JP2010121164A - Aluminum alloy sheet having excellent moldability, and method for producing the same - Google Patents

Aluminum alloy sheet having excellent moldability, and method for producing the same Download PDF

Info

Publication number
JP2010121164A
JP2010121164A JP2008295336A JP2008295336A JP2010121164A JP 2010121164 A JP2010121164 A JP 2010121164A JP 2008295336 A JP2008295336 A JP 2008295336A JP 2008295336 A JP2008295336 A JP 2008295336A JP 2010121164 A JP2010121164 A JP 2010121164A
Authority
JP
Japan
Prior art keywords
aluminum alloy
crystal
mass
average
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008295336A
Other languages
Japanese (ja)
Other versions
JP5233607B2 (en
Inventor
Pizhi Zhao
丕植 趙
Toshiya Anami
敏也 穴見
Hirobumi Nagami
博文 長海
Tomomasa Hirayama
智将 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008295336A priority Critical patent/JP5233607B2/en
Publication of JP2010121164A publication Critical patent/JP2010121164A/en
Application granted granted Critical
Publication of JP5233607B2 publication Critical patent/JP5233607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an aluminum alloy sheet which has high elongation and has excellent moldability in both of bulging properties and drawability so as to be applied to wide applications such as an electronic component case and an automotive member. <P>SOLUTION: The molten metal of an aluminum alloy having a componential composition including, by mass, 1.0 to 2.0% Fe, and the balance aluminum with inevitable impurities, and in which the content of Ti as the inevitable impurities is limited to ≤0.01% is subjected to DC casting while being electromagnetically stirred, and the obtained ingot is subjected to homogenizing heat treatment, rolling and final annealing so as to obtain an aluminum alloy sheet having a structure where the average crystal grain size is controlled to ≤20 μm, and the area ratio of the crystals in the ä110} orientation is controlled to ≥25%. By controlling the structure of the aluminum alloy sheet to the above, all of an elongation of ≥35%, the average r value of ≥0.85, a ball head bulging height of ≥33 mm and a limit drawing ratio of ≥2.17 can be attained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、伸びが高く、張出性と絞り性の両方の成形性に優れたアルミニウム合金板およびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to an aluminum alloy plate having high elongation and excellent formability of both stretchability and drawability, and a method for producing the same.

近年、電子機器や自動車の軽量化を目的として、電子機器のケースや自動車の部材などにアルミニウム合金板がスチール板に代わって用いられるようになってきている。しかしながら、それらの多くは複雑な形状であるため、そのような用途のアルミニウム合金板には優れた成形性が要求されている。
前記のような用途に対して曲げ成形のほか、張出成形、絞り成形、およびこれらを組み合わせたものがアルミニウム合金板の成形方法として利用される。当該要求に応えるものとして、特許文献1には、全伸びが40%以上で局部伸びが10%以上である張出性に優れたアルミニウム合金板が提案されている。
また、特許文献2には、引張強さと0.2%耐力の差の値を103MPa以上、エリクセン値を9.5以上、直径50mm、肩半径5mmのポンチでの円筒深絞り試験での限界絞り比を2.05以上としたプレス成形性に優れたアルミニウム合金板が提案されている。
特開2001−288523号公報 特開2001−342577号公報
In recent years, for the purpose of reducing the weight of electronic devices and automobiles, aluminum alloy plates have been used in place of steel plates in cases of electronic devices and automobile members. However, since many of them have complicated shapes, excellent formability is required for aluminum alloy sheets for such applications.
In addition to bending forming for the above-mentioned applications, bulging forming, drawing forming, and a combination thereof are used as a method for forming an aluminum alloy plate. In order to meet this requirement, Patent Document 1 proposes an aluminum alloy plate excellent in stretchability having a total elongation of 40% or more and a local elongation of 10% or more.
In Patent Document 2, the difference between the tensile strength and 0.2% proof stress is 103 MPa or more, the Erichsen value is 9.5 or more, the diameter is 50 mm, the shoulder radius is 5 mm, and the limit drawing ratio in the cylindrical deep drawing test is 2.05 or more. An aluminum alloy plate excellent in press formability has been proposed.
JP 2001-288523 A JP 2001-342577 A

しかしながら、特許文献1で提案されたアルミニウム合金板は、伸びおよび張出成形性に優れるものの、絞り性が十分ではなく、一方、特許文献2で提案されたアルミニウム合金板は張出成形性が未だ不足しているうえに、ポリウレタン組成物および潤滑機能付与剤を主成分とするアルカリ可溶型潤滑皮膜を設ける必要があり、前記のような用途に対して必ずしも十分には適応できていない。   However, although the aluminum alloy plate proposed in Patent Document 1 is excellent in elongation and stretch formability, the drawability is not sufficient, while the aluminum alloy sheet proposed in Patent Document 2 still has the stretch formability. In addition to the shortage, it is necessary to provide an alkali-soluble lubricating film mainly composed of a polyurethane composition and a lubricating function-imparting agent.

本発明は、このような問題を解消すべく案出されたものであり、各種成形方法の使用で、電子機器のケースや自動車の部材などの広範な用途に適応できるよう、伸びが高く、張出性と絞り性の両方の成形性に優れたアルミニウム合金板、具体的には35%以上の高い伸びと0.85以上の平均r値(ランクフォード値)、33mm以上の球頭張出高さ、および2.17以上の限界絞り比を兼ね備えた成形性に優れたアルミニウム合金板を提供することを目的とする。   The present invention has been devised to solve such a problem. By using various molding methods, the present invention has high elongation and can be applied to a wide range of applications such as electronic device cases and automobile parts. Aluminum alloy sheet with excellent formability for both extrudability and drawability, specifically high elongation of 35% or more, average r value (Rankford value) of 0.85 or more, ball head overhang height of 33mm or more, Another object of the present invention is to provide an aluminum alloy sheet excellent in formability having a limit drawing ratio of 2.17 or more.

本発明の成形性に優れたアルミニウム合金板は、その目的を達成するため、Feを1.0〜2.0質量%含有し、残部がアルミニウムおよび不可避不純物からなり、当該不可避不純物としてのTiが0.01質量%以下に制限された成分組成を有するとともに、平均結晶粒径が20μm以下、{110}方位結晶の面積率が25%以上に調整された組織を有することを特徴とする。
本発明の成形性に優れたアルミニウム合金板は、さらに、Mnを2.0質量%以下含有する成分組成を有するものであってもよい。
In order to achieve the object, the aluminum alloy plate having excellent formability according to the present invention contains Fe in an amount of 1.0 to 2.0 mass%, the balance is made of aluminum and inevitable impurities, and Ti as the inevitable impurities is 0.01 mass% or less. And a structure in which the average crystal grain size is 20 μm or less and the area ratio of {110} oriented crystals is adjusted to 25% or more.
The aluminum alloy plate excellent in formability of the present invention may further have a component composition containing 2.0% by mass or less of Mn.

本発明の成形性に優れたアルミニウム合金板は、上記の成分組成を有するアルミニウム合金溶湯を、電磁攪拌しながらDC鋳造し、得られた鋳塊を均質化熱処理、圧延加工、最終焼鈍することにより製造される。
前記電磁攪拌としては、起磁力を15000〜25000At、周波数を10〜30Hzとした攪拌を行うことが好ましい。
また、前記最終焼鈍としては、350〜500℃で1〜10時間のバッチ焼鈍処理もしくは400〜550℃で1秒〜10分の連続焼鈍処理を施すことが好ましい。
The aluminum alloy sheet having excellent formability according to the present invention is obtained by DC casting an aluminum alloy melt having the above component composition while electromagnetically stirring, and homogenizing heat treatment, rolling, and final annealing of the resulting ingot. Manufactured.
The electromagnetic stirring is preferably performed with a magnetomotive force of 15000 to 25000 At and a frequency of 10 to 30 Hz.
Moreover, as said final annealing, it is preferable to perform the batch annealing process for 1 to 10 hours at 350-500 degreeC, or the continuous annealing process for 1 second-10 minutes at 400-550 degreeC.

本発明により提供されるアルミニウム合金板は、成分組成が規定されているとともに、微細な結晶粒で構成され、かつ結晶方位を揃えているために、伸びが高く、張出性と絞り性の両方の成形性に優れたものとなっている。このため、潤滑被膜を必要とせずに、複雑な形状の電子機器のケースや自動車の部材などに成形して使用可能である。
また、本発明のアルミニウム合金板の製造方法によれば、前記の伸びが高く、張出成形性と絞り成形性に優れるアルミニウム合金板が安価に得られる。
The aluminum alloy sheet provided by the present invention has a specified composition and is composed of fine crystal grains and has a uniform crystal orientation. It has excellent moldability. For this reason, it can be molded and used in a case of an electronic device having a complicated shape or a member of an automobile without the need for a lubricating coating.
In addition, according to the method for producing an aluminum alloy plate of the present invention, an aluminum alloy plate having a high elongation and excellent in stretchability and drawability can be obtained at a low cost.

張出成形法や深絞り成形法によりアルミニウム合金板を、電子機器のケースや自動車の部材などの広範な用途に用いようとするとき、当該アルミニウム合金板としては、伸びが高く、張出し性と絞り性の両方の成形性に優れたものが要求される。
本発明者らも、伸びが高く、張出し性と絞り性の両方の成形性に優れたアルミニウム合金板を得るべく、鋭意研究を重ねてきた。
その過程で、平均結晶粒径を小さくし、{110}方位結晶の占める面積率を高くすることにより、伸びが高く、張出成形性と絞り成形性に優れたアルミニウム合金板を得ることができることを見出した。
When an aluminum alloy plate is to be used in a wide range of applications such as electronic equipment cases and automotive parts by the stretch forming method or deep drawing method, the aluminum alloy plate has a high elongation and has a high stretchability and drawability. Therefore, a material excellent in both formability is required.
The present inventors have also intensively studied in order to obtain an aluminum alloy plate having high elongation and excellent formability in both stretchability and drawability.
In the process, by reducing the average crystal grain size and increasing the area ratio occupied by {110} oriented crystals, it is possible to obtain an aluminum alloy sheet with high elongation and excellent stretch-formability and drawability. I found.

本発明はこの知見に基づいてなされたものであり、特定の化学成分のアルミニウム合金溶湯を電磁攪拌しながらDC鋳造し、得られた鋳塊を均質化熱処理、圧延加工、最終焼鈍することにより、平均結晶粒径が微細化するとともに{110}方位結晶の面積が高率となることを究明して本発明を完成させた。
すなわち本発明は、Feが1.0〜2.0質量%、残部がアルミニウムおよび不可避不純物で、当該不可避不純物としてのTiが0.01質量%以下、好ましくは0.005質量%以下に制限された成分組成に調整するとともに、平均結晶粒径が20μm以下、{110}方位結晶の面積率が25%以上である組織に調整することにより、張出成形性と絞り成形性を高めることができたものである。上記要件を具備することにより、具体的には、35%以上の高い伸び、0.85以上の平均r値、33mm以上の球頭張出高さ、および2.17以上の限界絞り比の全てを達成できるものが得られる。
さらに2.0質量%以下のMnを含有してもよい。
The present invention has been made on the basis of this finding, DC casting while stirring the aluminum alloy molten metal of a specific chemical component, by homogenizing heat treatment, rolling process, and final annealing the obtained ingot, The present invention was completed by investigating that the average crystal grain size was refined and the area of {110} oriented crystals was high.
That is, the present invention adjusts to a component composition in which Fe is 1.0 to 2.0% by mass, the balance is aluminum and inevitable impurities, and Ti as the inevitable impurities is 0.01% by mass or less, preferably 0.005% by mass or less. By adjusting to a structure in which the average grain size is 20 μm or less and the area ratio of {110} oriented crystals is 25% or more, the stretchability and drawability can be improved. By satisfying the above requirements, specifically, a high elongation of 35% or more, an average r value of 0.85 or more, a ball head overhang height of 33 mm or more, and a limit drawing ratio of 2.17 or more can be achieved. Is obtained.
Furthermore, you may contain 2.0 mass% or less Mn.

本発明に係るアルミニウム合金板は、前記成分組成を有するアルミニウム合金溶湯を電磁攪拌しながらDC鋳造し、得られた鋳塊を均質化熱処理、圧延加工、最終焼鈍することにより得られる。すなわち、電磁攪拌しながらDC鋳造することにより、溶湯の凝固時に発生する樹枝状結晶の樹枝部を該電磁攪拌力により分断するとともに、分断された樹枝部を溶湯内に分散させて結晶核とし、該結晶核の数を増加させて、結晶粒径を微細化、均一化したアルミニウム合金鋳塊を得るとともに、さらに、得られた鋳塊を均質化熱処理、圧延加工、最終焼鈍することと相まって、結果として、アルミニウム合金板の結晶粒径を微細化するとともに、{110}方位結晶の面積率を増大させ、成形性を向上させることができたものである。   The aluminum alloy sheet according to the present invention is obtained by DC casting the molten aluminum alloy having the above composition while electromagnetically stirring, and homogenizing heat treatment, rolling, and final annealing of the obtained ingot. That is, by DC casting while stirring magnetically, the dendritic portion of the dendritic crystal generated during solidification of the molten metal is divided by the electromagnetic stirring force, and the divided dendritic portion is dispersed in the molten metal to form crystal nuclei, Increasing the number of crystal nuclei to obtain an aluminum alloy ingot with a refined and uniform crystal grain size, and in addition to the obtained ingot, homogenized heat treatment, rolling, and final annealing, As a result, the crystal grain size of the aluminum alloy plate was refined and the area ratio of {110} oriented crystals was increased, thereby improving the formability.

鋳造時の電磁攪拌の条件は、鋳塊の断面積によって異なるが、鋳塊が厚さ400〜600mm、幅800〜1600mmの場合には、起磁力が15000〜25000At、周波数が10〜30Hzであることが好ましい。さらに、圧延後の前記最終焼鈍処理を350〜500℃で1〜10時間の保持のバッチ焼鈍処理もしくは400〜550℃で1秒〜10分の保持の連続焼鈍処理とする。これにより、平均結晶粒径が20μm以下、{110}方位結晶の面積率が25%以上であるアルミニウム合金板が容易に得られる。   The conditions of electromagnetic stirring during casting vary depending on the cross-sectional area of the ingot, but when the ingot is 400 to 600 mm thick and 800 to 1600 mm wide, the magnetomotive force is 15000 to 25000 At and the frequency is 10 to 30 Hz. It is preferable. Further, the final annealing treatment after rolling is a batch annealing treatment of holding at 350 to 500 ° C. for 1 to 10 hours or a continuous annealing treatment of holding at 400 to 550 ° C. for 1 second to 10 minutes. As a result, an aluminum alloy plate having an average crystal grain size of 20 μm or less and an area ratio of {110} oriented crystals of 25% or more can be easily obtained.

ところで、鉄鋼の場合において、電磁攪拌しながら鋳造することにより、溶湯の凝固時に発生する樹枝状結晶の樹枝部をこの電磁攪拌力により分断し、結晶粒径を微細化させて成形性を向上させるという技術が特開昭50−23338号公報に開示されているが、本発明者らの研究によれば、アルミニウム合金の場合には、単にアルミニウム合金鋳塊の結晶粒径を微細化しただけではアルミニウム合金板の成形性は向上しない。
本発明は、アルミニウム合金の場合において、電磁攪拌しながら鋳造することにより、溶湯の凝固時に発生する樹枝状結晶の樹枝部をこの電磁攪拌力により分断するとともに、さらに圧延後の最終焼鈍処理を組合せ、アルミニウム合金板の平均結晶粒径を微細化するとともに、{110}方位結晶の面積を増加させて、成形性の向上を図ったものであり、単に前記特許文献で紹介されている技術をアルミニウム合金に転用したものではない。
By the way, in the case of steel, by casting with electromagnetic stirring, the dendritic portion of the dendritic crystal generated during solidification of the molten metal is divided by this electromagnetic stirring force, and the crystal grain size is refined to improve the moldability. However, according to the study by the present inventors, in the case of an aluminum alloy, the crystal grain size of the aluminum alloy ingot is simply reduced. The formability of the aluminum alloy plate is not improved.
In the case of an aluminum alloy, the present invention separates the dendritic portion of the dendritic crystal generated during solidification of the molten metal by this electromagnetic stirring force by casting with electromagnetic stirring, and further combines the final annealing treatment after rolling. In addition to reducing the average crystal grain size of the aluminum alloy plate and increasing the area of the {110} -oriented crystal, the formability is improved. It was not converted to an alloy.

また、Feを0.75〜2.0質量%含有するアルミニウム合金を電磁攪拌しながら連続鋳造して、針状金属間化合物を破砕して微細化したチクソキャスティング用鋳造材料を得る技術が特開平11−285793号公報に開示されている。
これに対して、本発明のアルミニウム合金は、Si、Cu、Tiの含有量がそれぞれ不可避的不純物レベルまで低減されているため、凝固時の初晶はAlである。本発明は、初晶Alの樹枝状結晶の樹枝部を電磁攪拌力により分断するとともに、さらに圧延後の最終焼鈍処理を組合せ、アルミニウム合金板の平均結晶粒径を微細化するとともに、{110}方位結晶の面積を増加させて、成形性に優れたアルミニウム合金板を得るものであって、前記特許文献で紹介された発明とは基本的発想を異にするものである。
Japanese Patent Laid-Open No. 11-285793 discloses a technique for continuously casting an aluminum alloy containing 0.75 to 2.0% by mass of Fe with electromagnetic stirring to obtain a cast material for thixocasting by crushing and refining acicular intermetallic compounds. It is disclosed in the publication.
On the other hand, in the aluminum alloy of the present invention, the contents of Si, Cu, and Ti are reduced to unavoidable impurity levels, respectively, so that the primary crystal upon solidification is Al. The present invention divides the dendritic portion of primary Al dendritic crystals by electromagnetic stirring force, and further combines the final annealing treatment after rolling to refine the average crystal grain size of the aluminum alloy sheet, and {110} An aluminum alloy plate excellent in formability is obtained by increasing the area of the orientation crystal, which is different from the basic idea introduced in the patent document.

同様に、0.75〜1.5質量%のFeと[Fe/5+0.2]質量%以下のMn、あるいは1.5〜2.0質量%のFeと[2.0−Fe]質量%以下のMnを含有するアルミニウム合金を電磁攪拌しながら連続鋳造して、針状金属間化合物を破砕して微細化する技術が特開2000−637号公報に、さらに3/4〜5/3質量%のFeと[Fe/5]〜[2.0−Fe]質量%のMnを含有するアルミニウム合金を電磁攪拌しながら連続鋳造して、針状金属間化合物を破砕して微細化したチクソキャスティング用鋳造材料を得る技術が特開2000−15405号公報に開示されている。これらの技術も、針状金属間化合物を破砕して微細化しようとするものであり、本発明とは基本的発想を異にするものである。   Similarly, an aluminum alloy containing 0.75 to 1.5 mass% Fe and [Fe / 5 + 0.2] mass% or less, or 1.5 to 2.0 mass% Fe and [2.0−Fe] mass% or less Mn is electromagnetically treated. Japanese Patent Laid-Open No. 2000-637 discloses a technique for continuously casting while stirring and crushing and refining acicular intermetallic compounds, and further, 3 / 4-5 / 3 mass% Fe and [Fe / 5] A technique for continuously casting an aluminum alloy containing [2.0-Fe]% by mass of Mn with electromagnetic stirring to obtain a cast material for thixocasting obtained by crushing and refining acicular intermetallic compounds is disclosed in Japanese Patent Application Laid-Open No. 2000-15405. It is disclosed in the gazette. These techniques are also intended to crush and refine the acicular intermetallic compound, and are different from the basic idea of the present invention.

続いて、本発明を詳細に説明する。
まず、本発明に係るAl‐Fe系の合金の凝固過程を説明する。
本発明に係るAl‐Fe系の合金は、凝固に際し、最初に凝固した結晶部分からFeを溶湯内へ拡散させながら結晶が成長し、成長中の結晶の周囲は、Fe濃度が他の結晶の成長に関与しない部分と比較して高濃度となる。そして、この高濃度箇所は凝固開始温度が低くなるとともに結晶の成長速度も遅くなる。一方、凝固の冷却過程において、前記他の結晶の成長に関与しない部分は前記周囲がFe濃度の高い結晶部分と比較して結晶の成長が促され易く、前記と同様にFeを溶湯内へ拡散させながら結晶が成長し、前記と同様にFe濃度の影響を受けて成長速度が遅くなる。このような結晶成長の繰り返しを起こして結晶は樹枝状に成長し、凝固を終了する。
本発明は、樹枝状結晶の樹枝部を結晶核として有効に利用しようとするものであり、電磁攪拌力により樹枝部を適切なサイズに分断するとともに分断された樹枝部を溶湯内に多数分散させて結晶核とし、鋳塊の結晶粒径の微細化、均一化を図るものである。
Next, the present invention will be described in detail.
First, the solidification process of the Al-Fe alloy according to the present invention will be described.
When the Al-Fe alloy according to the present invention is solidified, the crystal grows while diffusing Fe from the first solidified crystal portion into the molten metal, and the concentration of Fe in other crystals is around the growing crystal. The concentration is higher than that of the portion not involved in the growth. The high concentration portion has a lower solidification start temperature and a slower crystal growth rate. On the other hand, in the cooling process of solidification, the part that does not participate in the growth of the other crystals is more easily promoted to grow the crystal compared to the crystal part where the Fe concentration is high, and the diffusion of Fe into the molten metal is similar to the above. As described above, the crystal grows, and the growth rate is slowed by the influence of the Fe concentration as described above. By repeating such crystal growth, the crystal grows in a dendritic shape, and solidification is completed.
The present invention intends to effectively use the dendritic portion of the dendritic crystal as a crystal nucleus. The electromagnetic branching portion divides the dendritic portion into an appropriate size and disperses a large number of the divided dendritic portions in the molten metal. Thus, the crystal nuclei are used to refine and make uniform the crystal grain size of the ingot.

次に各発明特定要件について特定理由を説明する。
Fe:1.0〜2.0質量%
Feは、Al‐Fe系の金属間化合物として晶出する。この金属間化合物はアルミニウム合金の強度向上に効果があるほか、最終焼鈍時の再結晶核として結晶粒微細化の効果に寄与する。Feが1.0質量%未満であると、これらの効果が不十分であって平均結晶粒径が20μmを超える結果をもたらす。逆に、2.0質量%を超えるほどに多くなるとAl‐Fe系の粗大金属間化合物が晶出し、最終焼鈍時に再結晶粒が粗大化する一方で、{110}方位結晶の面積率が向上しないため、成形性が低下する。そのため、Feの含有量は1.0〜2.0質量%とする。
Next, the reason for specifying each invention specifying requirement will be described.
Fe: 1.0-2.0 mass%
Fe crystallizes out as an Al-Fe intermetallic compound. This intermetallic compound is effective in improving the strength of the aluminum alloy, and contributes to the effect of refining crystal grains as a recrystallization nucleus during final annealing. When Fe is less than 1.0% by mass, these effects are insufficient and the average crystal grain size exceeds 20 μm. On the other hand, when the amount exceeds 2.0% by mass, a large intermetallic compound of Al-Fe system crystallizes, and the recrystallized grains coarsen during final annealing, but the area ratio of {110} oriented crystals does not improve. , The moldability is reduced. Therefore, the Fe content is set to 1.0 to 2.0 mass%.

Mn:2.0質量%以下
Mnは、Feとともにアルミニウム合金に添加すると、Al‐Fe‐Mn系の金属間化合物として晶出する。この金属間化合物は前記Al‐Fe系の金属間化合物と同様、アルミニウム合金の強度向上の効果を増大させるほか、最終焼鈍時の再結晶核として結晶粒微細化の効果に寄与する。したがって、必要に応じて含有させる。しかしながらMnの添加量が2.0質量%を超えるとAl‐Fe‐Mn系の金属間化合物が粗大化し、製板を困難にする結果をもたらす。そのためMnを添加する場合、その添加量は2.0質量%以下とする。
Mn: 2.0% by mass or less
When Mn is added to an aluminum alloy together with Fe, it crystallizes out as an Al-Fe-Mn intermetallic compound. This intermetallic compound, like the Al—Fe-based intermetallic compound, increases the effect of improving the strength of the aluminum alloy and contributes to the effect of refining crystal grains as a recrystallization nucleus during final annealing. Therefore, it is contained as necessary. However, if the amount of Mn added exceeds 2.0% by mass, the Al-Fe-Mn intermetallic compound becomes coarse, resulting in difficulty in plate making. Therefore, when Mn is added, the amount added is 2.0% by mass or less.

不可避不純物
従来、Tiは、Al‐Ti合金、Al‐Ti‐B合金、Al‐Ti‐C合金などの形態で、アルミニウム合金の鋳塊の結晶粒微細化剤の成分として、羽毛状晶や粗大晶の発生を防ぎ、鋳造時の割れ、あるいは圧延中の板割れの防止を目的として添加されている。これはアルミニウム合金の鋳造に際し、TiとB、Cなどとの化合物であるTiB2、TiCなどの粒子がアルミニウムの凝固に先立って溶湯中に晶出し、それがアルミニウムの凝固における結晶核として作用するためと理解される。前記のようなアルミニウム合金の鋳塊の結晶粒微細化剤は、Tiの含有量として0.01質量%を超えると微細化の効果が顕在化する。
ところが、本発明者らの研究によれば、本発明においてはTiを含有すると電磁攪拌の効果が低下することが突きとめられた。その理由の詳細は不明であるが、Tiの含有量が0.01質量%を超えるとTiB2、TiCなどの粒子がアルミニウムの凝固に先立って溶湯中に晶出し、前記のような樹枝状結晶が成長する前に結晶化してしまうためと考えられる。
そこで本発明においては、合金の溶製にあたっては、それぞれのTi含有量を基に地金、スクラップ、添加合金等の溶解原料を種々選択し、合金溶湯に不可避的に混入するTi量を0.01質量%以下となるように制限する。
Inevitable impurities Conventionally, Ti is in the form of Al-Ti alloy, Al-Ti-B alloy, Al-Ti-C alloy, etc., and as a component of grain refiner of aluminum alloy ingot, feathery crystals and coarse It is added for the purpose of preventing the occurrence of crystals and preventing cracks during casting or plate cracks during rolling. This is because during casting of an aluminum alloy, particles such as TiB 2 and TiC, which are compounds of Ti, B, and C, crystallize in the molten metal prior to solidification of the aluminum, which acts as a crystal nucleus in the solidification of the aluminum. To be understood. When the grain refiner for aluminum alloy ingots as described above exceeds 0.01% by mass as the Ti content, the effect of refinement becomes apparent.
However, according to the study by the present inventors, it was found that the effect of electromagnetic stirring is reduced when Ti is contained in the present invention. The details of the reason are unknown, but if the Ti content exceeds 0.01% by mass, particles such as TiB 2 and TiC crystallize in the melt prior to solidification of the aluminum, and the dendritic crystals grow as described above. This is presumably because it crystallizes before it.
Therefore, in the present invention, when melting the alloy, various melting raw materials such as ingots, scraps and additive alloys are selected based on the respective Ti contents, and the amount of Ti inevitably mixed in the molten alloy is 0.01 mass. % To be less than or equal to%.

