JP2010123365A - Control valve type lead-acid storage battery - Google Patents

Control valve type lead-acid storage battery Download PDF

Info

Publication number
JP2010123365A
JP2010123365A JP2008295222A JP2008295222A JP2010123365A JP 2010123365 A JP2010123365 A JP 2010123365A JP 2008295222 A JP2008295222 A JP 2008295222A JP 2008295222 A JP2008295222 A JP 2008295222A JP 2010123365 A JP2010123365 A JP 2010123365A
Authority
JP
Japan
Prior art keywords
cell
battery
spacer
control valve
type lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008295222A
Other languages
Japanese (ja)
Inventor
Tomoki Fujimori
智貴 藤森
Takashi Nakajima
孝 中嶋
Toshibumi Yoshimine
俊文 吉嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008295222A priority Critical patent/JP2010123365A/en
Publication of JP2010123365A publication Critical patent/JP2010123365A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that when a control valve type lead-acid storage battery, in which a cell chamber with a cell housed and a cell chamber with a dummy cell housed are adjacent, is left for a long period of time, a pressure difference between the cell chambers is generated, stress is applied on a barrier rib between the cells, and the barrier rib is fractured resulting in leakage from a battery, oxidation of a negative electrode plate due to degradation of air-tightness of the cell chamber, leading to reduction of capacity. <P>SOLUTION: The control valve type lead-acid storage battery has a structure in which the cell is housed in the cell chamber adjacent to the cell chamber with no cell housed, and includes a beam-like spacer arranged in a cell array direction on an upper part of the cell. Thereby, even when the pressure difference is generated between the cell chambers, significant effect such as prevention of fracture of the barrier rib and prevention of capacity degradation of the battery can be achieved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、制御弁式鉛蓄電池に関するものである。   The present invention relates to a valve-regulated lead-acid battery.

一般的に、鉛蓄電池は、複数枚の正極板と負極板とをセパレータを介して積層し、同極性の極板耳部をストラップにより接続することにより、セルを構成する。これらのセルは、PP樹脂、ABS樹脂、あるいはm−PPE樹脂(変性ポリフェニレンエーテル樹脂)等の合成樹脂製の電槽内に配置される。その後、電槽を蓋で閉じるとともに、一般的には蓋に形成した電池端子と、電槽内部に収納されたセルとの電気的接続が行なわれる。電槽には、希硫酸電解液が注液され、充電することによって鉛蓄電池として完成する。   Generally, a lead storage battery comprises a cell by laminating a plurality of positive electrode plates and negative electrode plates via a separator and connecting electrode plate ears of the same polarity with straps. These cells are disposed in a battery case made of a synthetic resin such as PP resin, ABS resin, or m-PPE resin (modified polyphenylene ether resin). Thereafter, the battery case is closed with a lid, and generally, the battery terminal formed on the lid is electrically connected to the cell accommodated in the battery case. A dilute sulfuric acid electrolyte is injected into the battery case and charged to complete the lead-acid battery.

鉛蓄電池の中でも、電池内部と外部とが常に連通し、セルから発生した水素ガス、酸素ガスを電池外部に排出する構成を有した、いわゆる開放式(ベント式)あるいは液式と呼ばれる、セルが電解液中に浸漬された構成の鉛蓄電池と、制御弁式と呼ばれる、電解液をセルが含浸保持可能な量、もしくはセルの少なくとも一部が電解液から露出した構成を有する、制御弁式鉛蓄電池に大別されることは周知のとおりである。   Among lead-acid batteries, there is a cell called so-called open type (vent type) or liquid type that has a configuration in which the inside and outside of the battery are always in communication and hydrogen gas and oxygen gas generated from the cell are discharged to the outside of the battery. A lead-acid battery with a configuration immersed in an electrolyte and a control valve type lead, which is called a control valve type, has a configuration in which the cell can be impregnated and retained, or at least a part of the cell is exposed from the electrolyte As is well known, it is roughly divided into storage batteries.

その中でも、制御弁式の鉛蓄電池では、充電時に正極から発生した酸素ガスは、負極活物質(Pb)と反応して、酸化鉛(PbO)が生成し(式1)、この酸化鉛は電解液中の硫酸と反応して、負極の放電生成物と同様の硫酸鉛(PbSO4)を生成するため(式2)、負極からの水素ガス発生が抑制される。 Among them, in a control valve type lead-acid battery, oxygen gas generated from the positive electrode during charging reacts with the negative electrode active material (Pb) to produce lead oxide (PbO) (Formula 1), and this lead oxide is electrolyzed. Since it reacts with sulfuric acid in the liquid to produce lead sulfate (PbSO 4 ) similar to the discharge product of the negative electrode (Formula 2), the generation of hydrogen gas from the negative electrode is suppressed.

2Pb+O2→2PbO (式1)
PbO+H2SO4→PbSO4+H2O (式2)
制御弁式鉛蓄電池では、充電終了直後に電池内部に滞留した酸素ガスは前記したように、負極で吸収されるため、電池内部の圧力は大気圧よりも低い、減圧状態となる。
2Pb + O 2 → 2PbO (Formula 1)
PbO + H 2 SO 4 → PbSO 4 + H 2 O (Formula 2)
In the control valve type lead-acid battery, oxygen gas staying inside the battery immediately after the end of charging is absorbed by the negative electrode as described above, so that the pressure inside the battery is in a reduced pressure state lower than atmospheric pressure.

一方、制御弁式鉛蓄電池の公称電圧は1セル当たり2Vであるが、一部の大容量の産業用据置鉛蓄電池を除き、電池内部に複数のセルを収納し、セル間を直列接続することにより、所望の電池電圧を得ることが行なわれている。図1は、公称電圧12Vの制御弁式鉛蓄電池(以下、電池1)において、電槽2に6個のセルを列状に配置した例を示す図である。   On the other hand, the nominal voltage of the control valve type lead-acid battery is 2V per cell. Except for some large-capacity industrial stationary lead-acid batteries, a plurality of cells are housed inside the battery, and the cells are connected in series. Thus, a desired battery voltage is obtained. FIG. 1 is a diagram showing an example in which six cells are arranged in a row in a battery case 2 in a control valve type lead storage battery (hereinafter referred to as battery 1) having a nominal voltage of 12V.

図1に示した電池1では、電槽2の内部を隔壁4で6個のセル室5に区画し、それぞれのセル室5内にセルC1〜セルC6を収納し、これらセルC1〜C6を接続体3で直列接続することにより、公称電圧12Vの鉛蓄電池を構成している。なお、図1において、セルC1〜C6を単に矩形で表現しているが、これらセルC1〜C6のそれぞれは、正極板(図示せず)および負極板(図示せず)がセパレータ(図示せず)を介して積層され、正極板の耳は正極ストラップ6により、負極板の耳は負極ストラップ6′により、それぞれ集合溶接された、公知の構成を有していることはいうまでもない。   In the battery 1 shown in FIG. 1, the inside of the battery case 2 is divided into six cell chambers 5 by the partition walls 4, and the cells C <b> 1 to C <b> 6 are accommodated in the respective cell chambers 5. A lead storage battery having a nominal voltage of 12 V is configured by connecting the connection bodies 3 in series. In FIG. 1, the cells C1 to C6 are simply represented by rectangles, but each of the cells C1 to C6 has a positive electrode plate (not shown) and a negative electrode plate (not shown) as a separator (not shown). ), And the ears of the positive electrode plate are gathered and welded by the positive electrode strap 6 and the ears of the negative electrode plate by the negative electrode strap 6 ', respectively.

