JP2010125410A - Coated filter medium for liquid filtration - Google Patents
Coated filter medium for liquid filtration Download PDFInfo
- Publication number
- JP2010125410A JP2010125410A JP2008304136A JP2008304136A JP2010125410A JP 2010125410 A JP2010125410 A JP 2010125410A JP 2008304136 A JP2008304136 A JP 2008304136A JP 2008304136 A JP2008304136 A JP 2008304136A JP 2010125410 A JP2010125410 A JP 2010125410A
- Authority
- JP
- Japan
- Prior art keywords
- filter medium
- filtration
- liquid
- liquid filtration
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Filtering Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
本発明は、液体中に含有される固体粒子を効率良く除去して清浄な液体を得るための液体濾過フィルターなどに用いられる濾材に関するものである。 The present invention relates to a filter medium used for a liquid filtration filter or the like for efficiently removing solid particles contained in a liquid to obtain a clean liquid.
液体濾過用濾材の構造には大きく分けて2つある。一つは「内部濾過タイプ」であり、これは濾材の内部で固体粒子を捕捉する構造の濾材である。もう一つは「表面濾過タイプ」であり、これは濾材の表面で固体粒子を捕捉する構造の濾材である(例えば、特許文献1参照)。また、これら濾材をプリーツ加工「ひだ折り加工」を施して濾材の表面積を増大させてから所定の形状に成形してフィルターが作製され、他の部品と組み合わせて濾過機にセットして使用するものである。 There are roughly two types of structures for the filter medium for liquid filtration. One is an “internal filtration type”, which is a filter medium structured to trap solid particles inside the filter medium. The other is a “surface filtration type”, which is a filter medium having a structure of capturing solid particles on the surface of the filter medium (see, for example, Patent Document 1). In addition, these filter media are subjected to pleating "folding process" to increase the surface area of the filter media and then molded into a predetermined shape to produce a filter, which is used in combination with other components in a filter It is.
従来、放電加工機やIC生産工程で使用されている液体濾過用濾材としては、天然パルプと有機繊維の混抄シートにフェノール樹脂等を含浸処理したシートやポリエステル不織布等が使用されていた。しかし、これらは固体粒子の濾過効率が低く、寿命が短い等の問題点があった。また、高性能の濾材としてフッ素樹脂等の多孔質シートがあるが、高価なため特殊用途に限定され、多量の液体を処理する濾材としては不適当であった。 Conventionally, as a filter medium for liquid filtration used in an electric discharge machine or an IC production process, a sheet obtained by impregnating a phenolic resin or the like into a mixed sheet of natural pulp and organic fibers, a polyester nonwoven fabric, or the like has been used. However, these have problems such as low filtration efficiency of solid particles and short life. In addition, a porous sheet such as a fluororesin is available as a high-performance filter medium. However, since it is expensive, it is limited to special applications and is not suitable as a filter medium for treating a large amount of liquid.
これらの問題を解決する濾材の一つとして、本出願人らは、1μm以下にフィブリル化された有機繊維5〜40質量%と繊維径1〜5μmの極細有機繊維5〜60質量%及び繊維径5μm以上の有機繊維20〜70質量%からなり、且つ該繊維径5μm以上の有機繊維の一部または全部が繊維状有機バインダーであり、濾材密度が0.25〜0.8g/cm3の「表面濾過タイプ」の液体濾過用濾材を提案し、上記問題を解決した(例えば、特許文献2参照)。この「表面濾過タイプ」の濾材は、フィブリル化された有機繊維が固体粒子の捕集効率を発現し、その他の有機繊維との含有量を限定することで、圧力損失を抑え、多量の液体を効率良く短時間に処理することができるようにしている。 As one of the filter media for solving these problems, the present applicants have 5 to 40% by mass of organic fibers fibrillated to 1 μm or less, 5 to 60% by mass of ultrafine organic fibers having a fiber diameter of 1 to 5 μm, and fiber diameters. It consists of 20 to 70% by mass of organic fibers having a diameter of 5 μm or more, and part or all of the organic fibers having a fiber diameter of 5 μm or more is a fibrous organic binder, and the density of the filter medium is 0.25 to 0.8 g / cm 3 . A “surface filtration type” filter medium for liquid filtration was proposed to solve the above problem (see, for example, Patent Document 2). This “surface filtration type” filter medium suppresses pressure loss and reduces the amount of liquid by limiting the content of the organic fibers that have been fibrillated to collect solid particles and limiting the content with other organic fibers. It is possible to process efficiently in a short time.
上記「表面濾過タイプ」の濾材は、厚みが非常に薄く、硬くないために、ひだ折り加工ができない問題点があったことから、本出願人は、強度や腰(堅さ)を向上させるために、薄くて表面濾過性能に優れた上記濾材層と、液体の透過性が良く高強度でひだ折り加工性の良い支持体層を抄合わせ一体化した液体濾過用フィルター濾材を考案するに至り、現在でも有用に産業界で活用されている(例えば、特許文献3参照)。 The above-mentioned “surface filtration type” filter medium has a problem that it cannot be fold-folded because the thickness is very thin and not hard. Therefore, the present applicant intends to improve strength and waist (stiffness). In addition, the above-mentioned filter medium layer that is thin and excellent in surface filtration performance and a filter layer for liquid filtration that integrates and integrates a support layer with good liquid permeability, high strength, and pleat foldability, have been devised. Even now, it is usefully used in industry (for example, see Patent Document 3).
しかし、切削加工機や放電加工機等の高精度化に伴い、切削屑等の固体粒子の粒子径はさらに小さくなり、サブミクロンオーダーになっているのが現状である。また、環境に配慮して加工液のクローズド化も進んでおり、加工液を循環して使用するために、濾過後の液は必然的に綺麗にすることが重要になっている。そのため、従来よりも微細な固体粒子(以下、「微細粒子」という)の捕集効率を高めることが求められている。 However, with the increase in precision of cutting machines and electric discharge machines, the particle size of solid particles such as cutting waste is further reduced and is in the submicron order. In addition, the processing fluid is being closed in consideration of the environment. In order to circulate and use the processing fluid, it is important to clean the liquid after filtration. Therefore, it is required to increase the collection efficiency of solid particles (hereinafter referred to as “fine particles”) that are finer than before.
このような状況下で、「内部濾過タイプ」の濾材では、粉体を濾材内部に含有させることによって、捕集効率を上げる試みがなされている。例えば、セルロース繊維をベースとする液体用濾紙に粉末有機物質(粉体)を充填することによって、高い吸着及び吸収能と高い多孔度を特徴とした濾材が提案されている(例えば、特許文献4参照)。また、ポリオレフィン系フィブリル化合成繊維、熱接着性合成複合繊維、平均繊維径2μm以下のガラス繊維及び平均粒子径10μm以下の無機粉体をスラリーに分散混合して湿式抄紙法で抄造した液体濾過用濾紙が提案されている(例えば、特許文献5参照)。このような粉体で捕集効率を上げた「内部濾過タイプ」の濾材は初期濾過性能が低く、使用初期には微細粒子が流れてしまい、その後、微細粒子が捕集されてくると圧力損失が高くなってくるという問題があった。また、粉体は濾材から落下しやすく、特に、特許文献5のように、無機粉体を湿式抄紙法で抄造した場合、無機粉体が抄紙ワイヤーから脱落するという問題があった(例えば、特許文献4参照)。 Under such circumstances, in the “internal filtration type” filter medium, attempts have been made to increase the collection efficiency by incorporating powder into the filter medium. For example, a filter medium characterized by high adsorption and absorption capacity and high porosity has been proposed by filling liquid filter paper based on cellulose fibers with powder organic substance (powder) (for example, Patent Document 4). reference). Also, for liquid filtration, a polyolefin fibrillated synthetic fiber, a heat-adhesive synthetic composite fiber, glass fibers having an average fiber diameter of 2 μm or less, and inorganic powder having an average particle diameter of 10 μm or less are dispersed and mixed in a slurry and made by a wet papermaking method. A filter paper has been proposed (see, for example, Patent Document 5). “Internal filtration type” filter media that improve the collection efficiency with such powders have low initial filtration performance. Fine particles flow in the initial stage of use, and if fine particles are collected thereafter, pressure loss occurs. There was a problem that became higher. In addition, the powder easily drops from the filter medium. In particular, as described in Patent Document 5, when the inorganic powder is made by the wet papermaking method, there is a problem that the inorganic powder falls off the papermaking wire (for example, patents). Reference 4).
上述したように、「表面濾過タイプ」の濾材では、特許文献1〜3のように、フィブリル化された有機繊維とその他の有機繊維との含有量を限定することで、捕集効率を高め、圧力損失とのバランスをとっていたが、サブミクロンオーダーの固体粒子の捕捉効率をこの方法で上げようとすると、フィブリル化有機繊維を含んだ濾材層の坪量を増す必要があり、抄紙ワイヤーからの搾水が不十分になって均一な地合いが得られず、また、圧力損失が高い濾材しか得られないのが現状である。 As described above, in the “surface filtration type” filter medium, as in Patent Documents 1 to 3, by limiting the content of fibrillated organic fibers and other organic fibers, the collection efficiency is increased. Although it was balanced with pressure loss, it was necessary to increase the basis weight of the filter media layer containing the fibrillated organic fibers to increase the capture efficiency of solid particles of submicron order by this method. In the present situation, the water is not sufficiently squeezed to obtain a uniform texture, and only a filter medium having a high pressure loss can be obtained.
本発明の課題は、微細粒子の捕集効率、圧力損失といった性能をバランス良く発現した液体濾過用塗被濾材を提供することにある。 An object of the present invention is to provide a coating material for liquid filtration that exhibits well-balanced performances such as collection efficiency of fine particles and pressure loss.
本発明者らは、上記課題を解決するために鋭意検討した結果、
(1)通気性を有する基材の片表面に顔料と有機重合物を含有してなる塗被層を設けてなるとを特徴とする液体濾過用塗被濾材、
(2)通気性を有する基材が不織布または紙である上記(1)記載の液体濾過用塗被濾材、
(3)通気性を有する基材が有機繊維を含む不織布である上記(1)または(2)記載の液体濾過用塗被濾材、
(4)塗被層面を上流側にセットして使用する上記(1)〜(3)のいずれか記載の液体濾過用塗被濾材、を見出した。
As a result of intensive studies to solve the above problems, the present inventors have
(1) A coating material for liquid filtration, characterized in that a coating layer comprising a pigment and an organic polymer is provided on one surface of a base material having air permeability,
(2) The coated filter medium for liquid filtration according to the above (1), wherein the substrate having air permeability is a nonwoven fabric or paper,
(3) The coated filter material for liquid filtration according to the above (1) or (2), wherein the base material having air permeability is a nonwoven fabric containing organic fibers,
(4) The liquid filtration coating material according to any one of (1) to (3), which is used with the coating layer surface set on the upstream side, has been found.
本発明の液体濾過用塗被濾材は、通気性を有する基材の片表面に顔料と有機重合物の塗被層が設けられている。顔料と有機重合物を基材の内部または全体に含浸した場合、表面濾過にならず内部濾過となるため、初期濾過性能を向上できないばかりでなく、濾材の圧力損失を高める結果となり、ライフを短くしてしまう。これに対し、本発明のように、塗被層を基材の片表面に設けた場合は、圧力損失が高くならず、また、顔料及び有機重合物が基材表面に均一に存在させることが可能となる。また、使用初期から表面濾過を可能とし、微細粒子の捕集効率が向上する。つまり、本発明の液体濾過用塗被濾材は、微細粒子の捕集効率、圧力損失といった性能をバランス良く発現することができる。 In the coated filter material for liquid filtration of the present invention, a coating layer of a pigment and an organic polymer is provided on one surface of a substrate having air permeability. When the pigment and organic polymer are impregnated in the whole or inside of the base material, not only surface filtration but internal filtration results in not only improving the initial filtration performance but also increasing the pressure loss of the filter medium, shortening the life. Resulting in. On the other hand, when the coating layer is provided on one surface of the substrate as in the present invention, the pressure loss does not increase, and the pigment and the organic polymer may be present uniformly on the substrate surface. It becomes possible. In addition, surface filtration is possible from the beginning of use, and the collection efficiency of fine particles is improved. That is, the coated filter medium for liquid filtration of the present invention can express performance such as collection efficiency of fine particles and pressure loss in a well-balanced manner.
以下に詳細に説明する。 This will be described in detail below.
本発明の液体濾過用塗被濾材は、表面濾過を効率良く行うために、通気性を有する基材に塗被層を設けることによって、基材表面での空隙径を小さくコントロールすることにより達成するものである。 The liquid filtration coating material of the present invention is achieved by controlling the pore diameter on the substrate surface to be small by providing a coating layer on a breathable substrate in order to efficiently perform surface filtration. Is.
通気性を有する基材とは、エアフィルター用濾材、液体用フィルター用濾材、またはそれらに積層、貼り合わせ用に用いられるものであり、フラジール通気度が0.3cc/cm2/sec以上のものであり、好ましくは0.5cc/cm2/sec以上、より好ましくは1.0cc/cm2/sec以上である。本発明は液体濾過用塗被濾材であるが、通液性試験にかわり、JIS L 1096の通気性A法(フラジール型法)を準用した通気性試験を使用した。通気性を有する基材としては、具体的には、特に限定しないが、織物、編物、不織布、多孔膜、紙などの通気性を有するものであり、中でも濾材としてプリーツ加工性等を考慮すると、不織布、紙が好ましい。不織布は、スパンボンド、メルトブローン、ケミカルボンド、ニードルパンチ、スパンレース、エレクトロスピニング等の乾式不織布、抄紙法による湿式不織布が挙げられる。紙としては、通気性を確保するために、木材パルプの叩解度合いを抑えたり、リンターパルプを混合したり、パルプを予め架橋させる等の処理により低密度になるように抄造されたものが好ましい。 The base material having air permeability is used for air filter filter media, liquid filter media, or laminated and bonded to them, and has a fragile air permeability of 0.3 cc / cm 2 / sec or more. , and the preferably 0.5cc / cm 2 / sec or more, more preferably 1.0cc / cm 2 / sec or more. The present invention is a coated filter material for liquid filtration, but instead of the liquid permeability test, an air permeability test using the air permeability A method (Fragile type method) of JIS L 1096 was applied. Specifically, the base material having air permeability is not particularly limited, but has air permeability such as a woven fabric, a knitted fabric, a nonwoven fabric, a porous film, paper, etc. Nonwoven fabric and paper are preferred. Nonwoven fabrics include spunbond, meltblown, chemical bond, needle punch, spunlace, electrospinning and other dry nonwoven fabrics, and wet nonwoven fabrics made by papermaking. In order to ensure air permeability, the paper is preferably made so as to have a low density by a treatment such as suppressing the beating degree of wood pulp, mixing linter pulp, or pre-crosslinking the pulp.
基材は、単層でも2層以上の多層構造であっても良いが、2層構造が好ましい。2層構造の場合、粗密構造であることが好ましく、塗被層は密層面に付与することが好ましい。基材の坪量は、特に限定しないが20〜300g/m2が好ましく、より好ましくは、30〜180g/m2である。20g/m2未満の場合は、フィルターに加工する場合や塗被層を形成する段階で断紙する場合がある。また、300g/m2を超えた場合、通液抵抗が高くなる場合や、厚みが増してフィルターユニット内に規定量の濾材を収納できない場合がある。 The substrate may be a single layer or a multilayer structure of two or more layers, but a two-layer structure is preferred. In the case of a two-layer structure, a dense structure is preferable, and the coating layer is preferably provided on the dense layer surface. The basis weight of the substrate is preferably although not particularly limited 20 to 300 g / m 2, more preferably 30~180g / m 2. If it is less than 20 g / m 2 , the paper may be cut when it is processed into a filter or when a coating layer is formed. Moreover, when 300 g / m < 2 > is exceeded, liquid flow resistance may become high, thickness may increase and a filter medium of a prescribed amount may not be accommodated in a filter unit.
基材に用いられる素材は、特に限定しないが、天然繊維、再生繊維、合成繊維、半合成繊維等の有機繊維、無機繊維が挙げられる。天然繊維としては、針葉樹パルプ、広葉樹パルプなどの木材パルプや藁パルプ、竹パルプ、ケナフパルプ、リンター、リントなどの木本類、草本類が挙げられ、再生繊維としては、レーヨン、キュプラ、リヨセル繊維等が挙げられる。合成繊維としては、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン、ポリ塩化ビニル、ポリエステル系、ナイロン系、ポリオレフィン系、ベンゾエート、ポリクラール、フェノール系などの繊維が挙げられ、半合成繊維としては、アセテート、トリアセテート、プロミックスが挙げられ、単独または併用して用いられる。これらの有機繊維は、フィブリル化されていてもなんら差し支えない。さらに、古紙、損紙などから得られるパルプ繊維等も含まれる。また、断面形状がT型、Y型、三角等の異形断面を有する繊維も通気性、通液性確保のために含有できる。無機繊維としては、ガラス繊維、アルミナ繊維、ロックファイバー、ステンレスファイバーなどが挙げられる。中でもアルミナ繊維とマイクロガラス繊維が好ましく、より好ましいのはマイクロガラス繊維である。 Although the raw material used for a base material is not specifically limited, Organic fibers, such as natural fiber, a regenerated fiber, a synthetic fiber, a semi-synthetic fiber, and an inorganic fiber are mentioned. Examples of natural fibers include wood pulp such as conifer pulp and hardwood pulp, wood pulp such as straw pulp, bamboo pulp, kenaf pulp, linter, lint, and herbs. Regenerated fibers include rayon, cupra, and lyocell fiber. Is mentioned. Examples of synthetic fibers include polyolefin, polyamide, polyacrylic, vinylon, vinylidene, polyvinyl chloride, polyester, nylon, polyolefin, benzoate, polyclar, and phenol fibers. Examples include acetate, triacetate, and promix, which are used alone or in combination. These organic fibers may be fibrillated at all. Furthermore, pulp fibers obtained from waste paper, waste paper, and the like are also included. Further, fibers having an irregular cross section such as a T-shape, Y-shape, or triangle can be included for ensuring air permeability and liquid permeability. Examples of the inorganic fiber include glass fiber, alumina fiber, lock fiber, and stainless fiber. Of these, alumina fibers and micro glass fibers are preferable, and micro glass fibers are more preferable.
また、有機繊維は、熱融着性バインダー繊維であっても良い。熱融着性バインダー繊維を含有させて、熱融着性バインダー繊維の溶融温度以上に濾材の温度を上げる工程を基材の製造工程に組み入れることで、基材の機械的強度が向上する。例えば、基材を湿式抄造法で製造し、その後の乾燥工程で、熱融着性バインダー繊維を溶融させることができる。本発明の基材に用いることができる熱融着性バインダー繊維としては、単繊維のほか、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、濾材の空間を保持したまま、機械的強度を向上させることができる。熱融着性バインダー繊維としては、例えば、ポリプロピレンの短繊維、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせが挙げられる。また、ポリエチレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、濾材の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。 The organic fiber may be a heat-fusible binder fiber. By incorporating a heat-fusible binder fiber and increasing the temperature of the filter medium above the melting temperature of the heat-fusible binder fiber, the mechanical strength of the base material is improved. For example, a base material can be manufactured by a wet papermaking method, and a heat-fusible binder fiber can be melted in a subsequent drying step. Examples of the heat-fusible binder fiber that can be used for the base material of the present invention include single fibers, and composite fibers such as core-sheath fibers (core-shell type), parallel fibers (side-by-side type), and radially divided fibers. Since the composite fiber hardly forms a film, the mechanical strength can be improved while maintaining the space of the filter medium. Examples of the heat-fusible binder fiber include a short fiber of polypropylene, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a high melting point polyester (core) and low A combination of melting point polyester (sheath) can be mentioned. In addition, monofilaments (total melt type) composed only of low melting point resins such as polyethylene and hot water-soluble binders such as polyvinyl alcohols tend to form a film in the drying process of the filter medium, but do not impair the properties. Can be used in a range.
基材の片表面には顔料と有機重合物の塗被層が設けられる。塗被層を設ける場合に、基材内部に深く沈降することを抑えるために、塗被層を設ける基材の片表面には細い繊維が混在していることが好ましい。細い繊維とは、特に限定しないが、繊維径が10μm以下の繊維であり、好ましくは7μm以下、より好ましくは4μm以下である。 A coating layer of a pigment and an organic polymer is provided on one surface of the substrate. When providing the coating layer, it is preferable that fine fibers are mixed on one surface of the substrate on which the coating layer is provided in order to prevent the coating layer from being deeply settled. Although it does not specifically limit with a fine fiber, A fiber diameter is a fiber of 10 micrometers or less, Preferably it is 7 micrometers or less, More preferably, it is 4 micrometers or less.
本発明で塗被層に用いられる顔料は、合成非晶質シリカ、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、焼成カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、メラミン樹脂等の有機顔料等が単独または併用して用いられる。 The pigments used in the coating layer in the present invention are synthetic amorphous silica, light calcium carbonate, heavy calcium carbonate, kaolin, calcined kaolin, talc, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, zinc sulfide, carbonic acid. White inorganic pigments such as zinc, satin white, aluminum silicate, diatomaceous earth, calcium silicate, magnesium silicate, colloidal silica, colloidal alumina, pseudoboehmite, aluminum hydroxide, alumina, lithopone, zeolite, hydrous halloysite, magnesium carbonate, magnesium hydroxide Styrenic plastic pigments, acrylic plastic pigments, polyethylene, microcapsules, organic pigments such as melamine resins, and the like are used alone or in combination.
顔料のコールターカウンター法による平均二次粒子径は、特に限定しないが濾材の塗被層形成をスムーズに行うために粒子径が50μm以下が好ましく、より好ましくは20μm以下である。平均二次粒子径が50μmを超えると、有機重合物と顔料の混合液中で顔料が沈降し塗布性が悪化し、均一な塗被層が得られなくなることがある。また、顔料の形状は、特に限定しないが、閉塞し難い形状の不定形、球状、棒状、針状等であることが、通液性確保の観点からも好ましい。 The average secondary particle size of the pigment by the Coulter counter method is not particularly limited, but the particle size is preferably 50 μm or less, more preferably 20 μm or less in order to smoothly form the coating layer of the filter medium. If the average secondary particle diameter exceeds 50 μm, the pigment may settle in the mixed solution of the organic polymer and the pigment, the coating property may deteriorate, and a uniform coating layer may not be obtained. The shape of the pigment is not particularly limited, but is preferably an indeterminate shape that is difficult to close, a spherical shape, a rod shape, a needle shape, or the like from the viewpoint of ensuring liquid permeability.
本発明で用いられる有機重合物は、ポリビニルアルコールまたはそのシラノール変性物、カルボキシル化物、カチオン化物、アセトアセチル化物等の各種誘導体、スチレン−ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体等の共役ジエン系共重合体、アクリル酸エステル及びメタクリル酸エステルの重合体または共重合体等のアクリル系重合体、エチレン−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体等のビニル系重合体、或いはこれら各種重合体のカルボキシ基等の官能基含有単量体による官能基変性重合体、ポリウレタン樹脂系重合体、ポリエステル系重合体、澱粉等が挙げられ、これらを単独または2種類以上を併用できる。耐水性、粉体保持性、通液性等を考慮し、アクリル系重合体、ポリウレタン樹脂系重合体、ポリエステル系重合体等を使用することが好ましい。これらの有機重合体は、ラテックス状のものを使用しても良い。 The organic polymer used in the present invention is a polyvinyl alcohol or a silanol-modified product thereof, a carboxylated product, a cationized product, a derivative such as an acetoacetylated product, a conjugated diene such as a styrene-butadiene copolymer or a methyl methacrylate-butadiene copolymer. Copolymer, acrylic polymer such as acrylic acid ester and methacrylic acid ester polymer or copolymer, vinyl polymer such as ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer, or Examples of these various polymers include functional group-modified polymers such as carboxy groups and other functional group-containing monomers, polyurethane resin polymers, polyester polymers, and starches, and these can be used alone or in combination of two or more. In view of water resistance, powder retention, liquid permeability, etc., it is preferable to use an acrylic polymer, a polyurethane resin polymer, a polyester polymer, or the like. These organic polymers may be used in the form of latex.
塗被層における有機重合物の含有量は、顔料に対し、5〜70質量%であると良好な塗被層強度が得られ、好ましい。より好ましくは、10〜60質量%である。 The content of the organic polymer in the coating layer is preferably from 5 to 70% by mass with respect to the pigment because good coating layer strength is obtained. More preferably, it is 10-60 mass%.
さらに、塗被層には、添加剤として、架橋剤、顔料分散剤、増粘剤、流動性改良剤、消泡剤、抑泡剤、離型剤、サイズ剤、浸透剤、着色染料、着色顔料、蛍光増白剤、紫外線吸収剤、酸化防止剤、防腐剤、防バイ剤、湿潤強度増強剤、乾燥強度増強剤等を適宜配合することもできる。 Furthermore, for the coating layer, as additives, crosslinking agents, pigment dispersants, thickeners, fluidity improvers, antifoaming agents, foam suppressors, mold release agents, sizing agents, penetrating agents, coloring dyes, coloring Pigments, fluorescent brighteners, ultraviolet absorbers, antioxidants, preservatives, antibacterial agents, wet strength enhancers, dry strength enhancers, and the like can be appropriately blended.
顔料と有機重合物を含有した塗被層を設ける方法としては、各種ブレードコーター、ロールコーター、エアナイフコーター、コンマコーター、バーコーター、ロッドブレードコーター、カーテンコーター、ショートドウェルコーター、サイズプレス等の各種装置をオンマシン或いはオフマシンで用いることができる。塗工ムラがなく均一な厚さの塗被層が得られるカーテンコーターやエアナイフコーターを用いることが好ましい。 Various methods such as various blade coaters, roll coaters, air knife coaters, comma coaters, bar coaters, rod blade coaters, curtain coaters, short dwell coaters, size presses, etc. are provided as methods for providing a coating layer containing a pigment and an organic polymer. Can be used on-machine or off-machine. It is preferable to use a curtain coater or an air knife coater that provides a coating layer having a uniform thickness without uneven coating.
当該塗被層の塗工後に、裏面に加湿空気、加湿蒸気を吹き付けてカール矯正を行っても良い。また、マシンカレンダー、スーパーカレンダー、ソフトカレンダー等を用いたカレンダー処理により、塗被層表面の平滑性を高めても良い。 After application of the coating layer, the back surface may be sprayed with humidified air or humidified steam to correct the curl. Further, the smoothness of the coating layer surface may be improved by calendar processing using a machine calendar, a super calendar, a soft calendar, or the like.
塗被層の塗工量は、特に限定しないが0.5〜40g/m2であると、良好な塗被層を形成できることから好ましい。より好ましくは、1〜20g/m2である。0.5g/m2未満では均一な塗被層が得られない場合があり、40g/m2を超えると通液性が低下することがある。 The coating amount of the coating layer is not particularly limited, but is preferably 0.5 to 40 g / m 2 because a good coating layer can be formed. More preferably from 1 to 20 g / m 2. If it is less than 0.5 g / m 2 , a uniform coating layer may not be obtained. If it exceeds 40 g / m 2 , the liquid permeability may be lowered.
本発明の液体濾過用塗被濾材は、耐水性、プリーツ加工性が得られ、放電加工機用、エンジンオイル用、燃料用、油水分離用、油圧機器用等の液体濾過用フィルター濾材に好適となる。この場合、塗被層面を上流側として使用することにより、表層濾過機構を発現でき好ましい。しかし、対象となる液体中の粒子径が大きい場合などは、塗被層の反対面を上流とすることが好ましい場合がある。 The coated filter medium for liquid filtration of the present invention has water resistance and pleat processability, and is suitable for a filter medium for liquid filtration such as for electric discharge machines, engine oil, fuel, oil-water separation, and hydraulic equipment. Become. In this case, it is preferable that the surface layer filtration mechanism can be expressed by using the coating layer surface as the upstream side. However, when the particle diameter in the target liquid is large, it may be preferable to set the opposite surface of the coating layer upstream.
本発明の液体濾過用塗被濾材において、濾材の密度は0.1〜0.8g/cm3であることが好ましい。濾材全体の密度が0.1g/cm3未満の場合は濾材の厚みが厚くなるためユニットに組み込める濾材の面積が小さくなってしまい、結果としてフィルターのライフが短くなってしまう。一方、0.8g/cm3を超える場合は、通液性が低くなることがあり、ライフが短くなる場合がある。 In the coated filter medium for liquid filtration of the present invention, the density of the filter medium is preferably 0.1 to 0.8 g / cm 3 . When the density of the entire filter medium is less than 0.1 g / cm 3, the thickness of the filter medium is increased, so that the area of the filter medium that can be incorporated into the unit is reduced, and as a result, the life of the filter is shortened. On the other hand, when it exceeds 0.8 g / cm 3 , the liquid permeability may be lowered and the life may be shortened.
本発明を実施例によりさらに詳細に説明する。以下、特にことわりのないかぎり、実施例に記載される部及び比率は質量を基準とする。 The invention is explained in more detail by means of examples. Hereinafter, unless otherwise specified, the parts and ratios described in the examples are based on mass.
<顔料と有機重合物の混合液の作製>
ミルを用いて平均粒子径1.5μmに粉砕した重質炭酸カルシウム70質量%、アクリル系重合体ラテックス(商品名:ニッポールLX842、日本ゼオン社製)30質量%を分散タンクに投入し、分散水に混合して10分間撹拌し、固形分濃度15質量%の顔料と有機重合物の混合液を作製した。
<Preparation of mixture of pigment and organic polymer>
70% by weight of heavy calcium carbonate pulverized to an average particle size of 1.5 μm using a mill and 30% by weight of acrylic polymer latex (trade name: Nippon LX842, manufactured by Nippon Zeon Co., Ltd.) were put into a dispersion tank, and dispersed water And the mixture was stirred for 10 minutes to prepare a mixed solution of a pigment and an organic polymer having a solid concentration of 15% by mass.
(実施例1)
通気性を有する基材としてのポリエステルスパンボンド不織布(坪量100g/m2、商品名:アクスター、東レ社製)に顔料と有機重合物の混合液を固形分10g/m2になるように、卓上エアナイフコーターを用いて塗被し、乾燥させて実施例1の液体濾過用塗被濾材を得た。
Example 1
A polyester spunbonded non-woven fabric (basis weight 100 g / m 2 , trade name: Axter, manufactured by Toray Industries, Inc.) as a breathable base material is mixed with a mixture of pigment and organic polymer to a solid content of 10 g / m 2 . Coating was performed using a tabletop air knife coater and dried to obtain a coated filter material for liquid filtration of Example 1.
(比較例1)
ポリエステルスパンボンド不織布(坪量100g/m2、商品名:アクスター、東レ社製)を比較例1の液体濾過用濾材とした。
(Comparative Example 1)
A polyester spunbonded nonwoven fabric (basis weight 100 g / m 2 , trade name: ACSTER, manufactured by Toray Industries, Inc.) was used as the filter medium for liquid filtration of Comparative Example 1.
(実施例2)
特許文献3に記載された構成を有する濾材層(密層)と支持体層(粗層)とからなる2層構造の湿式不織布(坪量70g/m2、商品名:HF−V、三菱製紙社製)を通気性を有する基材に用い、濾材層面に塗被層を設けたこと以外は、実施例1と同様にして実施例2の液体濾過用塗被濾材を得た。
(Example 2)
A two-layer wet nonwoven fabric (basis weight 70 g / m 2 , trade name: HF-V, Mitsubishi Paper Industries) comprising a filter medium layer (dense layer) and a support layer (coarse layer) having the structure described in Patent Document 3. The filter medium for liquid filtration of Example 2 was obtained in the same manner as in Example 1 except that the base material having air permeability was used and a coating layer was provided on the surface of the filter medium layer.
(比較例2)
2層構造の湿式不織布(坪量70g/m2、商品名:HF−V、三菱製紙社製)を比較例2の液体濾過用濾材とした。
(Comparative Example 2)
A wet nonwoven fabric having a two-layer structure (basis weight 70 g / m 2 , trade name: HF-V, manufactured by Mitsubishi Paper Industries Co., Ltd.) was used as the filter medium for liquid filtration of Comparative Example 2.
(実施例3)
<基材の作製>
カナディアン濾水度500mlに叩解したNBKPを40質量%、市販のリンターパルプを40質量%、熱融着性バインダー繊維(芯鞘タイプ、ポリエステル繊維、直径15μm、繊維長:5mm、ユニチカ社製)を20質量%の比率で水に分散し、乾燥質量70g/m2になるように分散液を採取し、標準角形手抄き抄紙機を用いて抄紙した後、シリンダードライヤーで乾燥して通気性を有する基材を作製した。実施例1で作製した顔料と有機重合物の混合液を固形分10g/m2になるように卓上エアナイフコーターを用いて塗被し、乾燥させて実施例3の液体濾過用塗被濾材を得た。
(Example 3)
<Preparation of base material>
40% by mass of NBKP beaten to a Canadian freeness of 500 ml, 40% by mass of commercially available linter pulp, heat-fusible binder fiber (core-sheath type, polyester fiber, diameter 15 μm, fiber length: 5 mm, manufactured by Unitika) Disperse in water at a ratio of 20% by mass, collect the dispersion so that the dry mass is 70 g / m 2 , make paper using a standard square hand-made paper machine, and then dry with a cylinder dryer to make it air permeable. The base material which has was produced. The mixed liquid of the pigment and the organic polymer prepared in Example 1 is coated using a table air knife coater so as to have a solid content of 10 g / m 2 , and dried to obtain a coated filter material for liquid filtration of Example 3. It was.
(比較例3)
実施例3の基材のみを比較例3の液体濾過用濾材とした。
(Comparative Example 3)
Only the base material of Example 3 was used as the filter medium for liquid filtration of Comparative Example 3.
(比較例4)
実施例3の基材に、実施例1で作製した顔料と有機重合物の混合液を固形分10g/m2になるように含浸装置を用いて基材全体に含浸し、乾燥させて比較例4の液体濾過用濾材を得た。
(Comparative Example 4)
The base material of Example 3 was impregnated on the whole base material using an impregnation apparatus so that the mixed liquid of the pigment and the organic polymer prepared in Example 1 had a solid content of 10 g / m 2 and dried. No. 4 filter medium for liquid filtration was obtained.
実施例及び比較例で得られた液体濾過用(塗被)濾材に対して、以下の評価を行い、結果を表1に示した。 The following evaluations were performed on the liquid filtration (coated) filter media obtained in Examples and Comparative Examples, and the results are shown in Table 1.
試験1(厚さ)
JIS L 1096に準じ、不織布用の厚さ計により厚さを測定した。
Test 1 (thickness)
According to JIS L 1096, the thickness was measured with a thickness gauge for nonwoven fabric.
試験2(坪量、密度)
JIS P 8124及び8118に準じ、坪量及び密度を算出した。
Test 2 (basis weight, density)
Basis weight and density were calculated according to JIS P 8124 and 8118.
試験3(初期濾過効率)(単位:%)
実施例1〜3の液体濾過用塗被濾材及び比較例1〜4の液体濾過用濾材を用い、JIS第8種粉体とJIS第11種粉体を1:1の比率で混合し、0.05質量%濃度になるように水に希釈したものを試験用液体として用い、濾材を水で湿潤した後、試験用液体100mlを濾材の塗被層を上流側にセットして濾過面積14cm2、差圧△P=320mmHgでの条件で濾過し、濾過前後液の3〜10μm粒子数をリオン社製の液中微粒子計数器(商品名:KL−01)で測定した。比較例2の液体濾過用濾材は、濾材層を上流側にセットした。
Test 3 (initial filtration efficiency) (unit:%)
Using the filter medium for liquid filtration of Examples 1 to 3 and the filter medium for liquid filtration of Comparative Examples 1 to 4, JIS Type 8 powder and JIS Type 11 powder were mixed at a ratio of 1: 1, and 0 A sample diluted with water to a concentration of 0.05% by mass was used as a test liquid, and the filter medium was wetted with water. Then, 100 ml of the test liquid was set on the upstream side of the filter medium coating layer, and the filtration area was 14 cm 2. The solution was filtered under the condition of differential pressure ΔP = 320 mmHg, and the number of particles of 3 to 10 μm in the solution before and after filtration was measured with an in-liquid fine particle counter (trade name: KL-01) manufactured by Rion. In the filter medium for liquid filtration of Comparative Example 2, the filter medium layer was set on the upstream side.
試験4(初期濾過速度)(単位:cc/cm2/min)
試験3の濾過性能試験時の濾過時間から濾過速度を得た。
Test 4 (initial filtration rate) (unit: cc / cm 2 / min)
The filtration rate was obtained from the filtration time during the filtration performance test in Test 3.
試験5(濾液の濁り)
試験3で得られた濾過後の液体(濾液)の濁りの度合いを目視で観察し、透明度の非常に高いものを◎、透明度の高いものを○、やや濁っているものを△、非常に濁っているものを×の4段階で評価した。
Test 5 (turbidity of filtrate)
Observe the degree of turbidity of the filtered liquid (filtrate) obtained in Test 3 visually, ◎ for very high transparency, ◯ for high transparency, △ for slightly turbid, very turbid Were evaluated in 4 grades.
試験6(ライフ試験)
試験3の試験液を用いて10回繰り返し濾過した後、上記試験と同様の方法で濾過効率、濾過速度を測定した。
Test 6 (Life test)
Filtration was repeated 10 times using the test solution of Test 3, and then the filtration efficiency and filtration rate were measured in the same manner as in the above test.
試験7(プリーツ加工性)
サンプルをひだ状に加工し、加工性の非常に良いものを◎、良いものを○、やや悪いものを△、悪いものを×の4段階で評価した。
Test 7 (Pleated workability)
Samples were processed into pleats, and those with very good workability were evaluated in four stages: ◎, good ones, slightly bad Δ, bad ones.
試験8(初期濾過効率2)(単位:%)
実施例1〜3の液体濾過用塗被濾材及び比較例2の液体濾過用濾材を用い、JIS第8種粉体とJIS第11種粉体を1:1の比率で混合し、0.05%濃度になるように水に希釈したものを試験用液体として用い、濾材を水で湿潤した後、試験用液体100mlを濾材の塗被層を下流側にセットして濾過面積14cm2、差圧△P=320mmHgでの条件で濾過し、濾過前後液の3〜10μm粒子数をリオン社製の液中微粒子計数器(商品名:KL−01)で測定した。比較例2の液体濾過用濾材は、支持体層を上流側にセットした。
Test 8 (initial filtration efficiency 2) (unit:%)
Using the coating material for liquid filtration of Examples 1 to 3 and the filtering material for liquid filtration of Comparative Example 2, JIS Type 8 powder and JIS Type 11 powder were mixed at a ratio of 1: 1, 0.05 The sample diluted in water to a concentration of 1% was used as the test liquid, and the filter medium was wetted with water. Then, 100 ml of the test liquid was set downstream of the filter medium coating layer, the filtration area was 14 cm 2 , and the differential pressure The mixture was filtered under the condition of ΔP = 320 mmHg, and the number of particles of 3 to 10 μm in the solution before and after filtration was measured with an in-liquid fine particle counter (trade name: KL-01) manufactured by Lion. In the filter medium for liquid filtration of Comparative Example 2, the support layer was set on the upstream side.
試験9(初期濾過速度2)(単位:cc/cm2/min)
試験8の濾過性能試験時の濾過時間から濾過速度を得た。
Test 9 (initial filtration rate 2) (unit: cc / cm 2 / min)
The filtration rate was obtained from the filtration time during the filtration performance test in Test 8.
試験10(濾液の濁り2)
試験8で得られた濾過後の液体(濾液)の濁りの度合いを目視で観察し、透明度の非常に高いものを◎、透明度の高いものを○、やや濁っているものを△、非常に濁っているものを×の4段階で評価した。
Test 10 (turbidity of filtrate 2)
Observe the degree of turbidity of the filtered liquid (filtrate) obtained in Test 8 visually, ◎ for very high transparency, ◯ for high transparency, △ for slightly turbid, very turbid Were evaluated in 4 grades.
試験11(ライフ試験2)
試験8の試験液を用いて10回繰り返し濾過した後、上記試験と同様の方法で濾過効率2、濾過速度2を測定した。
Test 11 (Life test 2)
Filtration was repeated 10 times using the test solution of Test 8, and then filtration efficiency 2 and filtration rate 2 were measured in the same manner as in the above test.
実施例1の液体濾過用塗被濾材は、比較例1の液体濾過用濾材と比較して、初期濾過効率、ライフ試験の濾過効率が良好であり、濾液の濁りが少なかった。実施例2の液体濾過用塗被濾材は、比較例2の液体濾過用濾材と比較して、初期濾過効率、ライフ試験の濾過効率が良好であり、濾液の濁りが少なかった。実施例3の液体濾過用塗被濾材は、比較例3の液体濾過用濾材と比較して、初期濾過効率、ライフ試験の濾過効率が良好であり、濾液の濁りが少なかった。顔料と有機重合物が通気性を有する基材の内部に含有されてなる比較例4の液体濾過用濾材は、実施例3の液体濾過用塗被濾材と比較して、初期濾過効率が低く、濾液にやや濁りがみられたばかりでなく、ライフ試験において、濾過効率も濾過速度も低かった。 Compared with the filter medium for liquid filtration of Comparative Example 1, the coated filter medium for liquid filtration of Example 1 had good initial filtration efficiency and filtration efficiency in the life test, and the filtrate was less turbid. Compared with the liquid filtration filter medium of Comparative Example 2, the liquid filtration coating medium of Example 2 had good initial filtration efficiency and filtration efficiency in the life test, and the filtrate was less turbid. Compared with the filter material for liquid filtration of Comparative Example 3, the coated filter material for liquid filtration of Example 3 had good initial filtration efficiency and filtration efficiency in the life test, and the filtrate was less turbid. The filter material for liquid filtration of Comparative Example 4 in which the pigment and the organic polymer are contained in the base material having air permeability has a lower initial filtration efficiency than the coated filter material for liquid filtration of Example 3, Not only the filtrate was slightly turbid, but also the filtration efficiency and filtration rate were low in the life test.
本発明の液体濾過用濾材の塗被層を上流側にセットして濾過した場合、塗被層を下流側にセットして濾過する場合と比較して、ライフが長くなる傾向にあることから、塗被層側を上流にセットして使用することが好ましい。 When the coating layer of the filter medium for liquid filtration of the present invention is set and filtered on the upstream side, compared to the case where the coating layer is set and filtered on the downstream side, the life tends to be longer, It is preferable to use the coating layer side set upstream.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008304136A JP2010125410A (en) | 2008-11-28 | 2008-11-28 | Coated filter medium for liquid filtration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008304136A JP2010125410A (en) | 2008-11-28 | 2008-11-28 | Coated filter medium for liquid filtration |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010125410A true JP2010125410A (en) | 2010-06-10 |
Family
ID=42326160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008304136A Pending JP2010125410A (en) | 2008-11-28 | 2008-11-28 | Coated filter medium for liquid filtration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010125410A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248415A (en) * | 1987-04-02 | 1988-10-14 | Asahi Glass Co Ltd | Filter paper |
JPH02293011A (en) * | 1989-05-01 | 1990-12-04 | Mitsubishi Paper Mills Ltd | Liquid filter medium |
JP2000024471A (en) * | 1998-07-09 | 2000-01-25 | Daicel Chem Ind Ltd | Solid-liquid separation membrane |
JP2008535649A (en) * | 2005-03-18 | 2008-09-04 | ヘルディング ゲゼルシャフト ミット ベシュレンクテル ハフツング フィルターテヒニーク | Filter element with coating for surface filtration |
-
2008
- 2008-11-28 JP JP2008304136A patent/JP2010125410A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248415A (en) * | 1987-04-02 | 1988-10-14 | Asahi Glass Co Ltd | Filter paper |
JPH02293011A (en) * | 1989-05-01 | 1990-12-04 | Mitsubishi Paper Mills Ltd | Liquid filter medium |
JP2000024471A (en) * | 1998-07-09 | 2000-01-25 | Daicel Chem Ind Ltd | Solid-liquid separation membrane |
JP2008535649A (en) * | 2005-03-18 | 2008-09-04 | ヘルディング ゲゼルシャフト ミット ベシュレンクテル ハフツング フィルターテヒニーク | Filter element with coating for surface filtration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111632434B (en) | Filter media including a pre-filter layer | |
JP6288855B2 (en) | Fiber medium and method and apparatus for forming the same | |
EP2597195B1 (en) | Wire for producing a microfibrous cellulose-containing sheet and method for producing a microfibrous cellulose-containing sheet | |
US5288402A (en) | Liquid filter medium including a fibrillated filtering layer and an organic fiber support | |
CA2984690C (en) | Filter media comprising cellulose filaments | |
US20200215470A1 (en) | Filter medium | |
JP2008518770A (en) | Improved high strength, high capacity filter media and structure | |
ES2828604T3 (en) | Composite media for fuel streams | |
JP4086729B2 (en) | Filter media and filter media for liquid filtration | |
US10357729B2 (en) | High efficiency and high capacity glass-free fuel filtration media and fuel filters and methods employing the same | |
JP2006061789A (en) | Filter medium for liquid filtering | |
JP2010125410A (en) | Coated filter medium for liquid filtration | |
JP2021137712A (en) | Liquid filtering coated filter medium | |
JP2015061717A (en) | Pleat adhesion preventing nonwoven fabric | |
EP4288179A1 (en) | Biodegradable cellulose-based filter media and facial masks including the same | |
JP2007083184A (en) | Filter medium and filter medium for filtration of liquid | |
CN100423807C (en) | Nanofiber filter media | |
JP7081911B2 (en) | Filter material for laminated filter | |
JP2005058832A (en) | Filter medium for filtering liquid | |
JP2006055735A (en) | Filter material for liquid filtration | |
JP2016137459A (en) | Nonwoven fabric for filter, and filter medium for filter | |
JPH09841A (en) | Filter material and filter for filtering liquid | |
JP7281419B2 (en) | Filter material for filter and manufacturing method thereof | |
JPH04193316A (en) | Filter material | |
JP2023094688A (en) | Filter medium for liquid filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20110915 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A02 | Decision of refusal |
Effective date: 20121017 Free format text: JAPANESE INTERMEDIATE CODE: A02 |