Siは、不可避的に混入する不純物の代表的なものあるが、本発明の合金においては、0.2質量%まで許容される。Siが0.2質量%を超えると変形能の低いAl‐Fe‐Si系の化合物が生成し、成形性が低下する。
また、不可避不純物としてのCuとZnは0.1質量%まで許容されるが、好ましくは0.05質量%以下である。
Mnも基本的には不純物であり、好ましくは0.05質量%以下とする。しかし前記した通り強化作用を有するので、この強化作用を期待するときには2.0質量%を上限として含有させてもよい。
その他の不可避不純物はそれぞれ0.05質量%まで許容される。
Si is a typical impurity that is inevitably mixed, but in the alloy of the present invention, up to 0.2 mass% is allowed. When Si exceeds 0.2% by mass, an Al-Fe-Si compound with low deformability is formed, and the moldability is lowered.
Further, Cu and Zn as inevitable impurities are allowed up to 0.1% by mass, but preferably 0.05% by mass or less.
Mn is basically an impurity, and is preferably 0.05% by mass or less. However, since it has a strengthening action as described above, 2.0% by mass may be included as the upper limit when this strengthening action is expected.
Other inevitable impurities are allowed up to 0.05% by mass.

平均結晶粒径:20μm以下
結晶粒が細かくなると、伸びが高くなって張出性が向上するとともに、強度も高くなって絞り性が向上する。平均結晶粒径が20μmを超えると、張出性および絞り性が低下し、平均r値が0.85未満に、限界絞り比が2.17未満になってしまう。平均結晶粒径は、好ましくは15μm以下、さらに好ましくは10μm以下とする。平均結晶粒径が10μm以下になると、平均r値が0.95以上、限界絞り比が2.20以上になる。
なお、本発明においては、結晶粒径の測定は、図1に「結晶粒測定断面」として示す、圧延平行方向を含むアルミニウム合金板の断面の1mm×1mmの範囲の結晶粒をSEM‐EBSDにて解析、15°未満の小傾角の境界を結晶粒内の亜結晶粒界とみなす一方、15°以上の傾角の境界で囲まれる領域を結晶粒として、その結晶粒の円相当径を測定し、その平均値を算出することとする。
Average crystal grain size: 20 μm or less When crystal grains become finer, the elongation increases and the stretchability improves, and the strength increases and the drawability improves. When the average crystal grain size exceeds 20 μm, the stretchability and squeezeability are lowered, the average r value is less than 0.85, and the limit squeeze ratio is less than 2.17. The average grain size is preferably 15 μm or less, more preferably 10 μm or less. When the average crystal grain size is 10 μm or less, the average r value is 0.95 or more and the limit drawing ratio is 2.20 or more.
In the present invention, the crystal grain size is measured by using SEM-EBSD to measure crystal grains in the range of 1 mm × 1 mm of the cross section of the aluminum alloy sheet including the rolling parallel direction, as shown in FIG. The boundary of small inclination of less than 15 ° is regarded as the sub-grain boundary within the crystal grain, while the region surrounded by the boundary of inclination of 15 ° or more is taken as the crystal grain, and the equivalent circle diameter of the crystal grain is measured. The average value is calculated.

{110}方位結晶の面積率:25%以上
{110}方位結晶の面積率が高いほどアルミニウム合金板の平均r値が高くなり、絞り性が向上する。
一般的に、{110}方位結晶の面積率の測定は、圧延平行方向を含むアルミニウム合金板の断面の結晶粒をSEM‐EBSDにて解析、{110}方位から10°以内の結晶粒の面積率の測定により得ることができる。
本発明者らの研究によれば、図1に「結晶粒測定断面」として示す圧延平行方向を含むアルミニウム合金板の断面の結晶粒をSEM‐EBSDにて解析して得られる{110}方位から10°以内の結晶粒の面積率が高いほどアルミニウム合金板の平均r値が高くなる成果が得られている。そして、このようにして得られた{110}方位から10°以内の結晶粒の面積率が25%未満だと、0.85以上の平均r値が得られないため、当該方法で得られた{110}方位結晶の面積率を25%以上とする。
{110} orientation crystal area ratio: 25% or more
The higher the area ratio of {110} oriented crystals, the higher the average r value of the aluminum alloy sheet, and the better the drawability.
In general, the area ratio of {110} orientation crystal is measured by analyzing the crystal grain of the cross section of the aluminum alloy plate including the rolling parallel direction with SEM-EBSD, and the area of the crystal grain within 10 ° from the {110} orientation It can be obtained by measuring the rate.
According to the study by the present inventors, from the {110} orientation obtained by analyzing the crystal grain of the cross section of the aluminum alloy plate including the rolling parallel direction shown in FIG. 1 as “crystal grain measurement cross section” by SEM-EBSD. As the area ratio of crystal grains within 10 ° is higher, the average r value of the aluminum alloy sheet is higher. Then, when the area ratio of the crystal grains within 10 ° from the {110} orientation obtained in this way is less than 25%, an average r value of 0.85 or more cannot be obtained, so that the {110 } Set the area ratio of orientation crystals to 25% or more.

次に本発明のアルミニウム合金板の製造方法について説明する。
鋳造方法
本発明では電磁攪拌しながらDC鋳造する。ここで、DC鋳造とは内壁面を水冷した急冷鋳型内に樋で導いた溶湯を注ぎ、この溶湯を急冷鋳型の内壁面で冷却凝固させるとともに、凝固直後の鋳塊を下方または側方へ順次引き出し、さらに当該鋳塊に冷却水を噴射して急冷するという鋳造法であり、アルミニウム合金の鋳造法としては生産性に優れたものとして公知のものである。
また、前記の急冷鋳型の上部に断熱湯溜部を設け、該断熱湯溜部に溶湯を樋で導いて鋳造する、ホットトップDC鋳造もアルミニウム合金の鋳造法として公知のものであるが、このような鋳造法もDC鋳造の範疇であり、本発明の実施にあたっては好適に使用できる。
Next, the manufacturing method of the aluminum alloy plate of this invention is demonstrated.
Casting method In the present invention, DC casting is performed with electromagnetic stirring. Here, DC casting refers to pouring molten metal introduced into the quenching mold whose inner wall surface is water-cooled, and cooling and solidifying the molten metal on the inner wall surface of the quenching mold. It is a casting method in which cooling is performed by drawing out cooling water onto the ingot and quenching, and the aluminum alloy casting method is known as having excellent productivity.
Further, a hot top DC casting is also known as a casting method of an aluminum alloy, in which a heat insulating hot water reservoir is provided at the upper part of the quenching mold, and the molten metal is introduced into the heat insulating hot water hot pot by casting. Such a casting method is also a category of DC casting, and can be suitably used in the practice of the present invention.

電磁攪拌条件
アルミニウム合金溶湯は凝固する際、凝固しやすい位置、すなわち結晶核を中心に結晶が成長する。従来は前述のように、Tiを含有する鋳塊の結晶粒微細化剤を添加、含有させて結晶核としていた。したがって、その結晶核が多ければ鋳塊の結晶粒は小さくなる。本発明では、このTiを含有する鋳塊の結晶粒微細化剤を使用することなく、鋳塊の結晶粒を微細化し、鋳造割れあるいは圧延割れの防止を図ろうとするものである。
ところで、DC鋳造は前記のように急冷鋳型を用いるものであるが、鋳塊の結晶粒微細化剤を添加しない場合には、鋳型内壁面から凝固が開始する。凝固により生成した結晶は、凝固開始点を根元として樹枝状に成長するが、この樹枝状結晶の樹枝部を分断、溶湯内に分散できれば、この分断された樹枝部を、前記Tiを含有する鋳塊の結晶粒微細化剤の結晶核の代用とすることができ、しかも前記樹枝部の分断箇所が多ければ鋳塊の結晶粒は微細化するが、このとき、未凝固の溶湯はFe濃度を徐々に高めながら微細凝固組織を囲撓し、最終凝固部に生成される金属間化合物も微細、均一に分散する。
Electromagnetic stirring condition When the aluminum alloy melt is solidified, the crystal grows at a position where it is easy to solidify, that is, the crystal nucleus. Conventionally, as described above, an ingot crystal grain refining agent containing Ti is added and contained to form crystal nuclei. Therefore, if there are many crystal nuclei, the crystal grain of an ingot will become small. In the present invention, an ingot crystal grain refiner is refined to prevent casting cracks or rolling cracks without using the Ti-containing ingot crystal grain refining agent.
By the way, although DC casting uses a quenching mold as described above, solidification starts from the inner wall surface of the mold when the ingot crystal grain refining agent is not added. The crystal formed by solidification grows in a dendritic shape with the solidification start point as the root.If the dendritic portion of the dendritic crystal can be divided and dispersed in the molten metal, the divided dendritic portion is cast into the casting containing Ti. It can be used as a substitute for the crystal nuclei of the grain refiner of the lump, and if there are many parting points in the tree branch, the crystal grains of the ingot will be refined. The fine solidified structure is bent while gradually increasing, and the intermetallic compound produced in the final solidified portion is also finely and uniformly dispersed.