このように、所望とする電池電圧に応じて、電槽2の内部に形成するセル室5の数を変更し、また、所望とする電池容量に応じてセル室5の容積を設定すればよいことは明らかである。   Thus, the number of cell chambers 5 formed inside the battery case 2 may be changed according to the desired battery voltage, and the volume of the cell chamber 5 may be set according to the desired battery capacity. It is clear.

しかしながら、電圧毎、容量毎に専用の電槽、およびこの電槽を成型するための専用金型を製作、保有することは、極めて高額な金型の製作費、保管および保守工数を要すること、また、電池品種毎に成型金型を切り替える工数の観点で不経済であり、例えば、前記した12V電池用の電槽2を用い、6個のセル室5の一つに、セル(例えばセルC2)を収納しない電池を作成すれば、12V用電槽で10V電池を作成することができる。   However, producing and possessing a dedicated battery case for each voltage and capacity and a dedicated mold for molding this battery case requires extremely expensive production costs, storage and maintenance man-hours. Moreover, it is uneconomical from the viewpoint of man-hours for switching the molding die for each battery type. For example, the battery case 2 for the 12V battery described above is used, and a cell (for example, cell C2) is provided in one of the six cell chambers 5. If a battery that does not store is produced, a 10V battery can be produced using a 12V battery case.

同様に、収納するセル数を調節することにより、12V用電槽で、12V、10V、8V、6V、4Vおよび2Vの電池を作成することができる。その結果として、電槽および電槽金型をこれらの各電圧の電池間で共用でき、そのため、金型費用や金型切替工数の削減が可能となる。   Similarly, batteries of 12V, 10V, 8V, 6V, 4V and 2V can be created with a 12V battery case by adjusting the number of cells stored. As a result, the battery case and the battery case mold can be shared between the batteries of these respective voltages, so that it is possible to reduce the mold cost and the mold switching man-hours.

このような観点で、特許文献1の実施例では、3つのセルを収納可能な電槽の両端のセル室にセルを収納し、中間のセル室には、セルに替えてスペーサを収納するとともに、両端のセル間を接続線で接続することにより、6V用電槽で4Vの密閉鉛蓄電池を得ることが示されている。
実開昭61−101964号公報
From this point of view, in the example of Patent Document 1, cells are stored in cell chambers at both ends of a battery case that can store three cells, and spacers are stored in intermediate cell chambers instead of cells. It is shown that a sealed lead-acid battery of 4V is obtained with a 6V battery case by connecting the cells at both ends with connecting lines.
Japanese Utility Model Publication No. 61-101964

前記した特許文献1で示された構成を、図1に示した電池1に適用し、6Vの制御弁式鉛蓄電池(以下、電池1′)を構成した例を図2に示す。   FIG. 2 shows an example in which the configuration shown in Patent Document 1 described above is applied to the battery 1 shown in FIG. 1 to form a 6V control valve type lead storage battery (hereinafter referred to as battery 1 ′).

図2に示した電池1′は、電池1で用いたセルC2,セルC3およびセルC4に替えて、これらに対応するセル室5に第1のスペーサ7を収納することにより、ダミーセルとし、セルC1とセルC5の間を接続体3と接続バー8を介して直列に接続したものである。なお、第1のスペーサ7を収納したセル室5は、セルとして機能しないため、電解液を注液する必要もなく、また、制御弁を付与する必要がないため、セル室5の注液口は開放状態であり、その結果として、第1のスペーサ7を収納したセル室5の内圧は、大気圧と同圧となる。   The battery 1 ′ shown in FIG. 2 is replaced with the cell C2, the cell C3, and the cell C4 used in the battery 1, and the first spacer 7 is housed in the cell chamber 5 corresponding to these to form a dummy cell. Between C1 and the cell C5, the connection body 3 and the connection bar 8 are connected in series. In addition, since the cell chamber 5 which accommodated the 1st spacer 7 does not function as a cell, it is not necessary to inject electrolyte solution and it is not necessary to provide a control valve. Is an open state, and as a result, the internal pressure of the cell chamber 5 in which the first spacer 7 is accommodated is the same as the atmospheric pressure.

このような電池1′を充電し、放置した場合、セルC1、セルC5およびセルC6が収納されたセル室5では、前記したように、セル室5の内部に滞留した酸素ガスが負極活物質に吸収されるため、大気圧より減圧した状態となるが、隣接する第1のスペーサ7を収納したセル室5の内圧は大気圧と同じである。   When such a battery 1 'is charged and left, in the cell chamber 5 in which the cells C1, C5, and C6 are stored, as described above, the oxygen gas retained in the cell chamber 5 is negative electrode active material. However, the internal pressure of the cell chamber 5 housing the adjacent first spacer 7 is the same as the atmospheric pressure.

したがって、前記したセルC1、セルC5およびセルC6が収納されたセル室5が減圧状態となった場合、図3に示したように、セルを収納したセル室5と、ダミーセルとして第1のスペーサ7を収納したセル室5との間の隔壁4、すなわち図2に示した例においては、セルC1を収納したセル室5と、これに隣接し、ダミーセルとして第1のスペーサ7を収納したセル室5の隔壁4と、セルC5を収納したセル室5と、これに隣接し、ダミーセルとして第1のスペーサ7を収納したセル室5の隔壁4に応力が発生し、図3に示したように、これら隔壁4が、セルC1を収納したセル室5の方向、およびセルC5を収納したセル室5の方向に変形する。   Therefore, when the cell chamber 5 in which the cells C1, C5, and C6 are stored is in a reduced pressure state, as shown in FIG. 3, the cell chamber 5 in which the cells are stored and the first spacer as a dummy cell. 2 between the cell chamber 5 storing the cell 7, that is, in the example shown in FIG. 2, the cell chamber 5 storing the cell C 1 and the cell adjacent to the cell chamber 5 and storing the first spacer 7 as a dummy cell. Stress is generated in the partition 4 of the chamber 5, the cell chamber 5 in which the cell C5 is stored, and the partition 4 in the cell chamber 5 in which the first spacer 7 is stored as a dummy cell, as shown in FIG. Further, these partition walls 4 are deformed in the direction of the cell chamber 5 in which the cell C1 is stored and in the direction of the cell chamber 5 in which the cell C5 is stored.

図1〜図3に示した電槽2は、12V電池用として、6個のセル室5すべてに6個のセルC1〜C6が収納されることを前提として設計されているため、基本的には、すべてのセル室5が同様に減圧することから、セル室5間に圧力差は生じないことを前提としているため、隔壁4の厚みt1は、電槽2の外壁、例えば隔壁4に平行な電槽壁2aの厚みt2と同等か、それよりも薄く設計されている(すなわち、t1≦t2)。   The battery case 2 shown in FIG. 1 to FIG. 3 is designed for a 12V battery on the assumption that six cells C1 to C6 are accommodated in all six cell chambers 5, so Since all the cell chambers 5 are similarly decompressed, it is assumed that no pressure difference is generated between the cell chambers 5. Therefore, the thickness t 1 of the partition wall 4 is parallel to the outer wall of the battery case 2, for example, the partition wall 4. It is designed to be equal to or thinner than the thickness t2 of the battery case wall 2a (that is, t1 ≦ t2).

したがって、前記したような内圧差によって、隔壁4には変形が生じやすく、隔壁4が変形した状態で、電池1′を長期間放置した場合、隔壁4が変形したり、クラックが生ずる場合がある。また、隔壁4と接続する電槽壁2bもしくは、隔壁4と電槽2の底壁(図示せず)との間にクラックが生じ、内部の電解液が漏出するとともに、セルC1およびセルC5の負極が酸化することによって、電池1′の容量が急激に劣化する。   Therefore, due to the internal pressure difference as described above, the partition wall 4 is likely to be deformed. When the battery 1 ′ is left for a long time with the partition wall 4 deformed, the partition wall 4 may be deformed or cracks may occur. . In addition, the battery case wall 2b connected to the partition wall 4 or a crack occurs between the partition wall 4 and the bottom wall (not shown) of the battery case 2, and the electrolyte inside leaks out, and the cells C1 and C5 When the negative electrode is oxidized, the capacity of the battery 1 'is rapidly deteriorated.

また、このような隔壁4の変形は、セルC1,セルC5に圧縮力が加わる。セルC1およびセルC5を構成する極板(図示せず)の極板面が図3に示すA−A′と平行な場合(すなわち、電槽壁2aと平行な場合)、セルC1およびセルC5の群圧はセルC6の群圧よりも上昇するため、セルC1およびセルC5と、セルC6との間に群圧差が生ずる。   In addition, such deformation of the partition walls 4 applies a compressive force to the cells C1 and C5. When the electrode plate surfaces of the electrode plates (not shown) constituting the cells C1 and C5 are parallel to AA ′ shown in FIG. 3 (that is, parallel to the battery case wall 2a), the cells C1 and C5 Is higher than the group pressure of the cell C6, a group pressure difference is generated between the cells C1 and C5 and the cell C6.

一般的に、複数セルで構成される制御弁式鉛蓄電池において、セルの群圧がばらついた場合、群圧のばらつきによる容量差が、充放電を繰り返すことによって拡大し、短寿命となることが知られており、電池寿命の観点から、前記したような隔壁4の変形による群圧差は、寿命に悪影響を及ぼすものであった。   Generally, in a control valve type lead storage battery composed of a plurality of cells, when the group pressure of the cells varies, the capacity difference due to the variation of the group pressure may be expanded by repeating charging and discharging, resulting in a short life. From the viewpoint of battery life, the group pressure difference due to the deformation of the partition walls 4 as described above adversely affects the life.

また、セルC1およびセルC5を構成する極板(図示せず)の極板面が図3に示すB−B′と平行な場合(すなわち、電槽壁2bと平行な場合)、極板の側部が隔壁4によって変形し、結果として正極板と負極板とが内部短絡し、電池1′の容量が急激に低下するという問題を有していた。   Further, when the electrode plate surfaces of the electrode plates (not shown) constituting the cells C1 and C5 are parallel to BB ′ shown in FIG. 3 (that is, parallel to the battery case wall 2b), The side part is deformed by the partition wall 4, and as a result, the positive electrode plate and the negative electrode plate are internally short-circuited, and the capacity of the battery 1 'is rapidly reduced.

本発明は、図2に示したような、電槽内にセルを収納しないセル室を有した制御弁式鉛蓄電池において発生する、図3に示したような隔壁の変形と、前記したような、隔壁の変形による電池の不具合の発生を抑制することを目的とする。   The present invention relates to the deformation of the partition wall as shown in FIG. 3 which occurs in a control valve type lead storage battery having a cell chamber which does not contain a cell in the battery case as shown in FIG. An object of the present invention is to suppress the occurrence of battery defects due to deformation of the partition walls.

上記の課題を解決するために、本発明の請求項1に係る発明は、電槽内が隔壁により複数のセル室に区画され、前記セル室は列状に配列され、前記セル室の少なくとも一に、第1のスペーサが収納され、前記第1のスペーサを収納したセル室を除くセル室には、電池セルとして機能する、正極板、セパレータおよび負極板からなるセルが収納され、前記第1のスペーサを収納したセル室に隣接し、かつ前記セルが収納されたセル室に前記セルの配列方向に梁状の第2のスペーサを配置したことを特徴とする制御弁式鉛蓄電池を示すものである。   In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention is that the battery case is partitioned into a plurality of cell chambers by partition walls, the cell chambers are arranged in a row, and at least one of the cell chambers. The first spacer is accommodated in the cell chamber except for the cell chamber in which the first spacer is accommodated, and a cell composed of a positive electrode plate, a separator and a negative electrode plate functioning as a battery cell is accommodated in the cell chamber. A control valve type lead-acid battery characterized in that a second spacer in the form of a beam is arranged in a cell chamber in which the cells are accommodated in a cell chamber in which the cells are accommodated in the cell chamber in which the cells are accommodated. It is.

また、本発明の請求項2に係る発明は、請求項1の制御弁式鉛蓄電池において、前記第2のスペーサの前記隔壁および/もしくは前記電槽の内壁と対向する面に溝部を設けるとともに、前記隔壁および前記内壁にリブ状突起を設け、前記溝部にリブ状突起を収納することによって、前記第2のスペーサを前記リブ状突起に嵌合する構成を示すものである。   Further, the invention according to claim 2 of the present invention is the control valve type lead-acid battery according to claim 1, wherein a groove is provided on a surface of the second spacer facing the partition wall and / or the inner wall of the battery case, A configuration is shown in which a rib-like projection is provided on the partition wall and the inner wall, and the rib-like projection is accommodated in the groove portion, whereby the second spacer is fitted to the rib-like projection.

さらに、本発明の請求項3に係る発明は、請求項1もしくは請求項2の制御弁式鉛蓄電池において、前記隔壁および前記内壁に少なくとも一対の前記リブ状突起を設け、これらリブ状突起間に前記第2のスペーサの端部を収納することを特徴とするものである。   Furthermore, the invention according to claim 3 of the present invention is the control valve type lead-acid battery according to claim 1 or 2, wherein at least a pair of rib-shaped protrusions are provided on the partition wall and the inner wall, and the rib-shaped protrusions are provided between the rib-shaped protrusions. The end portion of the second spacer is accommodated.

本発明の構成によれば、隔壁4の変形やクラックを顕著に抑制することができる。また、これにより、隔壁4の変形やクラックによって生じていた電解液の漏液や、寿命低下や、内部短絡による容量低下を抑制することができる。   According to the configuration of the present invention, deformation and cracks of the partition walls 4 can be remarkably suppressed. In addition, this makes it possible to suppress electrolyte leakage caused by deformation or cracking of the partition walls 4, life reduction, and capacity reduction due to an internal short circuit.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(本発明の第1の実施の形態)
図4は、本発明の第1の実施の形態による制御弁式鉛蓄電池(以下、電池11)の電槽2へのセル収納状態を示す図である。なお、実際の本発明の電池11は、電槽2に公知の蓋、制御弁、端子を有しているが、これらの構成は、公知の制御弁式鉛蓄電池と変わるところはないため、図4は、本発明を特徴づける構成である、電槽2へのセル収納状態、および第1のスペーサ7、第2のスペーサ12のセル室5への収納状態を示している。
(First embodiment of the present invention)
FIG. 4 is a diagram showing a cell storage state in the battery case 2 of the control valve type lead storage battery (hereinafter, battery 11) according to the first embodiment of the present invention. The actual battery 11 of the present invention has a known lid, control valve, and terminal in the battery case 2, but these configurations are not different from those of a known control valve type lead storage battery. 4 shows the cell storage state in the battery case 2 and the storage state of the first spacer 7 and the second spacer 12 in the cell chamber 5, which is a configuration characterizing the present invention.

本発明の電池11は、電槽2の内部が隔壁4により複数のセル室5に区画される。なお、図4に示した例では、電槽2の内部が6個のセル室5に区画された例を示しているが、セル室5の数は、複数であればよく、その数は、本実施の形態に限定されるものでない。   In the battery 11 of the present invention, the inside of the battery case 2 is partitioned into a plurality of cell chambers 5 by the partition walls 4. In addition, although the example shown in FIG. 4 has shown the example where the inside of the battery case 2 was divided into six cell chambers 5, the number of the cell chambers 5 should just be plural, and the number is as follows. The present invention is not limited to this embodiment.

これら複数のセル室5は、電槽2の内部において、列状に配列されている。そして、これら複数のセル室5の少なくとも1個のセル室5に、ダミーセルとしての第1のスペーサ7が収納される。第1のスペーサ7は、隣接するセル室5に収納されたセルC1およびセルC5の群圧を維持する目的で収納され、例えば発泡ウレタン等のなるべく見掛け密度の低い、軽量な材質であり、かつ群圧を維持可能な強度を有した材質のものを用いることは言うまでもない。   The plurality of cell chambers 5 are arranged in a row inside the battery case 2. A first spacer 7 as a dummy cell is accommodated in at least one cell chamber 5 of the plurality of cell chambers 5. The first spacer 7 is housed for the purpose of maintaining the group pressure of the cells C1 and C5 housed in the adjacent cell chamber 5, and is made of a lightweight material having a low apparent density such as foamed urethane, for example. Needless to say, a material having a strength capable of maintaining the group pressure is used.

これら第1のスペーサ7を収納したセル室5を除くセル室5には、電池セルとして機能する、正極板、セパレータおよび負極板(それぞれ図示せず)からなるセルC1、セルC5、セルC6がそれぞれ収納される。なお、セルC1、セルC5及びセルC6は、前記した正極板と負極板とをセパレータを介して積層した構成を有しているが、図11では、煩雑さを避けるため、単に矩形状に示しており、このようなセル形状の表現は、後述する他の各実施形態においても共通して用いる。   In the cell chambers 5 excluding the cell chamber 5 in which the first spacers 7 are accommodated, cells C1, C5, and C6, which function as battery cells, each including a positive electrode plate, a separator, and a negative electrode plate (not shown) are provided. Each is stored. The cell C1, the cell C5, and the cell C6 have a configuration in which the positive electrode plate and the negative electrode plate described above are stacked with a separator interposed therebetween. However, in FIG. Such a cell shape expression is commonly used in other embodiments described later.

セルC1、セルC5およびセルC6は、正極板の集電耳(図示せず)を集合溶接する正極ストラップ、および負極板の集電耳(図示せず)を集合溶接する負極ストラップ6′をそれぞれ有しており、図4に示した例では、セルC1の負極ストラップ6′から、電池11の外部に設けた電池端子(図示せず)に接続する負極柱9′が導出される。同様に、セルC6の正極ストラップ6から、電池端子に接続する正極柱9が導出される。これら正極柱9および負極柱9′の構成は、従来の制御弁式鉛蓄電池と変わるところはない。   Cell C1, Cell C5 and Cell C6 are respectively provided with a positive electrode strap for collectively welding current collecting ears (not shown) of the positive electrode plate and a negative electrode strap 6 'for collectively welding current collecting ears (not shown) of the negative electrode plate. In the example shown in FIG. 4, a negative pole 9 ′ connected to a battery terminal (not shown) provided outside the battery 11 is led out from the negative strap 6 ′ of the cell C <b> 1. Similarly, the positive pole 9 connected to the battery terminal is derived from the positive strap 6 of the cell C6. The configuration of the positive pole 9 and the negative pole 9 'is not different from that of a conventional control valve type lead storage battery.

本発明の電池11では、第1のスペーサ7を収納したセル室5に隣接し、セルC1、セルC5、セルC6が収納されたセル室5にセル室5の配列方向に梁状の第2のスペーサ12を配置したことを特徴とする。   In the battery 11 of the present invention, a second beam that is adjacent to the cell chamber 5 in which the first spacer 7 is accommodated and is arranged in the cell chamber 5 in which the cells C1, C5, and C6 are accommodated in the arrangement direction of the cell chambers 5. The spacer 12 is arranged.

そして、図4に示したように、第1のスペーサ7を収納するセル室5を挟むセルC1とセルC5間は、接続体3および接続バー8で接続され、第1のスペーサ7を収納するセル室5を挟まず、互いに隣接するセルC5とセルC6間は、従来の制御弁式鉛蓄電池と同様、接続体3により接続される。   Then, as shown in FIG. 4, the cell C1 and the cell C5 sandwiching the cell chamber 5 in which the first spacer 7 is accommodated are connected by the connection body 3 and the connection bar 8, and the first spacer 7 is accommodated. The cell C5 and the cell C6 adjacent to each other without being sandwiched between the cell chambers 5 are connected by the connection body 3 as in the conventional control valve type lead storage battery.

上記のような本発明の構成によれば、図5のように、セルC1、セルC5、セルC6が減圧した場合においても、第2のスペーサ12によって、隔壁4の変形が抑制されるため、隔壁4と電槽壁2bあるいは電槽2の底壁(図示せず)のクラックと、これによる漏液が抑制される。また、クラックによる負極板の酸化によるセルの容量低下を抑制することができる。さらに、隔壁の変形が抑制されるため、電池11の短寿命や急激な容量低下を引き起こすような、セルC1、C5、C6の群圧のばらつきが抑制される。さらに隔壁4の変形により、極板の端部が変形して内部短絡を生じさせることがないことから、電槽2にダミーセルとしての第1のスペーサ7を収納することによって、電池電圧を調整した制御弁式鉛蓄電池の信頼性を顕著に向上することが可能となる。   According to the configuration of the present invention as described above, even when the cells C1, C5, and C6 are depressurized as shown in FIG. Cracks in the partition wall 4 and the battery case wall 2b or the bottom wall (not shown) of the battery case 2, and leakage due to this are suppressed. Moreover, the capacity | capacitance fall of the cell by the oxidation of the negative electrode plate by a crack can be suppressed. Furthermore, since the deformation of the partition walls is suppressed, variations in the group pressures of the cells C1, C5, and C6 that cause a short life of the battery 11 and a rapid capacity reduction are suppressed. Further, since the end of the electrode plate is not deformed by the deformation of the partition wall 4 to cause an internal short circuit, the battery voltage is adjusted by housing the first spacer 7 as a dummy cell in the battery case 2. The reliability of the control valve type lead storage battery can be remarkably improved.

なお、第2のスペーサ12は、隔壁4の変形を抑制するに十分な強度を有し、かつ耐酸性を有した材料で構成すべきことは自明であり、例えば、第2のスペーサを図4に示したようなブロック形状のPP樹脂塊としてもよい。なお、図4に示した第2のスペーサの形状は、あくまでも例示であって、隔壁4の変形を抑制できる形状であれば、他の形状も採用できることは明らかである。   It is obvious that the second spacer 12 should be made of a material having sufficient strength to suppress deformation of the partition wall 4 and having acid resistance. For example, the second spacer 12 is formed as shown in FIG. It is good also as a block-shaped PP resin lump as shown in. The shape of the second spacer shown in FIG. 4 is merely an example, and it is obvious that other shapes can be adopted as long as the shape of the partition 4 can be suppressed.

(本発明の第2の実施の形態)
図6は、本発明の第2の実施形態による制御弁式鉛蓄電池(以下、電池21)の構成を示す図である。
(Second embodiment of the present invention)
FIG. 6 is a diagram showing a configuration of a control valve type lead storage battery (hereinafter referred to as battery 21) according to the second embodiment of the present invention.

電池21は、前記した電池11の構成を有するとともに、第2のスペーサ12のセル室5への固定構造を有する。すなわち、電池21においては、第2のスペーサ12のセル配列方向の両端に溝部12aを形成するとともに、この溝部12aに対向する隔壁4および/もしくは電槽壁2aの内壁に、溝部12aに収納されるリブ状突起2cを配置する。   The battery 21 has the structure of the battery 11 described above and a structure for fixing the second spacer 12 to the cell chamber 5. That is, in the battery 21, the groove 12 a is formed at both ends of the second spacer 12 in the cell arrangement direction, and is accommodated in the groove 12 a on the partition wall 4 and / or the inner wall of the battery case wall 2 a facing the groove 12 a. The rib-like protrusion 2c is disposed.

このような電池21の構成によれば、電池11で得られる作用効果に加えて、第2のスペーサ12のセル室5の内部での位置決め固定が容易に為されるという効果がある。また、電池21に激しい衝撃や振動が加えられても第2のスペーサ12がセル室5の内部でその位置がずれたり、隔壁4あるいは電槽壁2aからずれることがないため、本発明の効果を損なうことなく、安定して得ることができる。   According to such a configuration of the battery 21, in addition to the operational effects obtained by the battery 11, there is an effect that the positioning and fixing of the second spacer 12 inside the cell chamber 5 can be easily performed. In addition, even if a severe impact or vibration is applied to the battery 21, the position of the second spacer 12 does not shift inside the cell chamber 5 and does not shift from the partition wall 4 or the battery case wall 2a. Can be obtained stably without impairing the process.

(本発明の第3の実施の形態)
図7は、本発明の第3の実施形態による制御弁式鉛蓄電池(以下、電池31)の構成を示す図である。
(Third embodiment of the present invention)
FIG. 7 is a diagram showing the configuration of a control valve type lead storage battery (hereinafter referred to as battery 31) according to the third embodiment of the present invention.

電池31は、電池11の構成に加えて、第2のスペーサ12のセル室5への固定構造を有する。すなわち、隔壁4および電槽壁2aの第2のスペーサ12の両端と対向する面に少なくとも一対のリブ状突起2cを設け、このリブ状突起2cの間で第2のスペーサ12の端部を位置決めする構成を有する。   The battery 31 has a structure for fixing the second spacer 12 to the cell chamber 5 in addition to the configuration of the battery 11. That is, at least a pair of rib-shaped protrusions 2c are provided on the surfaces of the partition wall 4 and the battery case wall 2a facing both ends of the second spacer 12, and the end of the second spacer 12 is positioned between the rib-shaped protrusions 2c. It has the composition to do.

電池31の構成によれば、電池11で得られる作用効果に加えて、電池21と同様、電池31に激しい衝撃や振動が加えられても第2のスペーサ12がセル室5の内部でその位置がずれたり、隔壁4あるいは電槽壁2aからずれることがないため、本発明の効果を損なうことなく、安定して得ることができる。   According to the configuration of the battery 31, in addition to the operational effects obtained by the battery 11, the position of the second spacer 12 in the cell chamber 5 is the same as that of the battery 21, even if severe impact or vibration is applied to the battery 31. Therefore, it can be stably obtained without impairing the effects of the present invention.

(本発明の第4の実施の形態)
図8は、本発明の第4の実施形態による制御弁式鉛蓄電池(以下、電池41)の構成を示す図である。
(Fourth embodiment of the present invention)
FIG. 8 is a diagram showing the configuration of a control valve type lead storage battery (hereinafter referred to as battery 41) according to the fourth embodiment of the present invention.

電池41は、前記した電池11、電池21および電池31の構成と作用効果を有する。すなわち、第2のスペーサ12のセル配列方向の両端部には溝部12aが形成されるとともに、この溝部12aには隔壁4および電槽壁2aに設けたリブ状突起2cが収納され、かつ第2のスペーサの両端部が隔壁4および電槽壁2aに設けた一対のリブ状突起2c内に収納されることによって、第2のスペーサ12のセル室5内での位置決めおよび固定をより強固なものとすることができる。   The battery 41 has the configuration and operational effects of the battery 11, the battery 21, and the battery 31 described above. That is, the groove 12a is formed at both ends of the second spacer 12 in the cell arrangement direction, and the rib 12a is provided in the groove 12a in the partition wall 4 and the battery case wall 2a. By positioning both ends of the spacer in a pair of rib-shaped protrusions 2c provided on the partition wall 4 and the battery case wall 2a, the positioning and fixing of the second spacer 12 in the cell chamber 5 can be made stronger It can be.

また、電池41は、電池11と同様の作用効果を有する。   Further, the battery 41 has the same function and effect as the battery 11.

前記した第1〜第3の実施形態では、セル室5が6個の例を述べたが、2以上の複数であれば、本発明を適用できる。   In the first to third embodiments described above, the example in which the cell chamber 5 is six has been described. However, the present invention can be applied as long as the number is two or more.

また、前記した第1〜第3の実施形態では、セル室5が6個であり、かつ第1のスペーサ7の3個をセルC1とセルC5の間に配置した例を述べたが、第1のスペーサの数は、セル室5の数よりも1少ない数を上限とし、かつ1を下限として、所望とする電圧がえられるよう、適宜選択すればよく、また、第1のスペーサ7を収納するセル室5の選択も、任意であってよい。但し、この選択によっては、第2のスペーサ12の使用個数が多くなるため、第1のスペーサ7の複数を用いる場合は、なるべく連続するセル室5に収納することが好ましい。   In the first to third embodiments described above, there are six cell chambers 5 and three first spacers 7 are arranged between the cells C1 and C5. The number of spacers of 1 may be appropriately selected so that a desired voltage can be obtained with an upper limit of 1 less than the number of cell chambers 5 and 1 as a lower limit. The selection of the cell chamber 5 to be stored may be arbitrary. However, depending on this selection, the number of the second spacers 12 to be used increases. Therefore, when a plurality of the first spacers 7 are used, it is preferable to store them in the continuous cell chamber 5 as much as possible.

以上、述べたように、本発明の構成によれば、セル室にダミーセルを収納することによって電圧の調整を可能として電槽の共用化を図った制御弁式鉛蓄電池において、セルを収納したセル室の隔壁の変形により電槽の破損や、これによる漏液やセルの容量低下を抑制するとともに、セルに加わる群圧のばらつきが抑制されるため、これによる短寿命を抑制することができる。また、極板の収納方向によっては、隔壁4の変形が極板の端部を変形させ、セルが内部短絡して、容量低下することがあったが、本発明では、このような課題をも解決することができる。   As described above, according to the configuration of the present invention, in the control valve type lead storage battery in which the voltage can be adjusted by storing the dummy cell in the cell chamber and the battery case is shared, the cell storing the cell The deformation of the partition wall of the chamber suppresses breakage of the battery case, leakage due to this, and a decrease in the capacity of the cell, and also suppresses variation in group pressure applied to the cell, thereby suppressing a short life. Depending on the storage direction of the electrode plate, the deformation of the partition wall 4 may deform the end of the electrode plate, causing the cell to short-circuit internally, resulting in a decrease in capacity. Can be solved.

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

(比較例の電池A)
比較例の電池Aは、図2に示した構成を有する電池1′である。Pb−Sn−Ca合金からなる正極格子に正極活物質を充填した正極板6枚と、同じくPb−Sn−Ca合金からなる負極格子に負極活物質を充填した負極板7枚を、ガラスマットセパレータを介し、交互に積層してセルとした。
(Comparative battery A)
The battery A of the comparative example is a battery 1 ′ having the configuration shown in FIG. A glass mat separator comprising six positive electrode plates filled with a positive electrode active material in a positive electrode lattice made of Pb-Sn-Ca alloy and seven negative electrode plates filled with a negative electrode active material in a negative electrode lattice made of Pb-Sn-Ca alloy. Then, the cells were alternately stacked to form a cell.

このセルを、6個のセル室が一列に配列された、12V用のABS樹脂製電槽の、負極端子側から1、5、6セル目に収納し、残りの2、3、4セル目には発泡ウレタン製の第1のスペーサ7を収納した電池である。なお、電池1′は、12V用電槽に3セルを収納し、直列接続したので、6V電池であり、10時間率定格容量は100Ahである。   This cell is stored in the first, fifth, and sixth cells from the negative electrode terminal side of the 12V ABS resin battery case in which six cell chambers are arranged in a row, and the remaining second, third, and fourth cells. Is a battery containing a first spacer 7 made of urethane foam. The battery 1 'is a 6V battery because 3 cells are housed in a 12V battery case and connected in series, and the 10 hour rate rated capacity is 100Ah.

(本発明例の電池B)
本発明例の電池Bは、図4に示した構成を有する電池11である。本発明の電池BはABS樹脂製の直方体形状を有した第2のスペーサ12をセルに収納したセル室内に梁状に配置している。
(Battery B of the present invention example)
The battery B of the example of the present invention is the battery 11 having the configuration shown in FIG. In the battery B of the present invention, the second spacer 12 having a rectangular parallelepiped shape made of ABS resin is arranged in a beam shape in a cell chamber in which the cell is accommodated.

(本発明例の電池C)
本発明例の電池Cは、図6に示した構成を有する電池21である。電池Cは、電池Bと同様、第2のスペーサ12を有するが、第2のスペーサ12の両端に溝部12aが形成され、この溝部12aと、電槽壁2aおよび隔壁4に設けたリブ状突起2cとが嵌合固定した構成を有する。
(Battery C of the present invention example)
The battery C of the example of the present invention is the battery 21 having the configuration shown in FIG. The battery C, like the battery B, has a second spacer 12, but a groove 12 a is formed at both ends of the second spacer 12, and the groove 12 a and rib-shaped protrusions provided on the battery case wall 2 a and the partition wall 4. 2c is fitted and fixed.

(本発明例の電池D)
本発明例の電池Dは、図7に示した構成を有する電池31である。電池Dは、電池Bと同様、第2のスペーサ12を有するが、第2のスペーサ12の両端部が、電槽壁2aおよび隔壁4に設けたリブ状突起2cによって挟持固定された構成を有する。
(Battery D of the present invention example)
The battery D of the example of the present invention is a battery 31 having the configuration shown in FIG. The battery D has the second spacer 12 like the battery B, but has a configuration in which both end portions of the second spacer 12 are sandwiched and fixed by rib-shaped protrusions 2 c provided on the battery case wall 2 a and the partition wall 4. .

(本発明例の電池E)
本発明例の電池Eは、図8に示した構成を有する電池41である。なお、第1のスペーサ7を収納するセル室5の位置は、前記の電池A〜Eと変わるところはなく、したがって、セルを収納するセル室5の位置も前記の電池A〜Eと変わるところはない。
(Battery E of the present invention example)
The battery E of the present invention example is a battery 41 having the configuration shown in FIG. The position of the cell chamber 5 that houses the first spacer 7 is not different from the batteries A to E. Therefore, the position of the cell chamber 5 that accommodates the cell is also different from the batteries A to E. There is no.

電池Eは、第2のスペーサ12の両端には溝部12aが設けられており、この溝部12aに電槽壁2aおよび隔壁4に設けたリブ状突起2cが嵌合しているとともに、第2のスペーサ12の両端部の両側部が一対のリブ状突起2cによって挟持固定された構成を有する。   In the battery E, a groove 12a is provided at both ends of the second spacer 12, and a rib-like protrusion 2c provided on the battery case wall 2a and the partition wall 4 is fitted in the groove 12a. Both side portions of both ends of the spacer 12 are sandwiched and fixed by a pair of rib-shaped protrusions 2c.

上記の各電池において、電槽壁2aおよび電槽壁2bの厚みは5.0mmであり、隔壁4の厚みは2.0mmである。なお、リブ状突起2cの高さは1.0mm、幅1.0mmであり、セル室5の底部から、負極ストラップ6′の上面まで連続した線状に形成している。   In each of the above batteries, the thickness of the battery case wall 2a and the battery case wall 2b is 5.0 mm, and the thickness of the partition wall 4 is 2.0 mm. The rib-shaped protrusion 2c has a height of 1.0 mm and a width of 1.0 mm, and is formed in a continuous line from the bottom of the cell chamber 5 to the upper surface of the negative electrode strap 6 ′.

(実施例1)
上記の各電池A〜Eについて容量確認を行い、初期容量が100Ah以上であることを確認した後、これら各電池を満充電状態とし、その後、各電池を25℃環境下で1〜3ヶ月間放置した後の、各電池の外観と残存容量の確認を行なった。その結果を表1に示す。
Example 1
After confirming the capacity of each of the batteries A to E and confirming that the initial capacity is 100 Ah or more, the batteries are fully charged, and then the batteries are placed in a 25 ° C. environment for 1 to 3 months. After leaving it to stand, the appearance and remaining capacity of each battery were confirmed. The results are shown in Table 1.

Figure 2010123365
Figure 2010123365

表1の結果から、比較例の電池Aは放置中に電槽底壁の隔壁と交わる部分でクラックが発生しており、このクラックから漏液が発生していた。また、残存容量も放置期間にしたがって急激に低下しており、漏液とともに、セル室の気密が保てなかったことによる負極板の酸化劣化による容量低下が進行したと考えられる。なお、隔壁は著しい変形が認められた。   From the results of Table 1, cracks occurred in the battery A of the comparative example at the portion where it intersected with the partition wall on the bottom wall of the battery case during standing, and liquid leakage occurred from the cracks. In addition, the remaining capacity also rapidly decreases with the standing period, and it is considered that the capacity decrease due to the oxidative deterioration of the negative electrode plate due to the leakage of liquid and the lack of airtightness in the cell chamber. In addition, the remarkable deformation | transformation was recognized by the partition.

なお、本発明例のものは、電池外観に全く異常はなく、漏液も発生しておらず、セル室の気密も維持されていた。放置期間に応じて、残存容量が低下していくが、この程度の低下は自己放電の範疇であり、何ら問題のないものであった。   In the example of the present invention, there was no abnormality in the battery appearance, no liquid leakage occurred, and the airtightness of the cell chamber was maintained. The remaining capacity decreases with the standing period, but such a decrease is in the category of self-discharge and has no problem.

(実施例2)
次に、上記の各電池A〜Eを新たに準備し、実施例1と同様、容量確認の後、満充電状態とした。そして、この各電池に故意に衝撃を加えた後、実施例1と同様の条件で放置を行なったときの電池の外観と残存容量の確認を行なった。なお、加えた衝撃は、各電池の電槽2の電槽壁2bを衝突面として、コンクリート床上に10cmの高さから3回落下させた。実施例2での結果を表2に示す。
(Example 2)
Next, each of the batteries A to E described above was newly prepared, and in the same manner as in Example 1, after the capacity was confirmed, the batteries were fully charged. Then, after deliberately applying an impact to each battery, the appearance and remaining capacity of the battery when it was left under the same conditions as in Example 1 were confirmed. The applied impact was dropped three times from a height of 10 cm on the concrete floor using the battery case wall 2b of the battery case 2 of each battery as a collision surface. The results in Example 2 are shown in Table 2.

Figure 2010123365
Figure 2010123365

表2に示した結果から、比較例の電池は、実施例1と同様の結果を示したが、特に、容量低下が激しく、放置前に加えた衝撃によって、クラックの発生が助長されたと推測される。   From the results shown in Table 2, the battery of the comparative example showed the same result as that of Example 1, but it was speculated that the generation of cracks was promoted by the impact applied before standing, especially because the capacity was drastically decreased. The

一方、本発明例においては、電池Bが電槽底壁の隔壁と交わる部分で微小なクラックが発生していたが、漏液を発生させる程度のものではなかった。しかしながら、この微小なクラックによって、気密が損なわれ、容量低下が他の電池C〜Eよりも多く見られた。この電池について分解したところ、第2のスペーサ12の位置が落下衝撃によって若干ずれており、これによって減圧時の隔壁4の変形抑制効果が低下したと推測される。   On the other hand, in the example of the present invention, a minute crack was generated at the portion where the battery B intersected with the partition wall of the bottom wall of the battery case, but it was not enough to cause leakage. However, the airtightness was lost due to the minute cracks, and the capacity was decreased more than other batteries C to E. When this battery was disassembled, the position of the second spacer 12 was slightly shifted due to the drop impact, and it is presumed that the effect of suppressing deformation of the partition wall 4 during decompression was lowered.

一方、電池C〜Dについては、衝撃の有無に係わらず、電池外観、残存容量の顕著な低下もなく、極めて良好な状態で保存されていた。これらの電池も分解したが、第2のスペーサ12の位置ずれもなく、セル室内の正規の位置に固定されており、本発明の効果が安定して得られたと考えられる。   On the other hand, the batteries C to D were stored in a very good state without any significant decrease in battery appearance and remaining capacity regardless of the presence or absence of impact. Although these batteries were also disassembled, it is considered that the effect of the present invention was stably obtained because the second spacer 12 was not displaced and was fixed at a regular position in the cell chamber.

以上、本発明例の実施例B〜Eの電池は、比較例の電池Aに比較して、充電した後の放置によっても減圧に起因するクラックが発生せず、信頼性が高い電池が得られた。また、特に電池C〜Eについては、衝撃が加わった場合においても本発明の効果が損なわれず、耐衝撃性に優れた電池を得ることができた。   As described above, the batteries of Examples B to E according to the present invention do not generate cracks due to the reduced pressure even when left after being charged, as compared with the battery A of the comparative example, and a battery having high reliability can be obtained. It was. In particular, for the batteries C to E, even when an impact was applied, the effect of the present invention was not impaired, and a battery excellent in impact resistance could be obtained.

本発明は、様々な用途の制御弁式鉛蓄電池として有用である。   The present invention is useful as a control valve type lead acid battery for various applications.

制御弁式鉛蓄電池の電槽へのセル収納状態を示す図The figure which shows the cell accommodation state to the battery case of a control valve type lead acid battery ダミーセルを有した制御弁式鉛蓄電池の電槽へのセル収納状態を示す図The figure which shows the cell accommodation state to the battery case of the control valve type lead acid battery which has a dummy cell ダミーセルを有した制御弁式鉛蓄電池の隔壁が変形した状態を示す図The figure which shows the state which the partition of the control valve type lead acid battery which has a dummy cell deform | transformed 本発明の第1の実施形態による制御弁式鉛蓄電池を示す図The figure which shows the control valve type lead acid battery by the 1st Embodiment of this invention. 本発明の第1の実施形態による制御弁式鉛蓄電池のセル室が減圧した状態を示す図The figure which shows the state which the cell chamber of the control valve type lead acid battery by the 1st Embodiment of this invention pressure-reduced. 本発明の第2の実施形態による制御弁式鉛蓄電池を示す図The figure which shows the control valve type lead acid battery by the 2nd Embodiment of this invention. 本発明の第3の実施形態による制御弁式鉛蓄電池を示す図The figure which shows the control valve type lead acid battery by the 3rd Embodiment of this invention. 本発明の第4の実施形態による制御弁式鉛蓄電池の要部を示す図The figure which shows the principal part of the control valve type lead acid battery by the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1,1′ 電池
2 電槽
2a 電槽壁
2b 電槽壁
2c リブ状突起
3 接続体
4 隔壁
5 セル室
6 正極ストラップ
6′ 負極ストラップ
7 第1のスペーサ
8 接続バー
9 正極柱
9′ 負極柱
11 電池
12 第2のスペーサ
12a 溝部
21 電池
31 電池
41 電池
C1,C2,C3,C4,C5,C6 セル
DESCRIPTION OF SYMBOLS 1,1 'Battery 2 Battery case 2a Battery case wall 2b Battery case wall 2c Rib-like protrusion 3 Connection body 4 Partition 5 Cell chamber 6 Positive electrode strap 6' Negative electrode strap 7 First spacer 8 Connection bar 9 Positive electrode column 9 'Negative electrode column 11 Battery 12 Second Spacer 12a Groove 21 Battery 31 Battery 41 Battery C1, C2, C3, C4, C5, C6 Cell

Claims (3)

電槽内が隔壁により複数のセル室に区画され、
前記セル室は列状に配列され、
前記セル室の少なくとも一に、第1のスペーサが収納され、
前記第1のスペーサを収納したセル室を除くセル室には、電池セルとして機能する、正極板、セパレータおよび負極板からなるセルが収納され、
前記第1のスペーサを収納したセル室に隣接し、かつ前記セルが収納されたセル室に前記セルの配列方向に梁状の第2のスペーサを配置したことを特徴とする制御弁式鉛蓄電池。
The inside of the battery case is partitioned into a plurality of cell chambers by partition walls,
The cell chambers are arranged in a row,
A first spacer is accommodated in at least one of the cell chambers,
In the cell chambers excluding the cell chamber in which the first spacer is accommodated, a cell composed of a positive electrode plate, a separator, and a negative electrode plate, which functions as a battery cell, is accommodated.
A control valve type lead-acid battery, wherein a beam-shaped second spacer is arranged in the cell arrangement direction adjacent to the cell chamber containing the first spacer and in the cell chamber containing the cell. .
前記第2のスペーサの前記隔壁および/もしくは前記電槽の内壁と対向する面に溝部を設けるとともに、
前記隔壁および前記内壁にリブ状突起を設け、
前記溝部にリブ状突起を収納することによって、前記第2のスペーサを前記リブ状突起に嵌合する請求項1に記載の制御弁式鉛蓄電池。
Providing a groove on a surface of the second spacer facing the partition wall and / or the inner wall of the battery case;
Providing rib-like projections on the partition wall and the inner wall;
The control valve type lead-acid battery according to claim 1, wherein the second spacer is fitted into the rib-shaped protrusion by accommodating the rib-shaped protrusion in the groove.
前記隔壁および前記内壁に少なくとも一対の前記リブ状突起を設け、これらリブ状突起間に前記第2のスペーサの端部を収納することを特徴とする請求項1もしくは2に記載の制御弁式鉛蓄電池。 3. The control valve-type lead according to claim 1, wherein at least a pair of rib-shaped protrusions are provided on the partition wall and the inner wall, and an end of the second spacer is accommodated between the rib-shaped protrusions. Storage battery.
JP2008295222A 2008-11-19 2008-11-19 Control valve type lead-acid storage battery Pending JP2010123365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295222A JP2010123365A (en) 2008-11-19 2008-11-19 Control valve type lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295222A JP2010123365A (en) 2008-11-19 2008-11-19 Control valve type lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2010123365A true JP2010123365A (en) 2010-06-03

Family

ID=42324537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295222A Pending JP2010123365A (en) 2008-11-19 2008-11-19 Control valve type lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2010123365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127789A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Lead storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101964U (en) * 1984-12-12 1986-06-28
JPS6321762A (en) * 1986-07-15 1988-01-29 Matsushita Electric Ind Co Ltd Sealed lead-acid battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101964U (en) * 1984-12-12 1986-06-28
JPS6321762A (en) * 1986-07-15 1988-01-29 Matsushita Electric Ind Co Ltd Sealed lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127789A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Lead storage battery

Similar Documents

Publication Publication Date Title
JP5340360B2 (en) Secondary battery
JP6638795B2 (en) Lead storage battery and method of manufacturing the same
CN103828086A (en) Battery cell having a novel structure
US10014498B2 (en) Prismatic battery cell having battery case comprising two or more members
WO2017159299A1 (en) Lead storage battery
WO2012127789A1 (en) Lead storage battery
KR101684365B1 (en) A battery cell of vertical stacking structure
JP2010123365A (en) Control valve type lead-acid storage battery
KR20170030791A (en) Electrode assembly and secondary battery comprising the same
CN100466360C (en) Cylindrical lithium rechargeable battery
JP2004234899A (en) Secondary battery module
JP5150012B1 (en) Lead acid battery
CN209434340U (en) The device of battery unit and the battery case for manufacturing battery unit
CN212182457U (en) Button type lithium carbon fluoride battery
US20120282517A1 (en) Electrochemical cell and method for producing such a cell
JP2013191351A (en) Lead acid battery
KR101587861B1 (en) Battery Having Improved Productivity and Performance
KR102083261B1 (en) Battery cell tab connecting partition apparatus and battery modul by using the same
JP5034543B2 (en) Lead acid battery
EP4300647A1 (en) Electrode assembly and battery cell including same
CN202996991U (en) Hydrogen-nickel button cell
KR101894148B1 (en) Battery pack assembly type sealed lead acid battery
KR102597528B1 (en) High voltage battery cell
KR200489031Y1 (en) Large capacity lead storage battery of single cell structure
KR100912787B1 (en) Hybrid-typed Electrode Assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110913

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723