JP2010121505A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP2010121505A
JP2010121505A JP2008295287A JP2008295287A JP2010121505A JP 2010121505 A JP2010121505 A JP 2010121505A JP 2008295287 A JP2008295287 A JP 2008295287A JP 2008295287 A JP2008295287 A JP 2008295287A JP 2010121505 A JP2010121505 A JP 2010121505A
Authority
JP
Japan
Prior art keywords
temperature
injection
exhaust
timing
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008295287A
Other languages
Japanese (ja)
Other versions
JP5187156B2 (en
Inventor
Yoshihiro Imaoka
佳宏 今岡
Keiji Kawamoto
桂二 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008295287A priority Critical patent/JP5187156B2/en
Publication of JP2010121505A publication Critical patent/JP2010121505A/en
Application granted granted Critical
Publication of JP5187156B2 publication Critical patent/JP5187156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device capable of performing post injection control excellent in transient response. <P>SOLUTION: The fuel injection control device for an internal combustion engine 1 executing post injection contributing to exhaust gas temperature rise after main injection contributing engine output, includes an exhaust gas temperature rise request generating means 10 generating an exhaust gas temperature rise demand, a temperature estimation means 10 estimating an inside-cylinder temperature or an exhaust gas temperature in an exhaust gas passage on the upstream side of an exhaust gas purification catalyst at exhaust valve open timing, and an injection control means 10 setting the injection timing and the injection quantity of the main injection and the post injection. The injection control means 10 sets the injection quantity and the injection timing of the post injection based on the inside-cylinder temperature or the exhaust gas temperature in the exhaust gas passage at the exhaust valve open timing when the temperature rise in exhaust gas is requested. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の燃料噴射制御に関し、特に、排気温度を昇温させるための燃料噴射制御に関する。   The present invention relates to fuel injection control of an internal combustion engine, and more particularly to fuel injection control for raising the exhaust temperature.

内燃機関の排気浄化触媒を活性化、再生等のために昇温するために、メイン噴射のあとにポスト噴射を行う燃料噴射制御が知られている。   Fuel injection control is known in which post injection is performed after main injection in order to raise the temperature of an exhaust purification catalyst for an internal combustion engine for activation, regeneration, and the like.

例えば、触媒温度を検知し、触媒が活性温度以上の場合にはポスト噴射時期を遅角させてHC排出量を増加させ、活性温度以下の場合にはポスト噴射時期を進角させることで排気温度を上昇させる制御が特許文献1に開示されている。
特開2004−169595号公報
For example, if the catalyst temperature is detected and the catalyst is above the activation temperature, the post injection timing is retarded to increase the HC emission amount. If the catalyst temperature is below the activation temperature, the post injection timing is advanced to increase the exhaust temperature. Japanese Patent Application Laid-Open No. H10-228688 discloses control for raising the value.
JP 2004-169595 A

しかしながら、ポスト噴射時期を変更すると、まず排気温度が変化し、この排気温度の変化によって触媒温度が変化する。つまりポスト噴射量を変化させてから触媒温度が変化するまでに遅れが生じる。このため、触媒温度に基づいてポスト噴射時期を制御する特許文献1の制御方法では、触媒温度が変化する過渡時において、触媒の昇温について改善の余地があった。   However, when the post injection timing is changed, the exhaust temperature first changes, and the catalyst temperature changes due to the change in the exhaust temperature. That is, there is a delay between the change of the post injection amount and the change of the catalyst temperature. For this reason, in the control method of Patent Document 1 that controls the post-injection timing based on the catalyst temperature, there is room for improvement in the temperature rise of the catalyst during the transition when the catalyst temperature changes.

そこで、本発明では、触媒の昇温に優れる内燃機関の制御装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a control device for an internal combustion engine that is excellent in raising the temperature of a catalyst.

本発明の内燃機関の燃料噴射制御装置は、機関出力に寄与するメイン噴射の後に、排気昇温に寄与するポスト噴射を行い得る内燃機関の燃料噴射制御装置において、排気温度の上昇要求を発する排気温度上昇要求発生手段と、排気弁開時期における筒内温度または排気浄化触媒より上流側の排気通路内の排気温度を推定する温度推定手段と、メイン噴射及びポスト噴射の噴射時期及び噴射量を設定する噴射制御手段と、を備え、排気温度上昇要求があるときに、噴射制御手段は、排気弁開時期における筒内温度または排気通路内の排気温度によって、ポスト噴射の噴射量及び噴射時期を設定する。   An internal combustion engine fuel injection control apparatus according to the present invention is an internal combustion engine fuel injection control apparatus capable of performing post-injection contributing to exhaust gas temperature increase after main injection contributing to engine output. Temperature rise request generation means, temperature estimation means for estimating the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage upstream of the exhaust purification catalyst, and the injection timing and injection amount of main injection and post injection The injection control means, and when there is a request to increase the exhaust temperature, the injection control means sets the injection amount and the injection timing of the post injection according to the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage. To do.

本発明によれば、排気弁開時期における筒内温度または排気浄化触媒より上流側の排気通路内の排気温度を推定し、触媒の昇温に優れたポスト噴射制御を行うことができる。   According to the present invention, it is possible to estimate the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage upstream of the exhaust purification catalyst, and perform post injection control excellent in raising the temperature of the catalyst.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態を適用するディーゼルエンジンのシステム構成図である。   FIG. 1 is a system configuration diagram of a diesel engine to which the present embodiment is applied.

1はディーゼルエンジン本体、2は各気筒の燃料噴射弁、3は高圧の燃料を蓄えるコモンレール、4は吸気コレクタ、5は吸気通路、11は排気通路、10は種々の制御を行うコントロールユニット、14はディーゼルエンジン本体1の駆動力を駆動軸に伝達する変速機である。なお、変速機14は有段変速機、無段変速機のいずれであっても構わない。   1 is a diesel engine body, 2 is a fuel injection valve for each cylinder, 3 is a common rail for storing high-pressure fuel, 4 is an intake collector, 5 is an intake passage, 11 is an exhaust passage, 10 is a control unit for performing various controls, 14 Is a transmission that transmits the driving force of the diesel engine body 1 to the drive shaft. The transmission 14 may be a stepped transmission or a continuously variable transmission.

本システムの燃料噴射装置は、いわゆるコモンレール式燃料噴射装置である。すなわち、高圧ポンプ9により高圧化された燃料がコモンレール3に蓄えられ、各燃料噴射弁2がコントロールユニット(ECU)10からの噴射信号に応じて開閉動作することで、コモンレール3内の燃料を気筒内に噴射する。   The fuel injection device of this system is a so-called common rail fuel injection device. That is, the fuel increased in pressure by the high-pressure pump 9 is stored in the common rail 3, and each fuel injection valve 2 opens and closes according to an injection signal from the control unit (ECU) 10. Inject into.

ディーゼルエンジン本体1の各吸気ポートに接続する吸気コレクタ4には、吸気通路5が接続し、吸気通路5には、上流側から吸入空気量を検出するためのエアフローメータ15、吸気を加圧するためのターボチャージャ6のコンプレッサ6a、加圧されて高温となった空気を冷却するインタークーラ7が設置される。   An intake passage 5 is connected to an intake collector 4 connected to each intake port of the diesel engine main body 1. An air flow meter 15 for detecting an intake air amount from the upstream side is connected to the intake passage 5, in order to pressurize intake air. The compressor 6a of the turbocharger 6 and an intercooler 7 that cools the pressurized air to a high temperature are installed.

排気通路11には、その上流側から、ターボチャージャ6のタービン6b、排気中のNOxを吸着するNOx触媒12、排気中のパティキュレート(PM)を補集する排気トラップ(DPF)13が配置される。   A turbine 6b of the turbocharger 6, a NOx catalyst 12 that adsorbs NOx in the exhaust, and an exhaust trap (DPF) 13 that collects particulates (PM) in the exhaust are arranged in the exhaust passage 11 from the upstream side. The

筒内と排気通路11との連通を断接する排気バルブは、少なくとも開閉時期を可変制御可能な可変動弁機構により駆動される。   The exhaust valve that connects / disconnects the communication between the inside of the cylinder and the exhaust passage 11 is driven by a variable valve mechanism that can variably control at least the opening / closing timing.

なお、排気通路11の前記タービン6bの上流から分岐して吸気コレクタ4に接続するEGR通路21が設けられ、このEGR通路21にはEGR弁22が設置され、運転条件に応じて吸気中に還流される排気量を制御する。   An EGR passage 21 that branches from the exhaust passage 11 upstream of the turbine 6b and is connected to the intake collector 4 is provided. An EGR valve 22 is provided in the EGR passage 21 and is recirculated into the intake air according to operating conditions. Control the amount of exhaust.

ECU10には、エンジン回転数を検出するエンジン回転数センサ16、アクセルペダルの開度を検出するアクセル開度センサ17からの各検出信号が入力される。そして、これらに基づいて、燃料噴射制御、EGR弁22の開度制御、吸気絞弁8の開度制御、DPF13内のPM堆積量の推定等を行う。また、排気温度の昇温要求の要否を判断し、排気温度昇温要求がある場合には、後述するようにポスト噴射時期及び排気弁開弁時期を変更する制御を行う。   The ECU 10 receives detection signals from an engine speed sensor 16 that detects the engine speed and an accelerator opening sensor 17 that detects the opening of the accelerator pedal. Based on these, fuel injection control, opening control of the EGR valve 22, opening control of the intake throttle valve 8, estimation of the PM accumulation amount in the DPF 13, and the like are performed. Further, it is determined whether or not a request for raising the exhaust temperature is required, and if there is a request for raising the exhaust temperature, control is performed to change the post injection timing and the exhaust valve opening timing as will be described later.

次に、燃料噴射制御について説明する。図2はECU10が実行する燃料噴射制御のフローチャートである。本フローチャートは、例えば10ms程度の短時間毎に繰り返し実行する。   Next, fuel injection control will be described. FIG. 2 is a flowchart of the fuel injection control executed by the ECU 10. This flowchart is repeatedly executed every short time of about 10 ms, for example.

ステップS10では、エンジン回転数センサ16で検出するエンジン回転数NE及びアクセル開度センサ17で検出するアクセル開度Vnを読み込む。   In step S10, the engine speed NE detected by the engine speed sensor 16 and the accelerator opening Vn detected by the accelerator opening sensor 17 are read.

ステップS20では、アクセル開度Vnから算出した要求トルクとエンジン回転数NEに基づいて、マップ検索により要求噴射量Qを算出する。ここでは、例えば図3に示すように縦軸に要求トルク、横軸にエンジン回転数NEをとり、メイン噴射量が低負荷低回転ほど少なく、高負荷高回転ほど多くなるよう設定したマップを用いる。   In step S20, the required injection amount Q is calculated by map search based on the required torque calculated from the accelerator opening degree Vn and the engine speed NE. Here, for example, as shown in FIG. 3, a map is used in which the required torque is plotted on the vertical axis and the engine rotational speed NE is plotted on the horizontal axis, and the main injection amount decreases as the low load and the low rotation increase. .

ステップS30では、排気昇温要求があるか否かを判定し、排気昇温要求がある場合はステップS40に進み、ない場合はステップS140に進む。例えば、DPF再生時期である場合や被毒解除時期である場合等に、排気昇温要求有りと判断する。DPF再生時期か否か、被毒解除時期であるか否か、については、一般に知られた方法と同様の方法で判断する。   In step S30, it is determined whether there is an exhaust gas temperature increase request. If there is an exhaust gas temperature increase request, the process proceeds to step S40, and if not, the process proceeds to step S140. For example, it is determined that there is an exhaust gas temperature increase request when it is a DPF regeneration time or a poisoning release time. Whether it is a DPF regeneration time or a poisoning release time is determined by a method similar to a generally known method.

ステップS40では、要求噴射量Qと排気昇温要求に応じた噴射量とから目標メイン噴射量及び目標メイン噴射時期を決定する。排気昇温要求に応じた噴射量は、排気温度が低い低負荷低回転から排気温度が高い高負荷高回転になるほど少なくなる。   In step S40, the target main injection amount and the target main injection timing are determined from the required injection amount Q and the injection amount corresponding to the exhaust gas temperature increase request. The injection amount in response to the exhaust gas temperature increase request decreases as the exhaust gas temperature decreases from a low load and low rotation to a high exhaust temperature and a high load and high rotation.

ステップS50では、メイン噴射量、メイン噴射時期、燃料噴射圧及びエアフローメータ15で検出した実際の空気量に基づいて、以下に説明するように簡易的な方法で排気弁開時期(EVO時)の筒内温度Tin−cylを算出する。   In step S50, based on the main injection amount, the main injection timing, the fuel injection pressure, and the actual air amount detected by the air flow meter 15, the exhaust valve opening timing (at the time of EVO) is determined by a simple method as described below. The in-cylinder temperature Tin-cyl is calculated.

まず、空気量に基づいてサイクル中の筒内圧履歴を求め、目標メイン噴射量、目標メイン噴射時期及び燃料噴射圧等に基づいて熱発生率を求める。   First, the in-cylinder pressure history during the cycle is obtained based on the air amount, and the heat generation rate is obtained based on the target main injection amount, the target main injection timing, the fuel injection pressure, and the like.

なお、熱発生率とは、クランク角の変化に対して燃料がどのような割合で燃焼したか、を示す値である。   The heat generation rate is a value indicating what rate the fuel burns with respect to the change in the crank angle.

図4は、筒内圧履歴と熱発生率について示した図であり、横軸はクランク角[deg.ATDC]、縦軸は筒内圧[MPa]及び熱発生率[J/deg]である。   FIG. 4 is a diagram showing the in-cylinder pressure history and the heat generation rate. The horizontal axis represents the crank angle [deg. ATDC], the vertical axis represents in-cylinder pressure [MPa] and heat generation rate [J / deg].

図4示すように、吸気弁が閉じた後はピストンの上昇により筒内圧が高まる。そして燃料が噴射されると、さらに燃料が燃焼することによる熱が発生する。熱発生率が立ち上がっている位置が、燃焼の開始位置に相当する。燃焼が終了すると、熱発生率はゼロになり、ピストンの降下とともに筒内圧は低下する。   As shown in FIG. 4, after the intake valve is closed, the in-cylinder pressure increases due to the piston being raised. When the fuel is injected, heat is generated by further burning the fuel. The position where the heat generation rate rises corresponds to the combustion start position. When combustion ends, the heat generation rate becomes zero, and the in-cylinder pressure decreases as the piston descends.

次に、筒内圧履歴及び熱発生率と、気体の状態方程式とから、図5に示すようにクランク角に対する筒内温度履歴を求め、EVO時における筒内温度を算出する。   Next, as shown in FIG. 5, the in-cylinder temperature history with respect to the crank angle is obtained from the in-cylinder pressure history and heat generation rate, and the gas state equation, and the in-cylinder temperature during EVO is calculated.

上記の筒内圧履歴及び熱発生率、及びこれらに基づくEVO時における筒内温度の算出には、公知の方法、例えば特開2007−247487号公報に開示された方法を適用できる。   For calculating the in-cylinder pressure history and the heat generation rate, and the in-cylinder temperature during EVO based on these, a known method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2007-247487 can be applied.

ステップS60では、EVO時の筒内温度Tin−cylが、所定の温度T1(第1温度)より低いか否かを判定し、低い場合はステップS70に進み、高い場合はステップS100に進む。   In step S60, it is determined whether or not the in-cylinder temperature Tin-cyl at the time of EVO is lower than a predetermined temperature T1 (first temperature). If low, the process proceeds to step S70, and if high, the process proceeds to step S100.

所定の温度T1は、ポスト噴射した燃料が筒内で部分酸化可能な温度を設定する。すなわち、部分酸化が不可能な温度であればステップS70に進み、可能であればステップS100に進む。   The predetermined temperature T1 sets a temperature at which the post-injected fuel can be partially oxidized in the cylinder. That is, if the temperature is such that partial oxidation is not possible, the process proceeds to step S70, and if possible, the process proceeds to step S100.

ステップS70では、EVO進角可能範囲を算出する。EVO進角可能範囲とは、通常運転時のEVOよりも進角側で、かつ運転状態から定まる要求機関負荷を確保できるEVOの範囲をいう。例えば図6中のEVO〜EVOIの範囲である。   In step S70, an EVO advanceable range is calculated. The EVO advanceable range refers to an EVO range in which the required engine load determined from the operating state can be ensured on the advance side with respect to EVO during normal operation. For example, the range is from EVO to EVOI in FIG.

ステップS80では、EVO進角可能範囲の最進角位置までEVOを進角し、ステップS90では、ポスト噴射時期をEVOよりも後の、排気バルブが開いている状態に設定する。これにより、ポスト噴射された燃料が高温の排気とともにNOx触媒12及びDPF13に送り込まれる。   In step S80, the EVO is advanced to the most advanced position within the EVO advanceable range, and in step S90, the post injection timing is set to a state in which the exhaust valve is open after EVO. Thereby, the post-injected fuel is sent to the NOx catalyst 12 and the DPF 13 together with the high-temperature exhaust gas.

ステップS100では、筒内温度Tin−cylが所定の温度T2(第2温度)より低いか否かを判定し、低い場合はステップS110に進み、高い場合はステップS130に進む。ここで、所定の温度T2は、所定温度T1より高温の、例えばNOx触媒12の活性温度とする。   In step S100, it is determined whether or not the in-cylinder temperature Tin-cyl is lower than a predetermined temperature T2 (second temperature). If low, the process proceeds to step S110, and if high, the process proceeds to step S130. Here, the predetermined temperature T2 is, for example, the activation temperature of the NOx catalyst 12, which is higher than the predetermined temperature T1.

ステップS110では、ポスト噴射時期を主燃焼(メイン噴射した燃料の燃焼)が終わった直後に設定する。これにより、ポスト噴射した燃料の部分酸化が行われる。   In step S110, the post injection timing is set immediately after the main combustion (combustion of the main injected fuel) is completed. Thereby, the partial oxidation of the post-injected fuel is performed.

ステップS120では、EVOをポスト噴射時期またはポスト噴射中に設定する。
これにより、ポスト噴射した燃料によるオイル希釈を防止でき、また排気温度がある程度上昇しているため、NOx触媒12までの排気通路11内でも燃料の部分酸化が行われる。このため、排気昇温に要する時間を短縮することができる。また、冷機始動時等にはNOx触媒12、DPF13の活性化が促進され、未燃HC発生を抑制することができる。
In step S120, EVO is set to post injection timing or during post injection.
As a result, oil dilution by post-injected fuel can be prevented, and the exhaust temperature has risen to some extent, so that partial oxidation of the fuel is also performed in the exhaust passage 11 to the NOx catalyst 12. For this reason, the time required for exhaust gas temperature raising can be shortened. Further, when the cold machine is started, the activation of the NOx catalyst 12 and the DPF 13 is promoted, and the generation of unburned HC can be suppressed.

ステップS130では、ポスト噴射時期をEVOより後の時期に設定する。これにより、ポスト噴射が排気バルブ開弁中に行われることとなり、ポスト噴射により噴射された燃料が効果的にNOx触媒12、DPF13に送り込まれ、排気昇温が促進される。なお、吸気弁と排気弁のいずれもが開弁している、いわゆるバルブオーバーラップ中にポスト噴射を行うように設定しても、同様の効果が得られる。   In step S130, the post injection timing is set to a time after EVO. As a result, post injection is performed while the exhaust valve is open, and the fuel injected by the post injection is effectively sent to the NOx catalyst 12 and the DPF 13, and the temperature rise of the exhaust is promoted. Note that the same effect can be obtained even if post-injection is set during so-called valve overlap in which both the intake valve and the exhaust valve are open.

ステップS140では、一般的なエンジンと同様に目標メイン噴射量、目標メイン噴射時期を設定して運転する。   In step S140, operation is performed with the target main injection amount and the target main injection timing set as in the case of a general engine.

上記の制御における筒内温度領域、バルブタイミング、及びポスト噴射時期についてまとめると、図6、図7のようになる。図6に示すように、筒内温度Tin−cylを所定温度T1以下の領域I、所定温度T1より高温かつ所定温度T2以下の領域II、所定温度T2より高温の領域IIIの3つの領域に分けられる。   The in-cylinder temperature region, valve timing, and post injection timing in the above control are summarized as shown in FIGS. As shown in FIG. 6, the in-cylinder temperature Tin-cyl is divided into three regions: a region I below the predetermined temperature T1, a region II above the predetermined temperature T1 and below the predetermined temperature T2, and a region III above the predetermined temperature T2. It is done.

図7は、領域I〜IIIのEVO及びポスト噴射時期の一例を示す図である。   FIG. 7 is a diagram illustrating an example of EVO and post-injection timing in regions I to III.

領域Iでは、EVO時期を通常EVOからEVO進角可能範囲で最も進角したEVOIまで進角し、EVOI後のクランク角領域ITiでポスト噴射を行う。   In region I, the EVO timing is advanced from normal EVO to EVOI which is the most advanced in the EVO advanceable range, and post-injection is performed in the crank angle region ITi after EVOI.

領域IIでは、主燃焼終了後のクランク角領域ITiiでポスト噴射を行い、EVOもこの範囲内に設定する。   In region II, post injection is performed in the crank angle region ITii after the end of main combustion, and EVO is also set within this range.

領域IIIでは、ポスト噴射を行うのは通常EVO後のクランク角領域ITiii、またはバルブオーバーラップ期間中とする。   In region III, post-injection is normally performed during the crank angle region ITiii after EVO, or during the valve overlap period.

ポスト噴射量は、昇温要求に応じて決まるものである。したがって、温度が相対的に高い領域IIIでは領域I、領域IIに比べて少なくなる。一方、領域Iは領域IIよりEVO時の筒内温度Tin−cylが低いが、ポスト噴射量は少なくなる。これは、相対的にEVO時の筒内温度Tin−cylが低い領域Iでは、燃料が部分酸化しにくく、またNOx触媒12が活性化していないので、ポスト噴射量を制限することで、未燃HC排出量の増大を防止するためである。   The post injection amount is determined according to the temperature increase request. Therefore, the region III having a relatively high temperature is smaller than the region I and the region II. On the other hand, in the region I, the in-cylinder temperature Tin-cyl at the time of EVO is lower than that in the region II, but the post injection amount is small. This is because in the region I where the in-cylinder temperature Tin-cyl at the time of EVO is relatively low, the fuel is difficult to be partially oxidized and the NOx catalyst 12 is not activated. This is to prevent an increase in HC emissions.

なお、EVO時の筒内温度Tin−cylの代わりに、NOx触媒12より上流側の排気通路11内の排気温度Texhを算出するようにしてもよい。   Note that the exhaust temperature Texh in the exhaust passage 11 upstream of the NOx catalyst 12 may be calculated instead of the in-cylinder temperature Tin-cyl during EVO.

以上により本実施形態によれば、次のような効果を得ることができる。   As described above, according to the present embodiment, the following effects can be obtained.

(1)メイン噴射の後に排気昇温のためのポスト噴射を行うことができる内燃機関の燃料噴射制御装置において、排気昇温要求があるときに、EVO時における筒内温度Tin−cylまたはNOx触媒12より上流側の排気通路11内の排気温度Texhが予め複数に区分された温度領域I〜IIIのいずれに属するかによって、ポスト噴射の噴射量及び噴射時期を設定するので、応答性に優れたポスト噴射の制御を行うことができる。   (1) In a fuel injection control device for an internal combustion engine capable of performing post injection for raising the temperature of exhaust after main injection, when there is a request for raising the temperature of exhaust gas, an in-cylinder temperature Tin-cyl or NOx catalyst at the time of EVO Since the post-injection injection amount and the injection timing are set depending on which of the temperature regions I to III the exhaust temperature Texh in the exhaust passage 11 upstream of 12 belongs to in advance, the responsiveness is excellent Post injection can be controlled.

(2)筒内温度Tin−cylまたは排気温度Texhを、実際の吸入空気量、メイン噴射時期及びメイン噴射量、並びにEVO時期に基づいて算出するので、応答性に優れたポスト噴射制御を行うために必要な温度を正確に推定することができる。   (2) In-cylinder temperature Tin-cyl or exhaust temperature Texh is calculated based on the actual intake air amount, main injection timing and main injection amount, and EVO timing, so that post-injection control with excellent responsiveness is performed. It is possible to accurately estimate the temperature required for the operation.

(3)排気昇温要求がある場合に、筒内温度Tin−cylまたは排気温度Texhが領域Iに属するときには、EVOを進角させ、ポスト噴射時期をEVOより後に設定するので、高温の排気ガスを排出しつつポスト噴射を行うこととなり、排気昇温及びNOx触媒12の活性化を促進することができ、かつ未燃HCの排出を抑制することができる。   (3) When there is an exhaust gas temperature increase request and the in-cylinder temperature Tin-cyl or the exhaust gas temperature Texh belongs to the region I, the EVO is advanced and the post injection timing is set after the EVO. Post injection is performed while exhausting the exhaust gas, so that the temperature rise of the exhaust gas and the activation of the NOx catalyst 12 can be promoted, and the discharge of unburned HC can be suppressed.

(4)排気昇温要求がある場合に、筒内温度Tin−cylまたは排気温度Texhが領域Iに属するときには、膨張行程中の予め設定したクランク角から通常運転時のEVOに相当するクランク角までの間でポスト噴射を行うので、ポスト噴射により噴射された燃料が筒内または排気通路11内で部分酸化される。これにより排気昇温及びNOx触媒12の活性化を促進することができ、かつ未燃HCの排出を抑制することができる。   (4) When there is an exhaust temperature increase request and the in-cylinder temperature Tin-cyl or the exhaust temperature Texh belongs to the region I, from a crank angle set in advance during an expansion stroke to a crank angle corresponding to EVO during normal operation Therefore, the fuel injected by the post injection is partially oxidized in the cylinder or the exhaust passage 11. As a result, the temperature rise of the exhaust gas and the activation of the NOx catalyst 12 can be promoted, and the discharge of unburned HC can be suppressed.

(5)さらに、EVOをポスト噴射開始時期またはポスト噴射中のいずれかの時期まで進角させるので、ポスト噴射によるオイル希釈を抑制することができる。   (5) Furthermore, since the EVO is advanced to either the post injection start timing or the post injection timing, oil dilution by post injection can be suppressed.

(6)排気昇温要求がある場合に、内温度Tin−cylまたは排気温度Texhが領域IIIに属するときには、EVO以降またはバルブオーバーラップ期間中にポスト噴射を行う、すなわち、NOx触媒が活性化した状態では、排気弁が開弁して排気流速が大きい状態でポスト噴射を行うので、燃料がNOx触媒12、DPF13に効率よく導かれ、排気昇温が促進される。   (6) When there is an exhaust temperature increase request and the internal temperature Tin-cyl or the exhaust temperature Texh belongs to the region III, post injection is performed after EVO or during the valve overlap period, that is, the NOx catalyst is activated. In this state, post-injection is performed in a state where the exhaust valve is opened and the exhaust flow rate is high, so that the fuel is efficiently guided to the NOx catalyst 12 and the DPF 13, and the temperature rise of the exhaust is promoted.

(7)温度T1を、筒内またはNOx触媒12より上流側の排気通路11内で燃料が部分酸化可能な温度に設定するので、T1より低温では排気通路11の昇温を優先的に行い、T1以上では排気通路11での燃料の部分酸化が可能となる。   (7) Since the temperature T1 is set to a temperature at which the fuel can be partially oxidized in the cylinder or in the exhaust passage 11 upstream of the NOx catalyst 12, the temperature of the exhaust passage 11 is preferentially raised at a temperature lower than T1, Above T1, partial oxidation of the fuel in the exhaust passage 11 is possible.

(8)温度T2を、NOx触媒12の活性温度に設定するので、T2より低温ではNOx触媒12の昇温を優先的に行い、T2以上ではNOx触媒12における燃焼による排気昇温の促進が可能となる。   (8) Since the temperature T2 is set to the activation temperature of the NOx catalyst 12, the temperature of the NOx catalyst 12 is preferentially raised at a temperature lower than T2, and the temperature rise of the exhaust gas by combustion in the NOx catalyst 12 can be promoted at T2 or higher. It becomes.

第2実施形態について説明する。   A second embodiment will be described.

本実施形態は、システムの構成は第1実施形態と同様であるが、ポスト噴射制御の一部が異なる。   In this embodiment, the system configuration is the same as that of the first embodiment, but part of the post injection control is different.

図8は本実施形態のポスト噴射制御の制御ルーチンを示すフローチャートである。図2のフローチャートと異なるのはステップS270〜S290なので、この部分についてのみ説明する。   FIG. 8 is a flowchart showing a control routine of post injection control according to this embodiment. Since steps S270 to S290 are different from the flowchart of FIG. 2, only this portion will be described.

ステップS270では、メイン噴射時期の遅角可能範囲を算出する。メイン噴射遅角可能範囲とは、通常運転時のメイン噴射時期よりも遅角側で、かつ運転状態から定まる要求機関負荷を確保できるメイン噴射時期の範囲をいう。   In step S270, a retardable range of the main injection timing is calculated. The main injection retardable range is a range of the main injection timing that can ensure the required engine load that is retarded from the main injection timing during normal operation and determined from the operating state.

ステップS280では、ステップS270で算出した遅角可能範囲内でメイン噴射時期を設定する。   In step S280, the main injection timing is set within the retardable range calculated in step S270.

ステップS290では、ポスト噴射時期及び噴射量を設定する。ここでは、予め設定した所定の噴射時期及び噴射量よりも早いタイミング、少ない噴射量を設定する。予め設定した所定の噴射時期は、例えばポスト噴射による燃焼で失火が生じてしまう噴射時期とする。一方、予め設定した所定の噴射量は、例えばポスト噴射した場合に失火が生じてしまう噴射量とする。   In step S290, the post injection timing and the injection amount are set. Here, a timing earlier than a predetermined injection timing and injection amount set in advance and a small injection amount are set. The predetermined injection timing set in advance is, for example, an injection timing at which misfire occurs due to combustion by post injection. On the other hand, the predetermined injection amount set in advance is, for example, an injection amount that causes misfire when post injection is performed.

すなわち、ポスト噴射を行った場合に、ポスト噴射により噴射された燃料が筒内で燃焼しきるような噴射時期及び噴射量に設定する。なお、ポスト噴射を禁止するようにしてもよい。   That is, when post-injection is performed, the injection timing and the injection amount are set so that the fuel injected by post-injection can be combusted in the cylinder. Note that post injection may be prohibited.

以上により本実施形態では、次のような効果を得ることができる。   As described above, in the present embodiment, the following effects can be obtained.

排気昇温要求がある場合に、筒内温度Tin−cylまたは排気温度Texhが領域Iに属するときには、メイン噴射を遅角させ、ポスト噴射を禁止または失火が生じない噴射時期及び噴射量で行うので、排気通路11内の排気温度を上昇させて排気昇温及びNOx触媒12の活性化を促進するとともに、未燃HCの排出を抑制することができる。   When there is an exhaust gas temperature increase request and the in-cylinder temperature Tin-cyl or the exhaust gas temperature Texh belongs to the region I, the main injection is retarded, and post injection is performed at an injection timing and an injection amount that does not inhibit or cause misfire. The exhaust gas temperature in the exhaust passage 11 is raised to promote the exhaust gas temperature rise and the activation of the NOx catalyst 12, and the unburned HC emission can be suppressed.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

第1実施形態を適用するシステムの構成図である。1 is a configuration diagram of a system to which a first embodiment is applied. 第1実施形態のポスト噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the post injection control of 1st Embodiment. 要求噴射量マップである。It is a request | requirement injection quantity map. 筒内圧及び熱発生率のクランク角に対する履歴を示す図である。It is a figure which shows the log | history with respect to the crank angle of a cylinder internal pressure and a heat release rate. 排気温度のクランク角に対する履歴を示す図である。It is a figure which shows the log | history with respect to the crank angle of exhaust temperature. 筒内温度領域を示す図である。It is a figure which shows an in-cylinder temperature range. ポスト噴射時期及び排気弁開時期を示す図である。It is a figure which shows the post injection timing and the exhaust valve opening timing. 第2実施形態のポスト噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the post injection control of 2nd Embodiment.

符号の説明Explanation of symbols

1 ディーゼルエンジン本体
2 燃料噴射弁
3 コモンレール
4 吸気コレクタ
5 吸気通路
6 ターボチャージャ
7 インタークーラ
8 吸気絞り弁
9 高圧ポンプ
10 コントロールユニット(ECU)
11 排気通路
12 NOx触媒
13 DPF
14 変速機
15 エアフローメータ
16 エンジン回転数センサ
17 アクセル開度センサ
21 EGR通路
22 EGR弁
DESCRIPTION OF SYMBOLS 1 Diesel engine body 2 Fuel injection valve 3 Common rail 4 Intake collector 5 Intake passage 6 Turbocharger 7 Intercooler 8 Inlet throttle valve 9 High pressure pump 10 Control unit (ECU)
11 Exhaust passage 12 NOx catalyst 13 DPF
DESCRIPTION OF SYMBOLS 14 Transmission 15 Air flow meter 16 Engine speed sensor 17 Accelerator opening sensor 21 EGR passage 22 EGR valve

Claims (9)

機関出力に寄与するメイン噴射の後に、排気昇温に寄与するポスト噴射を行い得る内燃機関の燃料噴射制御装置において、
排気温度の上昇要求を発する排気温度上昇要求発生手段と、
排気弁開時期における筒内温度または排気浄化触媒より上流側の排気通路内の排気温度を推定する温度推定手段と、
前記メイン噴射及び前記ポスト噴射の噴射時期及び噴射量を設定する噴射制御手段と、
を備え、
排気温度上昇要求があるときに、前記噴射制御手段は、前記排気弁開時期における筒内温度または前記排気通路内の排気温度によって、前記ポスト噴射の噴射量及び噴射時期を設定することを特徴とする内燃機関の燃料噴射制御装置。
In a fuel injection control device for an internal combustion engine capable of performing post injection contributing to exhaust gas temperature increase after main injection contributing to engine output,
Exhaust temperature increase request generating means for issuing an exhaust temperature increase request;
Temperature estimating means for estimating the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage upstream of the exhaust purification catalyst;
Injection control means for setting the injection timing and the injection amount of the main injection and the post injection;
With
When there is an exhaust temperature increase request, the injection control means sets the post-injection injection amount and the injection timing according to the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage. A fuel injection control device for an internal combustion engine.
前記噴射制御手段は、前記排気弁開時期における筒内温度または前記排気通路内の排気温度を、実際の吸入空気量、前記メイン噴射の時期及び噴射量、並びに排気弁閉弁時期に基づいて算出することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。   The injection control means calculates the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage based on the actual intake air amount, the main injection timing and injection amount, and the exhaust valve closing timing. The fuel injection control device for an internal combustion engine according to claim 1, wherein: 少なくとも排気弁の閉時期を変更可能な可変動弁手段を備え、
前記排気温度上昇要求があるときに、前記排気弁開時期における筒内温度または前記排気通路内の排気温度が、予め設定した第1温度より低い場合には、前記可変動弁手段は排気弁閉時期を進角側に変化させ、前記噴射制御手段は前記ポスト噴射の噴射時期を排気弁閉時期より後に設定することを特徴とする請求項1または2に記載の内燃機関の燃料噴射制御装置。
Variable valve means capable of changing at least the closing timing of the exhaust valve,
When there is a request to increase the exhaust temperature, if the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage is lower than a preset first temperature, the variable valve means closes the exhaust valve. 3. The fuel injection control device for an internal combustion engine according to claim 1, wherein the timing is changed to an advance side, and the injection control means sets the injection timing of the post injection after the exhaust valve closing timing.
少なくとも排気弁の閉時期を変更可能な可変動弁手段を備え、
前記排気温度上昇要求があるときに、前記排気弁開時期における筒内温度または前記排気通路内の排気温度が、予め設定した第1温度より低い場合には、前記噴射制御手段により前記メイン噴射時期を遅角側に変化させ、または前記可変動弁手段により排気弁閉時期を進角側に変化させ、かつ前記噴射制御手段により前記ポスト噴射を禁止、または前記ポスト噴射を予め設定した噴射時期よりも早いタイミングで予め設定した噴射量よりも少ない噴射量で行うことを特徴とする請求項1または2に記載の内燃機関の燃料噴射制御装置。
At least variable valve operating means capable of changing the closing timing of the exhaust valve is provided,
When there is a request to increase the exhaust temperature, if the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage is lower than a preset first temperature, the main injection timing is controlled by the injection control means. Is changed to the retard side, or the exhaust valve closing timing is changed to the advance side by the variable valve means, and the post injection is prohibited by the injection control means, or the post injection is set from the preset injection timing. 3. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection control is performed at an earlier timing and with an injection amount smaller than a preset injection amount.
前記排気温度上昇要求があるときに、前記排気弁開時期における筒内温度または前記排気通路内の排気温度が、前記第1温度以上かつ予め設定した第2温度より低い領域に属する場合には、前記噴射制御手段は膨張行程中の予め設定した時期から前記排気温度上昇要求がない場合の排気弁閉時期までの間で前記ポスト噴射を行うよう前記ポスト噴射時期を設定することを特徴とする請求項3または4に記載の内燃機関の燃料噴射制御装置。   When there is a request to increase the exhaust temperature, if the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage belongs to a region that is equal to or higher than the first temperature and lower than a preset second temperature, The injection control means sets the post-injection timing so as to perform the post-injection from a preset time during an expansion stroke to an exhaust valve closing timing when there is no request for the exhaust gas temperature increase. Item 5. The fuel injection control device for an internal combustion engine according to Item 3 or 4. 前記可変動弁手段は、排気弁閉時期をポスト噴射開始時期またはポスト噴射中のいずれかの時期まで進角させることを特徴とする請求項5に記載の内燃機関の燃料噴射制御装置。   6. The fuel injection control device for an internal combustion engine according to claim 5, wherein the variable valve mechanism advances the exhaust valve closing timing to either a post injection start timing or a post injection timing. 前記排気温度上昇要求があるときに、前記排気弁開時期における筒内温度または前記排気通路内の排気温度が前記第2温度以上の場合には、前記噴射制御手段は排気弁閉弁時期以降またはバルブオーバーラップ期間中にポスト噴射を行うよう前記ポスト噴射時期を設定することを特徴とする請求項5または6に記載の内燃機関の燃料噴射制御装置。   When there is a request to increase the exhaust temperature, if the in-cylinder temperature at the exhaust valve opening timing or the exhaust temperature in the exhaust passage is equal to or higher than the second temperature, the injection control means The fuel injection control device for an internal combustion engine according to claim 5 or 6, wherein the post injection timing is set so that post injection is performed during a valve overlap period. 前記第1温度は、筒内または排気浄化触媒より上流側の排気通路内で、前記ポスト噴射により噴射された燃料が部分酸化可能な温度であることを特徴とする請求項3から7のいずれか一つに記載の内燃機関の燃料噴射制御装置。   8. The first temperature according to claim 3, wherein the first temperature is a temperature at which the fuel injected by the post injection can be partially oxidized in a cylinder or in an exhaust passage upstream of the exhaust purification catalyst. A fuel injection control device for an internal combustion engine according to one. 前記第2温度は、前記排気浄化触媒の活性温度であることを特徴とする請求項5から8のいずれか一つに記載の内燃機関の燃料噴射制御装置。   The fuel injection control device for an internal combustion engine according to any one of claims 5 to 8, wherein the second temperature is an activation temperature of the exhaust purification catalyst.
JP2008295287A 2008-11-19 2008-11-19 Fuel injection control device for internal combustion engine Expired - Fee Related JP5187156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295287A JP5187156B2 (en) 2008-11-19 2008-11-19 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295287A JP5187156B2 (en) 2008-11-19 2008-11-19 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010121505A true JP2010121505A (en) 2010-06-03
JP5187156B2 JP5187156B2 (en) 2013-04-24

Family

ID=42323054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295287A Expired - Fee Related JP5187156B2 (en) 2008-11-19 2008-11-19 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5187156B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
WO2013088922A1 (en) * 2011-12-12 2013-06-20 いすゞ自動車株式会社 Internal combustion engine and control method for same
JP2014206109A (en) * 2013-04-12 2014-10-30 トヨタ自動車株式会社 Internal combustion engine
CN104246185A (en) * 2012-04-05 2014-12-24 德尔福国际运营卢森堡有限公司 Lean nox trap desulfation process
JP2016084804A (en) * 2014-10-23 2016-05-19 三菱自動車工業株式会社 Exhaust post-process apparatus for internal combustion engine
CN114109638A (en) * 2020-08-28 2022-03-01 丰田自动车株式会社 Control device for internal combustion engine, control method for internal combustion engine, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303290A (en) * 1995-04-28 1996-11-19 Nippondenso Co Ltd Exhaust gas purifying device for internal combustion engine
JPH1115937A (en) * 1997-06-26 1999-01-22 Hitachi Ltd Series checking method
JP2001182592A (en) * 1999-12-24 2001-07-06 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2008025382A (en) * 2006-07-18 2008-02-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303290A (en) * 1995-04-28 1996-11-19 Nippondenso Co Ltd Exhaust gas purifying device for internal combustion engine
JPH1115937A (en) * 1997-06-26 1999-01-22 Hitachi Ltd Series checking method
JP2001182592A (en) * 1999-12-24 2001-07-06 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2008025382A (en) * 2006-07-18 2008-02-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
EP2792862A4 (en) * 2011-12-12 2015-10-07 Isuzu Motors Ltd Internal combustion engine and control method for same
WO2013088922A1 (en) * 2011-12-12 2013-06-20 いすゞ自動車株式会社 Internal combustion engine and control method for same
JP2013122206A (en) * 2011-12-12 2013-06-20 Isuzu Motors Ltd Internal combustion engine and control method for the same
CN103987931A (en) * 2011-12-12 2014-08-13 五十铃自动车株式会社 Internal combustion engine and control method for same
US9422848B2 (en) 2011-12-12 2016-08-23 Isuzu Motors Limited Internal combustion engine and control method for same
US20140325963A1 (en) * 2011-12-12 2014-11-06 Isuzu Motors Limited Internal combustion engine and control method for same
CN104246185A (en) * 2012-04-05 2014-12-24 德尔福国际运营卢森堡有限公司 Lean nox trap desulfation process
JP2015515572A (en) * 2012-04-05 2015-05-28 デルファイ・インターナショナル・オペレーションズ・ルクセンブルク・エス・アー・エール・エル Lean NOX trap desulfurization method
JP2014206109A (en) * 2013-04-12 2014-10-30 トヨタ自動車株式会社 Internal combustion engine
JP2016084804A (en) * 2014-10-23 2016-05-19 三菱自動車工業株式会社 Exhaust post-process apparatus for internal combustion engine
CN114109638A (en) * 2020-08-28 2022-03-01 丰田自动车株式会社 Control device for internal combustion engine, control method for internal combustion engine, and storage medium
CN114109638B (en) * 2020-08-28 2023-07-07 丰田自动车株式会社 Control device for internal combustion engine, control method for internal combustion engine, and storage medium

Also Published As

Publication number Publication date
JP5187156B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5482715B2 (en) Diesel engine and control method of diesel engine
JP5995031B2 (en) Control device for internal combustion engine
JP2008223711A (en) Abnormality judgment device for turbocharger
JP5187156B2 (en) Fuel injection control device for internal combustion engine
EP1965060B1 (en) Exhaust emission control device and method for internal combustion engine
US20090158713A1 (en) Exhaust Gas Purification System for Internal Combustion Engine
JP2009191659A (en) Control device of internal combustion engine
JP2007332877A (en) Control unit of internal combustion engine
JP4715644B2 (en) Control device for internal combustion engine
JP2009085053A (en) Control device for compression ignition internal combustion engine
US7997067B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP4736930B2 (en) Catalyst control device for internal combustion engine
JP5639387B2 (en) Diesel engine start control device
JP2008196377A (en) Control device for internal combustion engine
JP2008019782A (en) Control device of diesel engine
JP5720479B2 (en) Control device for internal combustion engine
JP2007309147A (en) Exhaust emission control device of diesel engine
JP2009215987A (en) Control device and fuel property determination device for internal combustion engine
JP2015121182A (en) Control device of engine
JP4946345B2 (en) Control device for internal combustion engine
JP4894815B2 (en) Fuel pressure control device for vehicle internal combustion engine
JP4935426B2 (en) Control device for internal combustion engine
JP2007255210A (en) Control device of internal combustion engine
JP2011094508A (en) Control device for internal combustion engine provided with variable valve train
JP5206355B2 (en) Output torque control device and control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees