, a class D amplifier emulator for emulating the output of the class D amplifier, and the output of the class D amplifier A feedback unit that generates a feedback signal based on a signal output from the class D amplifier emulator.
The class D amplifier emulator may emulate the distortion characteristics of the class D amplifier.
In addition, the class D amplifier emulator is based on the output of the feedback unit so that the output of the class D amplifier and the output of the class D amplifier are closest to each other. The characteristics may be updated sequentially.
The feedback unit includes an analog filter that filters the output of the class D amplification unit, an AD converter that AD converts the output of the class D amplification unit filtered by the analog filter, and an output of the ΔΣ modulator. May be provided with a digital filter that acquires and filters through a different path from the class D amplifier.
Further, the class D amplification unit emulator, based on the output of the AD converter and the output of the digital filter, outputs the class D amplification unit emulator and the class D amplification unit after conversion in the AD converter. The characteristics of the class D amplifier emulator itself may be updated sequentially so that the output of
The ΔΣ modulator includes a first subtractor that obtains a difference between an output of the class D amplifier emulator and an input to the ΔΣ modulation DA converter, and the integrator includes the first subtractor. May be input.
The class D amplification unit may supply power sufficient to drive a load connected to the output of the class D amplification unit based on the signal of the quantizer.
In addition, the ΔΣ modulation DA converter may include a simulated disturbance generator that artificially generates a disturbance component.
The analog filter may filter only a signal component necessary for distortion component estimation out of the output of the class D amplifier.
The digital filter may filter only a signal component necessary for distortion component estimation out of the output of the class D amplifier emulator.
Moreover, you may provide the calculating means which calculates the difference of the output of the said AD converter, and the output of the said digital filter.
The class D amplifier emulator identifies the parameters of the simulated disturbance generator, the input signal, the output of the quantizer and the causal distortion component, and simulates the distortion characteristics of the class D amplifier. May be.
The parameters of the distortion component include: an output of a second subtractor that obtains a difference between an output of the AD converter and an output of the digital filter, an output of the simulated disturbance generator, the input signal, and the quantum The update of the parameter may converge when the distortion components of the class D amplifying unit and the class D amplifying unit emulator coincide with each other.
Further, the AD converter may be driven at a lower speed than the driving speed of the ΔΣ modulator.
Another embodiment of the present invention relates to a ΔΣ modulator. This apparatus simulates the distortion characteristics of an integrator, a quantizer that converts to a lower resolution than the output of the integrator based on the output from the integrator, and the output class D amplifier, A D-class amplification unit emulator for feedback and output to the integrator; and a simulated disturbance generator for generating a disturbance component in a pseudo manner. The D-class amplification unit emulator is configured such that the output of the D-class amplification unit is AD converted. Based on the difference signal between the later digital signal and the feedback output of the class D amplifier emulator, the signal from the quantizer, and the signal of the simulated disturbance generator, the simulated disturbance generator, the input signal, and the The difference signal between the digital signal after the output of the quantizer and the causal distortion component parameter are identified and the output of the class D amplifier is AD converted and the feedback output of the class D amplifier emulator So that Successively updating the parameter.

本発明によれば、ΔΣ変調型DA変換器において、コストアップをできるだけ抑えながら、音質改善を達成する技術を提案することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the delta-sigma modulation type DA converter, the technique which achieves sound quality improvement can be proposed, suppressing a cost increase as much as possible.

つぎに、本発明を実施するための最良の形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。まず、本実施形態の概要を説明する。以下の音声処理装置は、デジタル信号をΔΣ変調器で変調し、D級増幅部で増幅し、スピーカなどの負荷に出力する。その際に、D級増幅部の出力を、ΔΣ変調器へフィードバックする。なお、このとき、ΔΣ変調器へフィードバックには、AD変換器が必要となるが、高速かつ高精度のAD変換器はコストの面で採用が難しいため、比較的低速なAD変換器を用いつつ、歪み成分を除去する。そのため、歪みが発生しているD級増幅部を模擬するD級増幅部エミュレータをΔΣ変調器内に設け、そのD級増幅部エミュレータと比較的低速なAD変換器をもとに生成したフィードバック信号をフィードバック処理に用いる。さらに、D級増幅部エミュレータは、学習することによって、各種パラメータを適切になるように更新し、歪み補償をより効果的に実現する。   Next, the best mode for carrying out the present invention (hereinafter simply referred to as “embodiment”) will be specifically described with reference to the drawings. First, an outline of the present embodiment will be described. The following audio processing device modulates a digital signal with a ΔΣ modulator, amplifies it with a class D amplifier, and outputs it to a load such as a speaker. At that time, the output of the class D amplifier is fed back to the ΔΣ modulator. At this time, an AD converter is required for feedback to the ΔΣ modulator. However, since a high-speed and high-precision AD converter is difficult to adopt in terms of cost, a relatively low-speed AD converter is used. , Remove distortion components. For this reason, a class D amplifier emulator that simulates a class D amplifier having distortion is provided in the ΔΣ modulator, and the feedback signal generated based on the class D amplifier emulator and a relatively low-speed AD converter. Is used for feedback processing. Furthermore, the class D amplifier emulator updates various parameters to be appropriate by learning, and more effectively realizes distortion compensation.

図2は、本実施形態に係る音声処理装置10の概略構成を示す機能ブロックである。この音声処理装置10は、例えば、液晶テレビ等の表示装置に搭載される。   FIG. 2 is a functional block diagram illustrating a schematic configuration of the speech processing apparatus 10 according to the present embodiment. The audio processing device 10 is mounted on a display device such as a liquid crystal television.

図示のように、音声処理装置10は、ΔΣ変調器20と、D級増幅部60と、フィードバック部70とを備える。PCM(pulse code modulation)信号などのデジタル信号(「原信号S1」ともいう)が、信号入力部51から音声処理装置10に入力され、ΔΣ変調器20により変調されて、D級増幅部60に出力される。D級増幅部60で増幅された信号は信号出力部52を介してスピーカなどの負荷12に出力される。また、D級増幅部60で増幅された信号は、後述のAD変換器74を備えるフィードバック部70を介してΔΣ変調器20にフィードバックされる。以下、各構成について具体的に説明する。   As illustrated, the audio processing device 10 includes a ΔΣ modulator 20, a class D amplification unit 60, and a feedback unit 70. A digital signal (also referred to as “original signal S 1”) such as a PCM (pulse code modulation) signal is input from the signal input unit 51 to the audio processing device 10, modulated by the ΔΣ modulator 20, and input to the class D amplification unit 60. Is output. The signal amplified by the class D amplification unit 60 is output to the load 12 such as a speaker through the signal output unit 52. The signal amplified by the class D amplification unit 60 is fed back to the ΔΣ modulator 20 via a feedback unit 70 including an AD converter 74 described later. Each configuration will be specifically described below.

D級増幅部60は、前記量子化器24の信号を、当該音声処理装置10の信号出力部52に接続されたスピーカ等の負荷12を駆動するのに十分な電力を供給する信号に増幅する。   The class D amplification unit 60 amplifies the signal of the quantizer 24 to a signal that supplies power sufficient to drive the load 12 such as a speaker connected to the signal output unit 52 of the audio processing device 10. .

ΔΣ変調器20は、ΔΣ変調するための一般的な回路構成として、積分器22と、積分器22からの出力にもとづいて、積分器22の出力の分解能より低い分解能に変換する量子化器24とを備えており、音声信号を2値や3値などの離散的な電圧値に量子化する。なお、積分器22や量子化器24については公知の技術であるので説明は省略する。また、積分器22の積分次数は1次でもよいし2次以上であってもよい。さらに、積分器22は複数で構成されてもよい。さらにまた、D級増幅部エミュレータ30の出力を積分器22の入力側へフィードバックするために、積分器22の前段に合成器28が設けられている。合成器28は、原信号S1を非反転入力(+)、D級増幅部エミュレータ30からの出力を反転入力(−)としてその差を演算し、演算の結果得られた信号を積分器22に出力する。   The ΔΣ modulator 20 has, as a general circuit configuration for ΔΣ modulation, an integrator 22 and a quantizer 24 that converts the output from the integrator 22 to a resolution lower than the resolution of the integrator 22 based on the output from the integrator 22. The audio signal is quantized into discrete voltage values such as binary and ternary values. Note that the integrator 22 and the quantizer 24 are well-known techniques and will not be described. Further, the integration order of the integrator 22 may be first order or second order or higher. Furthermore, the integrator 22 may be composed of a plurality. Furthermore, a synthesizer 28 is provided before the integrator 22 in order to feed back the output of the class D amplifier emulator 30 to the input side of the integrator 22. The synthesizer 28 calculates the difference between the original signal S1 as a non-inverting input (+) and the output from the class D amplifier emulator 30 as an inverting input (−), and outputs the signal obtained as a result of the calculation to the integrator 22. Output.

さらに、ΔΣ変調器20は、本実施形態に特徴的な構成として、D級増幅部エミュレータ30と模擬外乱発生器26とを備えている。模擬外乱発生器26は、外乱成分を推定するための外乱を発生させる。この外乱は、例えば、商用電源の電源変動成分と同様の周波数を有する正弦波や余弦波である。他には、インバータの周波数等ができる。以下では、正弦波や余弦波として説明する。   Further, the ΔΣ modulator 20 includes a class D amplifier emulator 30 and a simulated disturbance generator 26 as a characteristic configuration of the present embodiment. The simulated disturbance generator 26 generates a disturbance for estimating a disturbance component. This disturbance is, for example, a sine wave or cosine wave having the same frequency as the power supply fluctuation component of the commercial power supply. In addition, the frequency of the inverter can be set. Below, it demonstrates as a sine wave and a cosine wave.

D級増幅部エミュレータ30は、図示のように、量子化器24の出力(S2)、模擬外乱発生器26の出力(S3)、信号入力部51に入力した原信号S1(後述のAD変換器入力d3)を入力信号として、それらの信号(S1〜S3)と因果性のある歪成分のパラメータを同定し、D級増幅部60の振る舞いを模擬する。上記のパラメータは、模擬外乱発生器26の出力(S3)、原信号S1、量子化器24の出力(S2)及びフィードバック部70の合成器76から出力される誤差信号S4にもとづき逐次更新される。そして、D級増幅部60とD級増幅部エミュレータ30の歪成分が一致したときに、パラメータの更新が収束する。なお、D級増幅部エミュレータ30の構成及び数式モデルについては後述する。   As shown in the figure, the class D amplifier emulator 30 includes an output of the quantizer 24 (S2), an output of the simulated disturbance generator 26 (S3), and an original signal S1 (to be described later, an AD converter) input to the signal input unit 51. Using the input d3) as an input signal, the parameters of the causal distortion component and those signals (S1 to S3) are identified, and the behavior of the class D amplifier 60 is simulated. The above parameters are sequentially updated based on the output (S3) of the simulated disturbance generator 26, the original signal S1, the output (S2) of the quantizer 24, and the error signal S4 output from the combiner 76 of the feedback unit 70. . When the distortion components of the class D amplification unit 60 and the class D amplification unit emulator 30 match, the parameter update converges. The configuration and mathematical model of the class D amplifier emulator 30 will be described later.

フィードバック部70は、アナログフィルタ72と、AD変換器74と、合成器76と、デジタルフィルタ78とを備える。アナログフィルタ72は、D級増幅部60の出力のうち必要な信号成分のみを通過させAD変換器74に出力する。   The feedback unit 70 includes an analog filter 72, an AD converter 74, a combiner 76, and a digital filter 78. The analog filter 72 passes only a necessary signal component out of the output of the class D amplifier 60 and outputs it to the AD converter 74.

AD変換器74は、フィルタ72を通過したアナログ信号をデジタル信号に変換して、合成器76に出力する。   The AD converter 74 converts the analog signal that has passed through the filter 72 into a digital signal and outputs the digital signal to the synthesizer 76.

デジタルフィルタ78は、D級増幅部エミュレータ30から出力された信号のうち必要な信号成分のみを通過させ、合成器76に出力する。   The digital filter 78 passes only a necessary signal component of the signal output from the class D amplifier emulator 30 and outputs it to the combiner 76.

合成器76は、AD変換器74からの信号を非反転入力(+)、デジタルフィルタ78を介したD級増幅部エミュレータ30の出力を反転入力(−)としてその差を演算し、演算結果を誤差信号S4としてD級増幅部エミュレータ30へ出力する。   The synthesizer 76 calculates the difference using the signal from the AD converter 74 as the non-inverting input (+) and the output of the class D amplifier emulator 30 via the digital filter 78 as the inverting input (−), and calculates the result. The error signal S4 is output to the class D amplifier emulator 30.

つぎに、D級増幅部エミュレータ30の処理の数式モデルの概要を説明する。数式モデルの一般式は、下記の(1)式〜(6)式で表される。ここで、D級増幅部エミュレータ30は、D級増幅部60の出力をy(t)、D級増幅部エミュレータ30の出力をy(t)、D級増幅部60とD級増幅部エミュレータ30の誤差をe(t)としたときに、(4)式で示される誤差e(t)の2乗誤差の時間積分が最小にするように、パラメータa〜aを最急降下法により学習し更新する。なお、(5)式で、a(t)が現在のパラメータであり、a(t+1)が更新後のパラメータである。また、パラメータの学習手法として、基本的手法である最急降下法について例示しているが、当然、遺伝的アルゴリズムやその他の学習手法が用いられてもよい。

Figure 2010130064
Figure 2010130064
Next, an outline of a mathematical model of processing of the class D amplifier emulator 30 will be described. The general formula of the mathematical model is expressed by the following formulas (1) to (6). Here, the class D amplification unit emulator 30 outputs y 1 (t) as the output of the class D amplification unit 60, y 2 (t) as the output of the class D amplification unit emulator 30, and the class D amplification unit 60 and the class D amplification unit. the error of the emulator 30 is taken as e (t), (4) 2 squared such time integral of the error is minimized, the steepest descent method parameters a 1 ~a n error e (t) represented by the formula To learn and update. In equation (5), a i (t) is the current parameter, and a i (t + 1) is the updated parameter. Further, although the steepest descent method, which is a basic method, is exemplified as a parameter learning method, naturally, a genetic algorithm or other learning method may be used.

Figure 2010130064
Figure 2010130064

つぎに、図3及び下記の式(7)〜(12)にもとづき、D級増幅部エミュレータ30の具体的な構成と数式モデルについて説明する。ここで、D級増幅部エミュレータ30の出力が下記の(7)〜(12)式で示される歪みモデルを有していると想定する。

Figure 2010130064
Next, based on FIG. 3 and the following formulas (7) to (12), a specific configuration and mathematical model of the class D amplifier emulator 30 will be described. Here, it is assumed that the output of the class D amplifier emulator 30 has a distortion model represented by the following equations (7) to (12).
Figure 2010130064

D級増幅部エミュレータ30は、模擬外乱発生器26から模擬外乱の信号である正弦波の第1外乱波d1((7)式)及び余弦波の第2外乱波d2((8)式)と、原信号(入力信号)S1であるAD変換器入力d3の絶対値((9)式)と、量子化器24からの出力である量子化器出力d4((10)式)と、フィードバック部70の合成器76からの誤差信号eを入力として取得し、後述の所定の演算処理後、(11)式で示すエミュレータ出力信号y(t)を出力する。 The class D amplifier emulator 30 includes a sine wave first disturbance wave d1 (equation (7)) and a cosine wave second disturbance wave d2 (equation (8)), which are simulated disturbance signals from the simulation disturbance generator 26. , The absolute value (formula (9)) of the AD converter input d3 that is the original signal (input signal) S1, the quantizer output d4 (formula (10)) that is the output from the quantizer 24, and a feedback unit The error signal e from the synthesizer 76 of 70 is acquired as an input, and an emulator output signal y 2 (t) expressed by the equation (11) is output after a predetermined calculation process described later.

より具体的には、図示のように、D級増幅部エミュレータ30は、D級増幅模擬用パラメータ更新制御器42と、D級増幅模擬出力演算器44と、D級増幅模擬用パラメータ部46とを備えている。D級増幅模擬用パラメータ更新制御器42は、(7)式の第1外乱波d1、(8)式の第2外乱波d2、(9)式のAD変換器入力(入力信号)d3の絶対値、(10)式の量子化器出力d4及びフィードバック部70の合成器76からの誤差信号eを取得する。   More specifically, as shown, the class D amplification unit emulator 30 includes a class D amplification simulation parameter update controller 42, a class D amplification simulation output calculator 44, a class D amplification simulation parameter unit 46, It has. The class D amplification simulation parameter update controller 42 calculates the absolute value of the first disturbance wave d1 in equation (7), the second disturbance wave d2 in equation (8), and the AD converter input (input signal) d3 in equation (9). The value, the quantizer output d4 of the equation (10), and the error signal e from the synthesizer 76 of the feedback unit 70 are acquired.

上記(11)式において、「a・d+a・d」で示される部分が、上述のように商用電源と同じ周波数を有する正弦波及び余弦波による電源変動成分に相当する。また、「a・|d|」で示される部分が、原信号S1の信号原の電源インピーダンスによる電圧降下成分に相当する。さらに、「a・d」で示される部分がゲイン変動分に相当する。 In the above equation (11), the portion indicated by “a 1 · d 1 + a 2 · d 2 ” corresponds to the power fluctuation component due to the sine wave and cosine wave having the same frequency as the commercial power supply as described above. Further, a portion indicated by “a 3. | D 3 |” corresponds to a voltage drop component due to the power source impedance of the signal source of the original signal S1. Furthermore, the portion indicated by “a 4 · d 4 ” corresponds to the gain fluctuation.

そして、(11)式の第1〜第4のパラメータa〜aは、逐次更新され、学習されて収束されることになる。 Then, (11) the first to fourth parameters a 1 ~a 4 expressions are sequentially updated, will be focused are learned.

そこで、D級増幅模擬用パラメータ更新制御器42は、第1外乱波d1、第2外乱波d2、AD変換器入力d3、量子化器出力d4及びフィードバック部70の合成器76からの誤差信号e(t)をもとに、(12)式で示す第1〜第4のパラメータa〜a4の更新量Δa〜Δaを算出して、D級増幅模擬用パラメータ部46に出力する。

Figure 2010130064
Therefore, the class D amplification simulation parameter update controller 42 includes a first disturbance wave d1, a second disturbance wave d2, an AD converter input d3, a quantizer output d4, and an error signal e from the combiner 76 of the feedback unit 70. (t) to the original, calculates the update amount Δa 1 ~Δa 4 of the first to fourth parameters a 1 to a4 shown in equation (12), and outputs the class D amplifier simulating parameter section 46.
Figure 2010130064

D級増幅模擬用パラメータ部46は、D級増幅模擬用パラメータ更新制御器42から取得した第1〜第4のパラメータa〜aの更新量Δa〜Δaに、上記の(5)式及び(6)式を適用させて、現在のパラメータa(t)に対して更新後のパラメータa(t+1)を算出し、信号d1〜d4とともにD級増幅模擬出力演算器44に出力する。 Class D amplifier simulating parameter section 46, the update amount Δa 1 ~Δa 4 of the first to fourth parameters a 1 ~a 4 obtained from the D-class amplification simulating parameter update controller 42, the above-mentioned (5) The updated parameter a i (t + 1) is calculated with respect to the current parameter a i (t) by applying the equations (6) and (6), and is output to the class D amplification simulation output calculator 44 together with the signals d1 to d4 To do.

D級増幅模擬出力演算器44は、D級増幅模擬用パラメータ部46の出力をもとに、上記(11)式で示す演算を実行して、D級増幅部60を模擬した結果をフィードバック部70及び積分器22の前段の合成器28に出力する。   The class D amplification simulation output calculator 44 executes the calculation represented by the above equation (11) based on the output of the class D amplification simulation parameter unit 46, and the result of simulating the class D amplification unit 60 is fed back to the feedback unit. 70 and the synthesizer 28 before the integrator 22.

音声処理装置10では、このようなパラメータの更新が逐次実行され、D級増幅部60とD級増幅部エミュレータ30の出力誤差e(t)が0になると収束する。つまり、D級増幅部エミュレータ30の学習の結果、D級増幅部60とD級増幅部エミュレータ30の各歪成分が一致することになり、ここで示す間接的なフィードバックが、直接的なフィードバックと同様に機能し、D級増幅部60に起因する歪成分や電源リプル等の外乱が効果的に補償される。   In the speech processing apparatus 10, such parameter updating is sequentially executed, and when the output error e (t) of the class D amplifying unit 60 and the class D amplifying unit emulator 30 becomes 0, convergence is achieved. That is, as a result of learning by the class D amplification unit emulator 30, the distortion components of the class D amplification unit 60 and the class D amplification unit emulator 30 match, and the indirect feedback shown here is a direct feedback. It functions in the same way, and disturbances such as distortion components and power supply ripple caused by the class D amplifier 60 are effectively compensated.

以上、本実施形態によれば、AD変換器74でフィードバックを行っているため、電源リプルなどの外乱や、D級増幅部60に特有の歪成分を間接的にフィードバックできる。また、直接フィードバックする場合には、高速なAD変換器が必要であるが、この手法では高速なAD変換器を用いなくても良いため、比較的低コストでフィードバックシステムを構築できる。さらに、積分器22、量子化器24を含めて、ΔΣ変調器20全体をデジタル信号処理で実現することができるため、デジタル放送受像機システムとの親和性が高い。同様の理由から、FPGA(Field Programmable Gate Array)を用いた開発により、様々な手法を検討することができ、開発効率が著しく向上する。さらにまた、ΔΣ変調のアルゴリズムはすべてデジタル回路で構成されているため、ドリフトノイズ等のアナログIC特有の設計制約に縛られずにアルゴリズムの検討が可能となる。さらに、D級増幅部60の歪み特性が、例えば経時変化によって変化した場合でも、D級増幅部エミュレータ30が学習により再度適切なパラメータに更新するため、そのような歪み特性の変化にも効果的に対応することができる。   As described above, according to the present embodiment, since feedback is performed by the AD converter 74, disturbances such as power supply ripple and distortion components peculiar to the class D amplifier 60 can be indirectly fed back. Further, in the case of direct feedback, a high-speed AD converter is necessary. However, since this method does not require a high-speed AD converter, a feedback system can be constructed at a relatively low cost. Furthermore, since the entire ΔΣ modulator 20 including the integrator 22 and the quantizer 24 can be realized by digital signal processing, the compatibility with the digital broadcast receiver system is high. For the same reason, various methods can be examined by development using an FPGA (Field Programmable Gate Array), and development efficiency is remarkably improved. Furthermore, since the ΔΣ modulation algorithm is entirely composed of a digital circuit, the algorithm can be studied without being restricted by design restrictions specific to analog ICs such as drift noise. Furthermore, even when the distortion characteristics of the class D amplification unit 60 change due to changes over time, for example, the class D amplification unit emulator 30 updates the parameters again to appropriate parameters through learning. It can correspond to.

以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of these components, and such modifications are also within the scope of the present invention.

従来技術に係る、5種類のΔΣ変調型DA変換器を示した図である。It is the figure which showed the five types of (DELTA) (Sigma) modulation type | mold DA converter based on a prior art. 実施形態に係る、音声処理装置の概略構成を示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the audio processing apparatus based on embodiment. 実施形態に係る、D級増幅部エミュレータの概略構成を示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the class D amplification part emulator based on embodiment.

符号の説明Explanation of symbols

10 音声処理装置(ΔΣ変調型DA変換器)
20 ΔΣ変調器
22 積分器
24 量子化器
26 模擬外乱発生器
28 合成器
30 D級増幅部エミュレータ
42 D級増幅模擬用パラメータ更新制御器
44 D級増幅模擬出力演算器
46 D級増幅模擬用パラメータ部
51 信号入力部
52 信号出力部
60 D級増幅部
70 フィードバック部
72 アナログフィルタ
74 AD変換器
76 合成器
78 デジタルフィルタ
10 Audio processing device (ΔΣ modulation DA converter)
20 ΔΣ modulator 22 Integrator 24 Quantizer 26 Simulated disturbance generator 28 Synthesizer 30 Class D amplifier emulator 42 Class D amplification simulation parameter update controller 44 Class D amplification simulation output calculator 46 Class D amplification simulation parameter Unit 51 signal input unit 52 signal output unit 60 class D amplification unit 70 feedback unit 72 analog filter 74 AD converter 76 synthesizer 78 digital filter

Claims (15)

積分器と前記積分器からの出力にもとづいて前記積分器の出力の分解能より低い分解能に変換する量子化器とを備えたΔΣ変調器とD級増幅部とを備え出力に接続された負荷に電力を供給することが可能なΔΣ変調型DA変換器であって、
前記D級増幅部の出力をエミュレートするためのD級増幅部エミュレータと
前記D級増幅部の出力と前記D級増幅部エミュレータの出力の信号をもとにフィードバック信号を生成するフィードバック部と、
を備えたことを特徴とするΔΣ変調型DA変換器。
To a load connected to the output, comprising a ΔΣ modulator comprising a integrator and a quantizer for converting to a resolution lower than the resolution of the integrator based on the output from the integrator, and a class D amplifier A ΔΣ modulation DA converter capable of supplying power,
A class D amplification unit emulator for emulating the output of the class D amplification unit; a feedback unit for generating a feedback signal based on the output of the class D amplification unit and the output of the class D amplification unit emulator;
A ΔΣ modulation DA converter characterized by comprising:
前記D級増幅部エミュレータは、前記D級増幅部の歪特性をエミュレートすることを特徴とする請求項1に記載のΔΣ変調型DA変換器。   The ΔΣ modulation DA converter according to claim 1, wherein the class D amplifier emulator emulates distortion characteristics of the class D amplifier. 前記D級増幅部エミュレータは、前記フィードバック部の出力をもとに、当該D級増幅部エミュレータの出力と前記D級増幅部の出力がもっとも近くなるように前記D級増幅部エミュレータ自身の特性を逐次更新することを特徴とする請求項1または2に記載のΔΣ変調型DA変換器。   Based on the output of the feedback unit, the class D amplification unit emulator adjusts the characteristics of the class D amplification unit emulator so that the output of the class D amplification unit emulator and the output of the class D amplification unit are closest to each other. The ΔΣ modulation DA converter according to claim 1, wherein the ΔΣ modulation DA converter is sequentially updated. 前記フィードバック部は、前記D級増幅部の出力を濾波するアナログフィルタと、前記アナログフィルタで濾波された前記D級増幅部の出力をAD変換するAD変換器と、前記ΔΣ変調器の出力を、前記D級増幅部とは異なる経路にて取得して濾波するデジタルフィルタとを備えることを特徴とする請求項1から3までのいずれかに記載のΔΣ変調型DA変換器。   The feedback unit includes an analog filter for filtering the output of the class D amplification unit, an AD converter for AD converting the output of the class D amplification unit filtered by the analog filter, and an output of the ΔΣ modulator. 4. The ΔΣ modulation DA converter according to claim 1, further comprising a digital filter that acquires and filters through a path different from the class D amplification unit. 5. 前記D級増幅部エミュレータは、前記AD変換器の出力と、前記デジタルフィルタの出力をもとに、当該D級増幅部エミュレータの出力と前記AD変換器における変換後の前記D級増幅部の出力とがもっとも近くなるように前記D級増幅部エミュレータ自身の特性を逐次更新することを特徴とする請求項4に記載のΔΣ変調型DA変換器。   Based on the output of the AD converter and the output of the digital filter, the class D amplification unit emulator outputs the output of the class D amplification unit emulator and the output of the class D amplification unit after conversion in the AD converter. 5. The ΔΣ modulation DA converter according to claim 4, wherein the characteristics of the class D amplifier emulator itself are sequentially updated so as to be closest to each other. 前記ΔΣ変調器は、前記D級増幅部エミュレータの出力と当該ΔΣ変調型DA変換器への入力との差分を求める第1の減算器を備え、
前記積分器に前記第1の減算器の出力が入力されていることを特徴とする請求項1から5までのいずれかに記載のΔΣ変調型DA変換器。
The ΔΣ modulator includes a first subtractor that obtains a difference between an output of the class D amplification unit emulator and an input to the ΔΣ modulation DA converter,
The ΔΣ modulation DA converter according to claim 1, wherein an output of the first subtracter is input to the integrator.
前記D級増幅部は、前記量子化器の信号にもとづいて前記D級増幅部の出力に接続された負荷を十分に駆動できるだけの電力を供給することを特徴とする請求項1から6に記載のΔΣ変調型DA変換器。   7. The class D amplification unit supplies power sufficient to drive a load connected to the output of the class D amplification unit based on a signal of the quantizer. ΔΣ modulation type DA converter. 前記ΔΣ変調型DA変換器は、外乱成分を擬似的に発生させる模擬外乱発生器を備えることを特徴とする請求項1から7までのいずれかに記載のΔΣ変調型DA変換器。   The ΔΣ modulation DA converter according to claim 1, wherein the ΔΣ modulation DA converter includes a simulated disturbance generator that artificially generates a disturbance component. 前記アナログフィルタは、前記D級増幅部の出力のうち歪成分推定に必要な信号成分のみを濾波することを特徴とする請求項5から8までのいずれかに記載のΔΣ変調型DA変換器。   9. The ΔΣ modulation DA converter according to claim 5, wherein the analog filter filters only a signal component necessary for distortion component estimation out of the output of the class D amplification unit. 10. 前記デジタルフィルタは、前記D級増幅部エミュレータの出力のうち歪成分推定に必要な信号成分のみを濾波することを特徴とする請求項5から9までのいずれかに記載のΔΣ変調型DA変換器。   10. The ΔΣ modulation DA converter according to claim 5, wherein the digital filter filters only a signal component necessary for distortion component estimation from the output of the class D amplifier emulator. 10. . 前記AD変換器の出力と前記デジタルフィルタの出力の差分を演算する演算手段を備えることを特徴とする請求項5から10までのいずれかに記載のΔΣ変調型DA変換器。   11. The ΔΣ modulation DA converter according to claim 5, further comprising arithmetic means for calculating a difference between an output of the AD converter and an output of the digital filter. 前記D級増幅部エミュレータは、前記模擬外乱発生器、入力信号、及び前記量子化器の出力と因果性のある歪成分のパラメータを同定し、前記D級増幅部の歪特性を模擬することを特徴とする請求項8から11までのいずれかに記載のΔΣ変調型DA変換器。   The class D amplifier emulator identifies parameters of the simulated disturbance generator, input signal, and output of the quantizer and causal distortion components, and simulates the distortion characteristics of the class D amplifier. The ΔΣ modulation DA converter according to any one of claims 8 to 11, characterized in that 前記歪成分の前記パラメータは、前記AD変換器の出力と前記デジタルフィルタの出力との差分を求める第2の減算器の出力、前記模擬外乱発生器の出力、前記入力信号、及び前記量子化器の出力にもとづき逐次更新され、前記D級増幅部と前記D級増幅部エミュレータの歪成分が一致したときにパラメータの更新が収束することを特徴とする請求項8から12までのいずれかに記載のΔΣ変調型DA変換器。   The parameters of the distortion component include: an output of a second subtractor that obtains a difference between an output of the AD converter and an output of the digital filter, an output of the simulated disturbance generator, the input signal, and the quantizer The parameter update converges when the distortion components of the class D amplification unit and the class D amplification unit emulator coincide with each other. ΔΣ modulation type DA converter. 前記AD変換器は、前記ΔΣ変調器の駆動速度に比較して、低速で駆動することを特徴とする請求項1から13までのいずれかに記載のΔΣ変調型DA変換器。   14. The ΔΣ modulation DA converter according to claim 1, wherein the AD converter is driven at a lower speed than a driving speed of the ΔΣ modulator. 積分器と、
前記積分器からの出力にもとづいて、前記積分器の出力の分解能より低い分解能に変換する量子化器と、
出力先のD級増幅部の歪特性を模擬し、前記積分器へ帰還出力するD級増幅部エミュレータと、
外乱成分を擬似的に発生させる模擬外乱発生器と、
を備え、
前記D級増幅部エミュレータは、前記D級増幅部の出力がAD変換された後のデジタル信号と前記D級増幅部エミュレータの帰還出力との差信号、前記量子化器からの信号、及び前記模擬外乱発生器の信号をもとに、前記模擬外乱発生器、入力信号及び前記量子化器の出力と因果性のある歪成分のパラメータを同定し、かつ前記D級増幅部の出力が前記AD変換された後のデジタル信号と前記D級増幅部エミュレータの帰還出力との差信号が小さくなるように、逐次前記パラメータを更新することを特徴とするΔΣ変調器。
An integrator;
A quantizer for converting the output from the integrator to a lower resolution than the output of the integrator, based on the output from the integrator;
A class D amplifier emulator that simulates the distortion characteristics of the output class D amplifier and outputs the feedback to the integrator;
A simulated disturbance generator that artificially generates a disturbance component;
With
The class D amplification unit emulator includes a difference signal between a digital signal after the output of the class D amplification unit is AD converted and a feedback output of the class D amplification unit emulator, a signal from the quantizer, and the simulation Based on the signal from the disturbance generator, the parameters of the simulated disturbance generator, the input signal, the output of the quantizer and the causal distortion component are identified, and the output of the class D amplification unit is converted to the AD converter. The ΔΣ modulator is characterized in that the parameter is sequentially updated so that a difference signal between the digital signal after being processed and the feedback output of the class D amplifier emulator becomes small.
JP2008299472A 2008-11-25 2008-11-25 DeltaSigma MODULATED DA CONVERTER AND DeltaSigma MODULATOR Pending JP2010130064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299472A JP2010130064A (en) 2008-11-25 2008-11-25 DeltaSigma MODULATED DA CONVERTER AND DeltaSigma MODULATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299472A JP2010130064A (en) 2008-11-25 2008-11-25 DeltaSigma MODULATED DA CONVERTER AND DeltaSigma MODULATOR

Publications (1)

Publication Number Publication Date
JP2010130064A true JP2010130064A (en) 2010-06-10

Family

ID=42330174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299472A Pending JP2010130064A (en) 2008-11-25 2008-11-25 DeltaSigma MODULATED DA CONVERTER AND DeltaSigma MODULATOR

Country Status (1)

Country Link
JP (1) JP2010130064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294047B2 (en) 2013-05-24 2016-03-22 Fujitsu Limited Power amplifier apparatus, transmitter apparatus, and method of controlling the power amplifier apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294047B2 (en) 2013-05-24 2016-03-22 Fujitsu Limited Power amplifier apparatus, transmitter apparatus, and method of controlling the power amplifier apparatus

Similar Documents

Publication Publication Date Title
CN102100001B (en) Switching power amplifier and method of controlling the same
US6414614B1 (en) Power output stage compensation for digital output amplifiers
US10367460B2 (en) Amplifier circuit
US7830289B2 (en) Sigma-delta modulator for PWM applications with minimum dynamical control and dithering
JP5167196B2 (en) Signal correction apparatus, audio processing apparatus, and pulse amplification method
US9100032B2 (en) Methods and devices for analog-to-digital conversion
US7474237B2 (en) Circuits and methods for using error correction in power amplification and signal conversion
CN101632225B (en) Method and apparatus for producing triangular waveform with low audio band noise content
JP3348019B2 (en) Pulse wave amplifier
US7782154B2 (en) Power amplifier and modulator thereof
US8816763B2 (en) Integrator input error correction circuit and circuit method
US20080278209A1 (en) Method of pulse width modulation signal processing and device including signal processing for pulse width modulation
WO2019215095A1 (en) Class-d amplifier and method for generating a driver signal
US7327188B2 (en) Power amplifier and method for error correcting of output signals thereof
WO2007094255A1 (en) D/a converter
JP2010130064A (en) DeltaSigma MODULATED DA CONVERTER AND DeltaSigma MODULATOR
JP3801118B2 (en) Class D amplifier
JP2009005073A (en) Digital/analog converter and distortion correction circuit
WO2016194651A1 (en) Amplifier, control method therefor, and electronic equipment
JP2006054800A (en) Low-distortion pulse width modulating signal generator
US20130120075A1 (en) Pulse width modulation device
JP6509726B2 (en) Switching amplifier for variable supply voltage
CN110235373A (en) D/A conversion equipment, method, storage medium, electronic musical instrument and information processing unit
JP4704328B2 (en) ΔΣ modulator and ΔΣ modulation type digital analog converter
JP2006303865A (en) Digital switching amplifier