JP2010127923A - Method for temperature correction in sensor for discovering the concentration of co2 gas - Google Patents

Method for temperature correction in sensor for discovering the concentration of co2 gas Download PDF

Info

Publication number
JP2010127923A
JP2010127923A JP2008326481A JP2008326481A JP2010127923A JP 2010127923 A JP2010127923 A JP 2010127923A JP 2008326481 A JP2008326481 A JP 2008326481A JP 2008326481 A JP2008326481 A JP 2008326481A JP 2010127923 A JP2010127923 A JP 2010127923A
Authority
JP
Japan
Prior art keywords
temperature
infrared sensor
amplifier
output voltage
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008326481A
Other languages
Japanese (ja)
Inventor
Yasuzo Uchiyama
泰三 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAMA GIKEN KK
Original Assignee
MIYAMA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAMA GIKEN KK filed Critical MIYAMA GIKEN KK
Priority to JP2008326481A priority Critical patent/JP2010127923A/en
Publication of JP2010127923A publication Critical patent/JP2010127923A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correct the temperature of an infrared sensor that is used as a sensor for discovering the concentration of CO<SB>2</SB>gas, and to prevent saturation of an amplifier that amplifies a signal from the infrared sensor and fluctuations in direct-current output voltage of the amplifier, thereby correcting the direct-current output voltage of the amplifier to be zero. <P>SOLUTION: The infrared sensor is placed in a space, and a bead-like temperature-detecting element that is used for detecting the temperature in the space is placed in the space so as to detect the temperature in an area around the infrared sensor. A temperature-detecting element having a negative temperature characteristic is inserted into a feedback circuit of an amplifier that amplifies a signal from the infrared sensor, and the negative temperature characteristic of the infrared sensor is corrected by rendering the amplification degree of temperature characteristic a positive temperature characteristic. As for the direct-current output voltage of an infrared sensor having a temperature characteristic, the direct-current output voltage is always corrected to be zero in the absence of a signal by adding an automatic zero correction circuit to an amplifier that amplifies a signal from the infrared sensor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はCO2ガス濃度値センサーにおける温度補正方法に関する。The present invention relates to a temperature correction method in a CO2 gas concentration value sensor.

従来のCO2ガス濃度値センサーの温度補正方法には、断熱空間内にヒータと温度検出素子を配置し、この空間内の温度を一定に制御する方法がある。(例えば、特許文献1参照。)
特開2000−213986
As a conventional temperature correction method for a CO2 gas concentration value sensor, there is a method in which a heater and a temperature detection element are arranged in an adiabatic space and the temperature in this space is controlled to be constant. (For example, refer to Patent Document 1.)
JP 2000-213986 A

CO2ガス濃度値センサーに使用される赤外線センサーは、一般には温度が上がると電圧感度が下るという(−)の温度特性を持ち、温度が上がると直流出力電圧が上がるという(+)の温度特性を持っていて、CO2ガス濃度センサーの温度補正が必要となる。  Infrared sensors used for CO2 gas concentration value sensors generally have (−) temperature characteristics that the voltage sensitivity decreases as the temperature increases, and (+) temperature characteristics that the DC output voltage increases as the temperature increases. It is necessary to correct the temperature of the CO2 gas concentration sensor.

赤外線センサーの温度は、周囲温度の変化及び検出ガスを通過したランプからの光照射により変化する。  The temperature of the infrared sensor changes due to a change in ambient temperature and light irradiation from a lamp that has passed through the detection gas.

また、赤外線センサーからの信号を増幅する増幅器は高い増幅度を持つので、赤外線センサーの直流出力電圧により飽和してしまう。この直流出力電圧が温度特性を持っていると通常のゼロ補正回路では対応できず、オートゼロ補正回路が必要となる。  In addition, since the amplifier that amplifies the signal from the infrared sensor has a high amplification degree, it is saturated by the DC output voltage of the infrared sensor. If this DC output voltage has temperature characteristics, it cannot be handled by a normal zero correction circuit, and an auto zero correction circuit is required.

従来の技術は、チップ状の温度検出素子をプリント基板上に実装し、ここの温度を検出して赤外線センサーが配置された断熱空間内の温度を一定に制御しようとするものである。  In the conventional technique, a chip-shaped temperature detecting element is mounted on a printed circuit board, and the temperature in the chip is detected to control the temperature in the heat insulating space in which the infrared sensor is arranged to be constant.

しかし、チップ状の温度検出素子はプリント基板上に実装されているため、温度検出素子が検出する温度は空間内の温度ではなく、プリント基板の温度である。  However, since the chip-shaped temperature detection element is mounted on the printed board, the temperature detected by the temperature detection element is not the temperature in the space but the temperature of the printed board.

したがって、赤外線センサーが配置された空間内の温度を一定に制御することはできず、赤外線センサーの近傍のプリント基板の温度を制御することになる。  Therefore, the temperature in the space where the infrared sensor is disposed cannot be controlled to be constant, and the temperature of the printed circuit board in the vicinity of the infrared sensor is controlled.

また、このような温度制御で変動の無い制御を達成することは難しく、変動の無い制御を達成するためには大掛かりな回路を必要とする。  In addition, it is difficult to achieve control without fluctuation by such temperature control, and a large circuit is required to achieve control without fluctuation.

赤外線センサーが配置された空間内の温度を検出する温度検出素子には、ビーズ状のものを使用し、赤外線センサーの近傍の温度を検出するように空間内に配置する。  As the temperature detection element for detecting the temperature in the space where the infrared sensor is arranged, a bead-shaped element is used and arranged in the space so as to detect the temperature in the vicinity of the infrared sensor.

この温度検出素子が検出した温度により、空間内の温度を一定に制御するのではなく、赤外線センサーからの信号を増幅する増幅器の帰還回路に、(−)の温度特性を持った温度検出素子を挿入し、増幅度の温度特性に(+)の特性を持たせて赤外線センサーの電圧感度の(−)の温度特性を補正する。  Rather than controlling the temperature in the space constant by the temperature detected by this temperature detection element, a temperature detection element having a temperature characteristic of (−) is provided in the feedback circuit of the amplifier that amplifies the signal from the infrared sensor. Insert the (+) characteristic into the temperature characteristic of the amplification degree to correct the (−) temperature characteristic of the voltage sensitivity of the infrared sensor.

温度特性を持った直流出力電圧に対しては、赤外線センサーからの信号を増幅する増幅器にオートゼロ補正回路を追加して、信号が出現していないときの直流電圧を常にゼロに制御する。  For DC output voltage with temperature characteristics, an auto-zero correction circuit is added to the amplifier that amplifies the signal from the infrared sensor, and the DC voltage when no signal appears is always controlled to zero.

難しい温度制御をするのではなく、増幅器の帰還回路に(−)の温度特性を持った温度検出素子を挿入することにより、増幅度の温度特性に(+)の特性を持たせて、簡便に赤外線センサーの電圧感度の(−)の温度特性を補正できる  Rather than performing difficult temperature control, a temperature detection element with a temperature characteristic of (-) is inserted into the feedback circuit of the amplifier, so that the temperature characteristic of the amplification degree has a characteristic of (+) and is easy Corrects the temperature characteristics of the voltage sensitivity of the infrared sensor (-)

また、オートゼロ補正回路により、赤外線センサーの直流出力電圧の変動に対して対応できる。  In addition, the auto-zero correction circuit can cope with fluctuations in the DC output voltage of the infrared sensor.

以下、本発明の実施の形態を図1のサーミスタ配置図と、図2の赤外線センサーからの信号増幅回路および図3に基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the thermistor arrangement diagram of FIG. 1, the signal amplification circuit from the infrared sensor of FIG. 2, and FIG.

赤外線センサーが配置された空間内の温度を検出するために、図1のようにサーミスタを赤外線センサーの近傍の、断熱空間内に配置する。  In order to detect the temperature in the space where the infrared sensor is disposed, a thermistor is disposed in the heat insulation space near the infrared sensor as shown in FIG.

サーミスタはプリント基板上のサーミスタ半田付け用パッドに半田付けし、基板に対して垂直に配置する。  The thermistor is soldered to a thermistor soldering pad on the printed circuit board and arranged perpendicular to the board.

ここで、検出ガスを通過したランプからの光は、図1の上方から照射される。  Here, the light from the lamp that has passed through the detection gas is irradiated from above in FIG.

このようなサーミスタの配置により、赤外線センサーの近傍の温度を検出することができる。  With such a thermistor arrangement, the temperature in the vicinity of the infrared sensor can be detected.

サーミスタは図2に示すようにR_sと直列に、R_pと並列に接続され、増幅器の帰還回路に挿入される。  As shown in FIG. 2, the thermistor is connected in series with R_s and in parallel with R_p, and is inserted into the feedback circuit of the amplifier.

サーミスタの抵抗値のRTH、R_sおよびR_pの合成抵抗値をRtとすると、
Rt=(RTH+R_s)×R_p/((RTH+R_s)+R_p) −−−(1)
となり、増幅器の増幅度Aは、
A=R2/R1×(1+R3/Rt) −−−−−−−−−−−−−−−− (2)
と表される。
When the combined resistance value of the thermistor resistance values RTH, R_s and R_p is Rt,
Rt = (RTH + R_s) × R_p / ((RTH + R_s) + R_p) (1)
The amplification degree A of the amplifier is
A = R2 / R1 × (1 + R3 / Rt) --------------- (2)
It is expressed.

(1)式において、R_sはサーミスタ抵抗値の温度勾配によるRtの変化を調整し、R_pはRtの抵抗値を調整し増幅度Aを設定する働きがある。R_sが小さければ増幅器の温度に対する変化は大きくなり、R_sが大きければ増幅器の温度に対する変化は小さくなる。  In the equation (1), R_s adjusts the change in Rt due to the temperature gradient of the thermistor resistance value, and R_p functions to adjust the resistance value of Rt and set the amplification degree A. If R_s is small, the change with respect to the temperature of the amplifier becomes large, and if R_s is large, the change with respect to the temperature of the amplifier becomes small.

サーミスタの抵抗値は温度が上がれば減少するので、(2)式において増幅度Aは温度が上がれば増加する特性を持ち、温度が上がると電圧感度が下るという赤外線センサーの特性を補正することができる。  Since the resistance value of the thermistor decreases as the temperature rises, the amplification factor A in equation (2) has a characteristic that increases as the temperature rises, and the infrared sensor characteristic that the voltage sensitivity decreases as the temperature rises can be corrected. it can.

R_sは増幅度の温度特性が、赤外線センサーの温度特性を補正するように調整される。これらの特性を図3に示す。  R_s is adjusted so that the temperature characteristic of the amplification degree corrects the temperature characteristic of the infrared sensor. These characteristics are shown in FIG.

次に、オートゼロ補正回路について図2にしたがって説明する。  Next, the auto zero correction circuit will be described with reference to FIG.

図2において、赤外線センサーの信号出力は小さいので、増幅度Aは100〜1000倍と大きい。一方赤外線センサーの直流出力電圧は一般に(+)1V前後であり、この電圧により増幅器の出力は飽和してしまう。  In FIG. 2, since the signal output of the infrared sensor is small, the amplification degree A is as large as 100 to 1000 times. On the other hand, the DC output voltage of the infrared sensor is generally around (+) 1 V, and the output of the amplifier is saturated by this voltage.

そこで、積分器により増幅器の直流出力電圧を積分し、R_balを通して増幅器の入力に加える。  Therefore, the DC output voltage of the amplifier is integrated by an integrator and applied to the input of the amplifier through R_bal.

積分器の出力は、R_balとR_sigの分圧比で増幅器の入力に加わり、赤外線センサーからの信号はR_sigとR_balの分圧比で増幅器の入力に加わる。  The output of the integrator is applied to the amplifier input with a voltage division ratio of R_bal and R_sig, and the signal from the infrared sensor is applied to the input of the amplifier with a voltage division ratio of R_sig and R_bal.

増幅器の(+)の直流出力電圧により、積分器の出力には(−)の電圧が出力され、赤外線センサーの(+)の直流出力電圧とは逆の電圧となり、増幅器の(+)の直流出力電圧を減少させる。  Due to the (+) DC output voltage of the amplifier, the (-) voltage is output to the output of the integrator, which is the opposite of the (+) DC output voltage of the infrared sensor, and the (+) DC of the amplifier Reduce output voltage.

わずかな増幅器の(+)の直流出力電圧によっても、積分器出力には(−)の電圧が出力され、ついには増幅器の直流出力電圧がゼロとなるように働く。  Even with a slight (+) DC output voltage of the amplifier, a (−) voltage is output to the integrator output, and finally the DC output voltage of the amplifier becomes zero.

ランプは1秒程度のパルス幅で点灯し、10秒程度の繰り返しで点滅するので、赤外線センサーからの信号は1秒程度の時定数を持ったパルス状のものとなる。  Since the lamp is lit with a pulse width of about 1 second and flashes repeatedly for about 10 seconds, the signal from the infrared sensor is in the form of a pulse having a time constant of about 1 second.

積分器の時定数はC×R4であり、この値は1秒よりも大きい200秒程度に設定されているので、赤外線センサーからの信号は平均化され、この信号による積分器の直流出力電圧の変化はない。  The time constant of the integrator is C × R4, and this value is set to about 200 seconds larger than 1 second. Therefore, the signal from the infrared sensor is averaged, and the DC output voltage of the integrator by this signal is averaged. There is no change.

したがって、赤外線センサーの温度変化による直流出力電圧の変動に起因する増幅器の出力変化は常に補正され、増幅器の直流出力電圧がゼロとなるように働く。  Therefore, the output change of the amplifier due to the fluctuation of the direct current output voltage due to the temperature change of the infrared sensor is always corrected, and the direct current output voltage of the amplifier becomes zero.

ここで、積分器に使用されるオペアンプのバイアス電流を補正するために、R4=R5と設定される。  Here, in order to correct the bias current of the operational amplifier used in the integrator, R4 = R5 is set.

サーミスタ配置図  Thermistor layout 赤外線センサーからの信号増幅回路  Signal amplification circuit from infrared sensor 赤外線センサーの電圧感度および増幅器の正規化増幅度の温度特性  Temperature characteristics of voltage sensitivity of infrared sensor and normalized amplification of amplifier

符号の説明Explanation of symbols

図1
1 サーミスタ
2 赤外線センサー
3 プリント基板
4 サーミスタのリード線
5 サーミスタ半田付け用パッド
図2
1 ランプ
2 赤外線センサー
3 増幅器
4 積分器
5 サーミスタ
6 FET
FIG.
1 Thermistor 2 Infrared Sensor 3 Printed Circuit Board 4 Thermistor Lead Wire 5 Thermistor Soldering Pad
1 Lamp 2 Infrared sensor 3 Amplifier 4 Integrator 5 Thermistor 6 FET

Claims (2)

短時間に点灯するランプを光源とする赤外線方式ガス濃度値センサーにおいて、(−)の温度特性を持ったビーズ状の温度検出素子を、赤外線センサーの温度を検出するために赤外線センサー近傍の空間内に配置し、前記温度検出素子を赤外線センサーからの信号を増幅する増幅器の帰還回路に挿入し、増幅度の温度特性に(+)の温度特性を持たせて赤外線センサーの(−)の温度特性を補正する温度補正回路を備えたことを特徴とする赤外線方式ガス濃度値センサー。  In an infrared gas concentration sensor that uses a lamp that illuminates in a short time as a light source, a bead-shaped temperature detection element with a temperature characteristic of (-) is used in the space near the infrared sensor to detect the temperature of the infrared sensor. The temperature detection element is inserted into a feedback circuit of an amplifier that amplifies the signal from the infrared sensor, and the temperature characteristic of the amplification degree has a (+) temperature characteristic, and the temperature characteristic of the infrared sensor (−) Infrared type gas concentration value sensor comprising a temperature correction circuit for correcting the temperature. 短時間に点灯するランプを光源とする赤外線方式ガス濃度値センサーにおいて、赤外線センサーからの信号の増幅器の出力電圧を、信号の時定数より大きな時定数を持った積分器で積分し、この出力を前記増幅器の入力に加えて、赤外線センサーからの温度特性を持った直流出力電圧による前記増幅器の飽和と直流出力電圧の変動を防ぎ、前記増幅器の直流出力電圧をゼロに補正するように、前記増幅器にオートゼロ補正回路を備えたことを特徴とする赤外線方式ガス濃度値センサー。  In an infrared gas concentration sensor that uses a lamp that illuminates in a short time as a light source, the output voltage of the amplifier of the signal from the infrared sensor is integrated by an integrator having a time constant larger than the time constant of the signal. In addition to the input of the amplifier, the amplifier is prevented from saturation and fluctuation of the DC output voltage due to the DC output voltage having temperature characteristics from the infrared sensor, and the DC output voltage of the amplifier is corrected to zero. Infrared gas concentration sensor, equipped with an auto-zero correction circuit.
JP2008326481A 2008-11-28 2008-11-28 Method for temperature correction in sensor for discovering the concentration of co2 gas Pending JP2010127923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326481A JP2010127923A (en) 2008-11-28 2008-11-28 Method for temperature correction in sensor for discovering the concentration of co2 gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326481A JP2010127923A (en) 2008-11-28 2008-11-28 Method for temperature correction in sensor for discovering the concentration of co2 gas

Publications (1)

Publication Number Publication Date
JP2010127923A true JP2010127923A (en) 2010-06-10

Family

ID=42328418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326481A Pending JP2010127923A (en) 2008-11-28 2008-11-28 Method for temperature correction in sensor for discovering the concentration of co2 gas

Country Status (1)

Country Link
JP (1) JP2010127923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507507A (en) * 2011-11-09 2012-06-20 北京航天益来电子科技有限公司 Device and method for detecting concentration of gas to be detected through temperature correction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507507A (en) * 2011-11-09 2012-06-20 北京航天益来电子科技有限公司 Device and method for detecting concentration of gas to be detected through temperature correction

Similar Documents

Publication Publication Date Title
WO2006044501A3 (en) Electrochemical sensing circuit having high dynamic range
JP2007263709A (en) Temperature characteristic correction method and amplifier circuit for sensor
JP2008267810A (en) Gas detector and gas detection method
JP2010127923A (en) Method for temperature correction in sensor for discovering the concentration of co2 gas
US20150092819A1 (en) Sensor signal output circuit and method for adjusting it
JP2006319436A (en) Gain control circuit
JP2007085840A (en) Infrared detection device
WO2018105753A2 (en) Sensor substrate, air velocity measurement device, and air volume measurement device
TW201903402A (en) Interface circuit for electrochemical sensor
JP4686306B2 (en) Gas alarm
US10998861B2 (en) Temperature adaptive audio amplifier device and control method thereof
JP4146442B2 (en) Load device
JP2007285849A (en) Gas concentration detector
JP6960645B2 (en) Gas detector and gas detection method
JP4353999B1 (en) Gas sensor device
KR100528393B1 (en) Apparatus for compensating intensity of light for light emitting device
JP4133856B2 (en) Gas detection method and apparatus using adsorption combustion type gas sensor
JP2006222803A (en) Audio amplifier
WO2018159495A1 (en) Sensor circuit, processing method of sensor circuit, sensor device provided with sensor circuit
JP2010074282A (en) Power amplifier
JP2011174820A (en) Light source drive circuit, and gas sensor
JP5331415B2 (en) Fluctuation signal generation device, drive circuit, and illumination device
US10958221B2 (en) Flame scanner having non-linear amplifier with temperature compensation
JP5511249B2 (en) Light control device, light control method, strobe device
KR100801277B1 (en) Circuit and method for calibrating geomagnetic signal