JP2010124010A - Feedthrough capacitor - Google Patents

Feedthrough capacitor Download PDF

Info

Publication number
JP2010124010A
JP2010124010A JP2010056252A JP2010056252A JP2010124010A JP 2010124010 A JP2010124010 A JP 2010124010A JP 2010056252 A JP2010056252 A JP 2010056252A JP 2010056252 A JP2010056252 A JP 2010056252A JP 2010124010 A JP2010124010 A JP 2010124010A
Authority
JP
Japan
Prior art keywords
terminal electrode
face
ground terminal
electrode
feedthrough capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010056252A
Other languages
Japanese (ja)
Inventor
Masaaki Togashi
正明 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010056252A priority Critical patent/JP2010124010A/en
Publication of JP2010124010A publication Critical patent/JP2010124010A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a feedthrough capacitor which suppresses the lowering of wiring density and is reduced in ESL when it is mounted to a circuit board. <P>SOLUTION: Viewing from a direction perpendicular to a first side face 4, the distance between ground terminal electrodes 13 and 14 formed on the first side face 4 is longer than the distance between the ground terminal electrode 13 and a first end face 2 and the distance between the ground terminal electrode 14 and a second end face 3. Viewing from a direction perpendicular to a second side face 5, the distance between ground terminal electrodes 15 and 16 formed on the second side face 5 is longer than the distance between the ground terminal electrode 15 and the first end side face 2 and the distance between the ground terminal electrode 16 and the second end side face 3. Any terminal electrodes are not formed in an area between the ground terminal electrode 13 and 15 and the ground terminal electrode 14 and 16 of a capacitor body 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、貫通コンデンサに関する。   The present invention relates to a feedthrough capacitor.

貫通コンデンサとして、誘電体層と内部電極とが交互に積層されたコンデンサ素体と、当該コンデンサ素体の表面に形成された端子電極とを備えたものが知られている(例えば、特許文献1参照)。   A feedthrough capacitor is known that includes a capacitor element body in which dielectric layers and internal electrodes are alternately stacked, and a terminal electrode formed on the surface of the capacitor element body (for example, Patent Document 1). reference).

特開平01−206615号公報Japanese Patent Laid-Open No. 01-206615

ところで、このような貫通コンデンサの低インピーダンス化を図るためには、等価直列インダクタンス(ESL)を低くする必要がある。特に、高周波動作を達成するにはESLを十分に低く保つことが必要とされている。しかしながら、特許文献1記載の貫通コンデンサでは、ESLを低くするための検討は行っていない。   Incidentally, in order to reduce the impedance of such a feedthrough capacitor, it is necessary to lower the equivalent series inductance (ESL). In particular, to achieve high frequency operation, it is necessary to keep ESL sufficiently low. However, the feedthrough capacitor described in Patent Document 1 has not been studied for lowering the ESL.

また近年、製品の小型化が進んでおり、これに伴って回路基板における配線密度の向上が望まれている。しかしながら、特許文献1記載の貫通コンデンサでは、これを回路基板に搭載するとその分配線スペースが減ることになる。そのため、配線密度が低下してしまう。   In recent years, products have been miniaturized, and accordingly, an increase in wiring density on a circuit board is desired. However, in the feedthrough capacitor described in Patent Document 1, when it is mounted on a circuit board, the wiring space is reduced accordingly. Therefore, the wiring density is reduced.

そこで、回路基板に搭載した場合における配線密度の低下を抑制でき、且つESLの低下を図ることが可能な貫通コンデンサを提供することを課題とする。   Therefore, an object is to provide a feedthrough capacitor capable of suppressing a decrease in wiring density when mounted on a circuit board and capable of reducing an ESL.

本発明の貫通コンデンサは、複数の絶縁体層を積層してなる略直方体状のコンデンサ素体と、コンデンサ素体内に配置され、互いに対向する信号用内部電極及び接地用内部電極と、コンデンサ素体の長手方向における第1及び第2の端面にそれぞれ設けられ、信号用内部電極に接続された信号用端子電極と、コンデンサ素体の長手方向に沿って伸びる第1〜第4の側面のいずれか少なくとも1つの側面に設けられ、接地用内部電極に接続された接地用端子電極と、を備え、接地用端子電極は、第1の端面寄り及び第2の端面寄りのいずれか少なくとも一方に設けられていることを特徴とする。   A feedthrough capacitor according to the present invention includes a substantially rectangular parallelepiped capacitor body formed by laminating a plurality of insulator layers, a signal internal electrode and a ground internal electrode that are disposed in the capacitor body and face each other, and a capacitor body. Any of the signal terminal electrodes provided on the first and second end faces in the longitudinal direction of the capacitor and connected to the signal internal electrodes, and the first to fourth side faces extending along the longitudinal direction of the capacitor body A grounding terminal electrode provided on at least one side surface and connected to the grounding internal electrode, and the grounding terminal electrode is provided on at least one of the first end surface and the second end surface. It is characterized by.

本発明に係る貫通コンデンサによれば、コンデンサ素体の第1及び第2の端面に信号用端子電極が設けられ、コンデンサ素体の第1〜第4の側面に接地用端子電極が設けられる。接地用端子電極は第1の端面寄りか第2の端面寄りに設けられるので、接地用端子電極と信号用端子電極との位置を近づけることができる。よって、貫通コンデンサのESLを低下させることができる。また、第1〜第4の側面の中央部は端子電極が形成されない領域となる。よって、貫通コンデンサを回路基板に搭載した場合には、貫通コンデンサの中央部の下を配線スペースとして利用することができ、貫通コンデンサC1の搭載時に生じうる配線密度の低下を抑制できる。   According to the feedthrough capacitor of the present invention, the signal terminal electrodes are provided on the first and second end faces of the capacitor body, and the ground terminal electrodes are provided on the first to fourth side faces of the capacitor body. Since the ground terminal electrode is provided near the first end face or the second end face, the positions of the ground terminal electrode and the signal terminal electrode can be brought close to each other. Therefore, the ESL of the feedthrough capacitor can be reduced. Moreover, the center part of the 1st-4th side surface becomes an area | region in which a terminal electrode is not formed. Therefore, when the feedthrough capacitor is mounted on the circuit board, the space below the center portion of the feedthrough capacitor can be used as a wiring space, and a decrease in wiring density that can occur when the feedthrough capacitor C1 is mounted can be suppressed.

好ましくは、第1〜第4の側面のうち少なくとも1つの側面には、接地用端子電極が第1の端面寄り及び第2の端面寄りにそれぞれ設けられ、接地用端子電極が第1の端面寄り及び第2の端面寄りに設けられた側面に垂直な方向から見たとき、当該側面にそれぞれ設けられた接地用端子電極の間の距離は、第1の端面寄りに設けられた接地用端子電極と第1の端面との間の距離、及び、第2の端面寄りに設けられた接地用端子電極と第2の端面との間の距離よりも長い。   Preferably, at least one of the first to fourth side surfaces is provided with a grounding terminal electrode near the first end surface and the second end surface, respectively, and the grounding terminal electrode is near the first end surface. And when viewed from the direction perpendicular to the side surface provided near the second end surface, the distance between the ground terminal electrodes provided on the side surface is equal to the ground terminal electrode provided near the first end surface. Longer than the distance between the first end face and the distance between the ground terminal electrode provided near the second end face and the second end face.

この場合、接地用端子電極と信号用端子電極とをより近づけることができるので、貫通コンデンサのESLを更に低下させることができる。第1の端面寄りに設けられた接地用端子電極と第2の端面寄りに設けられた接地用端子電極との間の距離を長くできるので、貫通コンデンサの中央部における端子電極が形成されない領域をより広いものとすることができる。よって、この貫通コンデンサを回路基板に搭載した場合には、貫通コンデンサの下により広い配線スペースを確保でき、貫通コンデンサの下により多くの配線を通すことができる。   In this case, since the grounding terminal electrode and the signal terminal electrode can be brought closer to each other, the ESL of the feedthrough capacitor can be further reduced. Since the distance between the grounding terminal electrode provided near the first end face and the grounding terminal electrode provided near the second end face can be increased, the region where the terminal electrode is not formed in the central portion of the feedthrough capacitor It can be wider. Therefore, when this feedthrough capacitor is mounted on the circuit board, a wider wiring space can be secured under the feedthrough capacitor, and more wiring can be passed under the feedthrough capacitor.

好ましくは、第1の側面では第1の端面寄りに接地用端子電極が設けられ、第1の側面と対向する第2の側面では第2の端面寄りに接地用端子電極が設けられ、第1及び第2の側面の対向方向から見たとき、第1の側面において第1の端面寄りに設けられた接地用端子電極と第2の側面において第2の端面寄りに設けられた接地用端子電極との間の距離は、第1の側面において第1の端面寄りに設けられた接地用端子電極と第1の端面との間の距離、及び、第2の側面において第2の端面寄りに設けられた接地用端子電極と第2の端面との間の距離よりも長い。   Preferably, a ground terminal electrode is provided near the first end surface on the first side surface, and a ground terminal electrode is provided near the second end surface on the second side surface opposite to the first side surface. And the grounding terminal electrode provided near the first end surface on the first side surface and the grounding terminal electrode provided near the second end surface on the second side surface when viewed from the opposing direction of the second side surface. Between the ground terminal electrode provided near the first end face on the first side surface and the first end face, and on the second side face near the second end face. Longer than the distance between the grounded terminal electrode and the second end face.

この場合、接地用端子電極と信号用端子電極とを近づけることができるので、貫通コンデンサのESLを更に低下させることができる。第1の端面寄りに設けられた接地用端子電極と第2の端面寄りに設けられた接地用端子電極との間の距離を長くできるので、貫通コンデンサの中央部における端子電極が形成されない領域をより広いものとすることができる。よって、この貫通コンデンサを回路基板に搭載した場合には、貫通コンデンサの下により広い配線スペースを確保でき、配線密度の低下をより確実に抑制できる。   In this case, since the ground terminal electrode and the signal terminal electrode can be brought close to each other, the ESL of the feedthrough capacitor can be further reduced. Since the distance between the grounding terminal electrode provided near the first end face and the grounding terminal electrode provided near the second end face can be increased, the region where the terminal electrode is not formed in the central portion of the feedthrough capacitor It can be wider. Therefore, when this feedthrough capacitor is mounted on the circuit board, a wider wiring space can be secured under the feedthrough capacitor, and a reduction in wiring density can be more reliably suppressed.

好ましくは、接地用内部電極及び接地用端子電極を複数備え、接地用内部電極のうち少なくとも2つは接続される接地用端子電極が異なる。   Preferably, a plurality of grounding internal electrodes and grounding terminal electrodes are provided, and at least two of the grounding internal electrodes are connected to different grounding terminal electrodes.

この場合、並列接続された静電容量成分の形成領域を少なくとも2つ有することとなり、これらの領域は並列接続の関係となる。これらの領域の静電容量値が異なるように設計すれば、広帯域にわたってインピーダンスが低い貫通コンデンサを得ることが可能となる。   In this case, at least two capacitance component forming regions connected in parallel are provided, and these regions are in a parallel connection relationship. By designing so that the capacitance values of these regions are different, it is possible to obtain a feedthrough capacitor having a low impedance over a wide band.

好ましくは、信号用内部電極を複数備え、複数の信号用内部電極のうち少なくとも一つと複数の接地用内部電極のうち少なくとも一つとは、積層方向において同一の層に形成されている。   Preferably, a plurality of signal internal electrodes are provided, and at least one of the plurality of signal internal electrodes and at least one of the plurality of ground internal electrodes are formed in the same layer in the stacking direction.

この場合、信号用内部電極と接地用内部電極とを同一の層に形成するので、その分、積層数を減らすことができ、貫通コンデンサを小型にすることができる。   In this case, since the signal internal electrode and the ground internal electrode are formed in the same layer, the number of stacked layers can be reduced correspondingly, and the feedthrough capacitor can be reduced in size.

本発明の貫通コンデンサの実装構造は、上記の貫通コンデンサと、表面に導体配線が形成された回路基板と、を備え、貫通コンデンサは、長手方向と導体配線の伸びる方向とが交差するように、導体配線上に配置されることを特徴とする。   A feedthrough capacitor mounting structure of the present invention includes the feedthrough capacitor described above and a circuit board having a conductor wiring formed on the surface thereof, and the feedthrough capacitor has a longitudinal direction intersecting with a direction in which the conductor wiring extends. It is arranged on the conductor wiring.

上記の貫通コンデンサを長手方向と導体配線の伸びる方向とが交差するように回路基板に実装した場合、貫通コンデンサの信号用端子電極及び接地用端子電極と導体配線との間にショートを発生させることなく、貫通コンデンサの下に導体配線を這わせることが可能となる。よって、貫通コンデンサの設置スペースを配線スペースとして利用することができ、貫通コンデンサの搭載による配線密度の低下を抑制できる。   When the feedthrough capacitor is mounted on a circuit board so that the longitudinal direction intersects the direction in which the conductor wiring extends, a short circuit should occur between the signal terminal electrode and ground terminal electrode of the feedthrough capacitor and the conductor wiring. Therefore, it is possible to place the conductor wiring under the feedthrough capacitor. Therefore, the installation space of the feedthrough capacitor can be used as a wiring space, and a reduction in the wiring density due to mounting of the feedthrough capacitor can be suppressed.

好ましくは、積層方向から見たときに、貫通コンデンサにおいて第1の端面寄りに設けられた接地用端子電極と第2の端面寄りに設けられた接地用端子電極との間にある領域が導体配線上に配置される。   Preferably, the region between the ground terminal electrode provided near the first end face and the ground terminal electrode provided near the second end face in the feedthrough capacitor when viewed from the stacking direction is a conductor wiring. Placed on top.

この場合、貫通コンデンサの信号用端子電極及び接地用端子電極と導体配線との間にショートが発生する確率をより低くすることができる。   In this case, the probability of occurrence of a short circuit between the signal terminal electrode and ground terminal electrode of the feedthrough capacitor and the conductor wiring can be further reduced.

本発明によれば、回路基板に搭載した場合における配線密度の低下を抑制でき、且つESLの低下を図ることが可能な貫通コンデンサを提供することができる。   According to the present invention, it is possible to provide a feedthrough capacitor capable of suppressing a decrease in wiring density when mounted on a circuit board and capable of reducing an ESL.

第1の実施形態に係る貫通コンデンサの斜視図である。1 is a perspective view of a feedthrough capacitor according to a first embodiment. 第1実施形態に係る貫通コンデンサが備えるコンデンサ素体の分解斜視図である。It is a disassembled perspective view of the capacitor body with which the feedthrough capacitor concerning a 1st embodiment is provided. 第1実施形態に係る貫通コンデンサの断面図である。1 is a cross-sectional view of a feedthrough capacitor according to a first embodiment. 第1実施形態に係る貫通コンデンサ及び当該貫通コンデンサが実装された回路基板の上面図である。1 is a top view of a feedthrough capacitor according to a first embodiment and a circuit board on which the feedthrough capacitor is mounted. 第2実施形態に係る貫通コンデンサが備えるコンデンサ素体の分解斜視図である。It is a disassembled perspective view of the capacitor body with which the feedthrough capacitor concerning a 2nd embodiment is provided. 第3実施形態に係る貫通コンデンサが備えるコンデンサ素体の分解斜視図である。It is a disassembled perspective view of the capacitor body with which the feedthrough capacitor concerning a 3rd embodiment is provided.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
(First embodiment)

図1は、第1実施形態に係る貫通コンデンサの斜視図である。図2は、第1実施形態に係る貫通コンデンサが備えるコンデンサ素体の分解斜視図である。図3は、第1実施形態に係る貫通コンデンサの断面図である。図4は、第1実施形態に係る貫通コンデンサ及び当該貫通コンデンサが実装された回路基板の上面図である。なお図4では、図面を見易くするために、貫通コンデンサと回路基板との半田付け部分について記載を省略している。   FIG. 1 is a perspective view of the feedthrough capacitor according to the first embodiment. FIG. 2 is an exploded perspective view of the capacitor body included in the feedthrough capacitor according to the first embodiment. FIG. 3 is a cross-sectional view of the feedthrough capacitor according to the first embodiment. FIG. 4 is a top view of the feedthrough capacitor according to the first embodiment and the circuit board on which the feedthrough capacitor is mounted. In FIG. 4, in order to make the drawing easy to see, the description of the soldered portion between the feedthrough capacitor and the circuit board is omitted.

図1に示されるように、本実施形態に係る貫通コンデンサC1は、コンデンサ素体1と、第1及び第2の信号用端子電極11,12と、第1〜第4の接地用端子電極13〜16とを備えている。   As shown in FIG. 1, the feedthrough capacitor C <b> 1 according to this embodiment includes a capacitor body 1, first and second signal terminal electrodes 11 and 12, and first to fourth ground terminal electrodes 13. ~ 16.

コンデンサ素体1は略直方体状であり、長手方向に直交し且つ互いに対向する第1及び第2の端面2,3と、長手方向に伸びると共に第1及び第2の端面2,3間を連結し且つ互いに対向する第1及び第2の側面4,5と、長手方向に伸びると共に第1及び第2の端面2,3間を連結し且つ互いに対向する第3及び第4の側面6,7と、を有している。第3の側面6又は第4の側面7はコンデンサ素体1における主面であり、他の部品(例えば、回路基板や電子部品等)に対する実装面となる。   The capacitor body 1 has a substantially rectangular parallelepiped shape, and extends between the first and second end faces 2 and 3 which are orthogonal to the longitudinal direction and face each other, and which extends in the longitudinal direction and connects the first and second end faces 2 and 3. And the first and second side surfaces 4 and 5 facing each other, and the third and fourth side surfaces 6 and 7 extending in the longitudinal direction and connecting the first and second end surfaces 2 and 3 and facing each other. And have. The third side surface 6 or the fourth side surface 7 is a main surface of the capacitor body 1 and is a mounting surface for other components (for example, a circuit board, an electronic component, etc.).

コンデンサ素体1は、図2に示されるように、複数の絶縁体層9を有している。コンデンサ素体1は、複数の絶縁体層9が第3及び第4の側面6,7が対向する方向に積層されることにより構成されており、誘電特性を有している。各絶縁体層9は、例えば誘電体セラミック(BaTiO系、Ba(Ti,Zr)O系、又は(Ba,Ca)TiO系等の誘電体セラミック)を含むセラミックグリーンシートの焼結体から構成される。なお、実際の貫通コンデンサC1では、各絶縁体層9は、互いの間の境界が視認できない程度に一体化されている。 As shown in FIG. 2, the capacitor body 1 has a plurality of insulator layers 9. The capacitor body 1 is configured by laminating a plurality of insulator layers 9 in a direction in which the third and fourth side surfaces 6 and 7 face each other, and has dielectric characteristics. Each insulator layer 9 is a sintered body of a ceramic green sheet containing, for example, a dielectric ceramic (dielectric ceramic such as BaTiO 3 series, Ba (Ti, Zr) O 3 series, or (Ba, Ca) TiO 3 series). Consists of In the actual feedthrough capacitor C1, the insulator layers 9 are integrated so that the boundary between them cannot be visually recognized.

第1の信号用端子電極11は、コンデンサ素体1の第1の端面2に配置されている。第1の信号用端子電極11は、第1の端面2の全面を覆うように、第1〜第4の側面4〜7の端部(第1の端面2側の端部)に亘って形成されている。第2の信号用端子電極12は、コンデンサ素体1の第2の端面3に配置されている。第2の信号用端子電極12は、第2の端面3の全面を覆うように、第1〜第4の側面4〜7の端部(第2の端面3側の端部)に亘って形成されている。第1の信号用端子電極11と第2の信号用端子電極12とは、第1及び第2の端面2,3の対向方向(長手方向)で対向している。   The first signal terminal electrode 11 is disposed on the first end face 2 of the capacitor body 1. The first signal terminal electrode 11 is formed over the end portions (end portions on the first end surface 2 side) of the first to fourth side surfaces 4 to 7 so as to cover the entire surface of the first end surface 2. Has been. The second signal terminal electrode 12 is disposed on the second end face 3 of the capacitor body 1. The second signal terminal electrode 12 is formed over the end portions (end portions on the second end surface 3 side) of the first to fourth side surfaces 4 to 7 so as to cover the entire surface of the second end surface 3. Has been. The first signal terminal electrode 11 and the second signal terminal electrode 12 are opposed to each other in the facing direction (longitudinal direction) of the first and second end faces 2 and 3.

第1の接地用端子電極13は、コンデンサ素体1の第1の側面4に配置されている。第1の接地用端子電極13は、第1の側面4の一部を第3及び第4の側面6,7の対向方向に沿って覆うように、第3及び第4の側面6,7に亘って形成されている。第1の接地用端子電極13は、第1の側面4上において、第1の端面2寄りに位置している。   The first ground terminal electrode 13 is disposed on the first side surface 4 of the capacitor body 1. The first ground terminal electrode 13 is formed on the third and fourth side surfaces 6 and 7 so as to cover a part of the first side surface 4 along the opposing direction of the third and fourth side surfaces 6 and 7. It is formed over. The first ground terminal electrode 13 is located closer to the first end face 2 on the first side face 4.

第2の接地用端子電極14は、コンデンサ素体1の第1の側面4に配置されている。第2の接地用端子電極14は、第1の側面4の一部を第3及び第4の側面6,7の対向方向に沿って覆うように、第3及び第4の側面6,7に亘って形成されている。第2の接地用端子電極14は、第1の側面4上において、第2の端面3寄りに位置している。   The second ground terminal electrode 14 is disposed on the first side surface 4 of the capacitor body 1. The second ground terminal electrode 14 is formed on the third and fourth side surfaces 6 and 7 so as to cover a part of the first side surface 4 along the opposing direction of the third and fourth side surfaces 6 and 7. It is formed over. The second ground terminal electrode 14 is located closer to the second end face 3 on the first side face 4.

第3の接地用端子電極15は、コンデンサ素体1の第2の側面5に配置されている。第3の接地用端子電極15は、第2の側面5の一部を第3及び第4の側面6,7の対向方向に沿って覆うように、第3及び第4の側面6,7に亘って形成されている。第3の接地用端子電極15は、第2の側面5上において、第1の端面2寄りに位置している。第3の接地用端子電極15は、第1の接地用端子電極13と第1及び第2の側面4,5の対向方向で対向している。   The third ground terminal electrode 15 is disposed on the second side surface 5 of the capacitor body 1. The third ground terminal electrode 15 is formed on the third and fourth side surfaces 6 and 7 so as to cover a part of the second side surface 5 along the opposing direction of the third and fourth side surfaces 6 and 7. It is formed over. The third ground terminal electrode 15 is located closer to the first end face 2 on the second side face 5. The third ground terminal electrode 15 is opposed to the first ground terminal electrode 13 in the facing direction of the first and second side surfaces 4 and 5.

第4の接地用端子電極16は、コンデンサ素体1の第2の側面5に配置されている。第4の接地用端子電極16は、第2の側面5の一部を第3及び第4の側面6,7の対向方向に沿って覆うように、第3及び第4の側面6,7に亘って形成されている。第4の接地用端子電極16は、第2の側面5上において、第2の端面3寄りに位置している。第4の接地用端子電極16は、第2の端子電極14と第1及び第2の側面4,5の対向方向で対向している。   The fourth ground terminal electrode 16 is disposed on the second side surface 5 of the capacitor body 1. The fourth ground terminal electrode 16 is formed on the third and fourth side surfaces 6 and 7 so as to cover a part of the second side surface 5 along the opposing direction of the third and fourth side surfaces 6 and 7. It is formed over. The fourth ground terminal electrode 16 is located closer to the second end face 3 on the second side face 5. The fourth grounding terminal electrode 16 is opposed to the second terminal electrode 14 in the facing direction of the first and second side surfaces 4 and 5.

図4からもわかるように、第1の接地用端子電極13と第2の接地用端子電極14との間の距離は、第1の接地用端子電極13と第1の端面2との間の距離よりも長い。また、第1の接地用端子電極13と第2の接地用端子電極14との間の距離は、第2の接地用端子電極14と第2の端面3との間の距離よりも長い。第3の接地用端子電極15と第4の接地用端子電極16との間の距離は、第3の接地用端子電極15と第1の端面2との間の距離よりも長い。また、第3の接地用端子電極15と第4の接地用端子電極16との間の距離は、第4の接地用端子電極16と第2の端面3との間の距離よりも長い。   As can be seen from FIG. 4, the distance between the first grounding terminal electrode 13 and the second grounding terminal electrode 14 is between the first grounding terminal electrode 13 and the first end face 2. Longer than the distance. The distance between the first ground terminal electrode 13 and the second ground terminal electrode 14 is longer than the distance between the second ground terminal electrode 14 and the second end face 3. The distance between the third ground terminal electrode 15 and the fourth ground terminal electrode 16 is longer than the distance between the third ground terminal electrode 15 and the first end face 2. The distance between the third ground terminal electrode 15 and the fourth ground terminal electrode 16 is longer than the distance between the fourth ground terminal electrode 16 and the second end face 3.

第1及び第2の信号用端子電極11,12と第1〜第4の接地用端子電極13〜16とは、例えば導電性金属粉末及びガラスフリットを含む導電性ペーストをコンデンサ素体1の外表面に付与し、焼き付けることによって形成される。必要に応じて、焼き付けられた第1及び第2の信号用端子電極11,12と第1〜第4の接地用端子電極13〜16との上にめっき層が形成されることもある。   The first and second signal terminal electrodes 11 and 12 and the first to fourth ground terminal electrodes 13 to 16 are made of, for example, a conductive paste containing conductive metal powder and glass frit outside the capacitor body 1. It is formed by applying to the surface and baking. If necessary, a plating layer may be formed on the baked first and second signal terminal electrodes 11, 12 and the first to fourth ground terminal electrodes 13-16.

貫通コンデンサC1は、図2及び図3に示されるように、複数(本実施形態では2つ)の信号用内部電極20と複数(本実施形態では2つ)の接地用内部電極24とを備えている。信号用内部電極20と接地用内部電極24とは、第3及び第4の側面6,7の対向方向において異なる位置(層)に配置されている。すなわち、信号用内部電極20と接地用内部電極24とは、コンデンサ素体1内において、信号用内部電極20、接地用内部電極24、信号用内部電極20、接地用内部電極24の順で、第3及び第4の側面6,7の対向方向に間隔を有して配置されている。信号用内部電極20と接地用内部電極24とは、コンデンサ素体1内に配置されている。   As shown in FIGS. 2 and 3, the feedthrough capacitor C1 includes a plurality (two in the present embodiment) of signal internal electrodes 20 and a plurality (two in the present embodiment) of grounding internal electrodes 24. ing. The signal internal electrode 20 and the ground internal electrode 24 are disposed at different positions (layers) in the facing direction of the third and fourth side surfaces 6 and 7. That is, the signal internal electrode 20 and the ground internal electrode 24 are arranged in the order of the signal internal electrode 20, the ground internal electrode 24, the signal internal electrode 20, and the ground internal electrode 24 in the capacitor body 1. The third and fourth side surfaces 6 and 7 are arranged with an interval in the facing direction. The signal internal electrode 20 and the ground internal electrode 24 are arranged in the capacitor body 1.

信号用内部電極20及び接地用内部電極24は、積層型の電気素子の内部電極として通常用いられる導電性材料(例えば、卑金属であるNi等)からなる。信号用内部電極20及び接地用内部電極24は、上記導電性材料を含む導電性ペーストの焼結体として構成される。   The signal internal electrode 20 and the ground internal electrode 24 are made of a conductive material (for example, Ni, which is a base metal) that is normally used as an internal electrode of a laminated electrical element. The signal internal electrode 20 and the ground internal electrode 24 are configured as a sintered body of a conductive paste containing the conductive material.

信号用内部電極20は、略矩形状を呈しており、主電極部21と引き出し部22,23とを有している。主電極部21と引き出し部22,23とは、一体的に形成されている。引き出し部22は、主電極部21の第1の端面2側の縁から、第1の端面2に端が露出するように伸びている。引き出し部23は、主電極部21の第2の端面3側の縁から、主電極部21の第2の端面3に端が露出するように伸びている。   The signal internal electrode 20 has a substantially rectangular shape and includes a main electrode portion 21 and lead portions 22 and 23. The main electrode portion 21 and the lead portions 22 and 23 are integrally formed. The lead portion 22 extends from the edge of the main electrode portion 21 on the first end face 2 side so that the end is exposed to the first end face 2. The lead portion 23 extends from the edge of the main electrode portion 21 on the second end face 3 side so that the end is exposed on the second end face 3 of the main electrode portion 21.

前述した第1の信号用端子電極11は、引き出し部22の第1の端面2に露出した部分をすべて覆うように形成されており、引き出し部22は第1の信号用端子電極11に物理的且つ電気的に接続される。また、第2の信号用端子電極12は、引き出し部23の第2の端面3に露出した部分をすべて覆うように形成されており、引き出し部23は第2の信号用端子電極12に物理的且つ電気的に接続される。これにより、信号用内部電極20は第1及び第2の信号用端子電極11,12に接続されることとなる。   The first signal terminal electrode 11 described above is formed so as to cover all the portions exposed to the first end face 2 of the lead portion 22, and the lead portion 22 is physically attached to the first signal terminal electrode 11. And electrically connected. Further, the second signal terminal electrode 12 is formed so as to cover all the portion exposed to the second end face 3 of the lead portion 23, and the lead portion 23 is physically connected to the second signal terminal electrode 12. And electrically connected. As a result, the signal internal electrode 20 is connected to the first and second signal terminal electrodes 11 and 12.

接地用内部電極24は、略矩形状の主電極部25と、引き出し部26〜29とを有している。主電極部25と引き出し部26〜29とは、一体的に形成されている。引き出し部26,27は、主電極部25の第1の側面4側の縁から、第1の側面4に端が露出するように伸びている。引き出し部26は第1の端面2寄りに位置し、引き出し部27は第2の端面3寄りに位置している。引き出し部28,29は、主電極部25の第2の側面5側の縁から、第2の側面5に端が露出するように伸びている。引き出し部28は第1の端面2寄りに位置し、引き出し部29は第2の端面3寄りに位置している。   The grounding internal electrode 24 has a substantially rectangular main electrode portion 25 and lead portions 26 to 29. The main electrode portion 25 and the lead portions 26 to 29 are integrally formed. The lead portions 26 and 27 extend from the edge of the main electrode portion 25 on the first side surface 4 side so that the end is exposed on the first side surface 4. The lead portion 26 is located near the first end surface 2, and the lead portion 27 is located near the second end surface 3. The lead portions 28 and 29 extend from the edge of the main electrode portion 25 on the second side surface 5 side so that the end is exposed on the second side surface 5. The lead portion 28 is located near the first end surface 2, and the lead portion 29 is located near the second end surface 3.

前述した第1の接地用端子電極13は、引き出し部26の第1の側面4に露出した部分をすべて覆うように形成されており、引き出し部26は第1の接地用端子電極13に物理的且つ電気的に接続される。第2の接地用端子電極14は、引き出し部27の第1の側面4に露出した部分をすべて覆うように形成されており、引き出し部27は第2の接地用端子電極14に物理的且つ電気的に接続される。第3の接地用端子電極15は引き出し部28の第2の側面5に露出した部分をすべて覆うように形成されており、引き出し部28は第3の接地用端子電極15に物理的且つ電気的に接続される。第4の接地用端子電極16は、引き出し部29の第2の側面5に露出した部分をすべて覆うように形成されており、引き出し部29は第4の接地用端子電極16に物理的且つ電気的に接続される。これにより、接地用内部電極24は、第1〜第4の接地用端子電極13〜16に接続されることとなる。   The first ground terminal electrode 13 described above is formed so as to cover all the exposed portions of the first side surface 4 of the lead portion 26, and the lead portion 26 is physically connected to the first ground terminal electrode 13. And electrically connected. The second ground terminal electrode 14 is formed so as to cover all of the exposed portion of the first side surface 4 of the lead portion 27, and the lead portion 27 is physically and electrically connected to the second ground terminal electrode 14. Connected. The third ground terminal electrode 15 is formed so as to cover all of the exposed portion of the second side surface 5 of the lead portion 28, and the lead portion 28 is physically and electrically connected to the third ground terminal electrode 15. Connected to. The fourth ground terminal electrode 16 is formed so as to cover all of the exposed portion of the second side surface 5 of the lead portion 29, and the lead portion 29 is physically and electrically connected to the fourth ground terminal electrode 16. Connected. As a result, the grounding internal electrode 24 is connected to the first to fourth grounding terminal electrodes 13 to 16.

信号用内部電極20の主電極部21と、接地用内部電極24の主電極部25とは、コンデンサ素体1の一部である少なくとも一つの絶縁体層9を挟んで絶縁体層9の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極20と接地用内部電極24とは、第3及び第4の側面6,7の対向方向から見て互いに重なる領域を有している。したがって、絶縁体層9のうち、信号用内部電極20の主電極部21と接地用内部電極24の主電極部25とに重なる部分は、静電容量成分を実質的に生じさせる領域となる。   The main electrode portion 21 of the signal internal electrode 20 and the main electrode portion 25 of the ground internal electrode 24 are formed by laminating the insulating layer 9 with at least one insulating layer 9 as a part of the capacitor body 1 interposed therebetween. It includes regions that oppose each other in the direction. That is, the signal internal electrode 20 and the ground internal electrode 24 have regions that overlap each other when viewed from the opposing direction of the third and fourth side surfaces 6 and 7. Therefore, a portion of the insulator layer 9 that overlaps the main electrode portion 21 of the signal internal electrode 20 and the main electrode portion 25 of the ground internal electrode 24 is a region that substantially generates a capacitance component.

上述した構成を有する貫通コンデンサC1は、図4に示されるような回路基板B1に搭載される。回路基板B1は、表面に導体配線30〜37が形成された回路基板であり、貫通コンデンサC1のほかに半導体素子E1〜E3が搭載されている。半導体素子E1,E2は導体配線30で接続され、半導体素子E2,E3は導体配線31〜33で接続されている。半導体素子E1と貫通コンデンサC1の第1の信号用端子電極11とは導体配線34で接続され、半導体素子E3と貫通コンデンサC1の第2の信号用端子電極12とは導体配線35で接続されている。貫通コンデンサC1の第1及び第3の接地用端子電極13,15は導体配線36に接続され、貫通コンデンサC1の第2及び第4の接地用端子電極14,16は導体配線37に接続されている。導体配線30,34,35は電源ラインであり、導体配線36,37はグランドラインである。導体配線31〜33は、半導体素子E1,E2間の信号伝送ラインであり、互いに隣り合うと共に一部が同じ方向に伸びている。   The feedthrough capacitor C1 having the above-described configuration is mounted on a circuit board B1 as shown in FIG. The circuit board B1 is a circuit board having conductor wirings 30 to 37 formed on the surface, and semiconductor elements E1 to E3 are mounted in addition to the feedthrough capacitor C1. The semiconductor elements E1, E2 are connected by a conductor wiring 30, and the semiconductor elements E2, E3 are connected by a conductor wiring 31-33. The semiconductor element E1 and the first signal terminal electrode 11 of the feedthrough capacitor C1 are connected by a conductor wiring 34, and the semiconductor element E3 and the second signal terminal electrode 12 of the feedthrough capacitor C1 are connected by a conductor wiring 35. Yes. The first and third grounding terminal electrodes 13 and 15 of the feedthrough capacitor C1 are connected to the conductor wiring 36, and the second and fourth grounding terminal electrodes 14 and 16 of the feedthrough capacitor C1 are connected to the conductor wiring 37. Yes. The conductor wirings 30, 34, and 35 are power supply lines, and the conductor wirings 36 and 37 are ground lines. The conductor wirings 31 to 33 are signal transmission lines between the semiconductor elements E1 and E2, and are adjacent to each other and partially extend in the same direction.

貫通コンデンサC1は、第1及び第2の端面2,3の対向方向(長手方向)が導体配線35〜37が伸びる方向と交差するように、導体配線31〜33上に配置されている。第3及び第4の側面6,7の対向方向から見たとき、導体配線31〜33は、貫通コンデンサC1の第1及び第2の接地用端子電極13,14の間を通ると共に、貫通コンデンサC1の第3及び第4の接地用端子電極15,16の間を通っている。   The feedthrough capacitor C1 is disposed on the conductor wirings 31 to 33 so that the opposing direction (longitudinal direction) of the first and second end faces 2 and 3 intersects the direction in which the conductor wirings 35 to 37 extend. When viewed from the opposing direction of the third and fourth side surfaces 6 and 7, the conductor wirings 31 to 33 pass between the first and second grounding terminal electrodes 13 and 14 of the feedthrough capacitor C1 and pass through the capacitor. It passes between the third and fourth ground terminal electrodes 15 and 16 of C1.

以上のように、本実施形態によれば、コンデンサ素体1の第1及び第2の端面2,3に第1及び第2の信号用端子電極11,12が設けられ、コンデンサ素体1の第1〜第4の側面4〜7に第1〜第4の接地用端子電極13〜16が設けられている。第1〜第4の接地用端子電極13〜16は第1の端面2寄りか第2の端面3寄りに設けられているので、第1〜第4の接地用端子電極13〜16と第1及び第2の信号用端子電極11,12とは位置が近くなる。よって、貫通コンデンサC1のESLを低下させることができる。また、第1〜第4の側面4〜7の中央部は接地用端子電極が形成されない領域となる。よって、貫通コンデンサC1を回路基板B1に搭載した場合には、貫通コンデンサC1の中央部の下を配線スペースとして利用することができ、貫通コンデンサC1の搭載時に生じうる配線密度の低下を抑制できる。   As described above, according to this embodiment, the first and second signal terminal electrodes 11 and 12 are provided on the first and second end faces 2 and 3 of the capacitor body 1, and the capacitor body 1 First to fourth ground terminal electrodes 13 to 16 are provided on the first to fourth side surfaces 4 to 7. Since the first to fourth ground terminal electrodes 13 to 16 are provided near the first end face 2 or the second end face 3, the first to fourth ground terminal electrodes 13 to 16 and the first end face electrodes 13 to 16 are provided. And the position is close to the second signal terminal electrodes 11 and 12. Therefore, the ESL of the feedthrough capacitor C1 can be reduced. Moreover, the center part of the 1st-4th side surfaces 4-7 becomes an area | region in which the terminal electrode for grounding is not formed. Therefore, when the feedthrough capacitor C1 is mounted on the circuit board B1, the lower portion of the center of the feedthrough capacitor C1 can be used as a wiring space, and a reduction in wiring density that can occur when the feedthrough capacitor C1 is mounted can be suppressed.

また、本実施形態によれば、第1の接地用端子電極13と第2の接地用端子電極14との間の距離は、第1の接地用端子電極13と第1の端面2との間の距離、及び、第2の接地用端子電極14と第2の端面3との間の距離よりも長い。第3の接地用端子電極15と第4の接地用端子電極16との間の距離は、第3の接地用端子電極15と第1の端面2との間の距離、及び、第4の接地用端子電極16と第2の端面3との間の距離よりも長い。この場合、第1〜第4の接地用端子電極13〜16と第1及び第2の信号用端子電極11,12とをより近づけることができるので、貫通コンデンサC1のESLを更に低下させることができる。第1の接地用端子電極13と第2の接地用端子電極14との間隔、及び、第3の接地用端子電極15と第4の接地用端子電極16との間隔が広がるので、貫通コンデンサC1の中央部における接地用端子電極が形成されない領域をより広いものとすることができる。よって、この貫通コンデンサC1を回路基板B1に搭載した場合には、貫通コンデンサC1の下により広い配線スペースを確保でき、貫通コンデンサC1の下により多くの配線を這わせることができる。
(第2実施形態)
Further, according to the present embodiment, the distance between the first ground terminal electrode 13 and the second ground terminal electrode 14 is between the first ground terminal electrode 13 and the first end face 2. And the distance between the second ground terminal electrode 14 and the second end face 3 is longer. The distance between the third ground terminal electrode 15 and the fourth ground terminal electrode 16 is the distance between the third ground terminal electrode 15 and the first end face 2 and the fourth ground. This is longer than the distance between the terminal electrode 16 for use and the second end face 3. In this case, since the first to fourth ground terminal electrodes 13 to 16 and the first and second signal terminal electrodes 11 and 12 can be brought closer to each other, the ESL of the feedthrough capacitor C1 can be further reduced. it can. Since the distance between the first ground terminal electrode 13 and the second ground terminal electrode 14 and the distance between the third ground terminal electrode 15 and the fourth ground terminal electrode 16 are widened, the feedthrough capacitor C1 A region where the ground terminal electrode is not formed in the central portion of the substrate can be made wider. Therefore, when this feedthrough capacitor C1 is mounted on the circuit board B1, a wider wiring space can be secured under the feedthrough capacitor C1, and more wires can be routed under the feedthrough capacitor C1.
(Second Embodiment)

次に、第2実施形態に係る貫通コンデンサについて説明する。第2実施形態に係る貫通コンデンサは、信号用端子電極及び接地用端子電極の形状及び配置が第1実施形態に係る貫通コンデンサC1と相違する。図5は、第2実施形態に係る貫通コンデンサが備えるコンデンサ素体の分解斜視図である。   Next, the feedthrough capacitor according to the second embodiment will be described. The feedthrough capacitor according to the second embodiment is different from the feedthrough capacitor C1 according to the first embodiment in the shape and arrangement of the signal terminal electrode and the ground terminal electrode. FIG. 5 is an exploded perspective view of the capacitor body included in the feedthrough capacitor according to the second embodiment.

第2実施形態に係る貫通コンデンサは、図示は省略するが、第1実施形態に係る貫通コンデンサC1と同じく、コンデンサ素体1と、第1及び第2の信号用端子電極11,12と、第1〜第4の接地用端子電極13〜16とを備えている。第2実施形態に係る貫通コンデンサも、第1実施形態に係る貫通コンデンサC1同様に、図4に示した回路基板B1に実装することができる。   Although the illustration of the feedthrough capacitor according to the second embodiment is omitted, like the feedthrough capacitor C1 according to the first embodiment, the capacitor body 1, the first and second signal terminal electrodes 11, 12, 1 to 4 grounding terminal electrodes 13 to 16. Similarly to the feedthrough capacitor C1 according to the first embodiment, the feedthrough capacitor according to the second embodiment can be mounted on the circuit board B1 shown in FIG.

図5に示されるように、第2実施形態に係る貫通コンデンサは、複数(本実施形態では2つ)の第1の信号用内部電極50と、複数(本実施形態では2つ)の第2の信号用内部電極60と、複数(本実施形態では2つ)の第1の接地用内部電極54と、複数(本実施形態では2つ)の第2の接地用内部電極57と、複数(本実施形態では2つ)の第3の接地用内部電極64と、複数(本実施形態では2つ)の第4の接地用内部電極67と、を備えている。第1及び第2の信号用内部電極50,60と第1〜第4の接地用内部電極54,57,64,67とは、コンデンサ素体1内に配置されている。   As shown in FIG. 5, the feedthrough capacitor according to the second embodiment includes a plurality (two in the present embodiment) of first signal internal electrodes 50 and a plurality (two in the present embodiment) of second electrodes. A plurality of (two in the present embodiment) first grounding internal electrodes 54, a plurality (two in the present embodiment) second grounding internal electrodes 57, and a plurality (two in the present embodiment). In the present embodiment, two third internal electrodes for grounding 64 and a plurality of (two in the present embodiment) fourth grounding internal electrodes 67 are provided. The first and second signal internal electrodes 50, 60 and the first to fourth grounding internal electrodes 54, 57, 64, 67 are arranged in the capacitor body 1.

第1の信号用内部電極50と第2の信号用内部電極60とは、第3及び第4の側面6,7の対向方向において異なる位置(層)に配置されている。第1の信号用内部電極50と第1及び第2の接地用内部電極54,57とは、第3及び第4の側面6,7の対向方向においてそれぞれ同一の位置(層)に配置されている。第2の信号用内部電極60と第3及び第4の接地用内部電極64,67とは、第3及び第4の側面6,7の対向方向においてそれぞれ同一の位置(層)に配置されている。   The first signal internal electrode 50 and the second signal internal electrode 60 are disposed at different positions (layers) in the facing direction of the third and fourth side surfaces 6 and 7. The first signal internal electrode 50 and the first and second grounding internal electrodes 54 and 57 are disposed at the same position (layer) in the opposing direction of the third and fourth side surfaces 6 and 7, respectively. Yes. The second signal internal electrode 60 and the third and fourth grounding internal electrodes 64 and 67 are arranged at the same position (layer) in the opposing direction of the third and fourth side surfaces 6 and 7, respectively. Yes.

第1及び第2の信号用内部電極50,60と第1〜第4の接地用内部電極54,57,64,67とは、積層型の電気素子の内部電極として通常用いられる導電性材料(例えば、卑金属であるNi等)からなる。第1及び第2の信号用内部電極50,60と第1〜第4の接地用内部電極54,57,64,67とは、上記導電性材料を含む導電性ペーストの焼結体として構成される。   The first and second signal internal electrodes 50 and 60 and the first to fourth grounding internal electrodes 54, 57, 64, and 67 are conductive materials (usually used as internal electrodes of a laminated electric element). For example, Ni is a base metal). The first and second signal internal electrodes 50, 60 and the first to fourth grounding internal electrodes 54, 57, 64, 67 are configured as a sintered body of a conductive paste containing the conductive material. The

第1の信号用内部電極50は、クランク形状を呈しており、主電極部51と引き出し部52,53とを有している。主電極部51と引き出し部52,53とは、一体的に形成されている。引き出し部52は、主電極部51の第1の端面2側の縁から、第1の端面2に端が露出するように伸びている。引き出し部53は、主電極部51の第2の端面3側の縁から、主電極部21の第2の端面3に端が露出するように伸びている。   The first signal internal electrode 50 has a crank shape and has a main electrode portion 51 and lead portions 52 and 53. The main electrode portion 51 and the lead portions 52 and 53 are integrally formed. The lead portion 52 extends from the edge of the main electrode portion 51 on the first end face 2 side so that the end is exposed to the first end face 2. The lead portion 53 extends from the edge of the main electrode portion 51 on the second end face 3 side so that the end is exposed to the second end face 3 of the main electrode portion 21.

第2の信号用内部電極60は、クランク形状を呈しており、主電極部61と引き出し部62,63とを有している。主電極部61と引き出し部62,63とは、一体的に形成されている。引き出し部62は、主電極部61の第1の端面2側の縁から、第1の端面2に端が露出するように伸びている。引き出し部63は、主電極部61の第2の端面3側の縁から、主電極部61の第2の端面3に端が露出するように伸びている。   The second signal internal electrode 60 has a crank shape and has a main electrode portion 61 and lead portions 62 and 63. The main electrode portion 61 and the lead portions 62 and 63 are integrally formed. The lead portion 62 extends from the edge of the main electrode portion 61 on the first end face 2 side so that the end is exposed to the first end face 2. The lead portion 63 extends from the edge of the main electrode portion 61 on the second end face 3 side so that the end is exposed on the second end face 3 of the main electrode portion 61.

第1の信号用端子電極11は、引き出し部52,62の第1の端面2に露出した部分をすべて覆うように形成されており、引き出し部52,62は第1の信号用端子電極11に物理的且つ電気的に接続される。また、第2の信号用端子電極12は、引き出し部53,63の第2の端面3に露出した部分をすべて覆うように形成されており、引き出し部53,63は第2の信号用端子電極12に物理的且つ電気的に接続される。これにより、第1及び第2の信号用内部電極50,60は、第1及び第2の信号用端子電極11,12に接続されることとなる。   The first signal terminal electrode 11 is formed so as to cover all portions exposed to the first end face 2 of the lead portions 52 and 62, and the lead portions 52 and 62 are connected to the first signal terminal electrode 11. Connected physically and electrically. The second signal terminal electrode 12 is formed so as to cover all portions exposed to the second end face 3 of the lead portions 53 and 63, and the lead portions 53 and 63 are formed as the second signal terminal electrode. 12 is physically and electrically connected. Thus, the first and second signal internal electrodes 50 and 60 are connected to the first and second signal terminal electrodes 11 and 12.

第1の接地用内部電極54は、第1の信号用内部電極50と第1の側面4との間に位置している。第1の接地用内部電極54は、略矩形状の主電極部55と、引き出し部56とを有している。主電極部55と引き出し部56とは、一体的に形成されている。引き出し部56は、主電極部55の第1の側面4側の縁から、第1の側面4に端が露出するように伸びている。引き出し部56は第1の端面2寄りに位置している。   The first grounding inner electrode 54 is located between the first signal inner electrode 50 and the first side face 4. The first grounding internal electrode 54 has a substantially rectangular main electrode portion 55 and a lead portion 56. The main electrode portion 55 and the lead portion 56 are integrally formed. The lead portion 56 extends from the edge of the main electrode portion 55 on the first side surface 4 side so that the end is exposed on the first side surface 4. The drawer portion 56 is located closer to the first end face 2.

第2の接地用内部電極57は、第1の信号用内部電極50と第2の側面5との間に位置している。第2の接地用内部電極57は、略矩形状の主電極部58と、引き出し部59とを有している。主電極部58と引き出し部59とは、一体的に形成されている。引き出し部59は、主電極部58の第2の側面5側の縁から、第2の側面5に端が露出するように伸びている。引き出し部59は第2の端面3寄りに位置している。   The second grounding internal electrode 57 is located between the first signal internal electrode 50 and the second side surface 5. The second grounding internal electrode 57 has a substantially rectangular main electrode portion 58 and a lead portion 59. The main electrode portion 58 and the lead portion 59 are integrally formed. The lead portion 59 extends from the edge of the main electrode portion 58 on the second side surface 5 side so that the end is exposed on the second side surface 5. The lead portion 59 is located closer to the second end surface 3.

第3の接地用内部電極64は、第2の信号用内部電極60と第2の側面5との間に位置している。第3の接地用内部電極64は、略矩形状の主電極部65と、引き出し部66とを有している。主電極部65と引き出し部66とは、一体的に形成されている。引き出し部66は、主電極部65の第2の側面5側の縁から、第2の側面5に端が露出するように伸びている。引き出し部66は第1の端面2寄りに位置している。   The third grounding internal electrode 64 is located between the second signal internal electrode 60 and the second side surface 5. The third grounding internal electrode 64 has a substantially rectangular main electrode portion 65 and a lead portion 66. The main electrode portion 65 and the lead portion 66 are integrally formed. The lead portion 66 extends from the edge of the main electrode portion 65 on the second side surface 5 side so that the end is exposed on the second side surface 5. The lead portion 66 is located closer to the first end face 2.

第4の接地用内部電極67は、第2の信号用内部電極60と第1の側面4との間に位置している。第2の接地用内部電極67は、略矩形状の主電極部68と、引き出し部69とを有している。主電極部68と引き出し部69とは、一体的に形成されている。引き出し部69は、主電極部68の第1の側面4側の縁から、第1の側面4に端が露出するように伸びている。引き出し部69は第2の端面3寄りに位置している。   The fourth grounding internal electrode 67 is located between the second signal internal electrode 60 and the first side surface 4. The second grounding internal electrode 67 has a substantially rectangular main electrode portion 68 and a lead portion 69. The main electrode portion 68 and the lead portion 69 are integrally formed. The lead portion 69 extends from the edge of the main electrode portion 68 on the first side surface 4 side so that the end is exposed on the first side surface 4. The lead-out part 69 is located closer to the second end face 3.

第1の接地用端子電極13は、引き出し部56の第1の側面4に露出した部分をすべて覆うように形成されており、引き出し部56は第1の接地用端子電極13に物理的且つ電気的に接続される。第2の接地用端子電極14は、引き出し部69の第1の側面4に露出した部分をすべて覆うように形成されており、引き出し部69は第2の接地用端子電極14に物理的且つ電気的に接続される。第3の接地用端子電極15は、引き出し部66の第2の側面5に露出した部分をすべて覆うように形成されており、引き出し部66は第3の接地用端子電極15に物理的且つ電気的に接続される。第4の接地用端子電極16は、引き出し部59の第2の側面5に露出した部分をすべて覆うように形成されており、引き出し部59は第4の接地用端子電極16に物理的且つ電気的に接続される。これにより、第1の接地用内部電極54は第1の接地用端子電極13に、第2の接地用内部電極57は第4の接地用端子電極16に、第3の接地用内部電極64は第3の接地用端子電極15に、第4の接地用内部電極67は第2の接地用端子電極14に、それぞれ接続されることとなる。   The first ground terminal electrode 13 is formed so as to cover all of the exposed portion of the first side surface 4 of the lead portion 56, and the lead portion 56 is physically and electrically connected to the first ground terminal electrode 13. Connected. The second ground terminal electrode 14 is formed so as to cover all of the exposed portion of the first side surface 4 of the lead portion 69, and the lead portion 69 is physically and electrically connected to the second ground terminal electrode 14. Connected. The third ground terminal electrode 15 is formed so as to cover all of the exposed portion of the second side surface 5 of the lead portion 66, and the lead portion 66 is physically and electrically connected to the third ground terminal electrode 15. Connected. The fourth ground terminal electrode 16 is formed so as to cover all of the exposed portion of the lead portion 59 on the second side surface 5, and the lead portion 59 is physically and electrically connected to the fourth ground terminal electrode 16. Connected. Thus, the first grounding internal electrode 54 is connected to the first grounding terminal electrode 13, the second grounding internal electrode 57 is connected to the fourth grounding terminal electrode 16, and the third grounding internal electrode 64 is connected to the grounding internal electrode 64. The third grounding terminal electrode 15 and the fourth grounding internal electrode 67 are connected to the second grounding terminal electrode 14, respectively.

第1の信号用内部電極50の主電極部51と、第3及び第4の接地用内部電極64,67の主電極部65,68とは、コンデンサ素体1の一部である少なくとも一つの絶縁体層9を挟んで絶縁体層9の積層方向に互いに対向する領域を含んでいる。すなわち、第1の信号用内部電極50と第3及び第4の接地用内部電極64,67とは、第3及び第4の側面6,7の対向方向から見て互いに重なる領域をそれぞれ有している。したがって、絶縁体層9のうち、第1の信号用内部電極50の主電極部51と第3の接地用内部電極64の主電極部65とに重なる部分、及び、第1の信号用内部電極50の主電極部51と第4の接地用内部電極67の主電極部68とに重なる部分は、それぞれ静電容量成分を実質的に生じさせる領域となる。   The main electrode portion 51 of the first signal internal electrode 50 and the main electrode portions 65 and 68 of the third and fourth grounding internal electrodes 64 and 67 are at least one part of the capacitor body 1. The insulating layer 9 includes regions facing each other in the stacking direction of the insulating layer 9 with the insulating layer 9 interposed therebetween. That is, the first signal internal electrode 50 and the third and fourth grounding internal electrodes 64 and 67 have regions overlapping each other when viewed from the opposing direction of the third and fourth side surfaces 6 and 7. ing. Therefore, a portion of the insulator layer 9 that overlaps the main electrode portion 51 of the first signal internal electrode 50 and the main electrode portion 65 of the third ground internal electrode 64, and the first signal internal electrode The portions overlapping the 50 main electrode portions 51 and the main electrode portion 68 of the fourth grounding internal electrode 67 are regions that substantially generate capacitance components, respectively.

第2の信号用内部電極60の主電極部61と、第1及び第2の接地用内部電極54,57の主電極部55,58とは、コンデンサ素体1の一部である少なくとも一つの絶縁体層9を挟んで絶縁体層9の積層方向に互いに対向する領域を含んでいる。すなわち、第2の信号用内部電極60と第1及び第2の接地用内部電極54,57とは、第3及び第4の側面6,7の対向方向から見て互いに重なる領域を有している。したがって、絶縁体層9のうち、第2の信号用内部電極60の主電極部61と第1の接地用内部電極54の主電極部55とに重なる部分、及び、第2の信号用内部電極60の主電極部61と第2の接地用内部電極57の主電極部58とに重なる部分は、それぞれ静電容量成分を実質的に生じさせる領域となる。   The main electrode portion 61 of the second signal internal electrode 60 and the main electrode portions 55 and 58 of the first and second grounding internal electrodes 54 and 57 are at least one part of the capacitor body 1. The insulating layer 9 includes regions facing each other in the stacking direction of the insulating layer 9 with the insulating layer 9 interposed therebetween. That is, the second signal internal electrode 60 and the first and second grounding internal electrodes 54 and 57 have regions that overlap each other when viewed from the opposing direction of the third and fourth side surfaces 6 and 7. Yes. Therefore, a portion of the insulator layer 9 that overlaps the main electrode portion 61 of the second signal internal electrode 60 and the main electrode portion 55 of the first grounding internal electrode 54, and the second signal internal electrode The portions overlapping the main electrode portion 61 of 60 and the main electrode portion 58 of the second grounding internal electrode 57 are regions that substantially generate capacitance components, respectively.

このように、第2実施形態に係る貫通コンデンサでは、絶縁体層9のうち、主電極部51と主電極部65とに重なる部分、主電極部51と主電極部68とに重なる部分、主電極部61と主電極部55とに重なる部分、及び、主電極部61と主電極部58とに重なる部分が、静電容量成分を実質的に生じさせる領域となる。よって、第2実施形態に係る貫通コンデンサは、静電容量成分を実質的に生じさせる領域を4種類有することとなる。   Thus, in the feedthrough capacitor according to the second embodiment, a portion of the insulator layer 9 that overlaps the main electrode portion 51 and the main electrode portion 65, a portion that overlaps the main electrode portion 51 and the main electrode portion 68, A portion that overlaps the electrode portion 61 and the main electrode portion 55 and a portion that overlaps the main electrode portion 61 and the main electrode portion 58 are regions that substantially generate a capacitance component. Therefore, the feedthrough capacitor according to the second embodiment has four types of regions that substantially generate a capacitance component.

以上の構成を有する第2実施形態に係る貫通コンデンサによれば、第1実施形態の貫通コンデンサC1と同様の理由で、貫通コンデンサのESLを低下させることができる。また、第2実施形態に係る貫通コンデンサを回路基板B1に搭載した際に生じうる配線密度の低下を抑制できる。   According to the feedthrough capacitor according to the second embodiment having the above configuration, the ESL of the feedthrough capacitor can be reduced for the same reason as that of the feedthrough capacitor C1 of the first embodiment. In addition, it is possible to suppress a decrease in wiring density that may occur when the feedthrough capacitor according to the second embodiment is mounted on the circuit board B1.

また、第2実施形態に係る貫通コンデンサは、静電容量成分を実質的に生じさせる領域を4種類有し、これら4種類の領域は並列接続の関係にある。よって、これら4種類の領域のサイズや形状を調整し、静電容量値が異なるように設計すれば、広帯域にわたってインピーダンスが低い貫通コンデンサを得ることができる。
(第3実施形態)
In addition, the feedthrough capacitor according to the second embodiment has four types of regions that substantially generate a capacitance component, and these four types of regions are in a parallel connection relationship. Therefore, if the sizes and shapes of these four types of regions are adjusted and the capacitance values are designed to be different, a feedthrough capacitor having a low impedance over a wide band can be obtained.
(Third embodiment)

次に、第3実施形態に係る貫通コンデンサについて説明する。第3実施形態に係る貫通コンデンサは、信号用端子電極及び接地用端子電極の形状及び配置が第1及び第2実施形態に係る貫通コンデンサと相違する。図6は、第3実施形態に係る貫通コンデンサが備えるコンデンサ素体の分解斜視図である。   Next, a feedthrough capacitor according to a third embodiment will be described. The feedthrough capacitor according to the third embodiment is different from the feedthrough capacitor according to the first and second embodiments in the shape and arrangement of the signal terminal electrode and the ground terminal electrode. FIG. 6 is an exploded perspective view of the capacitor body included in the feedthrough capacitor according to the third embodiment.

第3実施形態に係る貫通コンデンサは、図示は省略するが、第1実施形態に係る貫通コンデンサC1と同じく、コンデンサ素体1と、第1及び第2の信号用端子電極11,12と、第1〜第4の接地用端子電極13〜16とを備えている。第3実施形態に係る貫通コンデンサも、第1実施形態に係る貫通コンデンサC1同様に、図4に示した回路基板B1に実装することができる。   Although the illustration of the feedthrough capacitor according to the third embodiment is omitted, like the feedthrough capacitor C1 according to the first embodiment, the capacitor element body 1, the first and second signal terminal electrodes 11, 12, 1 to 4 grounding terminal electrodes 13 to 16. Similarly to the feedthrough capacitor C1 according to the first embodiment, the feedthrough capacitor according to the third embodiment can be mounted on the circuit board B1 shown in FIG.

図6に示されるように、第3実施形態に係る貫通コンデンサは、複数(本実施形態では2つ)の第1の信号用内部電極70と、複数(本実施形態では2つ)の第2の信号用内部電極80と、複数(本実施形態では2つ)の第1の接地用内部電極74と、複数(本実施形態では2つ)の第2の接地用内部電極84と、を備えている。第1及び第2の信号用内部電極70,80と第1及び第2の接地用内部電極74,84とは、コンデンサ素体1内に配置されている。   As shown in FIG. 6, the feedthrough capacitor according to the third embodiment includes a plurality (two in this embodiment) of first signal internal electrodes 70 and a plurality (two in this embodiment) of second electrodes. Signal internal electrodes 80, a plurality (two in this embodiment) of first grounding internal electrodes 74, and a plurality (two in this embodiment) of second grounding internal electrodes 84. ing. The first and second signal inner electrodes 70, 80 and the first and second grounding inner electrodes 74, 84 are disposed in the capacitor body 1.

第1の信号用内部電極70と第2の信号用内部電極80とは、第3及び第4の側面6,7の対向方向において異なる位置(層)に配置されている。第1の信号用内部電極70と第1の接地用内部電極74とは、第3及び第4の側面6,7の対向方向においてそれぞれ同一の位置(層)に配置されている。第2の信号用内部電極80と第2の接地用内部電極84とは、第3及び第4の側面6,7の対向方向においてそれぞれ同一の位置(層)に配置されている。   The first signal internal electrode 70 and the second signal internal electrode 80 are disposed at different positions (layers) in the opposing direction of the third and fourth side surfaces 6 and 7. The first signal internal electrode 70 and the first grounding internal electrode 74 are disposed at the same position (layer) in the opposing direction of the third and fourth side surfaces 6 and 7, respectively. The second signal internal electrode 80 and the second ground internal electrode 84 are disposed at the same position (layer) in the opposing direction of the third and fourth side surfaces 6 and 7, respectively.

第1及び第2の信号用内部電極70,80と第1及び第2の接地用内部電極74,84とは、積層型の電気素子の内部電極として通常用いられる導電性材料(例えば、卑金属であるNi等)からなる。第1及び第2の信号用内部電極70,80と第1及び第2の接地用内部電極74,84とは、上記導電性材料を含む導電性ペーストの焼結体として構成される。   The first and second signal inner electrodes 70 and 80 and the first and second grounding inner electrodes 74 and 84 are conductive materials (for example, base metals) that are usually used as the inner electrodes of the laminated electric element. Some Ni). The first and second signal internal electrodes 70 and 80 and the first and second grounding internal electrodes 74 and 84 are configured as a sintered body of a conductive paste containing the conductive material.

第1の信号用内部電極70は、略矩形状を呈しており、主電極部71と引き出し部72,73とを有している。主電極部71と引き出し部72,73とは、一体的に形成されている。引き出し部72は、主電極部71の第1の端面2側の縁から、第1の端面2に端が露出するように伸びている。引き出し部73は、主電極部71の第2の端面3側の縁から、主電極部71の第2の端面3に端が露出するように伸びている。   The first signal internal electrode 70 has a substantially rectangular shape and includes a main electrode portion 71 and lead portions 72 and 73. The main electrode portion 71 and the lead portions 72 and 73 are integrally formed. The lead portion 72 extends from the edge of the main electrode portion 71 on the first end face 2 side so that the end is exposed to the first end face 2. The lead-out portion 73 extends from the edge of the main electrode portion 71 on the second end face 3 side so that the end is exposed on the second end face 3 of the main electrode portion 71.

第2の信号用内部電極80は、略矩形状を呈しており、主電極部81と引き出し部82,83とを有している。主電極部81と引き出し部82,83とは、一体的に形成されている。引き出し部82は、主電極部81の第1の端面2側の縁から、第1の端面2に端が露出するように伸びている。引き出し部83は、主電極部81の第2の端面3側の縁から、主電極部81の第2の端面3に端が露出するように伸びている。   The second signal internal electrode 80 has a substantially rectangular shape and includes a main electrode portion 81 and lead portions 82 and 83. The main electrode portion 81 and the lead portions 82 and 83 are integrally formed. The lead portion 82 extends from the edge of the main electrode portion 81 on the first end face 2 side so that the end is exposed to the first end face 2. The lead portion 83 extends from the edge on the second end face 3 side of the main electrode portion 81 so that the end is exposed on the second end face 3 of the main electrode portion 81.

第1の信号用端子電極11は、引き出し部72,82の第1の端面2に露出した部分をすべて覆うように形成されており、引き出し部72,82は第1の信号用端子電極11に物理的且つ電気的に接続される。また、第2の信号用端子電極12は、引き出し部73,83の第2の端面3に露出した部分をすべて覆うように形成されており、引き出し部73,83は第2の信号用端子電極12に物理的且つ電気的に接続される。これにより、第1及び第2の信号用内部電極70,80は、第1及び第2の信号用端子電極11,12に接続されることとなる。   The first signal terminal electrode 11 is formed so as to cover all portions exposed to the first end face 2 of the lead portions 72 and 82, and the lead portions 72 and 82 are connected to the first signal terminal electrode 11. Connected physically and electrically. The second signal terminal electrode 12 is formed so as to cover all portions exposed to the second end face 3 of the lead portions 73 and 83, and the lead portions 73 and 83 are formed as the second signal terminal electrodes. 12 is physically and electrically connected. As a result, the first and second signal internal electrodes 70 and 80 are connected to the first and second signal terminal electrodes 11 and 12.

第1の接地用内部電極74は、第1の信号用内部電極70と第1の側面4との間に位置している。第1の接地用内部電極74は、略矩形状の主電極部75と、引き出し部76,77とを有している。主電極部75と引き出し部76,77とは、一体的に形成されている。引き出し部76,77は、主電極部75の第1の側面4側の縁から、第1の側面4に端が露出するように伸びている。引き出し部76は第1の端面2寄りに位置し、引き出し部77は第2の端面3寄りに位置している。   The first grounding internal electrode 74 is located between the first signal internal electrode 70 and the first side face 4. The first grounding internal electrode 74 has a substantially rectangular main electrode portion 75 and lead portions 76 and 77. The main electrode portion 75 and the lead portions 76 and 77 are integrally formed. The lead portions 76 and 77 extend from the edge of the main electrode portion 75 on the first side surface 4 side so that the end is exposed on the first side surface 4. The lead portion 76 is located near the first end surface 2, and the lead portion 77 is located near the second end surface 3.

第2の接地用内部電極84は、第2の信号用内部電極80と第2の側面5との間に位置している。第2の接地用内部電極84は、略矩形状の主電極部85と、引き出し部86,87とを有している。主電極部85と引き出し部86,87とは、一体的に形成されている。引き出し部86,87は、主電極部85の第2の側面5側の縁から、第2の側面5に端が露出するように伸びている。引き出し部86は第1の端面2寄りに位置し、引き出し部87は第2の端面3寄りに位置している。   The second grounding internal electrode 84 is located between the second signal internal electrode 80 and the second side surface 5. The second grounding internal electrode 84 has a substantially rectangular main electrode portion 85 and lead portions 86 and 87. The main electrode portion 85 and the lead portions 86 and 87 are integrally formed. The lead portions 86 and 87 extend from the edge of the main electrode portion 85 on the second side surface 5 side so that the end is exposed on the second side surface 5. The lead portion 86 is located near the first end surface 2, and the lead portion 87 is located near the second end surface 3.

第1の接地用端子電極13は、引き出し部76の第1の側面4に露出した部分をすべて覆うように形成されており、引き出し部76は第1の接地用端子電極13に物理的且つ電気的に接続される。第2の接地用端子電極14は、引き出し部77の第1の側面4に露出した部分をすべて覆うように形成されており、引き出し部77は第2の接地用端子電極14に物理的且つ電気的に接続される。第3の接地用端子電極15は、引き出し部86の第2の側面5に露出した部分をすべて覆うように形成されており、引き出し部86は第3の接地用端子電極15に物理的且つ電気的に接続される。第4の接地用端子電極16は、引き出し部87の第2の側面5に露出した部分をすべて覆うように形成されており、引き出し部87は第4の接地用端子電極16に物理的且つ電気的に接続される。これにより、第1の接地用内部電極74は第1及び第2の接地用端子電極13,14に、第2の接地用内部電極84は第3及び第4の接地用端子電極15,16に、それぞれ接続されることとなる。   The first ground terminal electrode 13 is formed so as to cover all of the exposed portion of the first side surface 4 of the lead portion 76, and the lead portion 76 is physically and electrically connected to the first ground terminal electrode 13. Connected. The second ground terminal electrode 14 is formed so as to cover all of the exposed portion of the first side surface 4 of the lead portion 77, and the lead portion 77 is physically and electrically connected to the second ground terminal electrode 14. Connected. The third ground terminal electrode 15 is formed so as to cover all of the exposed portion of the second side surface 5 of the lead portion 86, and the lead portion 86 is physically and electrically connected to the third ground terminal electrode 15. Connected. The fourth ground terminal electrode 16 is formed so as to cover all of the exposed portion of the lead portion 87 on the second side surface 5, and the lead portion 87 is physically and electrically connected to the fourth ground terminal electrode 16. Connected. Accordingly, the first grounding internal electrode 74 is connected to the first and second grounding terminal electrodes 13 and 14, and the second grounding internal electrode 84 is connected to the third and fourth grounding terminal electrodes 15 and 16. , Respectively.

第1の信号用内部電極70の主電極部71と、第2の接地用内部電極84の主電極部85とは、コンデンサ素体1の一部である少なくとも一つの絶縁体層9を挟んで絶縁体層9の積層方向に互いに対向する領域を含んでいる。すなわち、第1の信号用内部電極70と第2の接地用内部電極84とは、第3及び第4の側面6,7の対向方向から見て互いに重なる領域を有している。したがって、絶縁体層9のうち、第1の信号用内部電極70の主電極部71と第2の接地用内部電極84の主電極部85とに重なる部分は、それぞれ静電容量成分を実質的に生じさせる領域となる。   The main electrode portion 71 of the first signal internal electrode 70 and the main electrode portion 85 of the second grounding internal electrode 84 sandwich at least one insulator layer 9 that is a part of the capacitor body 1. The insulating layer 9 includes regions facing each other in the stacking direction. That is, the first signal internal electrode 70 and the second grounding internal electrode 84 have regions that overlap each other when viewed from the opposing direction of the third and fourth side surfaces 6 and 7. Therefore, portions of the insulator layer 9 that overlap the main electrode portion 71 of the first signal internal electrode 70 and the main electrode portion 85 of the second grounding internal electrode 84 substantially each have a capacitance component. This is the area that is generated.

第2の信号用内部電極80の主電極部81と、第1の接地用内部電極74の主電極部75とは、コンデンサ素体1の一部である少なくとも一つの絶縁体層9を挟んで絶縁体層9の積層方向に互いに対向する領域を含んでいる。すなわち、第2の信号用内部電極80と第1の接地用内部電極74とは、第3及び第4の側面6,7の対向方向から見て互いに重なる領域を有している。したがって、絶縁体層9のうち、第2の信号用内部電極80の主電極部81と第1の接地用内部電極74の主電極部75とに重なる部分は、それぞれ静電容量成分を実質的に生じさせる領域となる。   The main electrode portion 81 of the second signal internal electrode 80 and the main electrode portion 75 of the first grounding internal electrode 74 sandwich at least one insulator layer 9 that is a part of the capacitor body 1. The insulating layer 9 includes regions facing each other in the stacking direction. That is, the second signal internal electrode 80 and the first grounding internal electrode 74 have regions that overlap each other when viewed from the opposing direction of the third and fourth side surfaces 6 and 7. Therefore, portions of the insulator layer 9 that overlap the main electrode portion 81 of the second signal internal electrode 80 and the main electrode portion 75 of the first grounding internal electrode 74 substantially each have a capacitance component. This is the area that is generated.

このように、第3実施形態に係る貫通コンデンサでは、絶縁体層9のうち、主電極部71と主電極部85とに重なる部分、及び、主電極部81と主電極部75とに重なる部分が、静電容量成分を実質的に生じさせる領域となる。よって、第3実施形態に係る貫通コンデンサは、静電容量成分を実質的に生じさせる領域を2種類有することとなる。   Thus, in the feedthrough capacitor according to the third embodiment, a portion of the insulator layer 9 that overlaps the main electrode portion 71 and the main electrode portion 85 and a portion that overlaps the main electrode portion 81 and the main electrode portion 75. However, this is a region where a capacitance component is substantially generated. Therefore, the feedthrough capacitor according to the third embodiment has two types of regions that substantially generate a capacitance component.

また、第3実施形態に係る貫通コンデンサによれば、第1実施形態に係る貫通コンデンサC1と同様の理由で、貫通コンデンサのESLを低下させることができる。また、第2実施形態に係る貫通コンデンサに搭載した際に生じうる配線密度の低下を抑制できる。   Further, according to the feedthrough capacitor according to the third embodiment, the ESL of the feedthrough capacitor can be reduced for the same reason as the feedthrough capacitor C1 according to the first embodiment. In addition, it is possible to suppress a decrease in wiring density that may occur when mounted on the feedthrough capacitor according to the second embodiment.

また、第3実施形態に係る貫通コンデンサは、静電容量成分を実質的に生じさせる領域を2種類有し、これら2種類の領域は並列接続の関係にある。よって、これら2種類の領域のサイズや形状を調整し、静電容量値が異なるように設計すれば、広帯域にわたってインピーダンスが低い貫通コンデンサを得ることができる。   In addition, the feedthrough capacitor according to the third embodiment has two types of regions that substantially generate capacitance components, and these two types of regions are in a parallel connection relationship. Therefore, if the sizes and shapes of these two types of regions are adjusted and designed so that the capacitance values are different, a feedthrough capacitor having a low impedance over a wide band can be obtained.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

例えば、各種の信号用内部電極及び接地用内部電極の形状や数量、引き出し部の形成位置等は、上記実施形態のものに限られない。また、上述した実施形態では4つの接地用端子電極13〜16を備えているが、接地用端子電極の数はこれに限られず、4つの接地用端子電極13〜16のいずれか少なくとも一つを備える、としてもよい。例えば、第1及び第2の接地用端子電極13,14のみを備えてもよいし、第1及び第4の接地用端子電極13,16のみを備えてもよい。   For example, the shape and quantity of various signal internal electrodes and grounding internal electrodes, the positions where the lead portions are formed, and the like are not limited to those of the above embodiment. In the above-described embodiment, the four ground terminal electrodes 13 to 16 are provided. However, the number of ground terminal electrodes is not limited thereto, and at least one of the four ground terminal electrodes 13 to 16 is provided. It may be provided. For example, only the first and second ground terminal electrodes 13 and 14 may be provided, or only the first and fourth ground terminal electrodes 13 and 16 may be provided.

C1…貫通コンデンサ、B1…回路基板、33-40…導体配線、13〜16…接地用端子電極、1…コンデンサ素体、2…第1の端面、3…第2の端面、4…第1の側面、5…第2の側面、6…第3の側面、7…第4の側面、9…絶縁体層、11,12…信号用端子電極、13〜16…接地用端子電極、20,50,60,70,80…信号用内部電極、24,54,57,64,67,74,84…接地用内部電極。   C1: Feedthrough capacitor, B1 ... Circuit board, 33-40 ... Conductor wiring, 13 to 16 ... Terminal electrode for grounding, 1 ... Capacitor body, 2 ... First end face, 3 ... Second end face, 4 ... First Side surface, 5 ... second side surface, 6 ... third side surface, 7 ... fourth side surface, 9 ... insulator layer, 11, 12 ... signal terminal electrode, 13-16 ... ground terminal electrode, 20, 50, 60, 70, 80... Signal internal electrode, 24, 54, 57, 64, 67, 74, 84 .. Ground internal electrode.

Claims (5)

複数の絶縁体層を積層してなる略直方体状のコンデンサ素体と、
前記コンデンサ素体内に配置され、互いに対向する信号用内部電極及び接地用内部電極と、
前記コンデンサ素体の長手方向における第1及び第2の端面にそれぞれ設けられ、前記信号用内部電極に接続された信号用端子電極と、
前記コンデンサ素体の長手方向に沿って伸びる第1の側面及び該第1の側面に対向する第2の側面にそれぞれ設けられ、前記接地用内部電極に接続された接地用端子電極と、を備え、
前記接地用端子電極は、前記第1及び第2の側面では、前記第1の端面寄り及び前記第2の端面寄りにそれぞれ設けられ、
前記第1の側面に垂直な方向から見たとき、前記第1の側面にそれぞれ設けられた前記接地用端子電極の間の距離は、前記第1の端面寄りに設けられた前記接地用端子電極と前記第1の端面との間の距離、及び、前記第2の端面寄りに設けられた前記接地用端子電極と前記第2の端面との間の距離よりも長く、
前記第2の側面に垂直な方向から見たとき、前記第2の側面にそれぞれ設けられた前記接地用端子電極の間の距離は、前記第1の端面寄りに設けられた前記接地用端子電極と前記第1の端面との間の距離、及び、前記第2の端面寄りに設けられた前記接地用端子電極と前記第2の端面との間の距離よりも長く、
前記コンデンサ素体における、前記第1及び第2の側面の前記第1の端面寄りに設けられた前記接地用端子電極と前記第1及び第2の側面の前記第2の端面寄りに設けられた前記接地用端子電極との間にある領域には、いかなる端子電極も設けられていないことを特徴とする貫通コンデンサ。
A substantially rectangular parallelepiped capacitor element formed by laminating a plurality of insulator layers;
A signal internal electrode and a ground internal electrode disposed in the capacitor body and facing each other;
A signal terminal electrode provided on each of the first and second end faces in the longitudinal direction of the capacitor element body and connected to the signal internal electrode;
A grounding terminal electrode provided on each of the first side surface extending along the longitudinal direction of the capacitor element body and the second side surface facing the first side surface, and connected to the grounding internal electrode. ,
The grounding terminal electrode is provided near the first end surface and the second end surface on the first and second side surfaces, respectively.
When viewed from a direction perpendicular to the first side surface, the distance between the ground terminal electrodes provided on the first side surface is the ground terminal electrode provided closer to the first end surface. Longer than the distance between the first end face and the distance between the ground terminal electrode provided near the second end face and the second end face,
When viewed from a direction perpendicular to the second side surface, the distance between the ground terminal electrodes respectively provided on the second side surface is equal to the ground terminal electrode provided closer to the first end surface. Longer than the distance between the first end face and the distance between the ground terminal electrode provided near the second end face and the second end face,
In the capacitor body, the grounding terminal electrode provided near the first end face of the first and second side faces and the second end face of the first and second side faces provided near the first end face. A feedthrough capacitor, wherein no terminal electrode is provided in a region between the ground terminal electrode.
前記第1の端面に設けられた前記信号用端子電極は、前記第1の端面の全面を覆うように、前記第1〜第4の側面の前記第1の端面側の端部にわたって形成され、
前記第2の端面に設けられた前記信号用端子電極は、前記第2の端面の全面を覆うように、前記第1〜第4の側面の前記第2の端面側の端部にわたって形成されていることを特徴とする請求項1記載の貫通コンデンサ。
The signal terminal electrode provided on the first end surface is formed over the first end surface side end of the first to fourth side surfaces so as to cover the entire surface of the first end surface,
The signal terminal electrode provided on the second end surface is formed over the end portion of the first to fourth side surfaces on the second end surface side so as to cover the entire surface of the second end surface. The feedthrough capacitor according to claim 1.
同じ側面において前記第1の端面寄りに設けられた前記接地用端子電極と前記第2の端面寄りに設けられた前記接地用端子電極との間の距離は、
前記第1の端面に設けられた前記信号用端子電極と前記第1の端面寄りに設けられた前記接地用端子電極との間の距離、及び、前記第2の端面に設けられた前記信号用端子電極と前記第2の端面寄りに設けられた前記接地用端子電極との間の距離よりも長いことを特徴とする請求項2に記載の貫通コンデンサ。
The distance between the ground terminal electrode provided near the first end surface and the ground terminal electrode provided near the second end surface on the same side surface is
A distance between the signal terminal electrode provided on the first end face and the ground terminal electrode provided near the first end face, and the signal use provided on the second end face The feedthrough capacitor according to claim 2, wherein the feedthrough capacitor is longer than a distance between a terminal electrode and the grounding terminal electrode provided near the second end surface.
請求項1〜3のいずれか一項記載の貫通コンデンサと、
表面に前記信号用端子電極及び前記接地用端子電極に接続されない導体配線が形成された回路基板と、を備え、
前記貫通コンデンサは、当該貫通コンデンサの長手方向と前記導体配線の伸びる方向とが交差するように、前記導体配線上に配置されることを特徴とする貫通コンデンサの実装構造。
The feedthrough capacitor according to any one of claims 1 to 3,
A circuit board having a conductor wiring that is not connected to the signal terminal electrode and the ground terminal electrode formed on the surface;
The feedthrough capacitor mounting structure, wherein the feedthrough capacitor is disposed on the conductor wiring so that a longitudinal direction of the feedthrough capacitor intersects with a direction in which the conductor wiring extends.
前記積層方向から見たときに、前記貫通コンデンサにおいて前記第1の端面寄りに設けられた前記接地用端子電極と前記第2の端面寄りに設けられた前記接地用端子電極との間にある領域が、前記導体配線上に配置されることを特徴とする請求項4の貫通コンデンサの実装構造。
A region between the grounding terminal electrode provided near the first end face and the grounding terminal electrode provided near the second end face in the feedthrough capacitor when viewed from the stacking direction. The feedthrough capacitor mounting structure according to claim 4, wherein the mounting structure is disposed on the conductor wiring.
JP2010056252A 2010-03-12 2010-03-12 Feedthrough capacitor Pending JP2010124010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056252A JP2010124010A (en) 2010-03-12 2010-03-12 Feedthrough capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056252A JP2010124010A (en) 2010-03-12 2010-03-12 Feedthrough capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008066411A Division JP5042892B2 (en) 2008-03-14 2008-03-14 Feedthrough capacitor

Publications (1)

Publication Number Publication Date
JP2010124010A true JP2010124010A (en) 2010-06-03

Family

ID=42324990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056252A Pending JP2010124010A (en) 2010-03-12 2010-03-12 Feedthrough capacitor

Country Status (1)

Country Link
JP (1) JP2010124010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145460A (en) * 2014-01-13 2020-09-10 アップル インコーポレイテッドApple Inc. Acoustic noise cancellation of multi-layer capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191661U (en) * 1982-05-29 1983-12-20 富士通株式会社 printed board
JPS59180464U (en) * 1983-05-20 1984-12-01 株式会社リコー chip parts
JP2005032900A (en) * 2003-07-10 2005-02-03 Murata Mfg Co Ltd Layered feed-through capacitor and array thereof
JP2008021861A (en) * 2006-07-13 2008-01-31 Tdk Corp Feed-through multilayer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191661U (en) * 1982-05-29 1983-12-20 富士通株式会社 printed board
JPS59180464U (en) * 1983-05-20 1984-12-01 株式会社リコー chip parts
JP2005032900A (en) * 2003-07-10 2005-02-03 Murata Mfg Co Ltd Layered feed-through capacitor and array thereof
JP2008021861A (en) * 2006-07-13 2008-01-31 Tdk Corp Feed-through multilayer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145460A (en) * 2014-01-13 2020-09-10 アップル インコーポレイテッドApple Inc. Acoustic noise cancellation of multi-layer capacitor
JP7050113B2 (en) 2014-01-13 2022-04-07 アップル インコーポレイテッド Acoustic noise cancellation of multi-layer capacitors

Similar Documents

Publication Publication Date Title
US8098478B2 (en) Electric element
JP6547569B2 (en) Electronic parts
US8526162B2 (en) Feedthrough multilayer capacitor
US10622146B2 (en) Multilayer capacitor and electronic component device
TWI399770B (en) Laminated capacitors
KR101504002B1 (en) Multi-layered ceramic capacitor and board for mounting the same
JP5120426B2 (en) Multilayer feedthrough capacitor and multilayer feedthrough capacitor mounting structure
JP4475338B2 (en) Multilayer capacitor
JP5708245B2 (en) Feed-through multilayer capacitor
JP4483904B2 (en) Feed-through multilayer capacitor
JP6273672B2 (en) Multilayer feedthrough capacitor
JP5042892B2 (en) Feedthrough capacitor
JP5861531B2 (en) Multilayer capacitor
US8098477B2 (en) Feedthrough multilayer capacitor with capacitance components connected in parallel
JP4412386B2 (en) Feed-through multilayer capacitor
JP2010124010A (en) Feedthrough capacitor
JP5929524B2 (en) Multilayer capacitor
JP5966423B2 (en) Multilayer electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111