JP2010129817A - Nonlinear resistance change element - Google Patents

Nonlinear resistance change element Download PDF

Info

Publication number
JP2010129817A
JP2010129817A JP2008303780A JP2008303780A JP2010129817A JP 2010129817 A JP2010129817 A JP 2010129817A JP 2008303780 A JP2008303780 A JP 2008303780A JP 2008303780 A JP2008303780 A JP 2008303780A JP 2010129817 A JP2010129817 A JP 2010129817A
Authority
JP
Japan
Prior art keywords
varistor
electrode
nonlinear
support member
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008303780A
Other languages
Japanese (ja)
Other versions
JP5272683B2 (en
Inventor
Yoshihiro Koshido
義弘 越戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008303780A priority Critical patent/JP5272683B2/en
Publication of JP2010129817A publication Critical patent/JP2010129817A/en
Application granted granted Critical
Publication of JP5272683B2 publication Critical patent/JP5272683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To configure a nonlinear resistance change element whose low varistor voltage characteristics are compatible with the low capacitance characteristics. <P>SOLUTION: A varistor 102 has: a cylindrical nonlinear resistor 21 made from ceramic materials having nonlinear resistance change characteristics; a supporting member 20 surrounding a lateral part of the nonlinear resistor 21; a first electrode 22 conducting to a first surface of the nonlinear resistor 21; and a second electrode 23 conducting to a second surface of the nonlinear resistor. In addition, the varistor has low dielectric constant insulating members 24 and 25 which are provided between the first electrode 22 and the supporting member 20 and between the second electrode 23 and the supporting member 20, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えばバリスタのような非線形抵抗変化特性を備えた非線形抵抗変化素子に関するものである。   The present invention relates to a nonlinear resistance change element having a nonlinear resistance change characteristic such as a varistor.

非線形抵抗変化特性を備えた非線形抵抗変化素子の典型的な例はバリスタである。バリスタは静電気やその他の異常電圧による外来サージやノイズ等を吸収し抑圧するために使用されている。   A typical example of a non-linear resistance change element having a non-linear resistance change characteristic is a varistor. Varistors are used to absorb and suppress external surges and noise caused by static electricity and other abnormal voltages.

バリスタの適用分野の一つは、高速信号ラインの静電気対策であるが、このような用途のバリスタにおいては、バリスタ電圧が低く且つ静電容量が小さな特性が望まれる。静電容量を減少させることを目的として、非線形抵抗体組成物の誘電率を下げたものが特許文献1に開示されている。   One field of application of varistors is countermeasures against static electricity in high-speed signal lines. In such varistors, the characteristics of low varistor voltage and low capacitance are desired. Patent Document 1 discloses a non-linear resistor composition having a reduced dielectric constant for the purpose of reducing the capacitance.

ここで、一般的な従来のバリスタの構造を、図1を基に説明する。
図1(A),図1(B)はいずれもバリスタの素子部分の断面図であり、図1(A)の例では、非線形抵抗体層10と内部電極11,12の積層体を構成し、側面に外部電極13,14を形成している。図1(A)の例では内部電極11,12を交互に積層し、図1(B)の例では内部電極11,12の先端同士が一定距離で突き合わせ状態に配置している。
特許第3710062号公報
Here, the structure of a general conventional varistor will be described with reference to FIG.
1A and 1B are cross-sectional views of the element portion of the varistor. In the example of FIG. 1A, a laminated body of the nonlinear resistor layer 10 and the internal electrodes 11 and 12 is formed. External electrodes 13 and 14 are formed on the side surfaces. In the example of FIG. 1 (A), the internal electrodes 11 and 12 are alternately laminated, and in the example of FIG. 1 (B), the tips of the internal electrodes 11 and 12 are arranged in abutted state at a constant distance.
Japanese Patent No. 3710062

バリスタ材料には、主に焼結ZnOが用いられる。このZnOは結晶粒径が3μm〜30μm程度である。ZnO自体は低抵抗であるが、粒子間の境界層(結晶粒界)が高抵抗の障壁として存在する。バリスタの抵抗値や静電容量は、電極間に直列につながる結晶粒界による境界層の数で決定される。電極間距離が同じである場合は、結晶粒が大きくなると結晶粒界の数及び境界層の数が減るため、バリスタ電圧(電流が1mA流れるために必要な電圧)が小さくなる。また、等価的な直列コンデンサの数が減るため、静電容量が大きくなる。そのため、バリスタ電圧が小さく静電容量が小さいバリスタを作るには、ZnO材料自体の誘電率を小さくするしかない。   As the varistor material, sintered ZnO is mainly used. This ZnO has a crystal grain size of about 3 μm to 30 μm. ZnO itself has a low resistance, but a boundary layer (grain boundary) between grains exists as a high resistance barrier. The resistance value and capacitance of the varistor are determined by the number of boundary layers formed by crystal grain boundaries connected in series between the electrodes. When the distance between the electrodes is the same, the number of crystal grain boundaries and the number of boundary layers decrease as the crystal grains increase, so that the varistor voltage (voltage necessary for the current to flow 1 mA) decreases. Further, since the number of equivalent series capacitors is reduced, the capacitance is increased. Therefore, the only way to make a varistor with a low varistor voltage and low capacitance is to reduce the dielectric constant of the ZnO material itself.

一般に、ESD・サージ対策部品としてはバリスタ電圧が低い方がよい。特に高速信号ラインに並列に入れる場合には、バリスタの静電容量は小さくなければならない。例えば数GHz帯では1pF未満であることが求められる。そのため、特許文献1に示されている例では、ZnOにガラスを混ぜて、非線形抵抗体の比誘電率を80程度にまで下げている。通常、Pr系ZnOは粒径が大きいので、比誘電率は400〜1200程度である。Bi系ZnOでは、焼結条件次第で比誘電率を200程度にできる。しかしながら、材料の誘電率を下げるだけでは1.1pF程度が限界である。しかも、前述のように誘電率を下げるとバリスタ電圧が高くなり、実用的ではなくなる。   Generally, it is better that the varistor voltage is low as ESD / surge countermeasure parts. In particular, the capacitance of the varistor must be small when it is put in parallel with a high-speed signal line. For example, it is required to be less than 1 pF in the several GHz band. Therefore, in the example shown in Patent Document 1, glass is mixed with ZnO to reduce the relative dielectric constant of the nonlinear resistor to about 80. In general, since Pr-based ZnO has a large particle size, the relative dielectric constant is about 400 to 1200. Bi-based ZnO can have a dielectric constant of about 200 depending on the sintering conditions. However, if only the dielectric constant of the material is lowered, the limit is about 1.1 pF. Moreover, when the dielectric constant is lowered as described above, the varistor voltage increases and becomes impractical.

上述の事情は、図1に示したような積層型バリスタに限らず、ビアに非線形抵抗体を充填してビアの上下の電極間でバリスタ特性を持たせるようにしたものでも同じである。   The situation described above is not limited to the multilayer varistor as shown in FIG. 1, but the same applies to a case where a nonlinear resistor is filled in the via so that the varistor characteristics are provided between the upper and lower electrodes of the via.

このようにバリスタ電圧の低下と静電容量の減少とを両立させることは従来困難であった。   Thus, it has been difficult in the past to achieve both a reduction in varistor voltage and a reduction in capacitance.

そこで、この発明の目的は、トレードオフの関係にある低バリスタ電圧特性と低静電容量特性とが両立する非線形抵抗変化素子を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a non-linear resistance change element that has both a low varistor voltage characteristic and a low capacitance characteristic that are in a trade-off relationship.

前記課題を解決するために、この発明の非線形抵抗変化素子は次のように構成する。
(1)非線形抵抗変化特性を備えたセラミック材料による柱状の導電部と、前記導電部の側部の周囲を囲む、前記セラミック材料の誘電率より低い誘電率の絶縁体材料による支持部材と、前記導電部の第1の面と第2の面にそれぞれ導通する、第1の電極および第2の電極と、を備えたことを特徴としている。
In order to solve the above problems, the nonlinear resistance change element of the present invention is configured as follows.
(1) A columnar conductive portion made of a ceramic material having nonlinear resistance change characteristics, a support member made of an insulating material having a dielectric constant lower than the dielectric constant of the ceramic material surrounding the periphery of the side of the conductive portion, It is characterized by comprising a first electrode and a second electrode respectively conducting to the first surface and the second surface of the conductive portion.

(2)前記電極と前記支持部材との間には、前記導電部及び前記支持部材の誘電率より低い誘電率の絶縁体部材を備えてもよい。 (2) An insulator member having a dielectric constant lower than that of the conductive portion and the support member may be provided between the electrode and the support member.

この発明によれば、バリスタ電圧が低く、且つ静電容量が小さい非線形抵抗変化素子が得られる。   According to the present invention, a nonlinear variable resistance element having a low varistor voltage and a small capacitance can be obtained.

《第1の実施形態》
第1の実施形態に係る非線形抵抗変化素子の構成及び製造方法を図2〜図3を参照して説明する。
図2(A)は第1の実施形態に係る非線形抵抗変化素子であるバリスタ101の断面図、図2(B)はその斜視図である。このバリスタ101は、非線形抵抗変化特性を備えたセラミック材料による円柱状の非線形抵抗体部21と、この非線形抵抗体部21の側部の周囲を囲む支持部材20と、非線形抵抗体部21の第1の面に導通する第1の電極22及び第2の面に導通する第2の電極23を備えている。
<< First Embodiment >>
The configuration and manufacturing method of the nonlinear variable resistance element according to the first embodiment will be described with reference to FIGS.
FIG. 2A is a cross-sectional view of the varistor 101 which is a nonlinear resistance change element according to the first embodiment, and FIG. 2B is a perspective view thereof. The varistor 101 includes a cylindrical non-linear resistor portion 21 made of a ceramic material having non-linear resistance change characteristics, a support member 20 surrounding the side of the non-linear resistor portion 21, and a first non-linear resistor portion 21. A first electrode 22 conducting to one surface and a second electrode 23 conducting to a second surface are provided.

各部の材料と寸法は次のとおりである。
[非線形抵抗体部21]
材料:ZnO
比誘電率:1200
直径D1:100μm
高さH:400μm
[支持部材20]
材料:アルミナセラミックス
比誘電率:10
高さH:400μm
[電極22,23]
幅W:200μm
このように、非線形抵抗体部21の周囲の支持部材20の比誘電率が低いため、第1の電極22と第2の電極23との間の静電容量は小さい。この例では、電極22−23間の静電容量は約0.15pFである。
The material and dimensions of each part are as follows.
[Nonlinear resistor 21]
Material: ZnO
Dielectric constant: 1200
Diameter D1: 100 μm
Height H: 400 μm
[Supporting member 20]
Material: Alumina ceramics Dielectric constant: 10
Height H: 400 μm
[Electrodes 22, 23]
Width W: 200 μm
Thus, since the dielectric constant of the support member 20 around the nonlinear resistor portion 21 is low, the capacitance between the first electrode 22 and the second electrode 23 is small. In this example, the capacitance between the electrodes 22-23 is about 0.15 pF.

一方、結晶粒径は20μm程度になるので、結晶粒界の数は400/20=20で、20個程度である。結晶粒界1つ当たりのバリスタ電圧は約3Vであるので、このバリスタ101のバリスタ電圧は約60Vである。   On the other hand, since the crystal grain size is about 20 μm, the number of crystal grain boundaries is about 400/20 = 20. Since the varistor voltage per crystal grain boundary is about 3V, the varistor voltage of the varistor 101 is about 60V.

図3は、図2に示したバリスタ101の製造工程について示す図である。
まず図3(A)に示すように、アルミナセラミックスのマザーボード状態の支持部材20Bに対して複数の孔Hを形成し、図3(B),図3(C)に示すように、孔H内にZnOのスラリーを充填する。このZnOのスラリーは、水または有機溶剤に所望の条件でZnO粉末を分散させたものである。
FIG. 3 is a diagram showing a manufacturing process of the varistor 101 shown in FIG.
First, as shown in FIG. 3 (A), a plurality of holes H are formed in the support member 20B in the alumina ceramic mother board state, and inside the holes H as shown in FIGS. 3 (B) and 3 (C). Is filled with a ZnO slurry. This ZnO slurry is obtained by dispersing ZnO powder in water or an organic solvent under desired conditions.

続いて図3(D)に示すように、マザーボード状態の支持部材20Bの上下面をラップ研磨して非線形抵抗体部21の上下面を平坦化する。その後、図3(E)に示すように上下の全面に、第1の電極22及び第2の電極23の電極となるペーストを塗布し、乾燥させる。
その後、前記ZnOを焼成する。
Subsequently, as shown in FIG. 3D, the upper and lower surfaces of the support member 20B in the mother board state are lapped to flatten the upper and lower surfaces of the nonlinear resistor portion 21. Thereafter, as shown in FIG. 3E, a paste to be the electrodes of the first electrode 22 and the second electrode 23 is applied to the entire upper and lower surfaces and dried.
Thereafter, the ZnO is fired.

次に、図3(F)に示すように、マザーボード状態の支持部材20Bを素子部分でそれぞれ個片に分割することによってバリスタ101を構成する。
なお、マザーボード状態の支持部材20Bを素子部分でそれぞれ個片に分割した後に前記ZnOを焼成してもよい。
また、マザーボード状の支持部材20Bを先にダイシングしてからZnOスラリーを充填してもよい。
Next, as shown in FIG. 3F, the varistor 101 is configured by dividing the supporting member 20B in the mother board state into individual pieces at the element portion.
The ZnO may be fired after the support member 20B in the mother board state is divided into individual pieces at the element portion.
Alternatively, the motherboard-like support member 20B may be diced first and then filled with the ZnO slurry.

前記個片への分割は、ダイシングソーを用いて行う。その際、支持部材20Bの素子の区切り線となる位置に予めスクラッチ(切り込み溝)を入れておき、それに沿ってダイシングすると加工性が高まる。また、ダイシングソーを用いない場合は前記スクラッチに沿ってブレイクしてもよい。
また、前記スクラッチは、支持部材20Bのセラミック焼結前または焼結後のいずれの状態で形成してもよい。
The division into pieces is performed using a dicing saw. At that time, if a scratch (notch groove) is put in advance at a position that becomes a separation line of the element of the support member 20B, and then dicing along that, the workability is improved. Moreover, when not using a dicing saw, you may break along the said scratch.
The scratch may be formed in any state before or after the ceramic sintering of the support member 20B.

《第2の実施形態》
図4は第2の実施形態に係るバリスタ102の断面図である。このバリスタ102は、非線形抵抗変化特性を備えたセラミック材料による円柱状の非線形抵抗体部21と、この非線形抵抗体部21の側部の周囲を囲む支持部材20と、非線形抵抗体部21の第1の面に導通する第1の電極22及び第2の面に導通する第2の電極23を備えている。図2に示したバリスタ101と異なり、支持部材20として高誘電率誘電体材料を用い、第1の電極22と支持部材20との間、及び第2の電極23と支持部材20との間に低誘電率の絶縁体部材24,25をそれぞれ形成している。また、絶縁体部材24,25の中央部は開口していて、これらの開口部22P,23Pを介して第1の電極22、第2の電極23が非線形抵抗体部21の両端に導通するようにしている。
<< Second Embodiment >>
FIG. 4 is a cross-sectional view of a varistor 102 according to the second embodiment. The varistor 102 includes a cylindrical non-linear resistor portion 21 made of a ceramic material having non-linear resistance change characteristics, a support member 20 surrounding the side of the non-linear resistor portion 21, and a first non-linear resistor portion 21. A first electrode 22 conducting to one surface and a second electrode 23 conducting to a second surface are provided. Unlike the varistor 101 shown in FIG. 2, a high dielectric constant dielectric material is used as the support member 20, and between the first electrode 22 and the support member 20, and between the second electrode 23 and the support member 20. Insulating members 24 and 25 having a low dielectric constant are formed. Moreover, the center part of the insulator members 24 and 25 is opened, and the first electrode 22 and the second electrode 23 are conducted to both ends of the nonlinear resistor part 21 through the openings 22P and 23P. I have to.

このように、絶縁体部材24,25の開口面積を非線形抵抗体部21の断面積より小さくしたことにより、第1の電極22と第2の電極23との間に直列配置されるZnOの結晶粒界の境界層による等価的なコンデンサの電極面積が減少し、その分、静電容量が減少する。   As described above, the opening area of the insulator members 24 and 25 is made smaller than the cross-sectional area of the nonlinear resistor portion 21, so that the ZnO crystals arranged in series between the first electrode 22 and the second electrode 23 are arranged. The equivalent capacitor electrode area due to the boundary layer of the grain boundary decreases, and the capacitance decreases accordingly.

各部の材料と寸法は次のとおりである。
[非線形抵抗体部21]
材料:ZnO
比誘電率:1200
直径D1:100μm
高さH:400μm
[支持部材20]
材料:チタン酸亜鉛
比誘電率:2000
高さH:400μm
[電極22,23]
幅W:200μm
[絶縁体部材24,25]
材料:ガラス
比誘電率:4
厚さT:5μm
貫通孔内径D2:25μm
このように、低誘電率の絶縁体部材24,25を介在させたことにより、第1の電極22と第2の電極23との間の静電容量は小さい。この例では、電極22−23間の静電容量は約0.34pFとなる。
前記絶縁体部材24,25の厚み寸法を10μmとし、その他の条件を前記と同じにすると、前記静電容量は0.31pFとなる。
The material and dimensions of each part are as follows.
[Nonlinear resistor 21]
Material: ZnO
Dielectric constant: 1200
Diameter D1: 100 μm
Height H: 400 μm
[Supporting member 20]
Material: Zinc titanate Relative dielectric constant: 2000
Height H: 400 μm
[Electrodes 22, 23]
Width W: 200 μm
[Insulator members 24 and 25]
Material: Glass Relative permittivity: 4
Thickness T: 5μm
Through hole inner diameter D2: 25 μm
Thus, by interposing the low dielectric constant insulator members 24 and 25, the capacitance between the first electrode 22 and the second electrode 23 is small. In this example, the capacitance between the electrodes 22-23 is about 0.34 pF.
If the thickness dimension of the insulator members 24 and 25 is 10 μm and other conditions are the same as described above, the capacitance is 0.31 pF.

このように低誘電率の絶縁体部材24,25を設けることにより、支持部材20の材料がチタン酸亜鉛等の高誘電率誘電体材料であっても静電容量の十分低いバリスタが構成できる。   By providing the low dielectric constant insulator members 24 and 25 as described above, a varistor having a sufficiently low capacitance can be configured even if the material of the support member 20 is a high dielectric constant dielectric material such as zinc titanate.

図5は、図4に示したバリスタ102の製造工程を示す図である。
まず図5(A)に示すように、チタン酸亜鉛のマザーボード状態の支持部材20Bに対して複数の孔Hを形成し、図5(B),図5(C)に示すように、孔H内にZnOのスラリーを充填する。このZnOのスラリーは、水または有機溶剤に所望の条件でZnO粉末を分散させたものである。
FIG. 5 is a diagram showing a manufacturing process of the varistor 102 shown in FIG.
First, as shown in FIG. 5 (A), a plurality of holes H are formed in the support member 20B of the zinc titanate mother board state, and as shown in FIGS. 5 (B) and 5 (C), the holes H Inside, a ZnO slurry is filled. This ZnO slurry is obtained by dispersing ZnO powder in water or an organic solvent under desired conditions.

続いて図5(D)に示すように、マザーボード状態の支持部材20Bの上下面をラップ研磨して非線形抵抗体部21の上下面を平坦化する。その後、図5(E)に示すように上下の全面に、非線形抵抗体部21の上下面が部分的に開口された絶縁体部材24,25を形成する。具体的には、ガラスグレーズの厚膜印刷及び焼成によって形成する。   Subsequently, as shown in FIG. 5D, the upper and lower surfaces of the support member 20B in the mother board state are lapped to flatten the upper and lower surfaces of the nonlinear resistor portion 21. Thereafter, as shown in FIG. 5E, insulator members 24 and 25 having upper and lower surfaces of the nonlinear resistor 21 partially opened are formed on the entire upper and lower surfaces. Specifically, it is formed by thick film printing and baking of glass glaze.

その後、図5(F)に示すように、絶縁体部材24,25の表面に第1の電極22及び第2の電極23の電極となるペーストを塗布し、乾燥させる。
その後、前記ZnOを焼成する。
Thereafter, as shown in FIG. 5 (F), a paste to be the electrodes of the first electrode 22 and the second electrode 23 is applied to the surfaces of the insulator members 24 and 25 and dried.
Thereafter, the ZnO is fired.

次に、図5(G)に示すように、マザーボード状態の支持部材20Bを素子部分でそれぞれ個片に分割することによってバリスタ102を構成する。
なお、マザーボード状態の支持部材20Bを素子部分でそれぞれ個片に分割した後に前記ZnOを焼成してもよい。
前記個片への分割方法に関しては、第1の実施形態で述べた方法を適用する。
Next, as shown in FIG. 5G, the varistor 102 is formed by dividing the supporting member 20B in the mother board state into individual pieces at the element portion.
The ZnO may be fired after the support member 20B in the mother board state is divided into individual pieces at the element portion.
The method described in the first embodiment is applied to the method of dividing into pieces.

《第3の実施形態》
図6は第3の実施形態に係るバリスタ103の断面図である。この例では絶縁体部材24,25に形成する開口部の内径を非線形抵抗体部21の直径D1と等しくしている。このように、絶縁体部材24,25を支持部材20と電極22,23との間にのみ配置してもよい。
その他の構成及び製造方法は第1・第2の実施形態で示したものと同様である。
<< Third Embodiment >>
FIG. 6 is a cross-sectional view of a varistor 103 according to the third embodiment. In this example, the inner diameter of the opening formed in the insulator members 24 and 25 is made equal to the diameter D1 of the nonlinear resistor portion 21. As described above, the insulator members 24 and 25 may be disposed only between the support member 20 and the electrodes 22 and 23.
Other configurations and manufacturing methods are the same as those shown in the first and second embodiments.

各部の材料と寸法は次のとおりである。
[非線形抵抗体部21]
材料:ZnO
比誘電率:200
直径D1:100μm
高さH:300μm
[支持部材20]
材料:チタン酸亜鉛
比誘電率:2000
高さH:300μm
[電極22,23]
幅W:300μm
[絶縁体部材24,25]
材料:ガラス
比誘電率:4
厚さT:10μm
貫通孔内径D1:100μm
この構成によれば電極間の静電容量は0.27pFとなる。
The material and dimensions of each part are as follows.
[Nonlinear resistor 21]
Material: ZnO
Dielectric constant: 200
Diameter D1: 100 μm
Height H: 300 μm
[Supporting member 20]
Material: Zinc titanate Relative dielectric constant: 2000
Height H: 300 μm
[Electrodes 22, 23]
Width W: 300 μm
[Insulator members 24 and 25]
Material: Glass Relative permittivity: 4
Thickness T: 10μm
Through hole inner diameter D1: 100 μm
According to this configuration, the capacitance between the electrodes is 0.27 pF.

図6に示した構造では、電極22,23と非線形抵抗体部21との接合面が広くとれるので、電極間にバリスタ電圧以上の電圧が印加されて導通する際の電極22−23間の降下電圧をより低減できる。   In the structure shown in FIG. 6, since the joint surface between the electrodes 22 and 23 and the nonlinear resistor portion 21 can be widened, the voltage drop between the electrodes 22 and 23 when a voltage higher than the varistor voltage is applied between the electrodes and is conducted. The voltage can be further reduced.

《第4の実施形態》
図7は、バリスタ104の製造方法を示す図である。このバリスタ104の基本的な構造は図2に示したバリスタ101と同じである。
まず図7(A)に示すように、板状に広がるベース部21Bに複数の突起部21Aが突出した形状に、非線形抵抗体材料を成形する。
続いて、図7(B)に示すように、ベース部21Bの上面にガラス粉末(グレーズまたはスラリー)を塗布して、マザーボード状の支持部材20Bを形成する。
その後、図7(C)に示すように、支持部材20Bを焼成してガラス化した後、支持部材20の上下面を研削またはエッチングすることにより、ベース部21B及び突起部21Aの先端部分を除去する。
<< Fourth Embodiment >>
FIG. 7 is a view showing a method for manufacturing the varistor 104. The basic structure of the varistor 104 is the same as that of the varistor 101 shown in FIG.
First, as shown in FIG. 7A, a nonlinear resistor material is formed into a shape in which a plurality of protrusions 21A protrude from a base portion 21B that spreads in a plate shape.
Subsequently, as shown in FIG. 7B, glass powder (glaze or slurry) is applied to the upper surface of the base portion 21B to form a motherboard-like support member 20B.
Thereafter, as shown in FIG. 7C, after the support member 20B is baked and vitrified, the upper and lower surfaces of the support member 20 are ground or etched to remove the tip portions of the base portion 21B and the protruding portion 21A. To do.

続いて図7(D)に示すように、支持部材20Bの上下面に第1の電極22及び第2の電極23を塗布・硬化させた後、図7(E)に示すように個片にカットする。
その後、この個片を焼成することによって、図7(E)に示したバリスタ104を構成する。
Subsequently, as shown in FIG. 7D, the first electrode 22 and the second electrode 23 are applied and cured on the upper and lower surfaces of the support member 20B, and then, as shown in FIG. Cut.
Thereafter, the individual pieces are fired to form the varistor 104 shown in FIG.

このようにして、非線形抵抗体部21をプレス成形で形成してもよい。なお、最終的に非線形抵抗体部21となる部分を円錐形状に成形することによって、プレス時の離型が容易になる。   In this way, the nonlinear resistor 21 may be formed by press molding. In addition, the part which will finally become the non-linear resistor part 21 is formed into a conical shape, so that the mold release at the time of pressing becomes easy.

《第5の実施形態》
図8は第5の実施形態に係るバリスタ105の製造方法について示す図である。
図8(A)は製造工程の途中における部材の断面図である。まず図8(A)に示す非線形抵抗体部21として、セラミック型の溝にZnOを充填し、焼結して、直径150μmの針状のZnOを作る。これを溶融ガラスまたは樹脂にディッピングして引き上げ、硬化させることによって、図8(A)に示すような円柱形状の部材を作成する。
<< Fifth Embodiment >>
FIG. 8 is a diagram showing a method for manufacturing the varistor 105 according to the fifth embodiment.
FIG. 8A is a cross-sectional view of a member in the middle of the manufacturing process. First, as the non-linear resistor portion 21 shown in FIG. 8A, a ceramic groove is filled with ZnO and sintered to form needle-shaped ZnO having a diameter of 150 μm. This is dipped in molten glass or resin, pulled up, and cured to form a cylindrical member as shown in FIG.

その後、図8(B)に示すように、長さ400μmでカットし、そのカットした面の両端に電極22,23を形成する。これにより、第1の実施形態で示したバリスタ101と同様のバリスタ105を構成する。   Thereafter, as shown in FIG. 8 (B), it is cut to a length of 400 μm, and electrodes 22 and 23 are formed at both ends of the cut surface. Thereby, the varistor 105 similar to the varistor 101 shown in the first embodiment is configured.

図8に示した製造方法によれば、支持部材として低誘電率のガラスや樹脂を用いることができるので静電容量の低いバリスタが実現できる。また、図8(A)に示した円柱形状の部材を複数本並列配置して同時に個片にカットすることができ、そのことによって製造コストを削減できる。   According to the manufacturing method shown in FIG. 8, glass or resin having a low dielectric constant can be used as the support member, so that a varistor with low capacitance can be realized. Further, a plurality of columnar members shown in FIG. 8A can be arranged in parallel and cut into individual pieces at the same time, thereby reducing the manufacturing cost.

図1(A),図1(B)はいずれも一般的な従来のバリスタの素子部分の断面図である。1A and 1B are cross-sectional views of the element portion of a general conventional varistor. 図2(A)は第1の実施形態に係る非線形抵抗変化素子であるバリスタ101の断面図、図2(B)はその斜視図である。FIG. 2A is a cross-sectional view of the varistor 101 which is a nonlinear resistance change element according to the first embodiment, and FIG. 2B is a perspective view thereof. 図2に示したバリスタ101の製造工程について示す図である。It is a figure shown about the manufacturing process of the varistor 101 shown in FIG. 第2の実施形態に係るバリスタ102の断面図である。It is sectional drawing of the varistor 102 which concerns on 2nd Embodiment. 図4に示したバリスタ102の製造工程を示す図である。It is a figure which shows the manufacturing process of the varistor 102 shown in FIG. 第3の実施形態に係るバリスタ103の断面図である。It is sectional drawing of the varistor 103 which concerns on 3rd Embodiment. 第4の実施形態に係るバリスタの製造方法であって、図2に示したバリスタ101の別の製造方法を示す図である。It is a manufacturing method of the varistor which concerns on 4th Embodiment, Comprising: It is a figure which shows another manufacturing method of the varistor 101 shown in FIG. 第5の実施形態に係るバリスタ105の製造方法について示す図である。It is a figure shown about the manufacturing method of the varistor 105 which concerns on 5th Embodiment.

符号の説明Explanation of symbols

10…非線形抵抗体層
20…支持部材
20B…マザーボード状の支持部材
21…非線形抵抗体部
21A…突起部
21B…ベース部
22…第1の電極
23…第2の電極
24,25…絶縁体部材
22P,23P…絶縁体部材の開口部
101〜105…バリスタ
DESCRIPTION OF SYMBOLS 10 ... Nonlinear resistor layer 20 ... Support member 20B ... Motherboard-like support member 21 ... Nonlinear resistor part 21A ... Protrusion part 21B ... Base part 22 ... First electrode 23 ... Second electrode 24, 25 ... Insulator member 22P, 23P ... Insulator member openings 101-105 ... Varistors

Claims (2)

非線形抵抗変化特性を備えたセラミック材料による柱状の非線形抵抗体部と、
前記非線形抵抗体部の側部の周囲を囲む、前記セラミック材料の誘電率より低い誘電率の絶縁体材料による支持部材と、
前記非線形抵抗体部の第1の面と第2の面にそれぞれ導通する、第1の電極および第2の電極と、
を備えた非線形抵抗変化素子。
A columnar nonlinear resistor portion made of a ceramic material having a nonlinear resistance change characteristic;
A support member made of an insulating material having a dielectric constant lower than the dielectric constant of the ceramic material, surrounding the periphery of the side of the nonlinear resistor portion;
A first electrode and a second electrode respectively conducting to the first surface and the second surface of the nonlinear resistor section;
A non-linear variable resistance element.
前記電極と前記支持部材との間に配置された、前記非線形抵抗体部及び前記支持部材の誘電率より低い誘電率の絶縁体部材を備えた、請求項1に記載の非線形抵抗変化素子。   The nonlinear resistance change element according to claim 1, further comprising an insulator member having a dielectric constant lower than that of the nonlinear resistor portion and the support member, which is disposed between the electrode and the support member.
JP2008303780A 2008-11-28 2008-11-28 Nonlinear variable resistance element Expired - Fee Related JP5272683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303780A JP5272683B2 (en) 2008-11-28 2008-11-28 Nonlinear variable resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303780A JP5272683B2 (en) 2008-11-28 2008-11-28 Nonlinear variable resistance element

Publications (2)

Publication Number Publication Date
JP2010129817A true JP2010129817A (en) 2010-06-10
JP5272683B2 JP5272683B2 (en) 2013-08-28

Family

ID=42330002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303780A Expired - Fee Related JP5272683B2 (en) 2008-11-28 2008-11-28 Nonlinear variable resistance element

Country Status (1)

Country Link
JP (1) JP5272683B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393134A2 (en) 2010-06-07 2011-12-07 Nitto Denko Corporation Encapsulating sheet for optical semiconductor
JP2012124209A (en) * 2010-12-06 2012-06-28 Tdk Corp Chip varistor
JP2012124204A (en) * 2010-12-06 2012-06-28 Tdk Corp Chip varistor
JP2015501545A (en) * 2011-10-28 2015-01-15 エプコス アクチエンゲゼルシャフトEpcos Ag ESD protection device and device comprising ESD protection device and LED

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143801A (en) * 1986-12-08 1988-06-16 富士電機株式会社 Voltage nonlinear resistance element
JPH03195001A (en) * 1989-12-25 1991-08-26 Fuji Sangyo Kk Fixed resistance and its manufacture
JPH113809A (en) * 1997-03-20 1999-01-06 Ceratec Co Ltd Low-capacitance chip varistor and its manufacture
JP2000156305A (en) * 1998-11-19 2000-06-06 Mitsubishi Electric Corp Resistor and voltage sensor using the same
JP2000306705A (en) * 1999-04-22 2000-11-02 Fuji Electric Co Ltd Manufacture of voltage nonlinear resistor
JP2001176703A (en) * 1999-10-04 2001-06-29 Toshiba Corp Voltage nonlinear resistor and manufacturing method therefor
JP2003045701A (en) * 2001-07-27 2003-02-14 Kyocera Corp Jumper chip
JP2008513982A (en) * 2004-09-15 2008-05-01 エプコス アクチエンゲゼルシャフト Barista

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143801A (en) * 1986-12-08 1988-06-16 富士電機株式会社 Voltage nonlinear resistance element
JPH03195001A (en) * 1989-12-25 1991-08-26 Fuji Sangyo Kk Fixed resistance and its manufacture
JPH113809A (en) * 1997-03-20 1999-01-06 Ceratec Co Ltd Low-capacitance chip varistor and its manufacture
JP2000156305A (en) * 1998-11-19 2000-06-06 Mitsubishi Electric Corp Resistor and voltage sensor using the same
JP2000306705A (en) * 1999-04-22 2000-11-02 Fuji Electric Co Ltd Manufacture of voltage nonlinear resistor
JP2001176703A (en) * 1999-10-04 2001-06-29 Toshiba Corp Voltage nonlinear resistor and manufacturing method therefor
JP2003045701A (en) * 2001-07-27 2003-02-14 Kyocera Corp Jumper chip
JP2008513982A (en) * 2004-09-15 2008-05-01 エプコス アクチエンゲゼルシャフト Barista

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393134A2 (en) 2010-06-07 2011-12-07 Nitto Denko Corporation Encapsulating sheet for optical semiconductor
JP2012124209A (en) * 2010-12-06 2012-06-28 Tdk Corp Chip varistor
JP2012124204A (en) * 2010-12-06 2012-06-28 Tdk Corp Chip varistor
JP2015501545A (en) * 2011-10-28 2015-01-15 エプコス アクチエンゲゼルシャフトEpcos Ag ESD protection device and device comprising ESD protection device and LED

Also Published As

Publication number Publication date
JP5272683B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
KR101681358B1 (en) A multilayer ceramic capacitor and a method for manufactuaring the same
JP5556857B2 (en) Multilayer piezoelectric element
JP5459295B2 (en) ESD protection device and manufacturing method thereof
TWI386957B (en) Electrical multilayer component
JP5272683B2 (en) Nonlinear variable resistance element
JP5640249B2 (en) Nonlinear resistance element and manufacturing method thereof
KR20130005518A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component
KR102620526B1 (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP5221794B1 (en) Electrostatic protection element and manufacturing method thereof
KR102597153B1 (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP5716092B2 (en) Ceramic device and manufacturing method thereof
US11017953B2 (en) Multilayer ceramic electronic component
JP4654690B2 (en) Multilayer varistor
JP6399226B2 (en) ESD protection device
JP5403075B2 (en) ESD protection device
US11532437B2 (en) Multilayer device and method for producing a multilayer device
JPH11265808A (en) Surge absorbing element and manufacture of the same
EP2709116B1 (en) Nonlinear resistive element
KR100848192B1 (en) Chip device
JP2008270391A (en) Multilayer chip varistor and its manufacturing method
KR100868585B1 (en) Surge absorber and method of manufacturing the surge absorber
JP2021072368A (en) Multilayer varistor
JPH02260605A (en) Lamination type varistor
JPH10270145A (en) Discharge gap element and surge protection device
JPH04120702A (en) Varistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees