JP2010129191A - Method for cooling separator - Google Patents

Method for cooling separator Download PDF

Info

Publication number
JP2010129191A
JP2010129191A JP2008299391A JP2008299391A JP2010129191A JP 2010129191 A JP2010129191 A JP 2010129191A JP 2008299391 A JP2008299391 A JP 2008299391A JP 2008299391 A JP2008299391 A JP 2008299391A JP 2010129191 A JP2010129191 A JP 2010129191A
Authority
JP
Japan
Prior art keywords
separator
cooling
flow path
pressure loss
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299391A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
一裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008299391A priority Critical patent/JP2010129191A/en
Publication of JP2010129191A publication Critical patent/JP2010129191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling a separator remarkably shortening time from the start of cooling to the completion of measurement of a pressure loss by conducting high-speed cooling of the separator and measurement of the pressure loss at the same time. <P>SOLUTION: In the method for cooling the separator 11 of a fuel cell integrally formed by thermal joining of a pair of metallic plates 12, 13 and an intermediate layer 15 interposed between the metallic plates 12, 13, the separator is cooled by making flow pure water through each passage such as a liquid or gas passage 18 formed on the inside of the separator 11 and the pressure loss in each passage such as the passage 18 is measured at the same time. The high-speed cooling of the separator 11 and the pressure loss in each passage such as the passage 18 on the inside of the separator 11 are conducted at the same time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池のセパレータの冷却方法、特に、一対の金属プレートと、この一対の金属プレート相互間に挟み込まれた中間層とを一体化するための熱接合後のセパレータの冷却方法に関するものである。   The present invention relates to a method of cooling a separator of a fuel cell, and more particularly to a method of cooling a separator after heat bonding for integrating a pair of metal plates and an intermediate layer sandwiched between the pair of metal plates. It is.

従来から、燃料電池において、一対の金属プレートと、この一対の金属プレート相互間に冷却媒体流路形成部材を備える中間層とを、熱接合により一体化されてなるセパレータが知られている(例えば、特許文献1参照)。
このように一体化されたセパレータは、熱接合による熱が残留しているために冷却が行われる。
この冷却は、従来、図4に示すように、セパレータ41の上下面、つまり中間層42を挟んでその上下に位置する金属プレート43,44の各表面に冷却板51,52を当てて行っていた。
Conventionally, in a fuel cell, a separator is known in which a pair of metal plates and an intermediate layer including a cooling medium flow path forming member are integrated between the pair of metal plates by thermal bonding (for example, , See Patent Document 1).
The separator integrated in this way is cooled because heat from the thermal bonding remains.
Conventionally, as shown in FIG. 4, this cooling is performed by applying cooling plates 51 and 52 to the upper and lower surfaces of the separator 41, that is, the surfaces of the metal plates 43 and 44 positioned above and below the intermediate layer 42. It was.

特開2007−179787号公報JP 2007-179787 A

しかしながら上記従来の冷却方法では、セパレータ41の外部からの冷却であるため、冷却に時間がかかった。またセパレータ41は、一体化後に、中間層42に備えられた冷却媒体流路を含むセパレータ41内部の各流体流路における圧力損失の測定が行われるが、この測定も時間がかかり、したがって冷却開始から圧力損失測定終了までに長時間を要した。   However, in the above conventional cooling method, since cooling is performed from the outside of the separator 41, it takes time for cooling. In addition, after the integration of the separator 41, the pressure loss in each fluid flow path inside the separator 41 including the cooling medium flow path provided in the intermediate layer 42 is measured. It took a long time to complete the pressure loss measurement.

本発明は、上記のような実情に鑑みなされたもので、冷却開始から圧力損失測定終了までの時間を短縮できるセパレータの冷却方法を提供することを課題とする。   This invention is made | formed in view of the above situations, and makes it a subject to provide the cooling method of the separator which can shorten time from a cooling start to the completion | finish of a pressure loss measurement.

上記目的を達成するために、本発明のセパレータの冷却方法は、一対の金属プレートと、この一対の金属プレート相互間に挟み込まれた中間層とを熱接合により一体化してなる燃料電池のセパレータの前記熱接合後の冷却方法であって、セパレータ内部に形成された液体又はガスの流路に液体又はガスを流して冷却しながら、その流路における圧力損失を測定することを特徴とする。   In order to achieve the above object, the method for cooling a separator of the present invention includes a separator for a fuel cell in which a pair of metal plates and an intermediate layer sandwiched between the pair of metal plates are integrated by thermal bonding. In the cooling method after the thermal bonding, the pressure loss in the flow path is measured while flowing the liquid or gas through the liquid or gas flow path formed inside the separator and cooling.

本発明によれば、セパレータの冷却と共に圧力損失測定をするので、冷却開始から圧力損失測定終了までの時間を短縮できるという効果を発揮できる。   According to the present invention, since the pressure loss is measured together with the cooling of the separator, the effect of shortening the time from the start of cooling to the end of the pressure loss measurement can be exhibited.

以下、本発明の実施の形態を図面に基づき説明する。なお、各図間において、同一符号は同一又は相当部分を示す。
図1は、本発明方法により冷却されるセパレータの概略を示す側面図、図2は図1中の中間層の平面図である。
図示するように、セパレータ11は一対の金属プレート12,13と、この一対の金属プレート12,13相互間に挟み込まれた、冷却媒体流路14を備える中間層15とを備えてなる。図2においては、冷却媒体流路14を1本の矢印で代表的に示している。冷却媒体流路14は、実際にはこの矢印で示す流路のみでないことはいうまでもない。後述する空気流路についても矢印で示す流路のみでないことは同様である。
ここで、金属プレート12,13はチタンやステンレス等の耐蝕性を有する金属材からなり、中間層15はフィルム状樹脂材によるフレーム16及びその内方に配置された、例えばチタンやステンレス等の耐蝕性を有する金属材からなる冷却媒体流路部材17を備えてなる。冷却媒体流路14を例えば金属プレート12の裏面側に形成して上記冷却媒体流路部材17を省略してもよい。なお冷却媒体としては、通常、不凍液が用いられる。
一対の金属プレート12,13及びフレーム16は同一の四角形の外形状を有する平板状に形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shows the same or an equivalent part between each figure.
FIG. 1 is a side view schematically showing a separator cooled by the method of the present invention, and FIG. 2 is a plan view of an intermediate layer in FIG.
As illustrated, the separator 11 includes a pair of metal plates 12 and 13 and an intermediate layer 15 including a cooling medium flow path 14 sandwiched between the pair of metal plates 12 and 13. In FIG. 2, the cooling medium flow path 14 is representatively shown by one arrow. Needless to say, the cooling medium flow path 14 is not only the flow path indicated by this arrow. The same applies to the air flow paths described later, not only the flow paths indicated by arrows.
Here, the metal plates 12 and 13 are made of a metal material having corrosion resistance such as titanium or stainless steel, and the intermediate layer 15 is disposed on the frame 16 made of a film-like resin material and inside thereof, for example, corrosion resistance such as titanium or stainless steel. The cooling medium flow path member 17 made of a metal material having a property is provided. For example, the cooling medium flow path member 17 may be omitted by forming the cooling medium flow path 14 on the back side of the metal plate 12. In general, an antifreeze is used as the cooling medium.
The pair of metal plates 12 and 13 and the frame 16 are formed in a flat plate shape having the same rectangular outer shape.

このセパレータ11の内部には、上記冷却媒体流路14の他に、燃料電池における発電に供する酸化剤ガスとしての空気の流路(空気流路)及び燃料ガスとしての水素ガスの流路(水素ガス流路)が形成されている。図1では空気流路18のみを示しているが、図示面に直交する方向の所定位置に金属プレート12,13及び中間層15を貫いて水素ガス流路が形成されている。
なお、図1中の21及び22は空気流路18の入口(空気供給マニホールド)及び出口(空気排出マニホールド)を示す。23及び24は中間層15に形成された空気通路、25及び26は金属プレート12に開けられた空気流路穴である。図2中の27及び28は冷却媒体流路14の入口(冷却媒体供給マニホールド)及び出口(冷却媒体排出マニホールド)を示す。
In the separator 11, in addition to the cooling medium flow path 14, an air flow path (air flow path) as an oxidant gas used for power generation in the fuel cell and a hydrogen gas flow path (hydrogen) as a fuel gas. Gas flow path) is formed. Although only the air flow path 18 is shown in FIG. 1, a hydrogen gas flow path is formed through the metal plates 12 and 13 and the intermediate layer 15 at a predetermined position in a direction orthogonal to the illustrated surface.
In addition, 21 and 22 in FIG. 1 show the inlet (air supply manifold) and the outlet (air discharge manifold) of the air flow path 18. Reference numerals 23 and 24 denote air passages formed in the intermediate layer 15, and reference numerals 25 and 26 denote air passage holes formed in the metal plate 12. Reference numerals 27 and 28 in FIG. 2 denote an inlet (cooling medium supply manifold) and an outlet (cooling medium discharge manifold) of the cooling medium flow path 14.

本実施形態では、一対の金属プレート12,13及び中間層15が熱接合によって一体化された後の、つまり熱接合による熱が残留しているセパレータ11について、冷却媒体流路14、空気流路18及び上記水素ガス流路に各々冷却/圧力損失測定用流体としての純水を流して冷却しながら、各流路14,18(水素ガス流路も含む。)における圧力損失を測定する。
なお、水素ガス流路の圧力損失測定は、同じガス流路である空気流路18と同等に考え得るので、以下、流路18と記すときは水素ガス流路も同様に含まれるものとする。
上記熱接合は、加熱ロール、赤外線加熱ヒータ、電磁誘導加熱ヒータ、熱板プレス等を用いて行われている。
In the present embodiment, after the pair of metal plates 12 and 13 and the intermediate layer 15 are integrated by thermal bonding, that is, for the separator 11 in which heat due to thermal bonding remains, the cooling medium flow path 14 and the air flow path. 18 and the hydrogen gas flow path are each cooled by flowing pure water as a cooling / pressure loss measurement fluid, and the pressure loss in each flow path 14, 18 (including the hydrogen gas flow path) is measured.
Since the pressure loss measurement of the hydrogen gas flow path can be considered equivalent to the air flow path 18 that is the same gas flow path, hereinafter, the hydrogen gas flow path is similarly included when referred to as the flow path 18. .
The thermal bonding is performed using a heating roll, an infrared heater, an electromagnetic induction heater, a hot plate press or the like.

各流路14,18の圧力損失は、同流路14,18の入口27,21における純水の供給圧力測定値Pinから、同流路14,18の出口28,22における純水の排出圧力測定値Poutを各々引算(=Pin−Pout)することにより求められる。
空気流路18は、セパレータ11単独では供給側と排出側とが連通せず、圧力損失の測定ができないので、圧力損失測定時には、図3に例示するように治具31,32を用いる。
The pressure loss of each flow path 14, 18 is determined from the pure water supply pressure measurement value Pin at the inlets 27, 21 of the flow paths 14, 18 to the discharge pressure of pure water at the outlets 28, 22 of the flow paths 14, 18. Each of the measured values Pout is obtained by subtraction (= Pin−Pout).
In the air flow path 18, the supply side and the discharge side cannot be communicated with the separator 11 alone and pressure loss cannot be measured. Therefore, jigs 31 and 32 are used as shown in FIG. 3 when measuring pressure loss.

すなわち、金属プレート12側には穴のない治具31を、金属プレート13側には上記純水の供給穴33及び排出穴34が開けられた治具32を、各々所定間隔おいて対向配置する。
この場合、治具31,32には、セパレータ11の空気流路18の供給側と排出側とが連通され、かつその気密が、上記純水の供給穴33及び排出穴34を除いて保持されるように、各々ガスケット35が貼着されている。治具32の供給穴33及び排出穴34は、図3から分かるように空気流路18の入口21及び出口22に対向する位置に開けられている。
治具31,32は、本実施形態では熱伝導率が比較的高く、取り扱いが容易なアルミニウム材からなるが、これのみに限定されない。熱伝導率は高いことが望まれる。
That is, a jig 31 having no holes on the metal plate 12 side and a jig 32 having the pure water supply hole 33 and the discharge hole 34 opened on the metal plate 13 side are arranged to face each other at a predetermined interval. .
In this case, the supply side and the discharge side of the air flow path 18 of the separator 11 are communicated with the jigs 31 and 32, and the airtightness is maintained except for the pure water supply hole 33 and the discharge hole 34. As shown, gaskets 35 are attached to each other. As can be seen from FIG. 3, the supply hole 33 and the discharge hole 34 of the jig 32 are opened at positions facing the inlet 21 and the outlet 22 of the air flow path 18.
In the present embodiment, the jigs 31 and 32 are made of an aluminum material that has a relatively high thermal conductivity and is easy to handle, but is not limited thereto. High thermal conductivity is desired.

上述したように本実施形態では、金属プレート12,13及び中間層15が熱接合によって一体化された後のセパレータ11について、冷却媒体流路14、空気流路18に各々純水を流して冷却、つまりセパレータ11の内部から冷却しながら、各流路14,18における圧力損失を測定するようにした。
したがって本実施形態によれば、高い冷却効果のもとで、かつそのような冷却と同時に、各流路14,18における圧力損失を測定できる。すなわち、熱接合による熱が残留しているセパレータ11について、高速冷却と圧力損失測定を同時に行え、冷却開始から圧力損失測定終了までの時間を著しく短縮できる。
As described above, in the present embodiment, the separator 11 after the metal plates 12 and 13 and the intermediate layer 15 are integrated by thermal bonding is cooled by flowing pure water through the cooling medium flow path 14 and the air flow path 18. In other words, the pressure loss in each of the flow paths 14 and 18 was measured while cooling from the inside of the separator 11.
Therefore, according to this embodiment, the pressure loss in each flow path 14 and 18 can be measured under a high cooling effect and simultaneously with such cooling. That is, high-speed cooling and pressure loss measurement can be performed at the same time for the separator 11 in which heat due to thermal bonding remains, and the time from the start of cooling to the end of pressure loss measurement can be significantly shortened.

なお上述実施形態では、冷却媒体流路、空気流路及び水素ガス流路に流す冷却/圧力損失測定用流体として純水を用いた例について述べたが、これのみに限定されることはない。例えば、冷却/圧力損失測定用流体として純水以外の水(工業水等)を用いてもよい。また、冷却/圧力損失測定用流体としてガス、例えば空気、水素ガスあるいは窒素ガス等を用いてもよく、これによれば、冷却、圧力損失測定後にセパレータの水分を拭き取る等の後始末が不要となる。冷却/圧力損失測定用流体として水を使用すれば、冷却効果が高いが上記のように後始末が必要となり、一方、ガスを使用すれば、後始末が不要となるが冷却効果は水を使用した場合に比べて低くなる。冷却媒体流路には水を用い、空気流路及び水素ガス流路にはガスを用いる、というように冷却/圧力損失測定用流体として水とガスとを適宜使い分けてもよい。
冷却媒体流路、空気流路及び水素ガス流路の3流路の圧力損失測定を常に同時に行うことに限定されることもない。
In the above-described embodiment, the example in which pure water is used as the cooling / pressure loss measurement fluid flowing in the cooling medium flow path, the air flow path, and the hydrogen gas flow path has been described. However, the present invention is not limited to this. For example, water other than pure water (such as industrial water) may be used as the cooling / pressure loss measurement fluid. In addition, a gas such as air, hydrogen gas, or nitrogen gas may be used as the cooling / pressure loss measurement fluid, which eliminates the need for subsequent cleaning such as wiping the moisture of the separator after the cooling and pressure loss measurement. Become. If water is used as the fluid for cooling / pressure loss measurement, the cooling effect is high, but cleanup is necessary as described above. On the other hand, if gas is used, cleanup is not necessary, but the cooling effect uses water. It becomes lower than the case. Water and gas may be properly used as the cooling / pressure loss measurement fluid, such as using water for the cooling medium flow path and gas for the air flow path and the hydrogen gas flow path.
It is not limited to always performing the pressure loss measurement of the three flow paths of the cooling medium flow path, the air flow path, and the hydrogen gas flow path at the same time.

上述実施形態におけるセパレータ内部からの冷却に加えて、冷却板等を用いたセパレータ外部からの冷却をも行ってもよい。これによれば、セパレータの冷却をより高速化できると共に、急速冷却されてもセパレータ内外の温度差によるセパレータの反り等の歪みが生じにくくなる。   In addition to cooling from the inside of the separator in the above-described embodiment, cooling from the outside of the separator using a cooling plate or the like may be performed. According to this, the speed of cooling of the separator can be further increased, and even when rapidly cooled, distortion such as warpage of the separator due to a temperature difference between the inside and outside of the separator is less likely to occur.

本発明方法により冷却されるセパレータの概略を示す側面図である。It is a side view which shows the outline of the separator cooled by the method of this invention. 図1中の中間層の平面図である。It is a top view of the intermediate | middle layer in FIG. 本発明によるセパレータの冷却方法の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the cooling method of the separator by this invention. 従来の冷却方法の説明図である。It is explanatory drawing of the conventional cooling method.

符号の説明Explanation of symbols

11:セパレータ、12,13:金属プレート、14:冷却媒体流路(液体の流路)、15:中間層、16:フレーム、17:冷却媒体流路部材、18:空気流路(ガスの流路)、21:空気流路入口、22:空気流路出口。   11: separator, 12, 13: metal plate, 14: cooling medium flow path (liquid flow path), 15: intermediate layer, 16: frame, 17: cooling medium flow path member, 18: air flow path (gas flow) Road), 21: air flow path inlet, 22: air flow path outlet.

Claims (1)

一対の金属プレートと、この一対の金属プレート相互間に挟み込まれた中間層とを熱接合により一体化してなる燃料電池のセパレータの前記熱接合後の冷却方法であって、
セパレータ内部に形成された液体又はガスの流路に液体又はガスを流して冷却しながら、その流路における圧力損失を測定することを特徴とするセパレータの冷却方法。
A cooling method after the thermal bonding of a separator of a fuel cell in which a pair of metal plates and an intermediate layer sandwiched between the pair of metal plates are integrated by thermal bonding,
A separator cooling method, characterized by measuring a pressure loss in a flow path of liquid or gas flowing in a liquid or gas flow path formed inside the separator while cooling the liquid or gas.
JP2008299391A 2008-11-25 2008-11-25 Method for cooling separator Pending JP2010129191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299391A JP2010129191A (en) 2008-11-25 2008-11-25 Method for cooling separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299391A JP2010129191A (en) 2008-11-25 2008-11-25 Method for cooling separator

Publications (1)

Publication Number Publication Date
JP2010129191A true JP2010129191A (en) 2010-06-10

Family

ID=42329460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299391A Pending JP2010129191A (en) 2008-11-25 2008-11-25 Method for cooling separator

Country Status (1)

Country Link
JP (1) JP2010129191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145219A (en) * 2018-02-15 2019-08-29 トヨタ自動車株式会社 Manufacturing method of master cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145219A (en) * 2018-02-15 2019-08-29 トヨタ自動車株式会社 Manufacturing method of master cell
JP7067106B2 (en) 2018-02-15 2022-05-16 トヨタ自動車株式会社 Master cell manufacturing method

Similar Documents

Publication Publication Date Title
US20150369545A1 (en) Heat exchanger and method for manufacturing same
US20080310116A1 (en) Heatsink having an internal plenum
WO2016173286A1 (en) Liquid cooling radiator and electronic device
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
EP2435774A1 (en) Improved double-walled plate heat exchanger
JP2006351561A (en) Semiconductor cooling apparatus
JP2004003817A (en) Fluid temperature regulating device
JP2010129191A (en) Method for cooling separator
TWI570381B (en) Bonded fluid heat exchanging apparatus
CN105636411A (en) Manufacturing method of metal runners used for liquid cooling and liquid cooling metal runner cold plate
JP2011031547A (en) Thermal transfer apparatus
CN109317939A (en) A kind of processing method of aluminum alloy melt cold plate
Xie et al. Numerical analysis of residual stress for copper base brazed stainless steel plate-fin structure
JP2000111281A (en) Planar heat pipe and manufacture thereof
TW200909762A (en) Heat exchanger
KR20090101008A (en) Laminated type heat exchanger
JP5139038B2 (en) Method for producing metal hollow structure
Yoo Design of conformal cooling/heating channels for layered tooling
JP2001208496A (en) Hot plate for heating and cooling and method of manufacturing it
JP2009097825A (en) Hot water storage tank
EP3077752A1 (en) Heat exchanger having improved strength
Xu et al. The residual stress in a brazed joint of metallic bipolar plates of PEMFC: A numerical model
JP5051440B2 (en) Flat plate laminator
CN107175390A (en) A kind of parallel microchannels water-cooling base plate
SE1651317A1 (en) Titanium plate heat exchanger