本発明の電磁攪拌は、鋳型内壁面に結晶成長した樹枝状結晶の樹枝部を微細に分断し、分断された樹枝部を溶湯内に分散させて結晶核とするためのものであるが、この方法では、結晶核は溶湯内で攪拌されながら成長するため、Tiを含有する鋳塊の結晶粒微細化剤を使用する場合よりも、鋳塊の結晶粒のサイズが均一になりやすい。鋳塊の結晶粒のサイズが均一になると、その後の均質化熱処理、圧延加工、最終焼鈍と相まって、結果として、アルミニウム合金板の結晶粒が微細化するとともに、{110}方位結晶の面積率が増加し、成形性が向上する。   The electromagnetic stirring of the present invention is for finely dividing the dendritic portion of the dendritic crystal grown on the inner wall surface of the mold and dispersing the divided dendritic portion in the molten metal to form a crystal nucleus. In the method, since the crystal nucleus grows while being stirred in the molten metal, the size of the crystal grain of the ingot is more likely to be uniform than when the grain refiner for the ingot containing Ti is used. When the ingot crystal grains become uniform in size, coupled with the subsequent homogenization heat treatment, rolling, and final annealing, as a result, the crystal grains of the aluminum alloy sheet become finer, and the area ratio of {110} oriented crystals becomes smaller. Increases the moldability.

電磁攪拌条件の好ましい値は、鋳塊の断面積によって異なるが、起磁力は1000〜100000At、周波数は5〜80Hzの範囲から選択すればよい。断面積が小さいならば、起磁力は小さく、周波数は高く、断面積が大きいならば、起磁力は大きく、周波数は低くする。特に鋳塊が厚さ400〜600mm、幅800〜1600mmの場合には、起磁力は15000〜25000At、周波数は10〜30Hzが最適である。   A preferable value of the electromagnetic stirring condition varies depending on the cross-sectional area of the ingot, but the magnetomotive force may be selected from a range of 1000 to 100,000 At and a frequency of 5 to 80 Hz. If the cross-sectional area is small, the magnetomotive force is small and the frequency is high, and if the cross-sectional area is large, the magnetomotive force is large and the frequency is low. In particular, when the ingot has a thickness of 400 to 600 mm and a width of 800 to 1600 mm, a magnetomotive force of 15000 to 25000 At and a frequency of 10 to 30 Hz are optimal.

起磁力または周波数が前記の鋳塊の断面積によって異なる好ましい値を下回る場合は電磁攪拌力が弱く、溶湯中に発生する樹枝状結晶の樹枝部を分断する効果が得られず、鋳塊の結晶粒組織が微細化しないため、結果的にアルミニウム合金板の平均結晶粒径が20μm以下にならない。その一方、起磁力が前記の鋳塊の断面積によって異なる好ましい値を超えると電磁攪拌力が強すぎ、樹枝状結晶が根元で折れるのみで、結晶核の数が増加しないため、結果的にアルミニウム合金板の平均結晶粒径が20μm以下まで小さくならない。また、周波数が前記の鋳塊の断面積によって異なる好ましい値を超えると、表皮効果により電磁力が溶湯の鋳型と接触する部分に集中して溶湯全体にゆきわたらないため、アルミニウム合金板の当該電磁力のゆきわたらなかった部分の平均結晶粒径が20μm以下まで小さくならない。   When the magnetomotive force or frequency is less than a preferable value that varies depending on the cross-sectional area of the ingot, the magnetic stirring force is weak, the effect of dividing the dendritic portion of the dendritic crystal generated in the molten metal cannot be obtained, and the ingot crystal Since the grain structure is not refined, the average crystal grain size of the aluminum alloy sheet does not become 20 μm or less as a result. On the other hand, if the magnetomotive force exceeds a preferable value that varies depending on the cross-sectional area of the ingot, the electromagnetic stirring force is too strong, the dendritic crystals are only broken at the root, and the number of crystal nuclei is not increased. The average grain size of the alloy plate does not decrease to 20 μm or less. Also, if the frequency exceeds a preferable value that varies depending on the cross-sectional area of the ingot, the electromagnetic force is concentrated on the portion in contact with the mold of the molten metal due to the skin effect and does not spread over the entire molten metal. The average grain size of the part where the force was not reduced does not decrease to 20 μm or less.

均質化熱処理条件
溶質元素分布の均一化、Al‐Fe‐Mn系晶出物の分断化、FeおよびMnの析出を目的として均質化熱処理をする。その条件は、公知のものでよく、たとえば特開2002−348625号公報に開示されているような、450〜620℃の温度に5時間以上保持することで十分に均質化される。
Homogenization heat treatment conditions Homogenization heat treatment is performed for the purpose of homogenizing the distribution of solute elements, fragmenting Al-Fe-Mn crystals, and precipitating Fe and Mn. The conditions may be known ones, and are sufficiently homogenized by holding at a temperature of 450 to 620 ° C. for 5 hours or longer as disclosed in, for example, JP-A-2002-348625.

圧延条件
熱間圧延の条件は特に限定しないが、350℃以上の温度で行うことが好ましい。
冷間圧延での断面減少率は50〜95%の範囲とする。断面減少率が50%未満であると最終焼鈍後の結晶粒が粗くなり、伸び、張出性および絞り性が低下することがある。断面減少率が95%を超えると圧延途上において耳割れが発生するおそれがある。
冷間圧延の途中で必要に応じて中間焼鈍してもよい。中間焼鈍を複数回してもよいが、その場合、最後の中間焼鈍から後の断面減少率を50〜95%の範囲とすることが好ましい。中間焼鈍までの冷間圧延の断面減少率、および複数回の中間焼鈍間の冷間圧延の断面減少率は95%以下とすることが好ましい。断面減少率が95%を超えると圧延途上において耳割れが発生するおそれがある。
Rolling conditions Hot rolling conditions are not particularly limited, but are preferably performed at a temperature of 350 ° C. or higher.
The cross-section reduction rate in cold rolling is in the range of 50 to 95%. When the cross-section reduction rate is less than 50%, the crystal grains after the final annealing become coarse, and elongation, stretchability and squeezability may deteriorate. If the cross-section reduction rate exceeds 95%, there is a risk of ear cracks occurring during rolling.
Intermediate annealing may be performed as necessary during the cold rolling. The intermediate annealing may be performed a plurality of times. In that case, it is preferable that the cross-sectional reduction rate after the last intermediate annealing is in the range of 50 to 95%. It is preferable that the cross-sectional reduction rate of the cold rolling until the intermediate annealing and the cross-sectional reduction rate of the cold rolling between the plurality of intermediate annealings are 95% or less. If the cross-section reduction rate exceeds 95%, there is a risk that ear cracks may occur during rolling.

最終焼鈍条件
350〜500℃で1〜10時間のバッチ焼鈍もしくは400〜550℃で1秒〜10分の連続焼鈍が好ましい。
350℃未満の温度あるいは1時間未満のバッチ焼鈍、400℃未満の温度あるいは1秒未満の連続焼鈍では、再結晶が不完全であり、成形性に関する特性値のばらつきが大きくなり、有意の値が得られない。このようなものは、電子機器のケースや自動車の部材などへの使用に適さない。500℃以上あるいは10時間超えてのバッチ焼鈍、550℃以上あるいは10分以上の連続焼鈍では、結晶粒が粗大化するため、伸びを35%に到達させることができないほか、平均r値が0.85未満に、LDR(限界絞り比)が2.17未満となって、目的とする張出性と絞り成形性が得られない。
焼鈍後、必要に応じて、テンションレベラにより歪みを矯正してもよい。本発明の効果は歪み矯正によって損なわれない。
Final annealing conditions
Batch annealing at 350 to 500 ° C. for 1 to 10 hours or continuous annealing at 400 to 550 ° C. for 1 second to 10 minutes is preferable.
At temperatures below 350 ° C or batch annealing for less than 1 hour, temperatures below 400 ° C or continuous annealing for less than 1 second, recrystallization is incomplete, resulting in large variations in the property values related to formability. I can't get it. Such a thing is not suitable for use in a case of an electronic device or a member of an automobile. In batch annealing at 500 ° C or higher or over 10 hours, and continuous annealing at 550 ° C or higher or 10 minutes or longer, the crystal grains become coarse, so the elongation cannot reach 35% and the average r value is less than 0.85 Moreover, the LDR (limit drawing ratio) is less than 2.17, and the desired stretchability and drawability cannot be obtained.
After annealing, distortion may be corrected with a tension leveler as necessary. The effect of the present invention is not impaired by distortion correction.

実施例1;
次に具体的な実施例について説明する。
表1に示す成分組成のアルミニウム合金溶湯を溶製し、鋳塊の引出速度50mm/分なる条件のDC鋳造法で、しかも表2に示す電磁攪拌処理を施しながら、厚さ500mm、幅1000mmの鋳塊を得た。
その後、580℃×6.0時間の均質化処理を施した後、熱間圧延、冷間圧延、最終焼鈍して、厚さ1mmのアルミニウム板を得た。なお、冷間圧延時の断面減少率、およびその後に施す最終焼鈍の条件は、表2に併記する条件とした。
Example 1;
Next, specific examples will be described.
A molten aluminum alloy having the composition shown in Table 1 is melted, and the DC casting method is performed under the condition that the ingot drawing speed is 50 mm / min, and the electromagnetic stirring treatment shown in Table 2 is applied, and the thickness is 500 mm and the width is 1000 mm. An ingot was obtained.
Thereafter, a homogenization treatment at 580 ° C. × 6.0 hours was performed, followed by hot rolling, cold rolling, and final annealing to obtain an aluminum plate having a thickness of 1 mm. In addition, the cross-sectional reduction rate at the time of cold rolling, and the conditions of the final annealing performed after that were made into the conditions described in Table 2.

得られた厚さ1mmのアルミニウム板の組織および特性を評価した。評価方法は以下のとおりである。なお、平均結晶粒径および{110}方位結晶の面積率は、圧延平行方向を含むアルミニウム板の断面の結晶粒をSEM‐EBSDにて解析・測定した。
引張試験特性の評価:
JIS
Z 2201:1998に規定されるJIS5号試験片を作製、JIS Z 2241:1998に基づく室温での引張試験により、0.2%耐力、引張強さ、伸びの各特性値を測定した。これらの特性Aは圧延方向と平行(A‐L)、圧延方向に垂直(A‐LT)、圧延方向から45°(A‐45)の3方向のものを測定、(1)式より平均値を計算し、その値を用いた。
A={(A‐L)+(A‐LT)+2×(A‐45)}/4・・・・ (1)
The structure and properties of the obtained 1 mm thick aluminum plate were evaluated. The evaluation method is as follows. The average crystal grain size and the area ratio of {110} oriented crystals were analyzed and measured by SEM-EBSD for the crystal grains in the cross section of the aluminum plate including the rolling parallel direction.
Evaluation of tensile test properties:
JIS
A JIS No. 5 test piece specified in Z 2201: 1998 was prepared, and 0.2% proof stress, tensile strength, and elongation characteristic values were measured by a tensile test at room temperature based on JIS Z 2241: 1998. These characteristics A are measured in three directions, parallel to the rolling direction (AL), perpendicular to the rolling direction (A-LT), and 45 ° (A-45) from the rolling direction. Was calculated and its value was used.
A = {(A−L) + (A−LT) + 2 × (A−45)} / 4 ・ ・ ・ ・ (1)

平均r値の評価:
JIS
Z 2201:1998に規定されるJIS5号試験片を作製し、室温での引張試験により、JIS G 0202:1987の規定に基づいてr値を測定した。前項の引張試験特性と同様に圧延方向と平行(A‐L)、圧延方向に垂直(A‐LT)、圧延方向から45°(A‐45)の3方向のものを測定、(1)式より平均値を計算し、その値を用いた。
Evaluation of average r value:
JIS
A JIS No. 5 test piece specified in Z 2201: 1998 was prepared, and the r value was measured based on the specification of JIS G 0202: 1987 by a tensile test at room temperature. Similar to the tensile test characteristics in the previous section, measured in three directions, parallel to the rolling direction (AL), perpendicular to the rolling direction (A-LT), and 45 ° (A-45) from the rolling direction, formula (1) An average value was calculated and used.

球頭張出高さの測定:
以下の条件にて張出成形し、破断時の限界高さを測定した。
ポンチ:100mmφ(半球形)、肩R:50mm、ダイ:105mmφ、肩R:4mm
Sphere head overhang measurement:
Extrusion molding was performed under the following conditions, and the critical height at break was measured.
Punch: 100mmφ (hemisphere), shoulder R: 50mm, die: 105mmφ, shoulder R: 4mm

限界絞り比の測定:
以下の条件で、破断せずに絞ることのできる最大ブランク径を求め、ポンチ径との比より限界絞り比を算出した。
ポンチ:33mmφ(円柱形)、肩R:3mm、ダイ:35mmφ、
しわ押さえ:100kg 潤滑剤:ジョンソンワックス#700
Measurement of limit drawing ratio:
Under the following conditions, the maximum blank diameter that can be squeezed without breaking was obtained, and the limit squeezing ratio was calculated from the ratio to the punch diameter.
Punch: 33mmφ (cylindrical), shoulder R: 3mm, die: 35mmφ,
Wrinkle hold: 100kg Lubricant: Johnson wax # 700

評価結果を表3に示す。
試験No.1〜3は、Mnを含まないアルミニウム合金の場合の実施例であるが、成分組成、製造条件とも本発明の範囲内であり、平均結晶粒径が15μm以下、{110}方位結晶の面積率が27%以上、伸びが41%以上、平均r値が0.87以上、球頭張出高さが34mm以上、限界絞り比が2.17以上であり、伸びが高く、張出性と絞り性が優れている。
試験No.4〜8は、Mnを含むアルミニウム合金の場合の実施例であるが、成分組成、製造条件とも本発明の範囲内であり、平均結晶粒径が12μm以下、{110}方位結晶の面積率が27%以上、伸びが35%以上、平均r値が0.95以上、球頭張出高さが33mm以上、限界絞り比が2.20以上であり、伸びが高く、張出性と絞り性が優れている。
The evaluation results are shown in Table 3.
Test Nos. 1 to 3 are examples in the case of an aluminum alloy not containing Mn, but the component composition and production conditions are both within the scope of the present invention, the average crystal grain size is 15 μm or less, and the {110} orientation crystal The area ratio is 27% or more, the elongation is 41% or more, the average r value is 0.87 or more, the ball head overhanging height is 34 mm or more, the limit drawing ratio is 2.17 or more, the elongation is high, the stretchability and the drawability. Is excellent.
Test Nos. 4 to 8 are examples in the case of an aluminum alloy containing Mn, but the composition and production conditions are both within the scope of the present invention, the average crystal grain size is 12 μm or less, and the {110} orientation crystal The area ratio is 27% or more, the elongation is 35% or more, the average r value is 0.95 or more, the ball head overhanging height is 33mm or more, the limit drawing ratio is 2.20 or more, the elongation is high, the overhanging property and the drawing property are Are better.

試験No.9は、Feが少なく、成分組成が本発明の範囲外となるアルミニウム合金の場合の比較例であるが、製造条件は本発明の範囲内であるものの、平均結晶粒径が21μm、{110}方位結晶の面積率が21%、伸びが44%、平均r値が0.85、球頭張出高さが38mm、LDRが2.07であり、伸びが高く、張出性に優れるが、絞り性が十分ではなかった。
試験No.10,11は、Tiの含有量が多く、成分組成が本発明の範囲外となるアルミニウム合金の場合の比較例であるが、製造条件は本発明の範囲内であるものの、平均結晶粒径が25〜28μm、{110}方位結晶の面積率が23%、伸びが37〜40%、平均r値が0.82〜0.84、球頭張出高さが29〜31mm、LDR(限界絞り比)が2.10〜2.13であり、張出性と絞り性が劣っていた。
Test No. 9 is a comparative example in the case of an aluminum alloy in which Fe is low and the component composition is outside the scope of the present invention, although the manufacturing conditions are within the scope of the present invention, the average crystal grain size is 21 μm, The area ratio of {110} -oriented crystals is 21%, elongation is 44%, average r value is 0.85, ball head overhang height is 38mm, LDR is 2.07, and the elongation is high and the extensibility is excellent. Sex was not enough.
Test Nos. 10 and 11 are comparative examples in the case of an aluminum alloy having a large Ti content and a component composition outside the scope of the present invention, although the production conditions are within the scope of the present invention, Particle size is 25-28μm, area ratio of {110} orientation crystal is 23%, elongation is 37-40%, average r value is 0.82-0.84, ball head overhang height is 29-31mm, LDR (limit drawing ratio) ) Was 2.10 to 2.13, and the overhanging property and the drawing property were inferior.

試験No.12は、Mnが多く、成分組成が本発明の範囲外となるアルミニウム合金の場合の比較例であるが、鋳造時に粗大晶出物が発生し、製板できなかった。
試験No.13は、Feが多く、成分組成が本発明の範囲外となるアルミニウム合金の場合の比較例であるが、製造条件は本発明の範囲内であるものの、平均結晶粒径が34μm、{110}方位結晶の面積率が19%、伸びが30%、平均r値が0.81、球頭張出高さが32mm、LDRが2.10であり、伸び、張出性と絞り性ともに劣っていた。
Test No. 12 is a comparative example in the case of an aluminum alloy having a large amount of Mn and having a component composition outside the range of the present invention, but a coarse crystallized product was generated at the time of casting, and the plate could not be produced.
Test No. 13 is a comparative example in the case of an aluminum alloy having a large amount of Fe and a component composition outside the scope of the present invention, although the production conditions are within the scope of the present invention, the average crystal grain size is 34 μm, The area ratio of {110} -oriented crystals was 19%, elongation was 30%, average r value was 0.81, ball head overhang height was 32mm, and LDR was 2.10. .

試験No.14は、Tiの含有量が多く、成分組成が本発明の範囲外となるアルミニウム合金で、なおかつ鋳造時に電磁攪拌せず、製造条件も本発明の範囲外である場合の比較例であるが、平均結晶粒径が30μm、{110}方位結晶の面積率が22%、伸びが40%、平均r値が0.81、球頭張出高さが32mm、LDRが2.13であり、伸びが高いが、張出性と絞り性が劣っていた。
試験No.4の本発明例材と試験No.14の比較例材の断面について結晶粒組織を観察すると、図2に見られるように、試験No.4の本発明例材の方が、結晶粒が均一で細かくなっていることがわかる。この結晶粒の均一微細化が機械的特性の向上に繋がっていると言える。
Test No. 14 is a comparative example in which the content of Ti is an aluminum alloy having a component composition outside the scope of the present invention, and electromagnetic stirring is not performed during casting, and the production conditions are also outside the scope of the present invention. However, the average grain size is 30μm, the area ratio of {110} oriented crystals is 22%, the elongation is 40%, the average r value is 0.81, the ball overhang height is 32mm, the LDR is 2.13, and the elongation is High but poor in overhang and squeezability.
When observing the crystal grain structure of the cross section of the test sample material of test No. 4 and the comparative sample material of test No. 14, as shown in FIG. 2, the test sample material of test No. 4 is more crystalline. It can be seen that the grains are uniform and fine. It can be said that uniform refinement of the crystal grains leads to improvement of mechanical properties.

実施例2;
アルミニウム合金溶湯の成分組成を規定範囲内とし、製造条件を振らせた例を示す。
実施例1で用いた合金Dを溶解の後、表2中、試験No.15〜24で示す条件で鋳造、熱間圧延、冷間圧延、最終焼鈍して、厚さ1mmのアルミニウム板を得た。なお、鋳塊サイズは実施例1と同じ、厚さ500mm、幅1000mmである。
得られた厚さ1mmのアルミニウム板の組織および特性を評価した。評価方法は実施例1と同じ方法で行い、その結果は表3に併記した。
評価結果は、以下のとおりである。
Example 2;
An example in which the component composition of the molten aluminum alloy is within the specified range and the manufacturing conditions are varied will be shown.
After melting the alloy D used in Example 1, casting, hot rolling, cold rolling, and final annealing were performed under the conditions shown in Table 2 as test Nos. 15 to 24 to obtain an aluminum plate having a thickness of 1 mm. It was. The ingot size is the same as in Example 1, with a thickness of 500 mm and a width of 1000 mm.
The structure and properties of the obtained 1 mm thick aluminum plate were evaluated. The evaluation method was the same as in Example 1, and the results are shown in Table 3.
The evaluation results are as follows.

試験No.15は、アルミニウム合金の化学成分は本発明の範囲内であるが、鋳造時に電磁攪拌せず、製造条件が本発明の範囲外となる場合の比較例であるが、鋳造時に粗大羽毛状晶が発生し、製板できなかった。
試験No.16は、電磁攪拌の起磁力が大きく、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、平均結晶粒径が32μm、{110}方位結晶の面積率が21%、伸びが35%、平均r値が0.80、球頭張出高さが30mm、LDRが2.10であり、伸びが高いが、張出性と絞り性が劣っていた。
Test No. 15 is a comparative example in which the chemical composition of the aluminum alloy is within the scope of the present invention but electromagnetic stirring is not performed during casting, and the manufacturing conditions are outside the scope of the present invention. Crystals were formed and could not be produced.
Test No. 16 is a comparative example in the case of an aluminum alloy having a large magnetomotive force of electromagnetic stirring and out of the scope of the present invention, but the average crystal grain size is 32 μm, and the area ratio of {110} oriented crystals is 21%. The elongation was 35%, the average r value was 0.80, the ball head overhanging height was 30 mm, and the LDR was 2.10. Although the elongation was high, the overhanging property and the drawability were inferior.

試験No.17は、電磁攪拌の周波数が低く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、粗大羽毛状晶が発生し、製板できなかった。
試験No.18は、電磁攪拌の周波数が高く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、表皮効果のために電磁力がゆきわたらなかった鋳塊の中心部に粗大羽毛状晶が発生し、製板できなかった。
Test No. 17 is a comparative example in the case of an aluminum alloy that has a low frequency of electromagnetic stirring and is outside the scope of the present invention, but coarse feathery crystals were generated and could not be produced.
Test No. 18 is a comparative example in the case of an aluminum alloy having a high frequency of electromagnetic stirring and out of the scope of the present invention, but it is coarse in the center of the ingot where electromagnetic force did not move due to the skin effect. Feathery crystals were generated and could not be made.

試験No.19は、圧延での断面減少率が低く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、平均結晶粒径が35μm、{110}方位結晶の面積率が15%、伸びが32%、平均r値が0.79、球頭張出高さが29mm、LDRが2.07であり、伸び、張出性、絞り性ともに劣っていた。
試験No.20は、圧延での断面減少率が高く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、圧延途上で耳割れが発生し、製板できなかった。
Test No. 19 is a comparative example in the case of an aluminum alloy that has a low cross-sectional reduction rate in rolling and is outside the scope of the present invention, but the average crystal grain size is 35 μm, and the area ratio of {110} oriented crystals is 15 %, Elongation was 32%, average r value was 0.79, ball head overhang height was 29 mm, and LDR was 2.07.
Test No. 20 is a comparative example in the case of an aluminum alloy that has a high cross-sectional reduction rate in rolling and is outside the scope of the present invention.

試験No.21は、最終焼鈍温度が低く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、最終焼鈍において再結晶せず、いずれの特性ともばらつきが大きく、有意の値が得られなかった。
試験No.22は、最終焼鈍時間が短く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、最終焼鈍において再結晶せず、いずれの特性ともばらつきが大きく、有意の値が得られなかった。
Test No. 21 is a comparative example in the case of an aluminum alloy having a low final annealing temperature, which is outside the scope of the present invention. It was not obtained.
Test No. 22 is a comparative example in the case of an aluminum alloy that has a short final annealing time and is outside the scope of the present invention, but does not recrystallize in the final annealing, and there is a large variation in any of the characteristics, and a significant value is obtained. It was not obtained.

試験No.23は、最終焼鈍温度が高く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、平均結晶粒径が82μm、{110}方位結晶の面積率が12%、伸びが30%、平均r値が0.72、球頭張出高さが25mm、LDRが1.98であり、伸び、張出性、絞り性ともに劣っていた。
試験No.24は、最終焼鈍時間が長く、本発明の範囲外となるアルミニウム合金の場合の比較例であるが、平均結晶粒径が101μm、{110}方位結晶の面積率が9%、伸びが28%、平均r値が0.68、球頭張出高さが23mm、LDRが1.95であり、伸び、張出性、絞り性ともに劣っていた。
Test No. 23 is a comparative example in the case of an aluminum alloy having a high final annealing temperature and out of the scope of the present invention, but the average grain size is 82 μm, the area ratio of {110} oriented crystals is 12%, and the elongation is Was 30%, the average r value was 0.72, the ball head overhanging height was 25 mm, and the LDR was 1.98.
Test No. 24 is a comparative example in the case of an aluminum alloy that has a long final annealing time and is outside the scope of the present invention, but the average crystal grain size is 101 μm, the area ratio of {110} oriented crystals is 9%, and the elongation is Was 28%, the average r value was 0.68, the ball head overhang height was 23 mm, and the LDR was 1.95, and the elongation, overhang property and drawability were inferior.

アルミニウム合金板の結晶粒評価断面を説明する図The figure explaining the crystal grain evaluation section of an aluminum alloy plate 焼鈍後のアルミニウム合金板材断面の結晶粒組織観察図Observation of crystal grain structure of cross section of aluminum alloy sheet after annealing

Claims (5)

Feを1.0〜2.0質量%含有し、残部がアルミニウムおよび不可避不純物からなり、当該不可避不純物としてのTiが0.01質量%以下に制限された成分組成を有するとともに、平均結晶粒径が20μm以下、{110}方位結晶の面積率が25%以上に調整された組織を有することを特徴とする成形性に優れたアルミニウム合金板。   Fe is contained in an amount of 1.0 to 2.0% by mass, the balance is made of aluminum and inevitable impurities, and Ti as the inevitable impurities has a component composition limited to 0.01% by mass or less, and the average crystal grain size is 20 μm or less, {110 } An aluminum alloy plate excellent in formability, characterized by having a structure in which the area ratio of orientation crystals is adjusted to 25% or more. さらに、Mnを2.0質量%以下含有する成分組成を有する請求項1に記載の成形性に優れたアルミニウム合金板。   Furthermore, the aluminum alloy plate excellent in formability of Claim 1 which has a component composition which contains 2.0 mass% or less of Mn. 請求項1または2に記載の成分組成を有するアルミニウム合金溶湯を、電磁攪拌しながらDC鋳造し、得られた鋳塊を均質化熱処理、圧延加工、最終焼鈍することを特徴とする成形性に優れたアルミニウム合金板の製造方法。   The aluminum alloy melt having the component composition according to claim 1 or 2 is DC cast while electromagnetically stirring, and the obtained ingot is subjected to homogenization heat treatment, rolling, and final annealing, and has excellent formability A method for producing an aluminum alloy plate. 前記電磁攪拌は、起磁力を15000〜25000At、周波数を10〜30Hzとしたものである請求項3に記載の成形性に優れたアルミニウム合金板の製造方法。   The method for producing an aluminum alloy plate excellent in formability according to claim 3, wherein the electromagnetic stirring is performed with a magnetomotive force of 15000 to 25000 At and a frequency of 10 to 30 Hz. 前記最終焼鈍が、350〜500℃で1〜10時間のバッチ焼鈍処理もしくは400〜550℃で1秒〜10分の連続焼鈍処理である請求項3または4に記載の成形性に優れたアルミニウム合金板の製造方法。   The aluminum alloy excellent in formability according to claim 3 or 4, wherein the final annealing is a batch annealing treatment at 350 to 500 ° C for 1 to 10 hours or a continuous annealing treatment at 400 to 550 ° C for 1 second to 10 minutes. A manufacturing method of a board.
JP2008295336A 2008-11-19 2008-11-19 Aluminum alloy plate excellent in formability and method for producing the same Expired - Fee Related JP5233607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295336A JP5233607B2 (en) 2008-11-19 2008-11-19 Aluminum alloy plate excellent in formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295336A JP5233607B2 (en) 2008-11-19 2008-11-19 Aluminum alloy plate excellent in formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010121164A true JP2010121164A (en) 2010-06-03
JP5233607B2 JP5233607B2 (en) 2013-07-10

Family

ID=42322749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295336A Expired - Fee Related JP5233607B2 (en) 2008-11-19 2008-11-19 Aluminum alloy plate excellent in formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5233607B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140708A (en) * 2009-12-11 2011-07-21 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material for lithium ion battery case
WO2013008314A1 (en) * 2011-07-12 2013-01-17 住友軽金属工業株式会社 Aluminum alloy plate material for lithium ion battery cases
JP5301750B1 (en) * 2012-08-31 2013-09-25 株式会社大紀アルミニウム工業所 High heat conductive aluminum alloy for die casting, aluminum alloy die casting using the same, and heat sink using the alloy
JP2014065956A (en) * 2012-09-27 2014-04-17 Kobe Steel Ltd Aluminum alloy foil for lithium battery outer packaging and its manufacturing method
JP2014227590A (en) * 2013-05-25 2014-12-08 株式会社Uacj Aluminum alloy sheet for cell case
US10221471B2 (en) 2014-04-09 2019-03-05 Nippon Light Metal Company, Ltd. High strength aluminum alloy sheet excellent in bendability and shape freezability and method of production of same
JP2019206737A (en) * 2018-05-29 2019-12-05 株式会社Uacj Aluminum alloy sheet excellent in moldability, strength, and appearance quality, and manufacturing method therefor
CN113549797A (en) * 2021-07-26 2021-10-26 郑州大学 High-flux continuous casting and rolling aluminum-magnesium-manganese alloy plate for ship and production process thereof
CN114959368A (en) * 2022-04-19 2022-08-30 山东意吉希精密制造有限公司 Al-Fe type motor rotor alloy and preparation method and application thereof
WO2023058766A1 (en) * 2021-10-07 2023-04-13 学校法人千葉工業大学 Hypereutectic material and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100145A (en) * 1989-09-14 1991-04-25 Sky Alum Co Ltd Production of aluminum alloy plate having white color tone after anodic oxidation treatment
JP2005163077A (en) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd High formability aluminum foil for packaging material, and production method therefor
JP2005186119A (en) * 2003-12-26 2005-07-14 Nippon Light Metal Co Ltd Vertical type continuous casting apparatus for aluminum
JP2008261008A (en) * 2007-04-12 2008-10-30 Nippon Light Metal Co Ltd Aluminum alloy sheet for battery cover and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100145A (en) * 1989-09-14 1991-04-25 Sky Alum Co Ltd Production of aluminum alloy plate having white color tone after anodic oxidation treatment
JP2005163077A (en) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd High formability aluminum foil for packaging material, and production method therefor
JP2005186119A (en) * 2003-12-26 2005-07-14 Nippon Light Metal Co Ltd Vertical type continuous casting apparatus for aluminum
JP2008261008A (en) * 2007-04-12 2008-10-30 Nippon Light Metal Co Ltd Aluminum alloy sheet for battery cover and its production method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140708A (en) * 2009-12-11 2011-07-21 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material for lithium ion battery case
WO2013008314A1 (en) * 2011-07-12 2013-01-17 住友軽金属工業株式会社 Aluminum alloy plate material for lithium ion battery cases
JP5301750B1 (en) * 2012-08-31 2013-09-25 株式会社大紀アルミニウム工業所 High heat conductive aluminum alloy for die casting, aluminum alloy die casting using the same, and heat sink using the alloy
WO2014033791A1 (en) * 2012-08-31 2014-03-06 株式会社大紀アルミニウム工業所 Highly heat conductive aluminum alloy for die casting, aluminum alloy die cast product using same, and heatsink using same
CN104619871A (en) * 2012-08-31 2015-05-13 株式会社大纪铝工业所 Highly heat conductive aluminum alloy for die casting, aluminum alloy die cast product using same, and heatsink using same
KR101924319B1 (en) 2012-08-31 2018-12-03 가부시키가이샤 다이키 알루미늄 코교쇼 Highly heat conductive aluminum alloy for die casting, aluminum alloy die cast product using same, and heatsink using same
JP2014065956A (en) * 2012-09-27 2014-04-17 Kobe Steel Ltd Aluminum alloy foil for lithium battery outer packaging and its manufacturing method
JP2014227590A (en) * 2013-05-25 2014-12-08 株式会社Uacj Aluminum alloy sheet for cell case
US10221471B2 (en) 2014-04-09 2019-03-05 Nippon Light Metal Company, Ltd. High strength aluminum alloy sheet excellent in bendability and shape freezability and method of production of same
JP2019206737A (en) * 2018-05-29 2019-12-05 株式会社Uacj Aluminum alloy sheet excellent in moldability, strength, and appearance quality, and manufacturing method therefor
WO2019230722A1 (en) * 2018-05-29 2019-12-05 株式会社Uacj Aluminum alloy plate having excellent formability, strength, and exterior quality, and method of manufacturing same
CN112204160A (en) * 2018-05-29 2021-01-08 株式会社Uacj Aluminum alloy sheet having excellent formability, strength and appearance quality, and method for producing same
US20210189524A1 (en) * 2018-05-29 2021-06-24 Uacj Corporation Aluminum alloy sheet having excellent formability, strength, and exterior quality, and method of manufacturing same
JP7153469B2 (en) 2018-05-29 2022-10-14 株式会社Uacj Aluminum alloy plate excellent in formability, strength and appearance quality, and method for producing the same
CN113549797A (en) * 2021-07-26 2021-10-26 郑州大学 High-flux continuous casting and rolling aluminum-magnesium-manganese alloy plate for ship and production process thereof
CN113549797B (en) * 2021-07-26 2022-04-22 郑州大学 High-flux continuous casting and rolling aluminum-magnesium-manganese alloy plate for ship and production process thereof
WO2023058766A1 (en) * 2021-10-07 2023-04-13 学校法人千葉工業大学 Hypereutectic material and method for manufacturing same
CN114959368A (en) * 2022-04-19 2022-08-30 山东意吉希精密制造有限公司 Al-Fe type motor rotor alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP5233607B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5233607B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
CN113789459B (en) Copper-nickel-tin alloy and preparation method and application thereof
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
JP5360591B2 (en) Aluminum alloy ingot and method for producing the same
KR101277297B1 (en) High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof
KR20060135849A (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
JP4852754B2 (en) Magnesium alloy for drawing, press forming plate material made of the alloy, and method for producing the same
KR102043774B1 (en) High formability magnesium alloy sheet and method for manufacturing the same
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP5135684B2 (en) Aluminum alloy plate excellent in high-temperature high-speed formability and method for producing the same
JP2024020485A (en) Magnesium alloy solution treatment material and its usage
JP4325126B2 (en) Aluminum alloy plate excellent in warm formability and manufacturing method thereof
KR20160136832A (en) High strength wrought magnesium alloys and method for manufacturing the same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2003239052A (en) Method for producing aluminum foil base material and method for producing aluminum foil
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP2017133054A (en) High strength aluminum alloy sheet excellent in moldability and manufacturing method therefor
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP6294962B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and method for producing the same
JP6335745B2 (en) High strength aluminum alloy plate excellent in formability and method for producing the same
JPH09176805A (en) Production of aluminum fin material
JP7318275B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees