JP2010124679A - Propulsion motor for electrically driven vehicle - Google Patents

Propulsion motor for electrically driven vehicle Download PDF

Info

Publication number
JP2010124679A
JP2010124679A JP2009160374A JP2009160374A JP2010124679A JP 2010124679 A JP2010124679 A JP 2010124679A JP 2009160374 A JP2009160374 A JP 2009160374A JP 2009160374 A JP2009160374 A JP 2009160374A JP 2010124679 A JP2010124679 A JP 2010124679A
Authority
JP
Japan
Prior art keywords
rotor
rotating
stator
propulsion motor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009160374A
Other languages
Japanese (ja)
Other versions
JP4982530B2 (en
Inventor
Tetsuo Sekiya
哲夫 関谷
Kiyoji Narita
喜代次 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009160374A priority Critical patent/JP4982530B2/en
Publication of JP2010124679A publication Critical patent/JP2010124679A/en
Application granted granted Critical
Publication of JP4982530B2 publication Critical patent/JP4982530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Induction Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propulsion motor which secures an enough driving force for each of electrically driven vehicles of an electrically driven car, an electrically driven bicycle, an electrically assisted bicycle or the like. <P>SOLUTION: A magnetism generating mechanism 2 having a stator 21 which is provided with a driving coil array and generates a rotating magnetic field and a rotating mechanism 3 provided with a rotor 31 having a good conductor surface 33 comprising one-turn coil array magnetically on a plane of a soft magnetic rotating plate 32 are oppositely arranged apart from a magnetic space. In order to rotation-drive the rotor 31 by operating the rotating magnetic field, at least one rotor 31 firmly attached to rotating shafts 5 and 6 is provided with the good conductor surfaces 33 at both faces, the stators 21 are arranged at both sides of the rotor, the sum of rotational power by an operation of the rotating magnetic field from the stators 21 of both sides forms a driving force for one rotor 31, and a generation driving force is increased by overlapping combinations of the rotor and the stator in a flat shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は磁気発生機構部と回転機構部とが扁平状に組み立てられた電動車両用推進電動機に関するものである。   The present invention relates to a propulsion motor for an electric vehicle in which a magnetism generating mechanism and a rotating mechanism are assembled in a flat shape.

従来より、回転磁界を発生する固定子で構成される磁気発生機構部と、この磁気発生機構部から発生する回転磁界により回転駆動される回転子を有する回転駆動機構部とを、磁気的空隙を隔てて組み付けた電気エネルギ変換器が提案されている(特許文献1)。   Conventionally, a magnetic generating mechanism unit composed of a stator that generates a rotating magnetic field, and a rotational driving mechanism unit having a rotor that is driven to rotate by the rotating magnetic field generated from the magnetic generating mechanism unit are separated by a magnetic gap. An electric energy converter assembled separately is proposed (Patent Document 1).

この特許文献1における電気エネルギ変換器は、回転子が軟磁性回転板に良導体表層部が積層されてなり、この良導体表層部には同心円状に配設された複数の凹部内周縁が磁性的に1巻コイル列を構成し、上記固定子の駆動用コイル列に所定周波数の電源で駆動された回転磁界が作用した際に、上記良導体表層部の1巻コイル列に電流が発生し、この電流発生に伴う磁界と回転磁界の相互作用で発生する誘導性電磁エネルギによって電気エネルギを機械エネルギに変換し機械的回転駆動力を得るようにした扁平状の構成である。   In the electric energy converter in Patent Document 1, a rotor is formed by laminating a surface layer of a good conductor on a soft magnetic rotating plate, and the inner periphery of a plurality of concave portions arranged concentrically on the surface of the good conductor is magnetic. When a rotating magnetic field driven by a power source of a predetermined frequency acts on the driving coil array of the stator, a current is generated in the 1-winding coil array on the surface layer of the good conductor. This is a flat configuration in which electrical energy is converted into mechanical energy by inductive electromagnetic energy generated by the interaction between the magnetic field and the rotating magnetic field that accompanies the generation to obtain a mechanical rotational driving force.

特開2001−69734号公報JP 2001-69734 A

しかしながら上記特許文献1の電気エネルギ変換器に使用されている従来の磁気発生機構部と回転機構部は、1組の磁気発生機構と回転機構部とが対向配置された構造であり、発生する回転駆動力は、電動車両用の推進電動機として利用するには不十分であった。   However, the conventional magnetism generation mechanism and rotation mechanism used in the electric energy converter of Patent Document 1 have a structure in which a pair of magnetism generation mechanism and rotation mechanism are arranged to face each other, and the generated rotation The driving force is insufficient for use as a propulsion motor for an electric vehicle.

本発明はかかる事情に鑑みてなされたものであり、電動自動車、電動自転車、電動アシスト自転車等の電動車両においてそれぞれに十分な駆動力が確保できる電動車両用推進電動機を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a propulsion motor for an electric vehicle that can secure a sufficient driving force in each of electric vehicles such as an electric automobile, an electric bicycle, and an electric assist bicycle. Is.

本発明の電動車両用推進電動機は、磁性コアに導線を巻回した複数の駆動用コイルが絶縁基部に同心円状に配設された駆動コイル列を有し、所定周波数の電源により駆動され、円形面に回転磁界を発生する固定子を有する磁気発生機構部と、
回転自在な軟磁性回転板の平面に、同心円状に配設された複数の凹部内周縁により磁性的に1巻コイル列が構成される良導体表層部が形成された回転子を有する回転機構部とを備え、
前記固定子の回転磁界が発生される平面と前記回転子の良導体表層部とが互いに磁気的空隙を隔てて対向配置され、前記固定子から発生する回転磁界を前記回転子に作用させて該回転子を回転駆動する電動車両用推進電動機であって、
前記回転子の回転中心に、筐体に回転自在に保持された回転軸を備え、
該回転軸に固着された少なくとも1つの前記回転子は、両面に前記1巻コイル列が構成される良導体表層部が形成され、
該回転子の両側にはそれぞれ前記固定子が配設され、該回転子の各良導体表層部に磁気的空隙を隔ててそれぞれ前記固定子の回転磁界生成面が対向配置されてなることを特徴とするものである。
The propulsion motor for an electric vehicle according to the present invention has a drive coil array in which a plurality of drive coils each having a conducting wire wound around a magnetic core are disposed concentrically on an insulating base, and is driven by a power source having a predetermined frequency, A magnetic generation mechanism having a stator for generating a rotating magnetic field on the surface;
A rotating mechanism portion having a rotor in which a good conductor surface layer portion in which a one-turn coil array is magnetically formed by a plurality of concentric inner circumferential edges of concavities is formed on a plane of a rotatable soft magnetic rotating plate; With
The plane on which the rotating magnetic field of the stator is generated and the good conductor surface layer of the rotor are opposed to each other with a magnetic gap therebetween, and the rotating magnetic field generated from the stator acts on the rotor to rotate the rotor. A propulsion motor for an electric vehicle that rotationally drives a child,
At the rotation center of the rotor, provided with a rotation shaft that is rotatably held in the housing,
The at least one rotor fixed to the rotating shaft is formed with a good conductor surface layer portion on which the one-turn coil array is formed,
The stator is disposed on both sides of the rotor, and the rotating magnetic field generating surfaces of the stator are arranged to face each other with a magnetic air gap between the good conductor surface layers of the rotor. To do.

その際、複数の回転子が平行に配設されている場合には、1つの固定子の両側に該回転子が配置されてなるものでもある。   At this time, when a plurality of rotors are arranged in parallel, the rotors are also arranged on both sides of one stator.

本発明の電動車両用推進電動機は、前記1巻コイル列が構成される良導体表層部を両面に備えた前記回転子において、片面の1巻コイル列の配置に対し、反対面の1巻コイル列の配置は、その位相が角度方向にずれて設置されていることもよいし、同位相に設置されてもよい。   The propulsion motor for an electric vehicle according to the present invention is the rotor having a good conductor surface layer portion on which both sides of the one-turn coil row are arranged, and the one-turn coil row on the opposite side with respect to the one-side coil row arrangement. The arrangement may be such that the phase is shifted in the angular direction or may be installed in the same phase.

また、前記良導体表層部が両面に配設された前記軟磁性回転板は、2枚の軟磁性回転板の板材が互いに絶縁材層を介して貼り合わせられてなるものが好ましい。   Further, the soft magnetic rotating plate in which the good conductor surface layer portions are disposed on both surfaces is preferably formed by bonding the plate materials of two soft magnetic rotating plates to each other via an insulating material layer.

また、前記軟磁性回転板は、軟磁性材料による巻鉄芯で構成するか、軟磁性材料による平板で構成するものである。   Further, the soft magnetic rotating plate is constituted by a wound iron core made of a soft magnetic material or a flat plate made of a soft magnetic material.

また、前記回転軸は、中央部で左右の回転軸に2分割され、該左右の回転軸には、それぞれ前記回転子が少なくとも1つずつ互いに平行に固着され、各回転子の両側にそれぞれ前記固定子を設置するように構成してもよい。   The rotating shaft is divided into two left and right rotating shafts at a central portion, and at least one of the rotors is fixed to each of the left and right rotating shafts in parallel with each other. You may comprise so that a stator may be installed.

また、前記回転軸の出力側に減速機構が介装されていてもよい。その際、上記回転軸が2分割されている場合には、左右の回転軸の出力側に、遊星歯車機構による減速機構がそれぞれ介装されていてもよい。   In addition, a speed reduction mechanism may be interposed on the output side of the rotating shaft. In that case, when the said rotating shaft is divided into two, the reduction mechanism by a planetary gear mechanism may be interposed in the output side of the right and left rotating shaft, respectively.

本発明の電動車両用推進電動機は、前記回転機構部に、永久磁石を備えた回生発電機構が連係設置されてなるものであってもよい。   In the propulsion motor for an electric vehicle of the present invention, a regenerative power generation mechanism including a permanent magnet may be linked to the rotation mechanism unit.

その場合に、上記永久磁石を速度センサとして使用してもよく、またそのセンサを用いて無刷子直流モータを構成するようにしてもよい。   In that case, the permanent magnet may be used as a speed sensor, or a no-print DC motor may be configured using the sensor.

また、前記回転軸に、前記回転子と平行に、第2の回転子がさらに保持され、該第2の回転子の両側にそれぞれ第2の固定子が配設され、前記第2の回転子に永久磁石が取り付けられ、該永久磁石の両側表面にそれぞれ磁気的空間を隔てて対向する駆動用コイルが前記第2の固定子に配設されてなるように構成してもよい。   Further, a second rotor is further held on the rotating shaft in parallel with the rotor, and second stators are disposed on both sides of the second rotor, respectively, and the second rotor A permanent magnet may be attached to the second stator, and driving coils that are opposed to each other on both side surfaces of the permanent magnet with a magnetic space therebetween may be disposed on the second stator.

また、本発明の他の電動車両用推進電動機は、磁性コアに導線を巻回した複数の駆動用コイルが絶縁基部に同心円状に配設された駆動コイル列を有し、所定周波数の電源により駆動され、円形面に回転磁界を発生する固定子を有する磁気発生機構部と、
回転自在な軟磁性回転板の平面に、同心円状に配設された複数の凹部内周縁により磁性的に1巻コイル列が構成される良導体表層部が形成された回転子を有する回転機構部とを備え、
前記固定子の回転磁界が発生される平面と前記回転子の良導体表層部とが互いに磁気的空隙を隔てて対向配置され、前記固定子から発生する回転磁界を前記回転子に作用させて該回転子を回転駆動する電動車両用推進電動機であって、
前記回転子の回転中心に、筐体に回転自在に保持された回転軸を備え、
該回転軸に前記回転子が、前記筐体に前記固定子が保持され、前記回転子の良導体表層部に磁気的空隙を隔てて前記固定子の回転磁界生成面が対向配置された組合せを1セルとして、複数セルを軸方向に扁平状に重ね段組みしてなることを特徴とするものである。
Further, another propulsion motor for an electric vehicle according to the present invention has a drive coil array in which a plurality of drive coils each having a conducting wire wound around a magnetic core are concentrically arranged on an insulating base, and is supplied by a power source having a predetermined frequency. A magnetic generating mechanism having a stator that is driven and generates a rotating magnetic field on a circular surface;
A rotating mechanism portion having a rotor in which a good conductor surface layer portion in which a one-turn coil array is magnetically formed by a plurality of concentric inner circumferential edges of concavities is formed on a plane of a rotatable soft magnetic rotating plate; With
The plane on which the rotating magnetic field of the stator is generated and the good conductor surface layer of the rotor are opposed to each other with a magnetic gap therebetween, and the rotating magnetic field generated from the stator acts on the rotor to rotate the rotor. A propulsion motor for an electric vehicle that rotationally drives a child,
At the rotation center of the rotor, provided with a rotation shaft that is rotatably held in the housing,
1 is a combination in which the rotor is held on the rotating shaft, the stator is held on the casing, and a rotating magnetic field generating surface of the stator is arranged opposite to the good conductor surface layer of the rotor with a magnetic gap. As the cell, a plurality of cells are stacked in a flat shape in the axial direction and are characterized by being stacked.

上記セルのマルチ化に伴い、磁気発生機構部の駆動用コイルは、駆動電源の状況に応じて、すべて並列化接続、すべて直列接続、またはグループに分けて直並列の組合せなどが行われる。   As the number of cells increases, the driving coils of the magnetism generating mechanism section are all connected in parallel, connected in series, or in series-parallel combination in groups depending on the driving power supply.

本発明の電動車両用推進電動機によれば、駆動コイル列を備え回転磁界を発生する固定子を有する磁気発生機構部と、軟磁性回転板の平面に磁性的に1巻コイル列が構成される良導体表層部を有する回転子を備えた回転機構部とが、磁気的空隙を隔てて対向配置され、前記回転磁界を作用させて回転子を回転駆動するについて、回転軸に固着された少なくとも1つの回転子は両面に1巻コイル列が構成される良導体表層部を備え、該回転子の両側にはそれぞれ前記固定子が配設され、各良導体表層部に磁気的空隙を隔ててそれぞれ固定子の回転磁界生成面が対向配置されてなることにより、両面に良導体表層部を有する1つの回転子には、両側の固定子からの回転磁界の作用による回転力の和が駆動力として作用し、この回転子と固定子との組合せを扁平状に重ね段組みすることにより、発生駆動力を増大することができ、各種電動車両に適した駆動能力の推進電動機をコンパクトに構成することができるとともに、磁気発生機構部および回転機構部には磁石を不要として高温環境下での駆動性能を維持することができる。   According to the propulsion motor for an electric vehicle of the present invention, a one-turn coil array is magnetically formed on the plane of the soft magnetic rotating plate, and a magnetism generating mechanism having a stator that has a drive coil array and generates a rotating magnetic field. A rotating mechanism having a rotor having a good conductor surface layer, and arranged opposite to each other with a magnetic air gap between the rotating mechanism and rotating the rotor by applying the rotating magnetic field. The rotor is provided with a good conductor surface layer portion on which both sides of a one-winding coil array are formed, and the stator is disposed on both sides of the rotor, and a magnetic gap is provided between each good conductor surface layer portion. Since the rotating magnetic field generating surfaces are arranged to face each other, the sum of the rotational forces due to the action of the rotating magnetic fields from the stators on both sides acts as a driving force on one rotor having the good conductor surface layer portions on both sides. Between rotor and stator By combining the stacks in a flat shape, the generated driving force can be increased, and a propulsion motor having a driving ability suitable for various electric vehicles can be configured in a compact manner. The part does not require a magnet and can maintain the driving performance in a high temperature environment.

また、回転子の両側に固定子が配置されていることで、回転磁界の作用によって両側の固定子からの軸方向吸引力のバランスが取れて、回転子の偏位が抑制されるために回転が安定し、特に高速回転における振動の発生を防止することができる。   In addition, since the stator is arranged on both sides of the rotor, the rotating magnetic field acts to balance the axial attractive force from the stators on both sides, thereby preventing the rotor from shifting. Is stable, and it is possible to prevent the occurrence of vibration especially at high speed rotation.

また、前記良導体表層部が両面に配設され回転子における片面の1巻コイル列の配置に対し、反対面の1巻コイル列の配置を、その位相が角度方向にずれて設置すると、回転子の1回転中の駆動力変動が両側で平均化され、脈動の少ない駆動力を軸に伝える。一方、両面の1巻コイル列の配置を同位相とした場合には、両側の固定子からの軸方向吸引力のバランスがさらに取れて、回転子の偏位がより一層抑制されるために回転が安定し、騒音の発生をさらに低減することができる。   Further, when the good conductor surface layer portion is arranged on both sides and the arrangement of the one-turn coil array on the opposite surface of the rotor is arranged with the phase shifted in the angular direction, the rotor The driving force fluctuation during one rotation is averaged on both sides, and a driving force with less pulsation is transmitted to the shaft. On the other hand, when the arrangement of the single-turn coil arrays on both sides is the same phase, the axial attracting force from the stators on both sides is further balanced, and the rotation of the rotor is further suppressed. Is stable, and noise generation can be further reduced.

また、前記良導体表層部が両面に配設された前記軟磁性回転板を、2枚の軟磁性回転板の板材が互いに絶縁材層を介して貼り合わせて構成すると、両側の固定子から作用する回転磁界がそれぞれの側の板材に作用し、1枚の板材に両側の回転磁界が作用して互いに干渉して分散するのを防止でき、駆動効率を向上することができる。   Further, when the soft magnetic rotating plate having the good conductor surface layer portions disposed on both sides is constituted by bonding the plate materials of the two soft magnetic rotating plates to each other via an insulating material layer, it acts from the stators on both sides. It is possible to prevent the rotating magnetic field from acting on the plate members on each side and the rotating magnetic fields on both sides to act on one plate member to interfere with each other and disperse, thereby improving the driving efficiency.

また、前記軟磁性回転板を軟磁性材料による巻鉄芯で構成すると、閉磁路材には渦電流が生成されにくい構造となる。   In addition, when the soft magnetic rotating plate is formed of a wound iron core made of a soft magnetic material, the closed magnetic circuit material has a structure in which eddy current is hardly generated.

また、前記軟磁性回転板を軟磁性材料による平板で構成すると、渦電流が生成される構造となり、特に平板の板厚を選定することにより渦電流の大きさが調整できるものである。   Further, when the soft magnetic rotating plate is composed of a flat plate made of a soft magnetic material, an eddy current is generated. In particular, the size of the eddy current can be adjusted by selecting the thickness of the flat plate.

また、前記回転軸を中央部で左右の回転軸に2分割し、この左右の回転軸にそれぞれ回転子を少なくとも1つずつ互いに平行に固着し、各回転子の両側にそれぞれ固定子を設置するように構成すると、左右の回転軸を独立して駆動することができるとともに、両回転軸の回転周差を回転磁界に対する滑りによって許容することができる。   Further, the rotating shaft is divided into two left and right rotating shafts at the center, and at least one rotor is fixed to each of the left and right rotating shafts in parallel with each other, and a stator is installed on each side of each rotor. If comprised in this way, while the left and right rotating shafts can be driven independently, the rotation circumference difference of both rotating shafts can be permitted by the slip with respect to a rotating magnetic field.

その際、前記左右の回転軸の出力側に、遊星歯車機構による減速機構をそれぞれ介装すると、上記両回転軸の回転周差の許容を確保するとともに、減速による駆動力の増大を図ることができる。   At this time, if a reduction gear mechanism using a planetary gear mechanism is interposed on the output side of the left and right rotation shafts, it is possible to ensure the allowance of the rotation circumferential difference between the two rotation shafts and increase the driving force due to the deceleration. it can.

また、前記回転機構部に、永久磁石を備えた回生発電機構を連係設置すると、減速走行時のエネルギ回生による走行距離の増大を図ることができる。その際は、回生発電機構の永久磁石の耐熱性に応じた許容温度環境となる。   Further, if a regenerative power generation mechanism having a permanent magnet is linked to the rotation mechanism, the travel distance can be increased by energy regeneration during deceleration travel. In that case, it becomes an allowable temperature environment according to the heat resistance of the permanent magnet of the regenerative power generation mechanism.

また、前述の駆動コイル列を備え回転磁界を発生する固定子と、軟磁性回転板の平面に磁性的に1巻コイル列が構成される良導体表層部を有する回転子とによる誘導電動機構に加えて、その回転軸に上記回転子と平行に保持され、永久磁石が取り付けられた第2の回転子と、該第2の回転子の両側に配設され、それぞれ駆動用コイルを有する第2の固定子とによる同期電動機構を備えて構成すると、発生トルク特性が異なる2種類の電動機構による駆動特性を得ることができる。例えば永久磁石(主に希土類磁石)回転子による低速高トルク特性と常温誘導電磁石回転子による高速低トルク特性等を運転状態の変動に適応した駆動特性の電動車両用の推進電動機を実現することができる。   Further, in addition to the induction motor mechanism including the above-described stator having a drive coil array and generating a rotating magnetic field, and the rotor having a good conductor surface layer portion in which a one-turn coil array is magnetically formed on the plane of the soft magnetic rotating plate And a second rotor that is held in parallel with the rotor on the rotating shaft and has a permanent magnet attached thereto, and a second rotor that is disposed on both sides of the second rotor and has a driving coil. If it comprises and comprises the synchronous electric mechanism by a stator, the drive characteristic by two types of electric mechanisms from which a generated torque characteristic differs can be acquired. For example, it is possible to realize a propulsion motor for an electric vehicle having driving characteristics adapted to fluctuations in driving conditions such as a low speed high torque characteristic by a permanent magnet (mainly rare earth magnet) rotor and a high speed low torque characteristic by a room temperature induction electromagnet rotor. it can.

本発明の第1の実施形態に係る電動自動車用の推進電動機の縦断面図である。1 is a longitudinal sectional view of a propulsion motor for an electric vehicle according to a first embodiment of the present invention. 図1の固定子の平面図である。It is a top view of the stator of FIG. 図1の回転子の平面図である。It is a top view of the rotor of FIG. 図1の回転子の変形例を示す平面図である。It is a top view which shows the modification of the rotor of FIG. 図1の回転子の他の変形例を示す一部端面図である。FIG. 10 is a partial end view showing another modification of the rotor of FIG. 1. 本発明の第2の実施形態に係る電動3輪自転車用の推進電動機の縦断面図である。It is a longitudinal cross-sectional view of the propulsion motor for the electric three-wheel bicycle which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る電動アシスト自転車用の推進電動機の縦断面図である。It is a longitudinal cross-sectional view of the propulsion motor for the electrically assisted bicycle according to the third embodiment of the present invention. 本発明の第4の実施形態に係る電動自動車用の推進電動機の縦断面図である。It is a longitudinal cross-sectional view of the propulsion motor for electric vehicles which concerns on the 4th Embodiment of this invention. 図8の実施形態に係る推進電動機の駆動制御例を示す図である。It is a figure which shows the drive control example of the propulsion motor which concerns on embodiment of FIG.

以下、本発明にかかる電動車両用推進電動機の第1の実施形態について図面を参照して詳細に説明する。図1は電動自動車用の推進電動機の縦断面図、図2は図1の固定子の平面図、図3は図1の回転子の平面図、図4は該回転子の変形例を示す平面図、図5は該回転子の他の変形例を示す一部端面図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, a first embodiment of a propulsion motor for an electric vehicle according to the present invention will be described in detail with reference to the drawings. 1 is a longitudinal sectional view of a propulsion motor for an electric vehicle, FIG. 2 is a plan view of the stator of FIG. 1, FIG. 3 is a plan view of the rotor of FIG. 1, and FIG. 4 is a plan view showing a modification of the rotor. FIG. 5 is a partial end view showing another modified example of the rotor.

本実施形態の電動車両用推進電動機1は、固定子21を有する磁気発生機構部2と、回転子31を備えた回転機構部3と、筐体4に回転自在に保持された左右の回転軸5,6と、減速機構7とを備え、1組の磁気発生機構部2と回転機構部3をセルとして、パラレル状に多重扁平構造に組み立てて構成されている。図1では上方端、下方端にある回転子は中央部分にある双回転子構成に対して単回転子構成(非貼り合せ回転子)になっている。   The propulsion motor 1 for an electric vehicle according to the present embodiment includes a magnetism generating mechanism section 2 having a stator 21, a rotating mechanism section 3 having a rotor 31, and left and right rotating shafts rotatably held by a housing 4. 5 and 6 and a speed reduction mechanism 7, and a set of magnetism generating mechanism portion 2 and rotating mechanism portion 3 are used as cells to assemble in a multi-flat structure in parallel. In FIG. 1, the rotors at the upper end and the lower end have a single rotor configuration (non-bonded rotor) with respect to the twin rotor configuration at the center.

全体構造としては、筐体4の内部に、3列の固定子21のそれぞれ両側に4枚の回転子31が配置されて磁気発生機構部2と回転機構部3が設置され、前記回転子31が2枚ずつ固着された左右の回転軸5,6を独立して回転駆動するものであり、この左右の回転軸5,6には、遊星歯車機構による減速機構7,7がそれぞれ設置されて、減速された駆動力が出力軸部76,76から不図示の電動車両の駆動輪に出力される。   As an overall structure, four rotors 31 are arranged on each side of the three rows of stators 21 inside the housing 4, and the magnetism generating mechanism unit 2 and the rotating mechanism unit 3 are installed. The left and right rotating shafts 5 and 6 to which two are fixed are rotated independently. The left and right rotating shafts 5 and 6 are respectively provided with speed reduction mechanisms 7 and 7 by planetary gear mechanisms. The decelerated driving force is output from the output shaft portions 76 and 76 to driving wheels of an electric vehicle (not shown).

次に各機構部を具体的に説明する。まず、磁気発生機構部2は、円盤状の固定子21で構成されるもので、磁性コア22(巻鉄芯コア)に導線23(巻線)を巻回した駆動用コイル24が、図2に示すような円盤状の絶縁基部25に同心円状に複数個(例えば8個)が埋設されて、磁性コア22の両端面がそれぞれ絶縁基部25の平面(側面)と一致するように設置されている。この同心円状に均等配置された8個の駆動用コイル24によって回転磁界を生成する駆動コイル列R1が構成されてなる。上記磁性コア22は両鍔ボビン状に形成され、上記絶縁基部25は絶縁性樹脂(尚、樹脂は特に熱伝導性があるとよい)によって形成される。   Next, each mechanism part is demonstrated concretely. First, the magnetism generating mechanism section 2 is composed of a disk-shaped stator 21, and a driving coil 24 in which a conducting wire 23 (winding) is wound around a magnetic core 22 (winding iron core) is shown in FIG. A plurality of (e.g., eight) concentric circles are embedded in a disk-shaped insulating base 25 as shown in FIG. 5 and both end surfaces of the magnetic core 22 are installed so as to coincide with the plane (side surface) of the insulating base 25. Yes. A drive coil array R1 that generates a rotating magnetic field is configured by the eight drive coils 24 that are equally arranged concentrically. The magnetic core 22 is formed in a double bobbin shape, and the insulating base 25 is formed of an insulating resin (note that the resin is particularly preferably thermally conductive).

上記駆動用コイル24による駆動コイル列R1には、不図示の電源より所定周波数の電流が通電されて回転磁界を発生する。この電源からの通電回路は、図示しないが、駆動用コイル24を1つおきに使用して、その発生する磁束の向きが交互に逆となるように直列接続し、一方を電源のsin側に、他方をcos側に夫々接続し、駆動コイル列R1を2相駆動して、円盤面に回転磁界を発生するように通電される。   A current having a predetermined frequency is supplied from a power source (not shown) to the drive coil row R1 formed by the drive coil 24 to generate a rotating magnetic field. Although not shown, the energization circuit from this power source is connected in series so that the direction of the generated magnetic flux is alternately reversed by using every other drive coil 24, and one is connected to the sin side of the power source. The other is connected to the cos side, the drive coil array R1 is driven in two phases, and energized so as to generate a rotating magnetic field on the disk surface.

上記回転機構部3は、円盤状の回転子31で構成されるもので、例えば鉄や鉄とアルミニウム等で形成された回転自在な軟磁性回転板32の両面に、例えば銅等で形成された1巻コイル列R2が構成される良導体表層部33を有してなる。この良導体表層部33には、図3に示すように、同心円状に均等配設された複数(前記駆動用コイル24と同数の8個)の凹部34が形成され、複数の凹部34の内周縁により磁性的に軟磁性回転板32をコアとした1巻コイル列R2が構成される。   The rotation mechanism unit 3 is composed of a disk-shaped rotor 31, and is formed of, for example, copper or the like on both surfaces of a rotatable soft magnetic rotating plate 32 formed of, for example, iron or iron and aluminum. It has a good conductor surface layer portion 33 in which the one-turn coil row R2 is formed. As shown in FIG. 3, the good conductor surface layer portion 33 is formed with a plurality of concentric and evenly arranged recesses 34 (equivalent to the number of the drive coils 24), and the inner peripheral edges of the plurality of recesses 34. Thus, a one-turn coil array R2 having the soft magnetic rotating plate 32 as a core is magnetically configured.

前記固定子21の回転磁界が発生される平面と前記回転子31の良導体表層部33とが互いに磁気的空隙を隔てて対向配置され、固定子21から発生する回転磁界を回転子31に作用させて回転子31を回転駆動する。   The plane on which the rotating magnetic field of the stator 21 is generated and the good conductor surface layer portion 33 of the rotor 31 are opposed to each other with a magnetic gap therebetween, and the rotating magnetic field generated from the stator 21 is applied to the rotor 31. The rotor 31 is rotated.

なお、本実施形態においては、上記軟磁性回転板32は、図3に示すように、細帯状の軟磁性材料がコイル状に巻き付けられた巻鉄芯(カットコア)によって構成されている。この巻鉄芯による軟磁性回転板32においては、前記固定子21による回転磁界が作用した際に閉磁路を構成して渦電流が生成しにくい構造である。   In the present embodiment, as shown in FIG. 3, the soft magnetic rotating plate 32 is constituted by a wound iron core (cut core) in which a thin band-shaped soft magnetic material is wound in a coil shape. The soft magnetic rotating plate 32 using the wound iron core has a structure in which an eddy current is hardly generated by forming a closed magnetic circuit when a rotating magnetic field by the stator 21 acts.

また、上記軟磁性回転板32は、図4に示すように、軟磁性材料による平板で構成することもできる。この場合には、該平板内に渦電流が生成される構造であり、特に平板の板厚を選定することにより渦電流の大きさが調整できる。所定の厚みは例えば2.0mmである。   Further, as shown in FIG. 4, the soft magnetic rotating plate 32 may be formed of a flat plate made of a soft magnetic material. In this case, an eddy current is generated in the flat plate, and the size of the eddy current can be adjusted by selecting the thickness of the flat plate. The predetermined thickness is, for example, 2.0 mm.

前記回転子31の回転中心に、筐体4に回転自在に保持された左右の回転軸5,6を備え、各回転軸5,6にそれぞれ2枚の回転子31が固着されている。各回転軸5,6における内部側の回転子31は両面に良導体表層部33を備え、両側に固定子21が設置されるのに応じ、両側の回転磁界を受けて2ヶ所の回転トルクで回転駆動される。一方、各回転軸5,6における端部側の回転子31は片面に良導体表層部33を備え、片側に固定子21が設置されているのに応じ、片側の回転磁界を受けて上記の1ヶ所の回転トルクで駆動される。   The rotation center of the rotor 31 is provided with left and right rotation shafts 5 and 6 that are rotatably held by the housing 4, and two rotors 31 are fixed to the respective rotation shafts 5 and 6. The rotor 31 on the inner side of each rotary shaft 5, 6 is provided with a good conductor surface layer portion 33 on both sides, and rotates at two rotational torques in response to the rotating magnetic field on both sides as the stator 21 is installed on both sides. Driven. On the other hand, the rotor 31 on the end side of each of the rotary shafts 5 and 6 is provided with a good conductor surface layer portion 33 on one side, and receives the rotating magnetic field on one side in response to the stator 21 being installed on one side. Driven with rotational torque at several locations.

そして、上記軟磁性回転板32の両面に良導体表層部33を備えた回転子31においては、図3に示すように、実線で示す片面の良導体表層部33の凹部34による片面の1巻コイル列R2の配置に対し、破線で示す反対面の良導体表層部33の凹部34による他面の1巻コイル列R2の配置は、位相が角度方向にずれて設置されている。図示の場合には、半ピッチ分の位相が互いにずれている。   In the rotor 31 provided with the good conductor surface layer portion 33 on both surfaces of the soft magnetic rotating plate 32, as shown in FIG. 3, the single-sided coil array by the concave portion 34 of the one surface good conductor surface layer portion 33 shown by a solid line. With respect to the arrangement of R2, the arrangement of the one-turn coil row R2 on the other surface by the concave portion 34 of the good conductor surface layer portion 33 on the opposite surface shown by the broken line is arranged with the phase shifted in the angular direction. In the case shown in the figure, the phases corresponding to the half pitch are shifted from each other.

これにより、回転子31が1回転する間の駆動力変動が両側で平均化され、脈動の少ない駆動が行える。   As a result, the driving force fluctuation during one rotation of the rotor 31 is averaged on both sides, and driving with less pulsation can be performed.

上記左右の回転軸5,6は、筐体4の中心軸の部分に、左右に保持されている。左右回転軸5,6は、前記固定子21の絶縁基部25の中心部に設置された固定部分としてのボス部41の中心部に、ベアリングによって回転可能に支持されている。また、左右回転軸5,6の対向端部間には、両軸回転差を許容するスラストベアリング、ボール接合などが介装されている。   The left and right rotating shafts 5 and 6 are held on the left and right at the central axis portion of the housing 4. The left and right rotation shafts 5 and 6 are rotatably supported by bearings at the center portion of the boss portion 41 as a fixed portion installed at the center portion of the insulating base portion 25 of the stator 21. Further, a thrust bearing, a ball joint, or the like that allows a rotational difference between the two shafts is interposed between the opposed end portions of the left and right rotating shafts 5 and 6.

上記ボス部41は、前記固定子21を介して筐体4と一体に固定部分を構成するものである。つまり、3列の前記固定子21は絶縁基部25の外周部分が、筐体4の外ケーシング部42の内面に固着されて固定状態に保持され、上記ボス部41が該絶縁基部25の内周部に固着されて筐体4の一部を構成している。   The boss 41 constitutes a fixed part integrally with the housing 4 via the stator 21. That is, the three rows of stators 21 have the outer peripheral portion of the insulating base 25 fixed to the inner surface of the outer casing portion 42 of the housing 4 and held in a fixed state, and the boss portion 41 has the inner periphery of the insulating base 25. A part of the housing 4 is formed by being fixed to the part.

上記筐体4は、その他、後述の両側の減速機構7,7を覆う、内カバー部43および外カバー部44を備えてなる。   In addition, the casing 4 includes an inner cover portion 43 and an outer cover portion 44 that cover reduction mechanisms 7 and 7 on both sides described later.

また、上記のように、固定子21の回転トルクを受ける回転軸が中央部で左右の回転軸5,6に分離してそれぞれ独立して回転可能に構成され、この左右の回転軸5,6にそれぞれ回転子31を少なくとも1つずつ互いに平行に固着し、各回転子31の両側にそれぞれ固定子21を設置するように構成したことで、左右の回転軸5,6を独立して駆動することができるとともに、両回転軸5,6の回転周差を回転磁界に対する滑りによって許容する構造となっている。これにより、電動車両の内輪差等を吸収できる。なお、電動車両の内輪差は左右以外に前後もある。   Further, as described above, the rotating shaft that receives the rotational torque of the stator 21 is separated into the left and right rotating shafts 5 and 6 at the central portion, and can be rotated independently of each other. At least one rotor 31 is fixed in parallel to each other, and the stator 21 is installed on both sides of each rotor 31 so that the left and right rotating shafts 5 and 6 are driven independently. In addition, the rotation circumferential difference between the rotary shafts 5 and 6 is allowed by sliding against the rotating magnetic field. Thereby, the inner ring | wheel difference etc. of an electric vehicle can be absorbed. The difference between the inner wheels of the electric vehicle is not only left and right but also front and back.

次に、上記減速機構7は、前記左右の回転軸5,6の出力側に、遊星歯車機構によって構成されている。左右の回転軸5,6には、その外側端部に両端部の回転子31に隣接して駆動ギヤ71が一体に回転するように設置され、この駆動ギヤ71は遊星減速機構のサンギヤとなるものであり、該駆動ギヤ71の外周に複数の遊星ギヤ72が配設されて噛合され、さらに外周のアウターギヤ73に遊星ギヤ72が噛合されて、遊星減速機構が構成されている。そして、上記遊星ギヤ72は、筐体4の内カバー部43に固着されたキャリア軸74に保持され、各遊星ギヤ72の回転中心が固定されている。   Next, the speed reduction mechanism 7 is constituted by a planetary gear mechanism on the output side of the left and right rotating shafts 5 and 6. The left and right rotary shafts 5 and 6 are installed at their outer ends so as to rotate integrally with the drive gear 71 adjacent to the rotors 31 at both ends, and this drive gear 71 becomes the sun gear of the planetary reduction mechanism. A plurality of planetary gears 72 are disposed on the outer periphery of the drive gear 71 and meshed with each other, and the planetary gear 72 is meshed with an outer outer gear 73 to constitute a planetary reduction mechanism. The planetary gear 72 is held by a carrier shaft 74 fixed to the inner cover portion 43 of the housing 4, and the rotation center of each planetary gear 72 is fixed.

上記アウターギヤ73が形成された円盤部材75の中心部分の出力軸部76は、上記左右の回転軸5,6の端部外周にベアリングを介して回転自在に保持され、この出力軸部76が電動車両(自動車)の駆動輪に対し駆動力を出力するもので、不図示の伝達機構を介して推進力を伝達する。   The output shaft portion 76 at the center portion of the disk member 75 in which the outer gear 73 is formed is rotatably held on the outer periphery of the end portions of the left and right rotating shafts 5 and 6 via bearings. A driving force is output to driving wheels of an electric vehicle (automobile), and propulsive force is transmitted via a transmission mechanism (not shown).

上記のように構成された推進電動機1は、誘導電動機として駆動力を発生するものであり、固定子21が造る強い閉磁気回路内の磁気空隙に動く回転子31を配した構成である。その動作原理を簡単に説明すれば、固定子21から発生した回転磁界(磁束)が所定周波数で発生移動することにより、それに伴って良導体表層部33の凹部34の内周縁における1巻コイル列R2に誘起電圧が発生し、電流が流れる。そして、固定子21から発生した磁束と、1巻コイル列R2に流れる電流の相互作用で回転トルクが発生し、回転子31が回転運動するものである。   The propulsion motor 1 configured as described above generates a driving force as an induction motor, and has a configuration in which a rotor 31 that moves in a magnetic gap in a strong closed magnetic circuit formed by the stator 21 is disposed. The operation principle will be briefly described. A rotating magnetic field (magnetic flux) generated from the stator 21 is generated and moved at a predetermined frequency, and accordingly, the one-turn coil array R2 at the inner peripheral edge of the concave portion 34 of the good conductor surface layer portion 33. An induced voltage is generated in the current and a current flows. A rotational torque is generated by the interaction between the magnetic flux generated from the stator 21 and the current flowing through the one-turn coil group R2, and the rotor 31 rotates.

左右の回転軸5,6における軸トルクは、各回転子31の発生トルクの和で決まり、固定子21と回転子31との対向組数にほぼ比例する。   The axial torque at the left and right rotating shafts 5 and 6 is determined by the sum of the torques generated by the rotors 31 and is substantially proportional to the number of opposing pairs of the stator 21 and the rotor 31.

上記第1の実施形態においては、全部で6組の磁気的空隙を隔てた回転子31の良導体表層部33と、固定子21の回転磁界生成面との対向配置が構成され、左右の回転軸5,6にそれぞれ3組分の駆動トルクが作用する。さらに減速機構7が配置されていることにより駆動トルクが増大し、電動自動車において必要とされる駆動トルクが十分に得られる推進電動機1が実現できる。この構成の最大の利点は、スペースファクターに優れていることである。   In the first embodiment described above, the good conductor surface layer portion 33 of the rotor 31 and the rotating magnetic field generating surface of the stator 21 that are separated from each other by six sets of magnetic gaps are configured to face each other, and the left and right rotating shafts are arranged. Three sets of driving torques act on 5 and 6 respectively. In addition, the drive torque increases due to the arrangement of the speed reduction mechanism 7, and the propulsion motor 1 that can sufficiently obtain the drive torque required for the electric automobile can be realized. The greatest advantage of this configuration is its excellent space factor.

さらに、大きな駆動トルクが必要とされる場合には、磁気発生機構部2と回転機構部3との組合せを軸方向にパラレルに付加すればよいものである。また、磁気発生機構部2の固定子21に配設する駆動用コイル24の設置数も上記の8個に限らず、その外径、要求トルク等に応じて設置数が適宜変更可能である。その際、駆動用コイル24を二重の同心円状に配置するように構成してもよい。その具体的構成は、本願発明者による特開2001−69734号公報の記載内容を参照されたい。   Further, when a large driving torque is required, a combination of the magnetic generation mechanism unit 2 and the rotation mechanism unit 3 may be added in parallel in the axial direction. Further, the number of drive coils 24 arranged on the stator 21 of the magnetism generating mechanism section 2 is not limited to the above eight, and the number of installation can be changed as appropriate according to the outer diameter, required torque, and the like. At this time, the drive coil 24 may be arranged in a double concentric circle shape. For the specific configuration, refer to the description in Japanese Patent Laid-Open No. 2001-69734 by the inventor of the present application.

次に、図5は、前記回転子31の変形例を示し、良導体表層部33,33が両面に配設された軟磁性回転板32は、2枚の板材32A,32Bが互いに絶縁材層32Cを介して貼り合わせられてなる。   Next, FIG. 5 shows a modified example of the rotor 31. In the soft magnetic rotating plate 32 having the good conductor surface layers 33 and 33 disposed on both sides, the two plates 32A and 32B are mutually insulated. It is pasted through.

上記図5の回転子31の構成によれば、両側の固定子21から作用する回転磁界がそれぞれ片側の板材32A,32Bに作用し、反対側板材32B,32Aには絶縁材層32Cで遮断されて渦電流は進入せず、両側の回転磁界が互いに干渉して分散するのをその磁気抵抗を大きくして防止でき、駆動効率を向上することができる。   According to the configuration of the rotor 31 in FIG. 5, the rotating magnetic field acting from the stators 21 on both sides acts on the plate materials 32A and 32B on one side, respectively, and the opposite plate materials 32B and 32A are blocked by the insulating material layer 32C. Thus, the eddy current does not enter, and the rotating magnetic fields on both sides can be prevented from interfering with each other by increasing the magnetic resistance, thereby improving the driving efficiency.

図6は、本発明の第2の実施形態にかかる電動車両用推進電動機11を示すものであって、特に電動3輪自転車に適合する推進電動機である。つまり、第1の実施形態の電動自動車に適合する推進電動機1よりも要求駆動力が低い場合の例である。   FIG. 6 shows a propulsion motor 11 for an electric vehicle according to a second embodiment of the present invention, which is a propulsion motor particularly suitable for an electric three-wheeled bicycle. That is, this is an example in which the required driving force is lower than that of the propulsion motor 1 that is suitable for the electric vehicle of the first embodiment.

本実施形態における磁気発生機構部2および回転機構部3は、多少図面上の形態が異なっている部分があるが、前述の第1の実施形態と同様の構成であり、同一機能部品には同一符号を付してその詳細な説明は省略する。左右の回転軸5,6も同様である。   The magnetism generating mechanism unit 2 and the rotating mechanism unit 3 in the present embodiment have parts that are slightly different in form on the drawing, but have the same configuration as that of the first embodiment described above, and the same functional parts are the same. Reference numerals are assigned and detailed description thereof is omitted. The same applies to the left and right rotating shafts 5 and 6.

本実施形態においては、左右の回転軸5,6にはそれぞれ1枚の回転子31が互いに平行に固着され、この回転子31は軟磁性回転板32の両面に良導体表層部33が形成されている。上記回転子31の両側にそれぞれ固定子21が合計3個配設され、中央の固定子21は2枚の回転子31の間に、外側の2つの固定子21は2枚の回転子31のそれぞれ外面に対向して設置されている。上記構造により、合計4組の磁気発生機構部2と回転機構部3とが組み合わせられている。   In the present embodiment, one rotor 31 is fixed to each of the left and right rotating shafts 5 and 6 in parallel with each other. The rotor 31 has a good conductor surface layer portion 33 formed on both surfaces of a soft magnetic rotating plate 32. Yes. A total of three stators 21 are arranged on both sides of the rotor 31, the central stator 21 is between the two rotors 31, and the outer two stators 21 are the two rotors 31. Each is installed facing the outer surface. With the above structure, a total of four sets of the magnetic generation mechanism unit 2 and the rotation mechanism unit 3 are combined.

また、筐体14は、上記左右の回転軸5,6をベアリングを介して保持するための両側のディスク部45と、外側のケーシング部46と、カバー部47とで構成されている。なお、両側のディスク部45は下記回生発電機構8A,8Bにおける磁路材の機能を持つ。   The housing 14 includes a disk portion 45 on both sides for holding the left and right rotating shafts 5 and 6 via bearings, an outer casing portion 46, and a cover portion 47. The disk portions 45 on both sides have the function of a magnetic path material in the following regenerative power generation mechanisms 8A and 8B.

なお、この図6の実施形態においては、固定子21および回転子31の外径が前述の図1の実施形態におけるものより、小さいサイズに形成され、複数の駆動用コイル24による駆動コイル列から発生される回転磁界の強度、それに伴う回転子31での1巻コイル列での発生電流値等が低い値となり、1組の磁気発生機構部2と回転機構部3による回転トルクは小さく設定されている。   In the embodiment of FIG. 6, the outer diameters of the stator 21 and the rotor 31 are smaller than those in the embodiment of FIG. The intensity of the generated rotating magnetic field and the accompanying generated current value in the one-turn coil array in the rotor 31 become a low value, and the rotational torque by the pair of magnetism generating mechanism section 2 and rotating mechanism section 3 is set small. ing.

また、本実施形態においては減速機構に代えて、回生発電機構8A,8Bが左右の回転軸5,6にそれぞれ異なる形式(円筒型、扁平型)のものが例示的に設置されている。実際は、左右の回転軸5,6に同じ形式の回生発電機構が設置され、同等の抵抗が作用するように設定される。   Further, in the present embodiment, instead of the speed reduction mechanism, regenerative power generation mechanisms 8A and 8B are exemplarily installed on the left and right rotating shafts 5 and 6 with different types (cylindrical type and flat type). Actually, a regenerative power generation mechanism of the same type is installed on the left and right rotating shafts 5 and 6 and set so that equivalent resistance acts.

そして、上記左右の回転軸5,6の回転トルクはその外端部より直接に電動車両(電動3輪自転車)の左右駆動輪に伝達機構を介して出力される。   The rotational torques of the left and right rotating shafts 5 and 6 are directly output from the outer ends to the left and right drive wheels of the electric vehicle (electric three-wheel bicycle) via a transmission mechanism.

図6で上側に示されている円筒型の第1の回生発電機構8Aについて説明する。この回生発電機構8Aにおける回転部材81のボス部が、回転軸5に固着されて一体に回転し、この回転部材81の外周部にリング状の永久磁石82が取り付けられ、該永久磁石82の外周に発電用コイル83が設置されている。この発電用コイル83は大リング状で、前記筐体14におけるカバー部47の外周内面に、磁性ヨーク材(図示せず)に覆われて設置されている。この磁性ヨーク材は対面する永久磁石の磁束を発電用コイル83に効率よく鎖交させるように構成されている。   A cylindrical first regenerative power generation mechanism 8A shown on the upper side in FIG. 6 will be described. The boss portion of the rotating member 81 in the regenerative power generation mechanism 8A is fixed to the rotating shaft 5 and integrally rotates. A ring-shaped permanent magnet 82 is attached to the outer peripheral portion of the rotating member 81. A power generation coil 83 is installed in the main body. The power generating coil 83 has a large ring shape, and is installed on the outer peripheral inner surface of the cover portion 47 in the casing 14 so as to be covered with a magnetic yoke material (not shown). This magnetic yoke material is configured to efficiently link the magnetic flux of the facing permanent magnet to the power generation coil 83.

図6で下側に示されている扁平型の第2の回生発電機構8Bについて説明する。この回生発電機構8Bにおけるディスク状の回転部材84のボス部が、回転軸6に固着されて一体に回転し、この回転部材84の平面に円盤状の永久磁石85が取り付けられ、該永久磁石85の対向面に発電用コイル86が設置されている。この発電用コイル86は小リング状で、磁性ヨーク材(図示せず)に覆われて前記筐体14におけるディスク部45の平面に複数設置されている。   A flat-type second regenerative power generation mechanism 8B shown on the lower side in FIG. 6 will be described. The boss portion of the disk-shaped rotating member 84 in the regenerative power generation mechanism 8B is fixed to the rotating shaft 6 and rotates integrally. A disk-shaped permanent magnet 85 is attached to the plane of the rotating member 84, and the permanent magnet 85 A power generation coil 86 is installed on the opposite surface. The power generation coil 86 is in the form of a small ring, and is installed on the plane of the disk portion 45 in the casing 14 by being covered with a magnetic yoke material (not shown).

上記のような回生発電機構8A,8Bを備えた推進電動機11においては、電動車両の減速時等で車両側からの駆動力によって回転軸5,6が回転される場合に、永久磁石82,85の回転に伴って発電用コイル83,86から発生する電力を蓄電して駆動時に利用するものである。   In the propulsion motor 11 including the regenerative power generation mechanisms 8A and 8B as described above, when the rotary shafts 5 and 6 are rotated by the driving force from the vehicle side when the electric vehicle is decelerated, the permanent magnets 82 and 85 are provided. The electric power generated from the power generating coils 83 and 86 with the rotation is stored and used during driving.

なお、上記回生発電機構8A,8Bの永久磁石82,85と、前記固定子21,21の駆動コイル24,24との間には、円板状の軟磁性材料27,27が介装され、磁気発生機構部2の駆動コイル24が作る磁束の閉磁路材として機能している。   In addition, disk-shaped soft magnetic materials 27 and 27 are interposed between the permanent magnets 82 and 85 of the regenerative power generation mechanisms 8A and 8B and the drive coils 24 and 24 of the stators 21 and 21, It functions as a closed magnetic path material for magnetic flux generated by the drive coil 24 of the magnetism generating mechanism section 2.

次に、図7は、本発明の第3の実施形態にかかる電動車両用推進電動機111を示すものであって、特に電動アシスト自転車に適合する推進電動機である。   Next, FIG. 7 shows a propulsion motor 111 for an electric vehicle according to a third embodiment of the present invention, which is a propulsion motor particularly suitable for an electric assist bicycle.

本実施形態の推進電動機は、1本の回転軸5を備えて構成され、この回転軸5に1枚の回転子31が固着されて回転機構部3が構成され、この回転子31の両側に2つの固定子21が配置されて磁気発生機構部2が構成されている。上記回転子31は軟磁性回転板32の両面に良導体表層部33が形成されてなる。上記構造により、合計2組の磁気発生機構部2と回転機構部3とが組み合わせられている。   The propulsion motor according to the present embodiment includes a single rotating shaft 5, and a rotating mechanism unit 3 is configured by fixing a single rotor 31 to the rotating shaft 5. Two stators 21 are arranged to constitute the magnetism generating mechanism section 2. The rotor 31 is formed by forming a good conductor surface layer portion 33 on both surfaces of a soft magnetic rotating plate 32. With the above structure, a total of two sets of the magnetic generation mechanism section 2 and the rotation mechanism section 3 are combined.

その他は、図6に示す第2の実施形態と同様に構成され、同一機能部品には同一符号を付してその詳細な説明は省略する。   The rest of the configuration is the same as that of the second embodiment shown in FIG. 6, and the same reference numerals are given to the same functional parts, and the detailed description thereof is omitted.

また、筐体114は、上記回転軸5をベアリングを介して保持するための両側のディスク部45と、外側のケーシング部46と、カバー部47とで構成されている。   The casing 114 includes a disk part 45 on both sides for holding the rotating shaft 5 via a bearing, an outer casing part 46, and a cover part 47.

なお、この図7の実施形態においては、固定子21および回転子31の外径が前述の図6の実施形態におけるものと同等のサイズに形成され、1組の磁気発生機構部2と回転機構部3で構成されることより、図6の実施形態のほぼ半分の回転トルクが得られる。   In the embodiment shown in FIG. 7, the outer diameters of the stator 21 and the rotor 31 are formed to the same size as that in the embodiment shown in FIG. By comprising the part 3, approximately half the rotational torque of the embodiment of FIG. 6 can be obtained.

そして、上記回転軸5の回転トルクは、その一端もしくは両端より直接に電動車両(電動アシスト自転車)の駆動輪に伝達機構を介して出力される。また、図6と同様の回生発電機構8A,8Bを備えている。   And the rotational torque of the said rotating shaft 5 is directly output to the driving wheel of an electric vehicle (electrically assisted bicycle) from the one end or both ends via a transmission mechanism. Further, regenerative power generation mechanisms 8A and 8B similar to those in FIG. 6 are provided.

なお、本実施形態においては1軸の出力軸であることより、実際には回生発電機構8A,8Bはいずれか一方の形式が1つ設置される。また、図示していないが磁路構成上必要とするヨーク材は図6と同じである。   In the present embodiment, since one output shaft is used, one of the regenerative power generation mechanisms 8A and 8B is actually installed. Although not shown, the yoke material required for the magnetic path configuration is the same as that shown in FIG.

次に、図8および図9は、本発明の第4の実施形態にかかる電動車両用推進電動機211を示すものであって、特に高トルク運転、高速回転が要求される電動自動車に適合する推進電動機の例である。   Next, FIGS. 8 and 9 show a propulsion motor 211 for an electric vehicle according to a fourth embodiment of the present invention, which is particularly suitable for an electric vehicle requiring high torque operation and high speed rotation. It is an example of an electric motor.

本実施形態においては、1軸の出力軸5であり、前述の磁気発生機構部2および回転機構部3によって構成される誘導電動機構を、図8において上下に備え、中間部分には第2の磁気発生機構部12および第2の回転機構部13によって構成される同期電動機構を備えた推進電動機211に構成されている。尚ここで言う同期電動機構とは永久磁石型無刷子電動機構を主に指す。   In the present embodiment, the induction motor 5 which is a single output shaft 5 and is constituted by the above-described magnetism generating mechanism 2 and rotating mechanism 3 is provided up and down in FIG. The propulsion motor 211 is provided with a synchronous electric mechanism constituted by the magnetism generating mechanism section 12 and the second rotating mechanism section 13. The synchronous electric mechanism mentioned here mainly refers to a permanent magnet type brushless electric mechanism.

本実施形態の誘導電動機構における磁気発生機構部2および回転機構部3は、多少図面上の形態が異なっている部分があるが、前述の第1の実施形態と同様の構成であり、同一機能部品には同一符号を付してその詳細な説明は省略する。   The magnetism generating mechanism unit 2 and the rotating mechanism unit 3 in the induction electric mechanism of the present embodiment have a slightly different form on the drawing, but have the same configuration and the same function as those of the first embodiment described above. Parts are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態においては、1軸の回転軸5には1枚の回転子31が互いに平行に固着され、この回転子31は軟磁性回転板32の両面に良導体表層部33が形成されている。上記回転子31の両側に対向してそれぞれ固定子21が合計4個配設されている。上記構造により、合計4セルの磁気発生機構部2と回転機構部3とが組み合わせられている。尚、図5の回転子構成もある。   In the present embodiment, a single rotor 31 is fixed in parallel to the uniaxial rotating shaft 5, and the rotor 31 has a good conductor surface layer portion 33 formed on both surfaces of a soft magnetic rotating plate 32. A total of four stators 21 are arranged opposite to both sides of the rotor 31. With the above structure, the magnetic generation mechanism unit 2 and the rotation mechanism unit 3 having a total of four cells are combined. There is also a rotor configuration shown in FIG.

また、中間部の同期電動機構における第2の回転機構部13は、2枚の円板131の両側にそれぞれ永久磁石132が支持体133によって保持された第2の回転子231を備える。一方、第2の磁気発生機構部12は、コア122に巻線123が巻回されてなる駆動用コイル124が固定部材125に、その磁界生成面が上記永久磁石132の表面に磁気的空間を隔てて位置するように保持された第2の固定子221を備えてなる。   The second rotating mechanism 13 in the intermediate synchronous electric mechanism includes a second rotor 231 in which permanent magnets 132 are held by a support 133 on both sides of the two disks 131, respectively. On the other hand, in the second magnetism generating mechanism section 12, the driving coil 124, in which the winding 123 is wound around the core 122, has a magnetic space on the surface of the permanent magnet 132, and the magnetic field generation surface of the driving coil 124 has a space. A second stator 221 is provided so as to be positioned at a distance.

上記誘導電動機構の2つの回転子31および中間の同期電動機構の1つの第2の回転子231が1つの回転軸5に固着され、4組の固定子21により発生される誘導電動機構と遊星歯車減速機構を経た駆動トルクと、2組の第2の固定子221により発生される同期電動機構と遊星歯車減速機構を経た駆動トルクとがこの回転軸5を介して出力される。   Two rotors 31 of the induction motor mechanism and one second rotor 231 of the intermediate synchronous motor mechanism are fixed to one rotating shaft 5, and the induction motor mechanism and planets generated by the four sets of stators 21. The driving torque that has passed through the gear reduction mechanism, the synchronous electric mechanism generated by the two sets of second stators 221 and the driving torque that has passed through the planetary gear reduction mechanism are output via this rotating shaft 5.

回転軸5の外周には、各固定子21,221が固着されて回転軸5と一体に回転するスリーブ251が装着され、このスリーブ251の外周が筐体214の回転中心に設置された枢支部241に、ベアリングを介して保持されている。   A sleeve 251 is attached to the outer periphery of the rotating shaft 5 so that the stators 21 and 221 are fixed to rotate integrally with the rotating shaft 5, and the outer periphery of the sleeve 251 is installed at the rotation center of the casing 214. 241 is held via a bearing.

また、本実施形態においては、回転軸5の出力側には、第1の実施形態と同様に構成された、駆動ギヤ71(サンギヤ)、複数の遊星ギヤ72、アウターギヤ73、キャリア軸74、円盤部材75による減速機構7(遊星歯車機構)が設置されている。遊星ギヤ72を保持するキャリア軸74は、筐体214の外ケーシング部242の内側に固着された内カバー部243に固定されている。   Further, in the present embodiment, on the output side of the rotating shaft 5, a drive gear 71 (sun gear), a plurality of planetary gears 72, an outer gear 73, a carrier shaft 74, which are configured in the same manner as in the first embodiment. A speed reduction mechanism 7 (planetary gear mechanism) using a disk member 75 is installed. The carrier shaft 74 that holds the planetary gear 72 is fixed to an inner cover portion 243 that is fixed inside the outer casing portion 242 of the casing 214.

前記回転軸5の端部外周にベアリングを介して円盤部材75の中心部分の出力軸部76が回転自在に保持され、この出力軸部76が電動車両(自動車)の駆動輪に対し駆動力を出力するもので、不図示の伝達機構を介して推進力を伝達する。   An output shaft 76 at the center of the disk member 75 is rotatably supported on the outer periphery of the end of the rotating shaft 5 via a bearing, and this output shaft 76 provides driving force to driving wheels of an electric vehicle (automobile). This is an output, and the propulsive force is transmitted through a transmission mechanism (not shown).

図9は本実施形態に係る推進電動機211の出力特性を示すものであり、直線Aおよび破線A′が4セルの固定子21によって回転子31に作用する誘導電動機構による出力特性であり、高回転域においてもトルクを発生する。一方、直線Bおよび破線B′が2セルの第2の固定子221によって回転子231に作用する同期電動機構による出力特性であり、低回転領域において高トルクを発生する。   FIG. 9 shows the output characteristics of the propulsion motor 211 according to the present embodiment. The straight line A and the broken line A ′ are the output characteristics of the induction motor that acts on the rotor 31 by the stator 21 of four cells. Torque is also generated in the rotation range. On the other hand, a straight line B and a broken line B ′ are output characteristics by the synchronous electric mechanism that acts on the rotor 231 by the second stator 221 of two cells, and generates a high torque in a low rotation region.

上記特性に伴い、電動車両の走行状態に応じて、低速高負荷領域で同期電動機構の第2の固定子221に対して交流電流を印加し、高速低負荷領域で誘導電動機構の固定子21に対して交流電流を印加するように制御する。   In accordance with the above characteristics, an alternating current is applied to the second stator 221 of the synchronous electric mechanism in the low speed and high load region according to the traveling state of the electric vehicle, and the stator 21 of the induction electric mechanism in the high speed and low load region. Is controlled so that an alternating current is applied.

なお、電源装置については、詳細は図示していないが、それぞれの固定子21,221の駆動用コイル24,124に対して印加する交流電源を発生させるインバータを備え、電動車両の運転状態に応じて電源を切り換える制御機構を備えて構成される。   Although not shown in detail for the power supply device, the power supply device includes an inverter that generates AC power applied to the driving coils 24 and 124 of the respective stators 21 and 221, depending on the operating state of the electric vehicle. And a control mechanism for switching the power source.

なお、非駆動状態にある同期電動機構においては、第2の回転子231の回転に伴う永久磁石132の駆動用コイル124に対する移動に応じて、回生発電が行われる。   In the synchronous electric mechanism in the non-driven state, regenerative power generation is performed according to the movement of the permanent magnet 132 with respect to the drive coil 124 accompanying the rotation of the second rotor 231.

また、駆動用コイル24,124の設置数、永久磁石132の材質および大きさ、設置数などは、電源装置により印加する電圧値とともに定格出力の大きさ等に応じて適宜設計変更されるものである。   The number of drive coils 24 and 124 installed, the material and size of the permanent magnets 132, the number of installed, etc. are appropriately changed in design according to the magnitude of the rated output as well as the voltage value applied by the power supply device. is there.

なお本実施形態の電動車両用推進電動機は、上記のような構成としたが、本発明はこれに限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。   The propulsion motor for an electric vehicle according to the present embodiment is configured as described above, but the present invention is not limited to this, and can be changed as appropriate without departing from the spirit of the present invention.

1,11,111,211 電動車両用推進電動機
2,12 磁気発生機構部
3,13 回転機構部
4,14,114,214 筐体
5,6 回転軸
7 減速機構
8A,8B 回生発電機構
21,221 固定子
22 磁性コア
23 導線
24,124 駆動用コイル
25 絶縁基部
31,231 回転子
32 軟磁性回転板
32A,32B 板材
32C 絶縁材層
33 良導体表層部
34 凹部
72 遊星ギヤ
76 出力軸部
82,85,132 永久磁石
83,86 発電用コイル
R1 駆動コイル列
R2 1巻コイル列
DESCRIPTION OF SYMBOLS 1,11,111,211 Propulsion motor for electric vehicles 2,12 Magnetic generation mechanism part 3,13 Rotation mechanism part 4,14,114,214 Case 5,6 Rotating shaft 7 Deceleration mechanism
8A, 8B Regenerative power generation mechanism
21,221 Stator
22 Magnetic core
23 conductor
24,124 Driving coil
25 Insulation base
31,231 rotor
32 Soft magnetic rotating plate
32A, 32B plate material
32C insulation layer
33 Good conductor surface layer
34 Recess
72 planetary gear
76 Output shaft
82,85,132 Permanent magnet
83,86 Power generation coil
R1 drive coil array
R2 1 turn coil array

Claims (10)

磁性コアに導線を巻回した複数の駆動用コイルが絶縁基部に同心円状に配設された駆動コイル列を有し、所定周波数の電源により駆動され、円形面に回転磁界を発生する固定子を有する磁気発生機構部と、
回転自在な軟磁性回転板の平面に、同心円状に配設された複数の凹部内周縁により磁性的に1巻コイル列が構成される良導体表層部が形成された回転子を有する回転機構部とを備え、
前記固定子の回転磁界が発生される平面と前記回転子の良導体表層部とが互いに磁気的空隙を隔てて対向配置され、前記固定子から発生する回転磁界を前記回転子に作用させて該回転子を回転駆動する電動車両用推進電動機であって、
前記回転子の回転中心に、筐体に回転自在に保持された回転軸を備え、
該回転軸に固着された少なくとも1つの前記回転子は、両面に前記1巻コイル列が構成される良導体表層部が形成され、
該回転子の両側にはそれぞれ前記固定子が配設され、該回転子の各良導体表層部に磁気的空隙を隔ててそれぞれ前記固定子の回転磁界生成面が対向配置されてなることを特徴とする電動車両用推進電動機。
A plurality of driving coils each having a conducting wire wound around a magnetic core has a driving coil array arranged concentrically on an insulating base, and is driven by a power source having a predetermined frequency to generate a rotating magnetic field on a circular surface. A magnetic generation mechanism having
A rotating mechanism portion having a rotor in which a good conductor surface layer portion in which a one-turn coil array is magnetically formed by a plurality of concentric inner circumferential edges of concavities is formed on a plane of a rotatable soft magnetic rotating plate; With
The plane on which the rotating magnetic field of the stator is generated and the good conductor surface layer of the rotor are opposed to each other with a magnetic gap therebetween, and the rotating magnetic field generated from the stator acts on the rotor to rotate the rotor. A propulsion motor for an electric vehicle that rotationally drives a child,
At the rotation center of the rotor, provided with a rotation shaft that is rotatably held in the housing,
The at least one rotor fixed to the rotating shaft is formed with a good conductor surface layer portion on which the one-turn coil array is formed,
The stator is disposed on both sides of the rotor, and the rotating magnetic field generating surfaces of the stator are arranged to face each other with a magnetic air gap between the good conductor surface layers of the rotor. Electric motor propulsion motor.
前記1巻コイル列が構成される良導体表層部を両面に備えた前記回転子において、片面の1巻コイル列の配置に対し、反対面の1巻コイル列の配置は、その位相が角度方向にずれて設置されていることを特徴とする請求項1に記載の電動車両用推進電動機。   In the rotor provided with a good conductor surface layer portion on which both sides of the one-turn coil array are provided, the arrangement of the one-turn coil array on the opposite surface is in an angular direction relative to the one-turn coil array on one side. The propulsion motor for an electric vehicle according to claim 1, wherein the propulsion motor for an electric vehicle is installed in a shifted manner. 前記良導体表層部が両面に配設された前記軟磁性回転板は、2枚の軟磁性回転板の板材が互いに絶縁材層を介して貼り合わせられてなることを特徴とする請求項1または2に記載の電動車両用推進電動機。   3. The soft magnetic rotating plate in which the good conductor surface layer portions are arranged on both sides, the plate materials of two soft magnetic rotating plates are bonded to each other via an insulating material layer. A propulsion motor for an electric vehicle as described in 1. 前記軟磁性回転板が、軟磁性材料による巻鉄芯で構成されてなるものであることを特徴とする請求項1〜3いずれか1項に記載の電動車両用推進電動機。   The propulsion motor for an electric vehicle according to any one of claims 1 to 3, wherein the soft magnetic rotating plate is formed of a wound iron core made of a soft magnetic material. 前記軟磁性回転板が、軟磁性材料による平板で構成されてなるものであることを特徴とする請求項1〜3いずれか1項に記載の電動車両用推進電動機。   The propulsion motor for an electric vehicle according to any one of claims 1 to 3, wherein the soft magnetic rotating plate is configured by a flat plate made of a soft magnetic material. 前記回転軸は、中央部で左右の回転軸に2分割され、該左右の回転軸には、それぞれ前記回転子が少なくとも1つずつ互いに平行に固着され、各回転子の両側にそれぞれ前記固定子が設置されたことを特徴とする請求項1〜5いずれか1項に記載の電動車両用推進電動機。   The rotating shaft is divided into two left and right rotating shafts at a central portion, and at least one of the rotors is fixed to each of the left and right rotating shafts in parallel with each other, and the stator is placed on each side of each rotor. The propulsion motor for an electric vehicle according to any one of claims 1 to 5, wherein the motor is installed. 前記回転軸の出力側に、遊星歯車機構による減速機構が介装されたことを特徴とする請求項1に記載の電動車両用推進電動機。   The propulsion motor for an electric vehicle according to claim 1, wherein a reduction mechanism using a planetary gear mechanism is interposed on the output side of the rotating shaft. 前記回転機構部には、永久磁石を備えた回生発電機構が連係設置されてなることを特徴とする請求項1に記載の電動車両用推進電動機。   The propulsion motor for an electric vehicle according to claim 1, wherein a regenerative power generation mechanism including a permanent magnet is linked to the rotation mechanism unit. 前記回転軸に、前記回転子と平行に、第2の回転子がさらに保持され、該第2の回転子の両側にそれぞれ第2の固定子が配設され、前記第2の回転子に永久磁石が取り付けられ、該永久磁石の両側表面にそれぞれ磁気的空間を隔てて対向する駆動用コイルが前記第2の固定子に配設されてなることを特徴とする請求項1に記載の電動車両用推進電動機。   A second rotor is further held on the rotation shaft in parallel with the rotor, and second stators are disposed on both sides of the second rotor, respectively, and the second rotor is permanently attached to the second rotor. 2. The electric vehicle according to claim 1, wherein a magnet is attached, and driving coils that are opposed to each other on both side surfaces of the permanent magnet with a magnetic space therebetween are disposed on the second stator. For propulsion motor. 磁性コアに導線を巻回した複数の駆動用コイルが絶縁基部に同心円状に配設された駆動コイル列を有し、所定周波数の電源により駆動され、円形面に回転磁界を発生する固定子を有する磁気発生機構部と、
回転自在な軟磁性回転板の平面に、同心円状に配設された複数の凹部内周縁により磁性的に1巻コイル列が構成される良導体表層部が形成された回転子を有する回転機構部とを備え、
前記固定子の回転磁界が発生される平面と前記回転子の良導体表層部とが互いに磁気的空隙を隔てて対向配置され、前記固定子から発生する回転磁界を前記回転子に作用させて該回転子を回転駆動する電動車両用推進電動機であって、
前記回転子の回転中心に、筐体に回転自在に保持された回転軸を備え、
該回転軸に前記回転子が、前記筐体に前記固定子が保持され、前記回転子の良導体表層部に磁気的空隙を隔てて前記固定子の回転磁界生成面が対向配置された組合せを1セルとして、複数セルを軸方向に扁平状に重ね段組みしてなることを特徴とする電動車両用推進電動機。
A plurality of driving coils each having a conducting wire wound around a magnetic core has a driving coil array arranged concentrically on an insulating base, and is driven by a power source having a predetermined frequency to generate a rotating magnetic field on a circular surface. A magnetic generation mechanism having
A rotating mechanism portion having a rotor in which a good conductor surface layer portion in which a one-turn coil array is magnetically formed by a plurality of concentric inner circumferential edges of concavities is formed on a plane of a rotatable soft magnetic rotating plate; With
The plane on which the rotating magnetic field of the stator is generated and the good conductor surface layer portion of the rotor are opposed to each other with a magnetic gap therebetween, and the rotating magnetic field generated from the stator acts on the rotor to rotate the rotor. A propulsion motor for an electric vehicle that rotationally drives a child,
At the rotation center of the rotor, provided with a rotation shaft that is rotatably held in the housing,
1 is a combination in which the rotor is held on the rotating shaft, the stator is held on the casing, and a rotating magnetic field generating surface of the stator is arranged opposite to the good conductor surface layer of the rotor with a magnetic gap. A propulsion motor for an electric vehicle comprising a plurality of cells stacked in a flat shape in the axial direction as cells.
JP2009160374A 2008-10-24 2009-07-07 Electric motor propulsion motor Expired - Fee Related JP4982530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160374A JP4982530B2 (en) 2008-10-24 2009-07-07 Electric motor propulsion motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008273985 2008-10-24
JP2008273985 2008-10-24
JP2009160374A JP4982530B2 (en) 2008-10-24 2009-07-07 Electric motor propulsion motor

Publications (2)

Publication Number Publication Date
JP2010124679A true JP2010124679A (en) 2010-06-03
JP4982530B2 JP4982530B2 (en) 2012-07-25

Family

ID=42325504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160374A Expired - Fee Related JP4982530B2 (en) 2008-10-24 2009-07-07 Electric motor propulsion motor

Country Status (1)

Country Link
JP (1) JP4982530B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130654A (en) * 2009-11-16 2011-06-30 G+ Powertec Ltd Ac generator
JP2014054092A (en) * 2012-09-07 2014-03-20 Kobe Steel Ltd Axial-gap brushless motor
KR20190024426A (en) * 2017-08-31 2019-03-08 주식회사 카펙발레오 Power train for electric vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228234A (en) * 1989-02-28 1990-09-11 Sanken Electric Co Ltd Motor device
JP2001069734A (en) * 1999-06-24 2001-03-16 Tetsuo Sekiya Electric energy converter
JP2007060745A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd Inductor type motor and vehicle equipped with that motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228234A (en) * 1989-02-28 1990-09-11 Sanken Electric Co Ltd Motor device
JP2001069734A (en) * 1999-06-24 2001-03-16 Tetsuo Sekiya Electric energy converter
JP2007060745A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd Inductor type motor and vehicle equipped with that motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130654A (en) * 2009-11-16 2011-06-30 G+ Powertec Ltd Ac generator
JP2014054092A (en) * 2012-09-07 2014-03-20 Kobe Steel Ltd Axial-gap brushless motor
KR20190024426A (en) * 2017-08-31 2019-03-08 주식회사 카펙발레오 Power train for electric vehicles
KR102074137B1 (en) 2017-08-31 2020-02-06 주식회사 카펙발레오 Power train for electric vehicles

Also Published As

Publication number Publication date
JP4982530B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4707696B2 (en) Axial gap type motor
KR100850813B1 (en) Rotary electric motor having axially aligned stator poles and/or rotor poles
US7462968B2 (en) Electric wheel
CN108141068B (en) Magnetic transmission device and pole piece for same
MXPA04010652A (en) Rotary electric motor having at least two axially air gaps separating stator and rotor segments.
CN100380787C (en) Magnetic circuit structure for rotary electric machine
BRPI0917021B1 (en) REGENERATIVE MOTOR AND COIL
JP2004350453A (en) Double-shaft multi-layer motor
JP2005057819A (en) Rotary electric machine
JP2013158119A (en) Magnetic modulation double-shaft motor
JP2017186006A (en) Motor and electric vehicle
US7325637B2 (en) Hybrid drive device
WO2019053675A2 (en) Regenerative braking arrangement for electrical vehicles
US20070164628A1 (en) Electric transmission for transmitting mechanical power, in particular for a motor vehicle transmission
JP4982530B2 (en) Electric motor propulsion motor
JP4751134B2 (en) Inductor type motor and vehicle equipped with the same
US7233093B2 (en) Electric rotating machine
JP3627559B2 (en) Multilayer motor
JP4751135B2 (en) Inductor-type power generation / drive motor and automobile equipped with the same
JP2023540516A (en) Winding arrangement for modulating pole machines
JP2013051835A (en) Rotor for rotary electric machine
JP5114135B2 (en) Axial gap type motor
JP5578979B2 (en) Axial gap motor
KR100468983B1 (en) Axial flux permanent magnet machines
JP4127228B2 (en) Stator structure of rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120105

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120105

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees