JP2010120850A - Method for producing composition - Google Patents

Method for producing composition Download PDF

Info

Publication number
JP2010120850A
JP2010120850A JP2010013115A JP2010013115A JP2010120850A JP 2010120850 A JP2010120850 A JP 2010120850A JP 2010013115 A JP2010013115 A JP 2010013115A JP 2010013115 A JP2010013115 A JP 2010013115A JP 2010120850 A JP2010120850 A JP 2010120850A
Authority
JP
Japan
Prior art keywords
composition
slurry
titanium
hydroxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010013115A
Other languages
Japanese (ja)
Other versions
JP5353728B2 (en
Inventor
Yoshiaki Ikeda
美昭 池田
Masami Kuwai
雅巳 桑井
Shinji Ogama
信治 大釜
Yukihiro Kuniyoshi
幸浩 国吉
Kazuhisa Hidaka
一久 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2010013115A priority Critical patent/JP5353728B2/en
Publication of JP2010120850A publication Critical patent/JP2010120850A/en
Application granted granted Critical
Publication of JP5353728B2 publication Critical patent/JP5353728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a composition by an improved hydrothermal synthesis method, by which a composition containing an ABO<SB>3</SB>compound comprising uniform, fine spherical particles whose average particle diameter is ≤1 μm, preferably 0.01-0.5 μm, and having high crystallinity, an arbitrarily controlled A/B ratio, and a small number of vacancies of nanometer size in crystal grains thereof can be obtained. <P>SOLUTION: The method for producing the composition containing a perovskite type compound includes a first step of dehydrating a hydrated oxide of at least one B group element selected from Ti, Zr, Hf and Sn by bringing the hydrated oxide into a hydrothermal reaction at a temperature within a range of 100-300°C, and a second step of hydrothermally reacting a reaction product obtained at the first step and a hydroxide of at least one A group element selected from Ba, Sr, Ca, Mg and Pb at a temperature within a range of 100-300°C in the presence of an aqueous medium. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、平均粒径が1μm以下、好ましくは、0.01〜0.5μmの範囲にある均一な球状の粒子からなり、結晶性が高く、A/B比が任意に制御されており、しかも、そのような粒子内に内部空孔の少ないぺロブスカイト型化合物(以下、ABO3 化合物という。)を含有する組成物の製造方法に関する。本発明に従って得られるこのようなABO3 化合物は、従来にないすぐれたABO3 化合物の焼結体、例えば、チタン酸バリウムの層欠陥のない薄層の焼結体を与える。 The present invention comprises uniform spherical particles having an average particle size of 1 μm or less, preferably 0.01 to 0.5 μm, high crystallinity, and the A / B ratio is arbitrarily controlled, In addition, the present invention relates to a method for producing a composition containing a perovskite type compound (hereinafter referred to as ABO 3 compound) having few internal vacancies in such particles. Such ABO3 compound obtained according to the present invention, sintered bodies of unprecedented excellent ABO 3 compounds, for example, giving a sintered body without a thin layer of layer defects of the barium titanate.

ABO3 化合物とは、チタン酸カルシウム鉱(ぺロブスカイト)と同様の結晶構造を有する化合物の総称であり、このような化合物は、これを成形した後、焼結することによって、すぐれた誘電性、圧電性及び半導性を有するセラミックス(以下、誘電体セラミックスという。)を与える。このような焼結体は、コンデンサー、フィルター、着火素子、サーミスター等として、今日、通信機、コンピューター等の電子機器に広く用いられている。 The ABO 3 compound is a general term for compounds having a crystal structure similar to that of calcium titanate ore (perovskite). Such a compound has excellent dielectric properties by being molded and then sintered. Ceramics having piezoelectricity and semiconductivity (hereinafter referred to as dielectric ceramics) are provided. Such sintered bodies are widely used today in electronic devices such as communication devices and computers as capacitors, filters, ignition elements, thermistors, and the like.

近年、電子デバイスは、益々、小型高性能化しており、それに伴って、電子機器部品も同様に小型高性能化を目的として、誘電体セラミックスの配合技術、成形技術、焼結技術等の製造工程の改良が種々なされてきている。しかし、そのような製造工程における改良も殆どその限界に達しており、現状より更にすぐれた誘電体セラミックスを得るためには、その素材を改善する必要がある。即ち、平均粒径が1μm以下、好ましくは、0.5μm以下の均一な球状で、分散性のよいABO3 化合物が要望されている。 In recent years, electronic devices have become smaller and higher in performance, and electronic component parts are also manufactured in the same way, with the objective of reducing the size and performance, manufacturing processes such as dielectric ceramic compounding technology, molding technology, and sintering technology. Various improvements have been made. However, such improvements in the manufacturing process have almost reached its limit, and it is necessary to improve the material in order to obtain a dielectric ceramic superior to the present situation. That is, there is a demand for an ABO 3 compound having an average particle size of 1 μm or less, preferably 0.5 μm or less and having a uniform spherical shape and good dispersibility.

このような特性を有するABO3 化合物が要望される理由は、粒径が小さければ、表面エネルギーが高くなり、形状が球状で粒度分布が均一であれば、成形時のパッキング性がよくなるので、そのようなABO3 化合物は、焼結性が著しく改善され、より低い温度での焼結によって緻密強固な誘電体セラミックスを与えることができる。更に、積層セラミックコンデンサーの薄層化、多積層化を実現するために、厚み5μm以下のセラミックグリーンシートが要求されており、この場合も、平均粒径が1μm以下、好ましくは、0.01〜0.5μmの均一な球状で、分散性のよいABO3 化合物が要望されている。 The reason why an ABO 3 compound having such characteristics is desired is that if the particle size is small, the surface energy is high, and if the shape is spherical and the particle size distribution is uniform, the packing property during molding is improved. Such an ABO 3 compound has remarkably improved sinterability and can provide a dense and strong dielectric ceramic by sintering at a lower temperature. Furthermore, in order to realize a multilayer ceramic capacitor having a thin layer and multiple layers, a ceramic green sheet having a thickness of 5 μm or less is required. In this case, the average particle size is 1 μm or less, preferably 0.01 to There is a demand for an ABO 3 compound having a uniform spherical shape of 0.5 μm and good dispersibility.

従来、ABO3 化合物、代表的には、チタン酸バリウムは、炭酸バリウムと酸化チタンとを混合し、これを1000℃以上の温度で仮焼した後、湿式粉砕し、濾過、乾燥し、分級する所謂固相法によって製造されている。このような固相法によれば、炭酸バリウムと酸化チタンとの固相反応を完結させるためには、その混合物を高温で十分な時間、仮焼することが必要である。しかし、このような高温での長時間にわたる仮焼を行えば、その間の粒子成長が避けられず、その結果、得られるチタン酸バリウム粒子の粒径を1μm以下に制御することが困難である。また、得られたチタン酸バリウムは、種々の用途に供する場合、焼結体とした後、これを粉砕するので、粒度分布が均一でなく、また、その形状も分散に適しているとはいい難い(非特許文献1参照)。 Conventionally, ABO 3 compound. Typically, barium titanate, mixing barium carbonate and titanium oxide, after which was calcined at 1000 ° C. or higher, wet ground, filtered, dried, and classified It is manufactured by a so-called solid phase method. According to such a solid phase method, in order to complete the solid phase reaction between barium carbonate and titanium oxide, the mixture needs to be calcined at a high temperature for a sufficient time. However, if calcination is performed at such a high temperature for a long time, particle growth during that time cannot be avoided, and as a result, it is difficult to control the particle size of the obtained barium titanate particles to 1 μm or less. In addition, when the obtained barium titanate is used for various purposes, it is pulverized after being made into a sintered body, so that the particle size distribution is not uniform and the shape is also suitable for dispersion. It is difficult (see Non-Patent Document 1).

このような問題を解消するために、湿式法によってチタン酸バリウムを製造することが提案されている。この湿式法としては、アルコキシド法、共沈法、シュウ酸法、水熱合成法等を挙げることができるが、しかし、いずれの方法も依然として重要な問題を有している。   In order to solve such problems, it has been proposed to produce barium titanate by a wet method. Examples of the wet method include an alkoxide method, a coprecipitation method, an oxalic acid method, a hydrothermal synthesis method, and the like, but all methods still have important problems.

例えば、アルコキシド法は、バリウムアルコキシドとチタンアルコキシドを混合し、加水分解するか、又はチタンアルコキシドと水酸化バリウムを反応させて、チタン酸バリウムを得るものであるが、用いるアルコキシド原料が高価であるのみならず、副生するアルコールを回収する必要があるので、工業的な実施には問題がある(特許文献1参照)。   For example, in the alkoxide method, barium alkoxide and titanium alkoxide are mixed and hydrolyzed, or titanium alkoxide and barium hydroxide are reacted to obtain barium titanate, but the alkoxide raw material used is only expensive. In addition, since it is necessary to recover the by-produced alcohol, there is a problem in industrial implementation (see Patent Document 1).

共沈法によれば、原料も比較的安価であり、しかも、焼結性のよいチタン酸バリウムの粉体を得ることができる。この共沈法の一例によれば、例えば、水溶性バリウム塩とチタン化合物の加水分解生成物とを強アルカリ存在下に加熱して、反応させれば、チタン酸バリウムを得ることができる。しかし、このような方法による場合、得られた反応生成物を洗浄しても、上記反応に用いたアルカリを除去することが困難であって、得られたチタン酸バリウム粉体中にアルカリが不可避的に混入するという問題を有している(例えば、特許文献2参照)。   According to the coprecipitation method, it is possible to obtain a barium titanate powder that is relatively inexpensive and has good sinterability. According to an example of this coprecipitation method, for example, if a water-soluble barium salt and a hydrolysis product of a titanium compound are heated in the presence of a strong alkali and reacted, barium titanate can be obtained. However, in the case of such a method, it is difficult to remove the alkali used in the above reaction even if the obtained reaction product is washed, and alkali is inevitable in the obtained barium titanate powder. (For example, refer to Patent Document 2).

シュウ酸法は、例えば、四塩化チタンと塩化バリウムとシュウ酸を水中で反応させて、シュウ酸バリウムチタニルとし、これを熱分解して、チタン酸バリウムを得る方法である。この方法によるときは、原料として用いる四塩化チタンや塩化バリウムの高純度品を比較的容易に得ることができるので、高純度のチタン酸バリウムを容易に得ることができるという利点がある。しかし、この方法によって沈殿として得られる上記シュウ酸バリウムチタニルがかなり大きい凝集体であり、仮焼時にこの凝集体の骨格が残って、粗大粒子を生成しやすい。また、得られたチタン酸バリウム粉末を焼結して、チタン酸バリウムセラミックスとするとき、誘電損失が高いという問題も有している(例えば、特許文献3参照)。   In the oxalic acid method, for example, titanium tetrachloride, barium chloride, and oxalic acid are reacted in water to form barium titanyl oxalate, which is thermally decomposed to obtain barium titanate. When this method is used, a high-purity product of titanium tetrachloride or barium chloride used as a raw material can be obtained relatively easily. Therefore, there is an advantage that high-purity barium titanate can be easily obtained. However, the barium titanyl oxalate obtained as a precipitate by this method is a considerably large aggregate, and the skeleton of the aggregate remains during calcination, so that coarse particles are easily generated. In addition, when the obtained barium titanate powder is sintered into a barium titanate ceramic, there is a problem that the dielectric loss is high (see, for example, Patent Document 3).

更に、チタン酸バリウムの製造方法として、水酸化バリウムとチタンの水酸化物又は酸化物の混合物を水熱処理する方法が水熱合成法として知られている。この方法によれば、特に分散性のよい均一微細なチタン酸バリウムを得ることができ、かくして、水熱合成法によるチタン酸バリウムは、積層セラミックコンデンサの薄層化、多層化に好ましく用いることができるといわれている。   Further, as a method for producing barium titanate, a method of hydrothermally treating a hydroxide of barium hydroxide and titanium or a mixture of oxides is known as a hydrothermal synthesis method. According to this method, uniform and fine barium titanate having particularly good dispersibility can be obtained. Thus, barium titanate by hydrothermal synthesis is preferably used for thinning and multilayering of multilayer ceramic capacitors. It is said that it can be done.

しかし、水熱合成法においては、水酸化バリウムとチタンの水酸化物又は酸化物との反応が100%進行しないため、反応によって得られるチタン酸バリウム中に未反応のチタン成分が固体として混在しており、他方、未反応の水酸化バリウムは得られた反応混合物中に溶解している。従って、反応後、得られた反応混合物を濾過、水洗して、得られたチタン酸バリウムを固形分として反応混合物から分離すれば、上記水溶性のバリウム成分は得られたチタン酸バリウムから除去されるので、得られたチタン酸バリウムはチタン成分を過剰に含んでいる。従って、このようなチタン酸バリウム粉末を焼結しても、同様に、チタン成分の過剰な焼結体しか得られない。しかも、水熱合成によるチタン酸バリウムの製造においては、反応ごとに原料の反応率が微妙に変動するので、電子材料として用いるために予め定めたBa/Ti比に厳密に制御することができず、従って、誘電体セラミックスの原料としては適切なものではなかった(例えば、特許文献4及び非特許文献3参照)。   However, in the hydrothermal synthesis method, since the reaction between barium hydroxide and titanium hydroxide or oxide does not proceed 100%, unreacted titanium components are mixed in the barium titanate obtained by the reaction as a solid. On the other hand, unreacted barium hydroxide is dissolved in the resulting reaction mixture. Therefore, after the reaction, the obtained reaction mixture is filtered, washed with water, and the obtained barium titanate is separated from the reaction mixture as a solid content, so that the water-soluble barium component is removed from the obtained barium titanate. Therefore, the obtained barium titanate contains an excess of a titanium component. Therefore, even when such a barium titanate powder is sintered, only a sintered body having an excessive titanium component can be obtained. Moreover, in the production of barium titanate by hydrothermal synthesis, the reaction rate of the raw material varies slightly from reaction to reaction, so that it cannot be strictly controlled to a predetermined Ba / Ti ratio for use as an electronic material. Therefore, they are not suitable as raw materials for dielectric ceramics (see, for example, Patent Document 4 and Non-Patent Document 3).

そこで、従来、ABO3 化合物の水熱合成法による製造におけるこのような問題を解決するために、水熱反応後、水性媒体中に溶存するA群元素を不溶化させてA/B比を制御する方法が提案されており、誘電体セラミックスの原料の製造方法として実用化されている(特許文献5参照)。 Therefore, conventionally, in order to solve such a problem in the production of the ABO 3 compound by the hydrothermal synthesis method, the A / B ratio is controlled by insolubilizing the A group element dissolved in the aqueous medium after the hydrothermal reaction. A method has been proposed and put to practical use as a method for producing a dielectric ceramic material (see Patent Document 5).

このようにして、水熱合成法によるABO3 化合物の製造において、A/B比の制御の問題は解決されたものの、更に、水熱合成法で製造されたチタン酸バリウムは、その粒子の酸素格子中に水酸基を含んでいるという新たな問題がある。即ち、そのようなチタン酸バリウムを100〜600℃の温度に加熱したとき、脱水反応が起こって、粒子内にナノメーター(nm)サイズの空孔が形成されることが知られている。このようにしてチタン酸バリウム粒子内に形成された空孔は、チタン酸バリウムを薄層の焼結体とする際に、クラックやデラミネーションを引き起こす原因となり、積層セラミックコンデンサーの更なる薄層化、多層化を阻害するので、その解決が求められている(例えば、非特許文献4参照)。 Thus, although the problem of controlling the A / B ratio has been solved in the production of the ABO 3 compound by the hydrothermal synthesis method, the barium titanate produced by the hydrothermal synthesis method is further reduced by the oxygen of the particles. There is a new problem that the lattice contains a hydroxyl group. That is, it is known that when such barium titanate is heated to a temperature of 100 to 600 ° C., a dehydration reaction takes place, and nanometer (nm) size pores are formed in the particles. The voids formed in the barium titanate particles in this way cause cracks and delamination when barium titanate is used as a thin-layer sintered body, further thinning the multilayer ceramic capacitor Since multilayering is hindered, the solution is required (for example, see Non-Patent Document 4).

米国特許第5087437号明細書US Pat. No. 5,087,437 特開昭59−39726号公報JP 59-39726 A 米国特許第2758911号明細書US Pat. No. 2,758,911 米国特許第2193563号明細書U.S. Pat. No. 2,193,563 特開昭61−31345号公報JP 61-31345 A

佐々木▲きょう▼一「チタン酸バリウムとその複合粒子の製造法とプロセス」、粉体工学会誌、粉体工学会、1997年、第34巻、第11号、第862〜874頁Sasaki ▲ Kyo ▼ “Production and process of barium titanate and its composite particles”, Journal of Powder Engineering, Powder Engineering Society, 1997, Vol. 11, No. 11, 862-874 諏訪佳子ほか、「アルコキシド共沈法によるBaO−TiO2 系化合物の生成」、粉体及び粉末冶金、1978年、第25巻、第5号、第164〜167頁Yoshiko Suwa et al., "Production of BaO-TiO2 compounds by alkoxide coprecipitation", powder and powder metallurgy, 1978, Vol. 25, No. 5, pp. 164-167 久保輝喜一郎、「チタン酸バリウム(BaTiO3)の湿式合成法、「工業化学雑誌」、1968年、第71巻、第1号、第114〜118頁Teruichiro Kubo, “Wet synthesis method of barium titanate (BaTiO 3),“ Industrial Chemical Journal ”, 1968, Vol. 71, No. 1, pp. 114-118 ディー・エフ・ケー・ヘニングス(D.F.K. Hennings) ら、「水熱合成によるチタン酸バリウムの欠陥化学と微細構造」、ジャーナル・オブ・アメリカン・セラミック・ソサイアティ(J. Am. Ceram. Soc.)、2001年、第84巻、第1号、第179〜182頁DFK Hennings et al., “Defect chemistry and microstructure of barium titanate by hydrothermal synthesis”, Journal of American Ceramic Society (J. Am. Ceram. Soc.), 2001 Year, Vol. 84, No. 1, pp. 179-182

上述したように、従来、チタン酸バリウムを代表とするABO3 化合物は、コンデンサ、フィルター、サーミスター等の電子部品の小型化や高性能化の要求に対して、十分に応えることができないという問題がある。また、分散性のよい均一微小な球形粒子が得られるという点ですぐれた製造方法といわれている水熱合成法においても、上述したように、加熱の際の脱水によって粒子内にナノメーターサイズの空孔が生成し、そのように、粒子内に空孔を有するチタン酸バリウムを積層セラミックコンデンサーの製造に用いるとき、クラックやデラミネーションを引き起こす問題がある。 As described above, conventionally, ABO 3 compounds represented by barium titanate cannot adequately meet the demands for downsizing and high performance of electronic parts such as capacitors, filters, and thermistors. There is. Also, in the hydrothermal synthesis method, which is said to be an excellent production method in that uniform fine spherical particles with good dispersibility can be obtained, as described above, nanometer-sized particles are formed in the particles by dehydration during heating. There is a problem in that when voids are generated, and when barium titanate having voids in the particles is used for manufacturing a multilayer ceramic capacitor, cracks and delamination are caused.

ここに、本発明は、チタン酸バリウムを代表とするABO3 化合物の製造における上述した問題を解決するためになされたものであって、平均粒径が1μm以下、好ましくは、0.01〜0.5μmの均一微細な球状の粒子からなる結晶性が高く、A/B比が任意に制御されており、しかも、結晶粒子内のナノメータサイズの空孔の数が少ないABO3 化合物を含有する組成物を製造することができる改良された水熱合成法による上記組成物の製造方法を提供することを目的とする。このように、結晶粒子内に空孔の少ないABO3 化合物は、積層セラミックコンデンサーの製造に有利に用いることができる。 The present invention has been made to solve the above-mentioned problems in the production of ABO 3 compounds typified by barium titanate, and has an average particle size of 1 μm or less, preferably 0.01 to 0. A composition containing an ABO3 compound having a high crystallinity composed of uniform fine spherical particles of 5 μm, an arbitrarily controlled A / B ratio, and a small number of nanometer-sized vacancies in the crystal particles It is an object of the present invention to provide a method for producing the above composition by an improved hydrothermal synthesis method. As described above, the ABO 3 compound having few vacancies in the crystal grains can be advantageously used in the production of the multilayer ceramic capacitor.

本発明によれば、
Ti、Zr、Hf及びSnから選ばれる少なくとも一種のB群元素の含水酸化物を水性媒体の存在下、80〜300℃の範囲の温度で加熱し、上記含水酸化物を脱水させる第一工程と、
上記第一工程で得られた反応生成物とBa、Sr、Ca、Mg及びPbから選ばれる少なくとも一種のA群元素の水酸化物とを水性媒体の存在下、100〜300℃の範囲の温度で加熱する第二工程
とを含むことを特徴とするペロブスカイト型化合物を含有する組成物の製造方法が提供される。
According to the present invention,
A first step of dehydrating the hydrated oxide by heating a hydrated oxide of at least one group B element selected from Ti, Zr, Hf and Sn in the presence of an aqueous medium at a temperature in the range of 80 to 300 ° C .; ,
The reaction product obtained in the first step and a hydroxide of at least one group A element selected from Ba, Sr, Ca, Mg, and Pb in the presence of an aqueous medium, a temperature in the range of 100 to 300 ° C. And a second step of heating at a temperature, a method for producing a composition containing a perovskite type compound is provided.

本発明に従って、B群元素の含水酸化物を水性媒体の存在下、80〜300℃の範囲の温度で加熱し、脱水して、反応生成物を得た後、この反応生成物とA群元素の水酸化物とを水性媒体の存在下、水熱処理することによって、得られるABO3 化合物を含有する組成物は、平均粒径が1μm以下、好ましくは、0.01〜0.5μmの範囲にある均一な球状の粒子であり、結晶性が高く、A/B比が任意に制御されており、しかも、この組成物に含まれるABO3 化合物は、その結晶粒子内にナノメータサイズの空孔が少なく、通常、粒子100個当り、10個以下である。従って、このような組成物は焼結性にすぐれており、焼結すれば、非常に緻密で誘電性、圧電性、半導性等にすぐれる誘電体セラミックを与える。 In accordance with the present invention, the hydrous oxide of the group B element is heated at a temperature in the range of 80 to 300 ° C. in the presence of an aqueous medium, dehydrated to obtain a reaction product, and then the reaction product and the group A element are obtained. The composition containing the ABO3 compound obtained by hydrothermally treating with the hydroxide of 1 in the presence of an aqueous medium has an average particle diameter of 1 μm or less, preferably in the range of 0.01 to 0.5 μm. Uniform spherical particles, high crystallinity, A / B ratio is arbitrarily controlled, and the ABO 3 compound contained in this composition has few nanometer-size pores in the crystal particles. Usually, it is 10 or less per 100 particles. Therefore, such a composition is excellent in sinterability, and when sintered, gives a very dense dielectric ceramic having excellent dielectric properties, piezoelectric properties, semiconductivity and the like.

実施例3において、第一工程で得られた酸化チタンのX線回折図である。In Example 3, it is an X-ray-diffraction figure of the titanium oxide obtained at the 1st process. 実施例3において、第一工程で得られた酸化チタンの透過型電子顕微鏡写真である。In Example 3, it is a transmission electron micrograph of the titanium oxide obtained at the 1st process. 実施例3において、第二工程で得られた組成物のX線回折図である。In Example 3, it is an X-ray-diffraction figure of the composition obtained at the 2nd process. 実施例7において、第三工程で得られた組成物のX線回折図である。In Example 7, it is an X-ray-diffraction figure of the composition obtained at the 3rd process. 実施例8において、第二工程で得られた組成物のX線回折図である。In Example 8, it is an X-ray-diffraction figure of the composition obtained at the 2nd process. 実施例10において、第二工程で得られた組成物のX線回折図である。In Example 10, it is an X-ray-diffraction figure of the composition obtained at the 2nd process. 実施例11において、第二工程で得られた組成物のX線回折図である。In Example 11, it is an X-ray-diffraction figure of the composition obtained at the 2nd process. 実施例13において、第二工程で得られた組成物のX線回折図である。In Example 13, it is an X-ray-diffraction figure of the composition obtained at the 2nd process. 実施例18において、第二工程で得られた組成物のX線回折図である。In Example 18, it is an X-ray diffraction pattern of the composition obtained at the 2nd process.

本発明によるペロブスカイト型化合物を含有する組成物の製造方法において、第一工程は、Ti、Zr、Hf及びSnから選ばれる少なくとも一種のB群元素の含水酸化物を水性媒体、好ましくは、水の存在下、80〜300℃の範囲の温度で加熱し、上記含水酸化物を脱水して、より結晶性の高い反応生成物を微粒子として得るものである。上記反応生成物は、主として、対応するB群元素の酸化物からなる。   In the method for producing a composition containing a perovskite type compound according to the present invention, the first step is a step of using a water-containing oxide of at least one group B element selected from Ti, Zr, Hf and Sn as an aqueous medium, preferably water. In the presence, it is heated at a temperature in the range of 80 to 300 ° C. to dehydrate the hydrated oxide to obtain a reaction product having higher crystallinity as fine particles. The reaction product mainly consists of an oxide of the corresponding group B element.

一般に、B群元素の含水酸化物は、非晶性の固体であるが、これを加熱、脱水することによって、より結晶性の高い酸化物を微粒子として得ることができる。即ち、B群元素の含水酸化物を加熱、脱水することによって、通常、一次粒子径が0.005〜0.4μmの範囲にあり、好ましくは、0.01〜0.2μmの酸化物が主たる生成物である反応生成物を得ることができる。   In general, the hydrated oxide of the group B element is an amorphous solid, but by heating and dehydrating it, an oxide with higher crystallinity can be obtained as fine particles. That is, by heating and dehydrating the hydrous oxide of the group B element, the primary particle diameter is usually in the range of 0.005 to 0.4 μm, preferably 0.01 to 0.2 μm. A reaction product that is a product can be obtained.

第一工程において、B群元素の含水酸化物を水性媒体の存在下に加熱する温度は80〜300℃の範囲にわたる。常圧下においては、80℃からその水性媒体の煮沸温度(約100℃)の範囲の温度に加熱することができ、水熱反応によれば、約100℃からその水性媒体の臨界温度に加熱することができる。   In the first step, the temperature at which the hydrous oxide of the group B element is heated in the presence of the aqueous medium ranges from 80 to 300 ° C. Under normal pressure, it can be heated to a temperature in the range of 80 ° C. to the boiling temperature of the aqueous medium (about 100 ° C.). According to the hydrothermal reaction, it is heated from about 100 ° C. to the critical temperature of the aqueous medium. be able to.

本発明において、B群元素の含水酸化物の水性媒体の存在下の加熱温度は、80℃よりも低いときは、脱水反応が進み難く、他方、高いほど、脱水反応が進みやすく、好ましい。また、得られる反応生成物の粒子径も大きくなる傾向がある。しかし、加熱温度が300℃を越えるときは、反応器の材質として銀等を用いる必要がある等、装置の面から実用上、問題が生じる。特に、本発明によれば、B群元素の含水酸化物の水性媒体の存在下の加熱温度は、100〜300℃の範囲が好ましい。   In the present invention, when the heating temperature in the presence of the aqueous medium of the hydrous oxide of the group B element is lower than 80 ° C., it is difficult for the dehydration reaction to proceed. On the other hand, the higher the heating temperature, the easier the dehydration reaction proceeds. In addition, the particle size of the reaction product obtained tends to increase. However, when the heating temperature exceeds 300 ° C., there are practical problems from the viewpoint of the apparatus, such as the need to use silver or the like as the material of the reactor. In particular, according to the present invention, the heating temperature in the presence of the aqueous medium of the hydrous oxide of the group B element is preferably in the range of 100 to 300 ° C.

更に、本発明によれば、第一工程において、B群元素の含水酸化物を水性媒体の存在下に加熱する際に、B群元素の脱水反応とその反応生成物の微細化を促進するために、B群元素の含水酸化物を酸や塩基の存在下に加熱してもよい。ここに、上記酸としては、無機酸や有機酸を用いることができ、特に、無機酸としては、塩酸又は硝酸が好ましく用いられる。他方、有機酸としては、有機多価カルボン酸や有機オキシ多価カルボン酸が好ましく用いられ、なかでも、炭素原子数が2〜6の有機多価カルボン酸や有機オキシ多価カルボン酸が好ましく用いられる。具体例として、例えば、シュウ酸、酒石酸又はクエン酸を挙げることができる。また、これらの有機多価カルボン酸や有機オキシ多価カルボン酸のアルカリ金属塩やアルカリ土類金属塩も好ましく用いられる。   Furthermore, according to the present invention, in the first step, when the hydrous oxide of the group B element is heated in the presence of the aqueous medium, the dehydration reaction of the group B element and the refinement of the reaction product are promoted. In addition, the hydrous oxide of the group B element may be heated in the presence of an acid or a base. Here, an inorganic acid or an organic acid can be used as the acid, and hydrochloric acid or nitric acid is preferably used as the inorganic acid. On the other hand, as the organic acid, an organic polyvalent carboxylic acid or an organic oxypolyvalent carboxylic acid is preferably used. Among them, an organic polyvalent carboxylic acid having 2 to 6 carbon atoms or an organic oxypolyvalent carboxylic acid is preferably used. It is done. Specific examples include oxalic acid, tartaric acid, and citric acid. In addition, alkali metal salts and alkaline earth metal salts of these organic polyvalent carboxylic acids and organic oxypolyvalent carboxylic acids are also preferably used.

他方、塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の無機塩基、特に、アルカリ金属水酸化物や、アミン類等の有機塩基を挙げることができる。   On the other hand, examples of the base include inorganic bases such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, and particularly organic bases such as alkali metal hydroxides and amines.

第一工程において、原料として用いるB群元素の含水酸化物は、市販品をそのまま用いてもよいが、また、適宜に調製してもよい。例えば、B群元素の塩にアルカリ等の塩基を作用させる方法、B群元素の塩を水と加熱して加水分解する方法、B群元素の塩に尿素のようなアンモニア発生源を加え、加熱して、加水分解する方法、B群元素のアルコキシドに水を反応させる等の方法によることができるが、しかし、本発明においては、B群元素の含水酸化物は、その調製方法において、特に限定されるものではない。   In the first step, as the hydrated oxide of the group B element used as a raw material, a commercially available product may be used as it is, or may be appropriately prepared. For example, a method in which a base such as an alkali is allowed to act on a salt of the group B element, a method in which the salt of the group B element is heated and hydrolyzed, and an ammonia generating source such as urea is added to the salt of the group B element, followed by heating. In the present invention, the hydrous oxide of the B group element is particularly limited in its preparation method. Is not to be done.

次いで、本発明によれば、第二工程として、上述したようにして得られたB群元素の反応生成物とA群元素の水酸化物とを水性媒体、好ましくは、水の存在下に加熱して、水熱反応させる。この水熱反応の反応温度は100℃からその水性媒体の臨界温度であるが、反応温度が100℃よりも低いときは、A群元素とB群元素の反応が不十分であり、他方、300℃を越える場合には、前述したように、特別な装置を用いる必要がある等の問題があるので、好ましくは、100〜300℃の範囲の温度である。   Next, according to the present invention, as the second step, the reaction product of the group B element obtained as described above and the hydroxide of the group A element are heated in the presence of an aqueous medium, preferably water. And hydrothermal reaction. The reaction temperature of this hydrothermal reaction is from 100 ° C. to the critical temperature of the aqueous medium, but when the reaction temperature is lower than 100 ° C., the reaction between the group A element and the group B element is insufficient, When the temperature exceeds ° C., there is a problem that it is necessary to use a special apparatus as described above, and therefore, the temperature is preferably in the range of 100 to 300 ° C.

第二工程において用いるA群元素の水酸化物も、市販品をそのまま用いてもよいが、また、適宜に調製してもよい。例えば、A群元素の塩にアルカリ等の塩基を作用させる方法、A群元素の酸化物を水と反応させて加水分解する方法、A群元素のアルコキシドに水を反応させる等の方法によることができるが、しかし、本発明においては、A群元素の水酸化物は、その調製方法において、何ら限定されるものではない。   As the hydroxide of the group A element used in the second step, a commercially available product may be used as it is, or may be appropriately prepared. For example, a method in which a base such as an alkali is allowed to act on a salt of a group A element, a method in which an oxide of a group A element is reacted with water to hydrolyze, or a method in which water is reacted with an alkoxide of a group A element. However, in the present invention, the hydroxide of the group A element is not limited at all in the preparation method.

本発明によれば、第二工程において得られるABO3 化合物の微細化や結晶化を促進するために、第一工程におけると同様に、前述したような酸や塩基の存在下に水熱反応を行ってもよい。 According to the present invention, in order to promote the refinement and crystallization of the ABO 3 compound obtained in the second step, as in the first step, the hydrothermal reaction is performed in the presence of the acid or base as described above. You may go.

第二工程において、水熱反応後の反応混合物中には、生成したABO3 化合物と未反応のB群元素の化合物とが固体として存在し、他方、未反応のA群元素の水酸化物は一部又は全部が水性媒体中に溶解しており、かくして、得られたABO3 化合物は、仕込み組成のままのA/B比をもたない。従って、本発明においては、第二工程の水熱反応の終了後、必要に応じて、最終的に得られるABO3 化合物を含有する組成物が所望のA/B比を有するように、A/B比を制御することが好ましい。このようにして、所望のA/B比を有せしめたABO3 化合物を含有する組成物を焼結すれば、最終的に所望のA/B比を有するABO3 化合物の焼結体を得ることができる。 In the second step, the produced ABO 3 compound and the unreacted group B element compound are present as solids in the reaction mixture after the hydrothermal reaction, while the unreacted group A element hydroxide is Part or all is dissolved in the aqueous medium, and thus the obtained ABO 3 compound does not have an A / B ratio as it is in the charged composition. Therefore, in the present invention, after the completion of the hydrothermal reaction in the second step, if necessary, the A / B ratio is adjusted so that the composition containing the finally obtained ABO 3 compound has a desired A / B ratio. It is preferable to control the B ratio. Thus, if the composition containing the ABO 3 compound having a desired A / B ratio is sintered, a sintered body of the ABO 3 compound having the desired A / B ratio is finally obtained. Can do.

このようなA/B比の制御は、従来より知られている方法によって行うことができる。例えば、水熱反応の後、得られた反応混合物を濾過、水洗して、反応混合物中、水性媒体に溶存しているA群元素の化合物を除去した後、得られた反応生成物(固体)のA/B比を分析する。次いで、所望のA/B比になるように、反応生成物にA/B比の制御のための添加剤としてA群元素の化合物を追加的に加えれば、所望のA/B比を有するABO3 化合物を含有する組成物を得ることができ、このような組成物を焼結すれば、所望のA/B比を有する焼結体を得ることができる。 Such control of the A / B ratio can be performed by a conventionally known method. For example, after the hydrothermal reaction, the resulting reaction mixture is filtered and washed with water to remove the compound of group A element dissolved in the aqueous medium from the reaction mixture, and then the reaction product (solid) obtained A / B ratio is analyzed. Then, an ABO having a desired A / B ratio can be obtained by adding a compound of a group A element as an additive for controlling the A / B ratio to the reaction product so as to obtain a desired A / B ratio. A composition containing three compounds can be obtained, and if such a composition is sintered, a sintered body having a desired A / B ratio can be obtained.

ここに、得られた反応生成物に添加剤として加えるA群元素の化合物としては、水性媒体への溶解度が低く、更に、このように添加剤を加えたABO3 化合物を含有する組成物を焼結した際に、その添加剤が熱分解しても、A群元素以外のものが焼結体中に残存しないもの、例えば、炭酸塩、有機酸塩、酸化物等や、また、そのように添加剤を加えたABO3 化合物を含有する組成物を焼結した際に、その添加剤が熱分解して、A群元素以外のものが焼結体中に残存しても、得られる焼結体の特性を損なわないもの、例えば、ケイ酸塩等を挙げることができる。 Here, as the compound of the group A element added as an additive to the obtained reaction product, the solubility in an aqueous medium is low, and a composition containing the ABO 3 compound added with the additive as described above is baked. When the additive is thermally decomposed, no additives other than the group A element remain in the sintered body, such as carbonates, organic acid salts, oxides, and so on. When a composition containing an ABO 3 compound to which an additive has been added is sintered, the additive is thermally decomposed, and even if a substance other than the group A element remains in the sintered body, the obtained sintering The thing which does not impair the characteristic of a body, for example, a silicate etc. can be mentioned.

しかし、水溶性のA群元素の化合物も、上述したA/B比の制御のための添加剤として用いることができる。このような水溶性のA群元素の化合物をA/B比の制御のための添加剤として用いるときは、水熱反応によって得られた反応混合物に所要量を加えた後、反応混合物を蒸発乾固すればよい。   However, a water-soluble group A element compound can also be used as an additive for controlling the A / B ratio described above. When such a water-soluble group A element compound is used as an additive for controlling the A / B ratio, the required amount is added to the reaction mixture obtained by the hydrothermal reaction, and then the reaction mixture is evaporated to dryness. Just harden.

また、上記以外のA/B比の制御のための添加剤として、得られた反応混合物中に溶存する未反応のA群元素の化合物を水不溶化させる不溶化剤を用いることもできる。このような不溶化剤としては、例えば、炭酸ガス、炭酸ナトリウムや炭酸アンモニウム等の炭酸化合物、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等のようなカルボン酸のアルカリ金属塩、ケイ酸塩、シリカ・アルミ系の無機イオン交換樹脂等を挙げることができる。   In addition, as an additive for controlling the A / B ratio other than the above, an insolubilizing agent for insolubilizing an unreacted group A element compound dissolved in the obtained reaction mixture may be used. Examples of such insolubilizing agents include carbon dioxide, carbonate compounds such as sodium carbonate and ammonium carbonate, alkali metal salts of carboxylic acids such as lauric acid, myristic acid, palmitic acid, stearic acid, silicates, silica -Aluminum-based inorganic ion exchange resins can be listed.

このような不溶化剤は、水熱反応の後、得られた反応混合物中に溶存しているA群元素を不溶化するに必要な量を反応混合物に加え、そのA群元素を不溶化した後、濾過、水洗すれば、所要のA/B比を有するABO3 化合物を含有する組成物を得ることができ、このような組成物を焼結すれば、所望のA/B比を有する焼結体を得ることができる。 Such an insolubilizing agent is added to the reaction mixture in an amount necessary to insolubilize the group A element dissolved in the obtained reaction mixture after the hydrothermal reaction, and after insolubilizing the group A element, filtration is performed. If washed with water, a composition containing an ABO 3 compound having a required A / B ratio can be obtained. If such a composition is sintered, a sintered body having a desired A / B ratio can be obtained. Obtainable.

本発明によれば、このようにして、第二工程の水熱反応の終了後、必要に応じて、最終的に得られるABO3 化合物を含有する組成物のA/B比を正確に1.00とすることができるのみならず、任意の値のA/B比とすることもできる。 According to the present invention, after the completion of the hydrothermal reaction in the second step, the A / B ratio of the finally obtained composition containing the ABO 3 compound is accurately set to 1. The A / B ratio can be an arbitrary value as well as 00.

前述したように、本発明によれば、水熱反応によって得られる反応混合物には、生成したABO3 化合物のほか、未反応のB群元素の化合物とが固体として存在し、他方、未反応のA群元素の水酸化物は一部又は全部が水性媒体中に溶存しており、更に、上述したように、A/B比を調整した場合には、そのための添加剤や不溶化剤に基づく種々の化合物が生成したABO3 化合物と共に共存している。従って、本発明の方法によって得られるものは、ABO3 化合物を含有する組成物である。 As described above, according to the present invention, in the reaction mixture obtained by the hydrothermal reaction, in addition to the produced ABO 3 compound, an unreacted group B element compound is present as a solid, while the unreacted compound is present. Part or all of the hydroxide of the group A element is dissolved in the aqueous medium. Further, as described above, when the A / B ratio is adjusted, various kinds of additives based on the additives and insolubilizing agents are used. These compounds coexist with the produced ABO 3 compound. Accordingly, what is obtained by the method of the present invention is a composition containing an ABO 3 compound.

本発明によれば、第二工程で得られたABO3 化合物を含有する組成物を、必要に応じて、更に、第三工程として、100〜1200℃の範囲の温度で熱処理してもよい。このように、上記組成物を熱処理することによって、得られた組成物中の未反応のA群元素とB群元素との反応を進めて、得られるABO3 化合物の結晶度を高めることができる。また、必要な場合には、得られるABO3 化合物の粒子径を一層、大きく成長させることができる。このように熱処理した組成物は、粉砕した後、焼結すれば、一層、緻密な焼結体を得ることができる。 According to the present invention, the composition containing the ABO 3 compound obtained in the second step, if necessary, further, as a third step, may be heat-treated at a temperature in the range of 100 to 1200 ° C.. Thus, by heat-treating the above composition, the reaction between the unreacted group A element and group B element in the obtained composition can be advanced, and the crystallinity of the resulting ABO 3 compound can be increased. . Further, if necessary, the particle size of the obtained ABO 3 compound can be further increased. If the heat-treated composition is pulverized and then sintered, a denser sintered body can be obtained.

一般に、ABO3 化合物を含有する組成物の焼結体を製造する場合、通常、組成物の焼結性や得られる焼結体の電気特性を調節するために、例えば、B、Bi、アルカリ金属(例えば、Li、K、Na等)、希土類元素(例えば、Y、Dy、Er、Ho等)、遷移金属(例えば、Mn、Fe、Co、Nb等)、Si、Al等の化合物が添加剤として用いられている。本発明においても、そのような添加剤を組成物中に含有させて、得られた組成物を焼結してもよい。そのような添加剤は、第一工程、第二工程、又は第二工程の終了後のいずれかにおいて添加すればよい。 In general, when producing a sintered body of a composition containing an ABO 3 compound, for example, to adjust the sinterability of the composition and the electrical characteristics of the obtained sintered body, for example, B, Bi, alkali metal (For example, Li, K, Na, etc.), rare earth elements (eg, Y, Dy, Er, Ho, etc.), transition metals (eg, Mn, Fe, Co, Nb, etc.), compounds such as Si, Al, etc. are additives. It is used as. Also in the present invention, such an additive may be contained in the composition, and the obtained composition may be sintered. Such an additive may be added either after the first step, the second step, or after the end of the second step.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下において、得られた組成物の粒子のうち、空孔を有する粒子の数は、5〜10万倍で粒子の透過型電子顕微鏡写真を撮影し、粒子300個を目視にて観察し、空孔を有する粒子数を数えて、これを100個当りに換算した。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the following, among the particles of the obtained composition, the number of particles having pores was 5-100,000 times, a transmission electron micrograph of the particles was taken, 300 particles were visually observed, The number of particles having pores was counted and converted per 100 particles.

実施例1
四塩化チタン94.9g(チタンとして0.5モル)を50℃に保ちながら、これをイオン交換水1300mLに攪拌下に加えて、四塩化チタン水溶液を調製した。この四塩化チタン水溶液に10.0重量%濃度の水酸化ナトリウム水溶液800gを30分間かけて加えて、水酸化チタンスラリーを得た。得られた水酸化チタンを水洗、濾取し、2.0モル/L濃度のスラリーに調整した後、攪拌下、80℃で10時間反応させた(第一工程)。
Example 1
While maintaining 94.9 g of titanium tetrachloride (0.5 mol as titanium) at 50 ° C., this was added to 1300 mL of ion-exchanged water with stirring to prepare an aqueous solution of titanium tetrachloride. To this titanium tetrachloride aqueous solution, 800 g of a 10.0 wt% sodium hydroxide aqueous solution was added over 30 minutes to obtain a titanium hydroxide slurry. The obtained titanium hydroxide was washed with water, filtered, adjusted to a 2.0 mol / L concentration slurry, and then reacted at 80 ° C. for 10 hours with stirring (first step).

このようにして得られた酸化チタンスラリーの一部をサンプリングして、X線回折にて調べたところ、アナターゼ及びブルッカイト結晶系の酸化チタンの混合物であった。また、電子顕微鏡にて測定したところ、得られた酸化チタンの平均粒径は0.02μmであった。   A portion of the titanium oxide slurry thus obtained was sampled and examined by X-ray diffraction. As a result, it was a mixture of anatase and brookite crystalline titanium oxide. Moreover, when measured with the electron microscope, the average particle diameter of the obtained titanium oxide was 0.02 micrometer.

得られた酸化チタンスラリーの全量を濾取して、ポリテトラフルオロエチレン製ビーカーに入れ、更に、窒素雰囲気下に水酸化バリウム八水塩(Ba(OH)2・8H2O)157.7g(Baとして0.5モル)を加え、加水して、スラリー濃度を1.0モル/L(BaTiO3 換算)に調整した。このスラリーをポリテトラフルオロエチレン製ビーカーごと、1L容量のオートクレーブに仕込み、550〜600rpmで攪拌しながら、90分で150℃まで昇温し、150℃にて5時間水熱反応を行った。 The total amount of the obtained titanium oxide slurry was collected by filtration, put into a polytetrafluoroethylene beaker, and further 157.7 g of barium hydroxide octahydrate (Ba (OH) 2 .8H 2 O) under a nitrogen atmosphere ( 0.5 mol) as Ba was added and the mixture was hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaTiO 3 ). The slurry was charged into a 1 L autoclave together with the polytetrafluoroethylene beaker, heated to 150 ° C. in 90 minutes while stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 150 ° C. for 5 hours.

反応後、得られたスラリーにpHが6.5になるまで炭酸ガスを吹き込んだ後、塩素が検出されなくなるまで水洗し、濾過して、110℃で乾燥して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た(第二工程)。 After the reaction, carbon dioxide gas was blown into the resulting slurry until the pH became 6.5, then washed with water until no chlorine was detected, filtered, dried at 110 ° C., and a composition containing an ABO 3 compound. A product (hereinafter referred to as a composition) was obtained (second step).

この組成物は、X線回折の結果、立方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.05μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、7個であった。蛍光X線にて分析した結果、Ba/Ti比は1.00であった。また、BET比表面積は21m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a cubic perovskite structure. As a result of observation with an electron microscope, the average particle diameter was 0.05 μm, and the ratio of particles having nanometer-sized vacancies was 7 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.00. The BET specific surface area was 21 m 2 / g.

実施例2
実施例1と同様にして、四塩化チタン水溶液を調製し、これより水酸化チタンスラリーを得た。得られた水酸化チタン濾取、水洗して、1.5モル/L濃度のスラリーに調整した後、全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込んで、攪拌下、150℃で5時間水熱反応を行った(第一工程)。
Example 2
In the same manner as in Example 1, a titanium tetrachloride aqueous solution was prepared, and a titanium hydroxide slurry was obtained therefrom. The obtained titanium hydroxide was filtered and washed with water to prepare a slurry having a concentration of 1.5 mol / L. Then, the whole amount was put into a polytetrafluoroethylene beaker and charged into a 1 L-volume autoclave. The hydrothermal reaction was performed at 150 ° C. for 5 hours (first step).

得られた酸化チタンスラリーの一部をサンプリングして、X線回折により調べたところ、アナターゼ及びブルッカイト結晶系の酸化チタンの混合物であった。また、電子顕微鏡にて測定したところ、得られた酸化チタンの平均一次粒子径は0.02μmであった。   When a part of the obtained titanium oxide slurry was sampled and examined by X-ray diffraction, it was a mixture of anatase and brookite crystalline titanium oxide. Moreover, when measured with the electron microscope, the average primary particle diameter of the obtained titanium oxide was 0.02 micrometer.

得られた酸化チタンスラリーに窒素雰囲気下、水酸化バリウム八水塩315.4gを加え、加水して、スラリー濃度を1.0モル/L(BaTiO3 換算)に調整した。これを再度、1L容量のオートクレーブに仕込み、550〜600rpmで攪拌しながら、90分で150℃まで昇温し、150℃にて5時間水熱反応を行った。 Under a nitrogen atmosphere, 315.4 g of barium hydroxide octahydrate was added to the obtained titanium oxide slurry and hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaTiO 3 ). This was again charged into a 1 L autoclave, heated to 150 ° C. in 90 minutes while stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 150 ° C. for 5 hours.

反応後、得られた反応混合物に酢酸を加えて、反応混合物のpHを5とした後、スラリーを水洗、濾取した。得られた全濾液中のバリウムをICP(誘導結合高周波プラズマ)法で分析すると、その反応率は0.985であった。ここに、反応率=(仕込みのバリウムのモル数−濾液中のバリウムのモル数)/仕込みのバリウムのモル数)で定義される。   After the reaction, acetic acid was added to the obtained reaction mixture to adjust the pH of the reaction mixture to 5, and the slurry was washed with water and collected by filtration. When barium in the obtained total filtrate was analyzed by ICP (inductively coupled radio frequency plasma) method, the reaction rate was 0.985. Here, reaction rate = (number of moles of charged barium−number of moles of barium in filtrate) / number of moles of charged barium).

このようにして濾取した反応生成物に純水を加え、再び、スラリー化して、塩素が検出されなくなるまで水洗した後、堺化学工業(株)製の微細炭酸バリウム1.48gを加え、ホモジナイザーで十分に分散させた。この後、固形分を濾取し、110℃で乾燥して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た(第二工程)。 Pure water is added to the reaction product thus filtered, and the slurry is again slurried and washed with water until chlorine is no longer detected. Then, 1.48 g of fine barium carbonate manufactured by Sakai Chemical Industry Co., Ltd. is added, and the homogenizer is added. To fully disperse. Thereafter, the solid content was collected by filtration and dried at 110 ° C. to obtain a composition containing the ABO 3 compound (hereinafter referred to as “composition”) (second step).

この組成物は、X線回折の結果、実施例1による組成物と同様に、立方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.06μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、8個であった。蛍光X線にて分析した結果、Ba/Ti比は1.00であった。また、BET比表面積は19m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a cubic perovskite structure, like the composition according to Example 1. As a result of observation by an electron microscope, the average particle diameter was 0.06 μm, and the ratio of particles having nanometer-sized vacancies was 8 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.00. The BET specific surface area was 19 m 2 / g.

実施例3
実施例1と同様にして、四塩化チタン水溶液を調製し、これより水酸化チタンスラリーを得た。得られた水酸化チタン水洗、濾取し、加水して、1.0モル/L濃度のスラリーに調整した後、全量をポリテトラフルオロエチレン製ビーカーに入れ、これに水酸化リチウム(LiOH)1.19gを加えた。これを1L容量のオートクレーブに仕込んで、攪拌下、150℃で5時間水熱反応を行った(第一工程)。
Example 3
In the same manner as in Example 1, a titanium tetrachloride aqueous solution was prepared, and a titanium hydroxide slurry was obtained therefrom. The obtained titanium hydroxide was washed with water, filtered, and hydrated to prepare a slurry having a concentration of 1.0 mol / L. Then, the whole amount was put into a polytetrafluoroethylene beaker, and lithium hydroxide (LiOH) 1 was added thereto. .19 g was added. This was charged in a 1 L autoclave and subjected to a hydrothermal reaction at 150 ° C. for 5 hours with stirring (first step).

得られた酸化チタンスラリーの一部をサンプリングして、X線回折にて調べたところ、図1に示すように、アナターゼ及びブルッカイト結晶系の酸化チタンの混合物であった。また、電子顕微鏡にて測定したところ、図2に示すように、得られた酸化チタンの平均粒径は0.03μmであった。   When a part of the obtained titanium oxide slurry was sampled and examined by X-ray diffraction, as shown in FIG. 1, it was a mixture of anatase and brookite crystalline titanium oxide. Moreover, when it measured with the electron microscope, as shown in FIG. 2, the average particle diameter of the obtained titanium oxide was 0.03 micrometer.

得られた酸化チタンスラリーに窒素雰囲気下、水酸化バリウム八水塩315.4gを加え、加水して、スラリー濃度を1.0モル/L(BaTiO3 換算)に調整した。これを再度、1L容量のオートクレーブに仕込み、550〜600rpmで攪拌しながら、90分で150℃まで昇温し、150℃にて5時間水熱反応を行った。反応後、得られたスラリーを水洗、濾取した。得られた全濾液中のバリウムをICP法で分析すると、その反応率は0.980であった。 Under a nitrogen atmosphere, 315.4 g of barium hydroxide octahydrate was added to the obtained titanium oxide slurry and hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaTiO 3 ). This was again charged into a 1 L autoclave, heated to 150 ° C. in 90 minutes while stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 150 ° C. for 5 hours. After the reaction, the resulting slurry was washed with water and collected by filtration. When barium in the obtained total filtrate was analyzed by ICP method, the reaction rate was 0.980.

そこで、上記濾取した反応生成物に純水を加え、再び、スラリー化して、塩素が検出されなくなるまで水洗した後、堺化学工業(株)製の微細炭酸バリウム1.97gを加え、ホモジナイザーで十分に分散させた。この後、固形分を濾取し、110℃で乾燥して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た(第二工程)。   Therefore, pure water was added to the filtered reaction product, and the slurry was again slurried and washed with water until chlorine was no longer detected. Then, 1.97 g of fine barium carbonate manufactured by Sakai Chemical Industry Co., Ltd. was added, and the mixture was homogenized. Sufficiently dispersed. Thereafter, the solid content was collected by filtration and dried at 110 ° C. to obtain a composition containing an ABO 3 compound (hereinafter referred to as “composition”) (second step).

この組成物は、X線回折の結果、実施例1による組成物と同様に、図3に示すように、立方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.04μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、5個であった。蛍光X線にて分析した結果、Ba/Ti比は1.00であった。また、BET比表面積は25m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a cubic perovskite structure as shown in FIG. As a result of observation by an electron microscope, the average particle diameter was 0.04 μm, and the ratio of particles having nanometer-sized vacancies was 5 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.00. The BET specific surface area was 25 m 2 / g.

実施例4
実施例1と同様にして、四塩化チタン水溶液を調製し、これより水酸化チタンスラリーを得た。得られた水酸化チタン水洗、濾取し、加水して、1.0モル/L濃度のスラリーに調整した後、全量をポリテトラフルオロエチレン製ビーカーに入れ、これにクエン酸9.60gを加えた。これを1L容量のオートクレーブに仕込んで、攪拌下、150℃で5時間水熱反応を行った(第一工程)。
Example 4
In the same manner as in Example 1, a titanium tetrachloride aqueous solution was prepared, and a titanium hydroxide slurry was obtained therefrom. The obtained titanium hydroxide was washed with water, filtered, and hydrated to prepare a slurry having a concentration of 1.0 mol / L. Then, the whole amount was put into a polytetrafluoroethylene beaker, and 9.60 g of citric acid was added thereto. It was. This was charged in a 1 L autoclave and subjected to a hydrothermal reaction at 150 ° C. for 5 hours with stirring (first step).

得られた酸化チタンスラリーの一部をサンプリングして、X線回折により調べたところ、アナターゼ及びブルッカイト結晶系の酸化チタンの混合物であった。また、電子顕微鏡にて測定したところ、得られた酸化チタンの平均一次粒子径は0.02μmであった。   When a part of the obtained titanium oxide slurry was sampled and examined by X-ray diffraction, it was a mixture of anatase and brookite crystalline titanium oxide. Moreover, when measured with the electron microscope, the average primary particle diameter of the obtained titanium oxide was 0.02 micrometer.

得られた酸化チタンスラリーに窒素雰囲気下、水酸化バリウム八水塩315.5gを加え、加水して、スラリー濃度を1.0モル/L(BaTiO3 換算)に調整した。これを再度、1L容量のオートクレーブに仕込み、550〜600rpmで攪拌しながら、90分で150℃まで昇温し、150℃にて5時間水熱反応を行った。反応後、得られたスラリーを水洗、濾取した。得られた全濾液中のバリウムをICP法で分析すると、その反応率は0.997であった。 Under a nitrogen atmosphere, 315.5 g of barium hydroxide octahydrate was added to the obtained titanium oxide slurry and hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaTiO 3 ). This was again charged into a 1 L autoclave, heated to 150 ° C. in 90 minutes while stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 150 ° C. for 5 hours. After the reaction, the resulting slurry was washed with water and collected by filtration. When barium in the total filtrate obtained was analyzed by the ICP method, the reaction rate was 0.997.

そこで、上記濾取した反応生成物にイオン交換水を加え、再び、スラリー化して、塩素が検出されなくなるまで水洗した後、堺化学工業(株)製の微細炭酸バリウム2.27gを加え、ホモジナイザーで十分に分散させた。この後、固形分を濾取し、110℃で乾燥して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た(第二工程)。 Therefore, ion-exchanged water was added to the reaction product collected by filtration, and the slurry was again slurried and washed with water until chlorine was not detected. Then, 2.27 g of fine barium carbonate manufactured by Sakai Chemical Industry Co., Ltd. was added, and the homogenizer was added. To fully disperse. Thereafter, the solid content was collected by filtration and dried at 110 ° C. to obtain a composition containing the ABO 3 compound (hereinafter referred to as “composition”) (second step).

この組成物は、X線回折の結果、実施例1による組成物と同様に、立方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.06μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、4個であった。蛍光X線にて分析した結果、Ba/Ti比は1.02であった。また、BET比表面積は21m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a cubic perovskite structure, like the composition according to Example 1. As a result of observation with an electron microscope, the average particle diameter was 0.06 μm, and the ratio of particles having nanometer-sized pores was 4 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.02. Further, BET specific surface area was 21m 2 / g.

実施例5
窒素雰囲気下にチタンイソプロポキシド142.17g(チタンとして0.5モル)をイソプロピルアルコール300mLに溶解させ、得られた溶液に攪拌下にイオン交換水70mLを60分間かけて加えて、水酸化チタンスラリーを得た。得られた水酸化チタン水洗、濾取し、加水して、2.0モル/L濃度のスラリーに調整した後、攪拌下、80℃で10時間加熱した(第一工程)。
Example 5
In a nitrogen atmosphere, 142.17 g of titanium isopropoxide (0.5 mol as titanium) was dissolved in 300 mL of isopropyl alcohol, and 70 mL of ion-exchanged water was added to the resulting solution over 60 minutes with stirring. A slurry was obtained. The obtained titanium hydroxide was washed with water, filtered, added water, adjusted to a 2.0 mol / L concentration slurry, and then heated at 80 ° C. for 10 hours with stirring (first step).

得られた酸化チタンスラリーの一部をサンプリングして、X線回折にて調べたところ、アナターゼ結晶系の酸化チタンであった。また、電子顕微鏡にて測定したところ、得られた酸化チタンの平均粒径は0.01μmであった。   When a part of the obtained titanium oxide slurry was sampled and examined by X-ray diffraction, it was anatase crystalline titanium oxide. Moreover, when measured with the electron microscope, the average particle diameter of the obtained titanium oxide was 0.01 micrometer.

得られた酸化チタンスラリーを全量、濾取し、ポリテトラフルオロエチレン製ビーカーに入れ、更に、これに窒素雰囲気下にバリウムイソプロポキシド111.8gを加え、加水して、スラリー濃度を1.0モル/L(BaTiO3 換算)に調整した。これを1L容量のオートクレーブに仕込み、550〜600rpmで攪拌しながら、90分で150℃まで昇温し、150℃にて5時間水熱反応を行った。反応後、得られたスラリーにpH5.6になるまで、炭酸ガスを吹き込んだ後、塩素が検出されなくなるまで水洗した後、濾過し、110℃で乾燥した(第二工程)。 The total amount of the obtained titanium oxide slurry is collected by filtration and placed in a polytetrafluoroethylene beaker. Further, 111.8 g of barium isopropoxide is added to the beaker under a nitrogen atmosphere, and the slurry is added to a slurry concentration of 1.0. adjusted to moles / L (BaTiO 3 conversion). This was charged into a 1 L autoclave, heated to 150 ° C. in 90 minutes while stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 150 ° C. for 5 hours. After the reaction, carbon dioxide gas was blown into the obtained slurry until pH 5.6, and then water was washed until chlorine was not detected, followed by filtration and drying at 110 ° C. (second step).

このようにして、第二工程で得られた組成物を電気炉にて約1000℃で熱処理した後、ジルコニアボールを用いるナイロン製ポットミルにて湿式粉砕して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。この組成物は、X線回折の結果、正方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.4μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、6個であった。蛍光X線にて分析した結果、Ba/Ti比は1.00であった。また、BET比表面積は2.8m2/gであった。 In this way, after the heat treatment of the composition obtained in the second step at about 1000 ° C. in an electric furnace, and wet pulverized in a nylon pot mill using zirconia balls, a composition containing ABO 3 compound ( Hereinafter referred to as a composition). As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a tetragonal perovskite structure. As a result of observation with an electron microscope, the average particle diameter was 0.4 μm, and the ratio of particles having nanometer-sized pores was 6 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.00. The BET specific surface area was 2.8 m 2 / g.

実施例6
四塩化チタン94.9g(チタンとして0.5モル)を50℃に保ちながら、攪拌下にイオン交換水1300mLに加えて、四塩化チタン水溶液を調製した。この四塩化チタン水溶液に硝酸マンガン(Mn(NO3)2・6H2O)0.061gを加え、更に、10.0重量%濃度の水酸化ナトリウム水溶液800gを30分間かけて加えて、マンガンを含有する水酸化チタンスラリーを得た。このマンガンを含有する水酸化チタンスラリーを水洗、濾取し、加水して、2.0モル/L濃度のスラリーとした後、攪拌下、80℃に加熱して、10時間反応させた(第一工程)。このようにして得られたマンガンを含有する酸化チタンは、電子顕微鏡にて測定したところ、その平均粒径は0.02μmであった。以下、実施例1と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。
Example 6
While maintaining 94.9 g of titanium tetrachloride (0.5 mol as titanium) at 50 ° C., 1300 mL of ion-exchanged water was added with stirring to prepare a titanium tetrachloride aqueous solution. To this titanium tetrachloride aqueous solution, 0.061 g of manganese nitrate (Mn (NO 3 ) 2 .6H 2 O) was added, and further 800 g of a 10.0 wt% aqueous sodium hydroxide solution was added over 30 minutes. A titanium hydroxide slurry was obtained. The titanium hydroxide slurry containing manganese was washed with water, filtered, and hydrated to obtain a slurry having a concentration of 2.0 mol / L, and then heated to 80 ° C. with stirring and reacted for 10 hours (No. 1). One step). The titanium oxide containing manganese thus obtained was measured with an electron microscope and found to have an average particle size of 0.02 μm. Hereinafter, in the same manner as in Example 1, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、立方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径0.05μmの球状の粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、7個であった。ICP分析によるマンガンの含有量は0.01重量%であり、蛍光X線にて分析した結果、Ba/Ti比は1.00であった。また、BET比表面積は21m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a cubic perovskite structure. Further, as a result of observation with an electron microscope, the ratio of particles having an average particle diameter of 0.05 μm and having nanometer-sized pores was 7 out of 100 particles. The manganese content by ICP analysis was 0.01% by weight. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.00. The BET specific surface area was 21 m 2 / g.

実施例7
実施例1で得られた組成物を電気炉中、900℃で仮焼した後、イオン交換水とジルコニアビーズを用いて遊星ボールミルで湿式粉砕して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。
Example 7
The composition obtained in Example 1 was calcined at 900 ° C. in an electric furnace, then wet-pulverized with a planetary ball mill using ion-exchanged water and zirconia beads, and a composition containing an ABO 3 compound (hereinafter referred to as “the ABO 3 compound”). A composition).

この組成物は、X線回折の結果、図4に示すように、正方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.2μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、7個であった。   As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a tetragonal perovskite structure as shown in FIG. As a result of observation by an electron microscope, the average particle diameter was 0.2 μm, and the ratio of particles having nanometer-sized pores was 7 out of 100 particles.

実施例8
実施例1と同様にして、四塩化チタン水溶液を調製し、この四塩化チタン水溶液に5.0重量%濃度のアンモニア水溶液503mLを30分間かけて加えて、水酸化チタンスラリーを得た。得られた水酸化チタン水洗、濾取し、加水して、1.5モル/L濃度のスラリーに調整した後、全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込んで、攪拌下、150℃で5時間水熱反応を行った(第一工程)。
Example 8
A titanium tetrachloride aqueous solution was prepared in the same manner as in Example 1, and 503 mL of a 5.0 wt% aqueous ammonia solution was added to the titanium tetrachloride aqueous solution over 30 minutes to obtain a titanium hydroxide slurry. The obtained titanium hydroxide was washed with water, filtered, and hydrated to prepare a slurry having a concentration of 1.5 mol / L. Then, the entire amount was put into a polytetrafluoroethylene beaker, and this was charged into a 1 L capacity autoclave. Then, a hydrothermal reaction was carried out at 150 ° C. for 5 hours under stirring (first step).

得られた酸化チタンスラリーの一部をサンプリングして、X線回折にて調べたところ、アナターゼ結晶系の酸化チタンであった。また、電子顕微鏡にて測定したところ、得られた酸化チタンの平均粒径は0.02μmであった。   When a part of the obtained titanium oxide slurry was sampled and examined by X-ray diffraction, it was anatase crystalline titanium oxide. Moreover, when measured with the electron microscope, the average particle diameter of the obtained titanium oxide was 0.02 micrometer.

得られた酸化チタンスラリーに窒素雰囲気下、水酸化ストロンチウム八水塩(Sr(OH)2・8H2O)265.8gを加え、加水して、スラリー濃度を1.0モル/L(SrTiO3 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 Under a nitrogen atmosphere, 265.8 g of strontium hydroxide octahydrate (Sr (OH) 2 .8H 2 O) was added to the obtained titanium oxide slurry and hydrated to make the slurry concentration 1.0 mol / L (SrTiO 3 Adjusted). Hereinafter, in the same manner as in Example 2, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、図5に示すように、立方晶のペロブスカイト構造を有するチタン酸ストロンチウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.05μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、5個であった。蛍光X線にて分析した結果、Sr/Ti比は1.00であった。また、BET比表面積は22m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be strontium titanate having a cubic perovskite structure as shown in FIG. As a result of observation with an electron microscope, the average particle diameter was 0.05 μm, and the ratio of particles having nanometer-sized pores was 5 out of 100 particles. As a result of analysis by fluorescent X-ray, the Sr / Ti ratio was 1.00. The BET specific surface area was 22 m 2 / g.

実施例9
実施例1と同様にして、四塩化チタン水溶液を調製し、この四塩化チタン水溶液にイオン交換水197mLを加えた後、更に、この四塩化チタン水溶液に80℃に保った30重量%濃度の尿素水溶液283gを100分間かけて加えた。次いで、昇温し、沸騰させて、10時間還流させた後、5重量%濃度のアンモニア水溶液を加え、pHを10とした後、塩素が検出されなくなるまで水洗して、水酸化チタンスラリーを得た。以下、実施例8と同様にして、水酸化チタンスラリーから酸化チタンスラリーを得た(第一工程)。このようにして得られた酸化チタンは、電子顕微鏡にて測定したところ、その平均粒径は0.03μmであった。
Example 9
In the same manner as in Example 1, a titanium tetrachloride aqueous solution was prepared, and 197 mL of ion-exchanged water was added to the titanium tetrachloride aqueous solution, and then 30 wt% urea kept at 80 ° C. in the titanium tetrachloride aqueous solution. 283 g of aqueous solution was added over 100 minutes. Next, the temperature is raised, boiled and refluxed for 10 hours, and then an aqueous ammonia solution having a concentration of 5% by weight is added to adjust the pH to 10, followed by washing with water until chlorine is not detected to obtain a titanium hydroxide slurry. It was. Thereafter, a titanium oxide slurry was obtained from the titanium hydroxide slurry in the same manner as in Example 8 (first step). The titanium oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.03 μm.

別途、30重量%濃度の硝酸鉛(Pb(NO3)2)水溶液1104g(鉛として0.5モル)に80℃に保った30重量%濃度の尿素水溶液240gを200分間かけて加えた。次いで、昇温し、沸騰させて、10時間還流させた後、5重量%濃度のアンモニア水溶液を加え、pHを10とした後、塩素と硝酸イオンが検出されなくなるまで水洗して、水酸化鉛スラリーを得た。 Separately, 240 g of 30 wt% aqueous urea solution maintained at 80 ° C. was added to 1104 g (0.5 mol of lead) of 30 wt% lead nitrate (Pb (NO 3 ) 2 ) over 200 minutes. Next, the temperature is raised, boiled and refluxed for 10 hours, and then an aqueous ammonia solution having a concentration of 5% by weight is added to adjust the pH to 10, followed by washing with water until chlorine and nitrate ions are no longer detected. A slurry was obtained.

この水酸化鉛スラリーを上記酸化チタンスラリーに加え、更に20重量%濃度の水酸化ナトリウム水溶液50gを加え、加水して、スラリー濃度を1.0モル/L(PbTiO3 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 This lead hydroxide slurry was added to the above titanium oxide slurry, and 50 g of a 20 wt% sodium hydroxide aqueous solution was further added thereto, followed by addition of water to adjust the slurry concentration to 1.0 mol / L (in terms of PbTiO3). Hereinafter, in the same manner as in Example 2, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、ペロブスカイト構造を有するチタン酸鉛であることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.05μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、9個であった。蛍光X線にて分析した結果、Pb/Ti比は1.00であった。また、BET比表面積は17m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be lead titanate having a perovskite structure. Further, as a result of observation by an electron microscope, the ratio of particles having an average particle diameter of 0.05 μm and having nanometer-sized pores was 9 out of 100 particles. As a result of analysis by fluorescent X-ray, the Pb / Ti ratio was 1.00. The BET specific surface area was 17 m 2 / g.

実施例10
窒素雰囲気下にジルコニウムイソプロポキシド163.78g(ジルコニウムとして0.5モル)をイソプロピルアルコール300mLに溶解させ、得られた溶液に攪拌下にイオン交換水70mLを60分間かけて加えて、水酸化ジルコニウムスラリーを得た。得られた水酸化ジルコニウムを水洗、濾取し、加水して、1.5モル/L濃度のスラリーに調整した後、全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込み、攪拌下、150℃で5時間水熱処理した(第一工程)。このようにして得られた酸化ジルコニウムは、電子顕微鏡にて測定したところ、その平均粒径は0.04μmであった。
Example 10
In a nitrogen atmosphere, 163.78 g of zirconium isopropoxide (0.5 mol as zirconium) was dissolved in 300 mL of isopropyl alcohol, and 70 mL of ion-exchanged water was added to the resulting solution over 60 minutes with stirring. A slurry was obtained. The obtained zirconium hydroxide was washed with water, filtered, and hydrated to prepare a slurry having a concentration of 1.5 mol / L, and the whole amount was put into a polytetrafluoroethylene beaker, and this was charged into a 1 L capacity autoclave. The mixture was hydrothermally treated at 150 ° C. for 5 hours with stirring (first step). The zirconium oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.04 μm.

得られた酸化ジルコニウムスラリーに窒素雰囲気下に水酸化バリウム八水塩315.4gを加え、加水して、スラリー濃度を1.0モル/L(BaZrO3 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 To the obtained zirconium oxide slurry, 315.4 g of barium hydroxide octahydrate was added in a nitrogen atmosphere and hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaZrO 3 ). Hereinafter, in the same manner as in Example 2, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、図6に示すように、立方晶のペロブスカイト構造を有するジルコン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.08μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、6個であった。蛍光X線にて分析した結果、Ba/Zr比は1.00であった。また、BET比表面積は15m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium zirconate having a cubic perovskite structure as shown in FIG. Further, as a result of observation with an electron microscope, the ratio of particles having spherical particles having an average particle diameter of 0.08 μm and having nanometer-sized pores was 6 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / Zr ratio was 1.00. The BET specific surface area was 15 m 2 / g.

実施例11
実施例1と同様にして、水酸化チタンスラリーを得、得られた水酸化チタン水洗、濾取し、加水して、1.5モル/L濃度のスラリーに調整した後、全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込んで、攪拌下、150℃で5時間水熱反応を行った(第一工程)。このようにして得られた酸化チタンは、電子顕微鏡にて測定したところ、その平均粒径は0.02μmであった。
Example 11
In the same manner as in Example 1, a titanium hydroxide slurry was obtained, and the resulting titanium hydroxide was washed with water, filtered, and hydrated to prepare a slurry having a concentration of 1.5 mol / L. This was placed in an ethylene beaker, charged into a 1 L autoclave, and subjected to a hydrothermal reaction at 150 ° C. for 5 hours with stirring (first step). The titanium oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.02 μm.

得られた酸化チタンスラリーに窒素雰囲気下、酸化カルシウム(CaO)56.1gを加え、加水して、スラリー濃度を1.0モル/L(CaTiO3 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 Under a nitrogen atmosphere, 56.1 g of calcium oxide (CaO) was added to the obtained titanium oxide slurry and hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of CaTiO3). Hereinafter, in the same manner as in Example 2, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、図7に示すように、斜方晶のペロブスカイト構造を有するチタン酸カルシウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.06μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、8個であった。蛍光X線にて分析した結果、Ca/Ti比は1.00であった。また、BET比表面積は21m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be calcium titanate having an orthorhombic perovskite structure as shown in FIG. As a result of observation by an electron microscope, the average particle diameter was 0.06 μm, and the ratio of particles having nanometer-sized vacancies was 8 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ca / Ti ratio was 1.00. The BET specific surface area was 21 m 2 / g.

実施例12
実施例10と同様にして、ジルコニウムイソプロポキシドから酸化ジルコニウムスラリーを得た(第一工程)。得られた酸化ジルコニウムスラリーに窒素雰囲気下に水酸化ストロンチウム八水塩(Sr(OH)2・8H2O)265.8gを加え、加水して、スラリー濃度を1.0モル/L(SrZrO3 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。
Example 12
In the same manner as in Example 10, a zirconium oxide slurry was obtained from zirconium isopropoxide (first step). To the obtained zirconium oxide slurry, 265.8 g of strontium hydroxide octahydrate (Sr (OH) 2 .8H 2 O) was added under a nitrogen atmosphere, and the mixture was hydrated to give a slurry concentration of 1.0 mol / L (SrZrO 3 Adjusted). Thereafter, in the same manner as in Example 2, a composition containing the ABO3 compound (hereinafter referred to as the composition) was obtained.

この組成物は、X線回折の結果、ペロブスカイト構造を有するジルコン酸ストロンチウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.07μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、8個であった。蛍光X線にて分析した結果、Sr/Zr比は1.00であった。また、BET比表面積は16m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be strontium zirconate having a perovskite structure. Further, as a result of observation with an electron microscope, the ratio of particles having spherical particles having an average particle diameter of 0.07 μm and having nanometer-sized pores was 8 out of 100 particles. As a result of analysis by fluorescent X-ray, the Sr / Zr ratio was 1.00. The BET specific surface area was 16 m 2 / g.

実施例13
四塩化チタン75.9g(チタンとして0.4モル)を50℃に保ちながら、これをイオン交換水1300mLに攪拌下に加え、更に、178g/L濃度のオキシ塩化ジルコニウム水溶液100mL(ジルコニウムとして0.1モル)を混合して、四塩化チタン−オキシ塩化ジルコニウム混合水溶液を調製した。この四塩化チタン−オキシ塩化ジルコニウム混合水溶液に10.0重量%濃度の水酸化ナトリウム水溶液800gを30分間かけて加えて、水酸化チタンジルコニウム共沈物スラリーを得た。
Example 13
While maintaining 55.9 g of titanium tetrachloride (0.4 mol as titanium) at 50 ° C., this was added to 1300 mL of ion-exchanged water with stirring, and further 100 mL of zirconium oxychloride aqueous solution having a concentration of 178 g / L (0.003 as zirconium). 1 mol) was mixed to prepare a titanium tetrachloride-zirconium oxychloride mixed aqueous solution. To this titanium tetrachloride-zirconium oxychloride mixed aqueous solution, 10.0 g of a sodium hydroxide aqueous solution having a concentration of 10.0% by weight was added over 30 minutes to obtain a titanium zirconium zirconium coprecipitate slurry.

この水酸化チタンジルコニウム共沈物を水洗、濾取し、加水して、1.5モル/Lのスラリーに調整した後、その全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込んで、攪拌下、150℃にて5時間水熱反応を行った(第一工程)。このようにして得られた酸化チタンジルコニウムは、電子顕微鏡にて測定したところ、その平均粒径は0.03μmであった。   The titanium-zirconium hydroxide coprecipitate was washed with water, filtered, and hydrated to prepare a 1.5 mol / L slurry, and the whole amount was put into a polytetrafluoroethylene beaker, which was then added to a 1 L autoclave. And a hydrothermal reaction was carried out at 150 ° C. for 5 hours with stirring (first step). The titanium zirconium oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.03 μm.

得られた酸化チタンジルコニウムスラリーに窒素雰囲気下に水酸化バリウム八水塩315.4gを加え、加水して、スラリー濃度を1.0モル/L(BaTi0.8Zr0.23 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 To the obtained titanium-zirconium slurry, 315.4 g of barium hydroxide octahydrate was added in a nitrogen atmosphere and hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaTi 0.8 Zr 0.2 O 3 ). Hereinafter, in the same manner as in Example 2, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、図8に示すように、立方晶のペロブスカイト構造を有するチタン酸ジルコン酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.06μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、3個であった。蛍光X線にて分析した結果、Ba/(Ti+Zr)比は1.00であった。また、BET比表面積は18m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium zirconate titanate having a cubic perovskite structure as shown in FIG. As a result of observation by an electron microscope, the ratio of particles having an average particle diameter of 0.06 μm and having nanometer-sized pores was 3 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / (Ti + Zr) ratio was 1.00. The BET specific surface area was 18 m 2 / g.

実施例14
四塩化チタン94.5g(チタンとして0.5モル)にイオン交換水200mLを加えて、四塩化チタン水溶液を調製した。80℃に保った30重量%濃度の尿素水溶液283gに上記四塩化チタン水溶液を1時間かけて加えた。次いで、昇温し、沸騰させて、10時間還流させた後、5重量%濃度のアンモニア水溶液を加え、pHを10として、水酸化チタンスラリーを得た。この水酸化チタンを水洗、濾取し、加水して、2.0モル/Lのスラリーに調整した後、攪拌下に80℃で10時間加熱した(第一工程)。このようにして得られた酸化チタンは、電子顕微鏡にて測定したところ、その平均粒径は0.02μmであった。
Example 14
200 mL of ion-exchanged water was added to 94.5 g of titanium tetrachloride (0.5 mol as titanium) to prepare an aqueous titanium tetrachloride solution. The titanium tetrachloride aqueous solution was added to 283 g of a 30 wt% aqueous urea solution maintained at 80 ° C. over 1 hour. Next, the temperature was raised, the mixture was boiled and refluxed for 10 hours, and then a 5 wt% aqueous ammonia solution was added to adjust the pH to 10 to obtain a titanium hydroxide slurry. The titanium hydroxide was washed with water, filtered, added with water, adjusted to a 2.0 mol / L slurry, and then heated at 80 ° C. with stirring for 10 hours (first step). The titanium oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.02 μm.

このようにして得られた酸化チタンスラリー全量を濾取し、ポリテトラフルオロエチレン製ビーカーに入れ、これに窒素雰囲気下に水酸化バリウム八水塩126.2gと水酸化ストロンチウム八水塩26.6gとを加え、加水して、スラリー濃度を1.0モル/L(Ba0.8Sr0.2TiO3 換算)に調整した。以下、実施例1と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 The total amount of the titanium oxide slurry thus obtained was collected by filtration and placed in a polytetrafluoroethylene beaker. Under a nitrogen atmosphere, 126.2 g of barium hydroxide octahydrate and 26.6 g of strontium hydroxide octahydrate were added. And added to adjust the slurry concentration to 1.0 mol / L (Ba 0.8 Sr 0.2 TiO 3 equivalent). Hereinafter, in the same manner as in Example 1, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、立方晶のペロブスカイト構造を有するチタン酸バリウムストロンチウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.04μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、4個であった。蛍光X線にて分析した結果、(Ba+Sr)/Ti比は1.00であった。また、BET比表面積は22m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium strontium titanate having a cubic perovskite structure. Further, as a result of observation by an electron microscope, the ratio of particles having an average particle diameter of 0.04 μm and having nanometer-sized pores was 4 out of 100 particles. As a result of analysis by fluorescent X-ray, the (Ba + Sr) / Ti ratio was 1.00. The BET specific surface area was 22 m 2 / g.

実施例15
四塩化チタン85.4g(チタンとして0.45モル)を50℃に保ちながら、これをイオン交換水1300mLに攪拌下に加え、更に、これに40重量%濃度の四塩化スズ(SnCl4) 水溶液を加えて、四塩化チタン−四塩化スズ混合水溶液を調製した。この四塩化チタン−四塩化スズ混合水溶液に10.0重量%濃度の水酸化ナトリウム水溶液800gを30分間かけて加えて、水酸化チタンスズ共沈物スラリーを得た。
Example 15
While maintaining 55.4 g of titanium tetrachloride (0.45 mol as titanium) at 50 ° C., this was added to 1300 mL of ion-exchanged water with stirring, and further 40 wt% aqueous tin tetrachloride (SnCl 4 ) solution. Was added to prepare a titanium tetrachloride-tin tetrachloride mixed aqueous solution. To this titanium tetrachloride-tin tetrachloride mixed aqueous solution was added 800 g of 10.0 wt% sodium hydroxide aqueous solution over 30 minutes to obtain a titanium hydroxide tin coprecipitate slurry.

この水酸化チタンスズ共沈物を水洗、濾取し、加水して、1.5モル/Lのスラリーに調整した後、その全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込んで、攪拌下、150℃にて5時間水熱反応を行った(第一工程)。このようにして得られた酸化チタンスズは、電子顕微鏡にて測定したところ、その平均粒径は0.04μmであった。   This titanium tin hydroxide coprecipitate was washed with water, filtered, and hydrated to prepare a 1.5 mol / L slurry, and the whole amount was put into a polytetrafluoroethylene beaker, and this was put into a 1 L capacity autoclave. Then, hydrothermal reaction was performed at 150 ° C. for 5 hours under stirring (first step). The titanium tin oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.04 μm.

得られた酸化チタンスズスラリーに窒素雰囲気下に水酸化バリウム八水塩315.4gを加え、加水して、スラリー濃度を1.0モル/L(BaTi0.9Sn0.13 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 To the obtained titanium tin oxide slurry, 315.4 g of barium hydroxide octahydrate was added in a nitrogen atmosphere and hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaTi 0.9 Sn 0.1 O 3 ). Hereinafter, in the same manner as in Example 2, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、立方晶のペロブスカイト構造を有するチタン酸スズ酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.06μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、7個であった。蛍光X線にて分析した結果、Ba/(Ti+Sn)比は1.00であった。また、BET比表面積は17m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a cubic perovskite structure. Further, as a result of observation with an electron microscope, the ratio of particles having spherical particles having an average particle diameter of 0.06 μm and having nanometer-size pores was 7 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / (Ti + Sn) ratio was 1.00. The BET specific surface area was 17 m 2 / g.

実施例16
実施例14と同様にして、四塩化チタンから酸化チタンスラリーを得た(第一工程)。得られた酸化チタンスラリー全量を濾取して、ポリテトラフルオロエチレン製ビーカーに入れ、更に、窒素雰囲気下に水酸化バリウム八水塩149.8gと水酸化マグネシウム(Mg(OH)2) 1.5gを加え、加水して、スラリー濃度を1.0モル/L(Ba0.95Mg0.05TiO3 換算)に調整した。以下、実施例1と同様にして、第二工程を行った。
Example 16
In the same manner as in Example 14, a titanium oxide slurry was obtained from titanium tetrachloride (first step). Collected by filtration and the resulting titanium oxide slurry whole amount, put in a polytetrafluoroethylene beaker, further, barium octahydrate 149.8g hydroxide and magnesium hydroxide in a nitrogen atmosphere (Mg (OH) 2) 1 . 5 g was added, and water was added to adjust the slurry concentration to 1.0 mol / L (in terms of Ba 0.95 Mg 0.05 TiO 3 ). Thereafter, the second step was performed in the same manner as in Example 1.

第二工程で得られた組成物を電気炉にて800℃で熱処理した後、ジルコニアボールを用いるナイロン製ポットミルにて湿式粉砕して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 The composition obtained in the second step is heat-treated at 800 ° C. in an electric furnace, and then wet pulverized in a nylon pot mill using zirconia balls to be referred to as a composition containing an ABO 3 compound (hereinafter referred to as a composition). )

この組成物は、X線回折の結果、ペロブスカイト構造を有するチタン酸バリウムマグネシウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径は0.1μmであり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、8個であった。蛍光X線にて分析した結果、(Ba+Mg)/Ti比は1.00であった。また、BET比表面積は14m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium magnesium titanate having a perovskite structure. As a result of observation with an electron microscope, the average particle diameter was 0.1 μm, and the ratio of particles having nanometer-sized vacancies was 8 out of 100 particles. As a result of analysis by fluorescent X-ray, the (Ba + Mg) / Ti ratio was 1.00. The BET specific surface area was 14 m 2 / g.

実施例17
窒素雰囲気下にチタンイソプロポキシド127.98g(チタンとして0.45モル)とハフニウムイソプロポキシド20.74g(ハフニウムとして0.05モル)をイソプロピルアルコール500mLに溶解させ、2時間加熱還流させた。得られた溶液に攪拌下にイオン交換水70mLを60分間かけて加えて、水酸化チタンハフニウム共沈物スラリーを得た。得られた水酸化チタンハフニウム共沈物を水洗、濾取し、加水して、1.5モル/L濃度のスラリーに調整した後、全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込み、攪拌下、200℃で5時間水熱処理した(第一工程)。このようにして得られた酸化チタンハフニウムは、電子顕微鏡にて測定したところ、その平均粒径は0.03μmであった。
Example 17
In a nitrogen atmosphere, 127.98 g of titanium isopropoxide (0.45 mol as titanium) and 20.74 g of hafnium isopropoxide (0.05 mol as hafnium) were dissolved in 500 mL of isopropyl alcohol and heated to reflux for 2 hours. To the resulting solution, 70 mL of ion exchanged water was added over 60 minutes with stirring to obtain a titanium hydroxide hafnium coprecipitate slurry. The obtained titanium hydroxide hafnium coprecipitate was washed with water, filtered, and hydrated to prepare a slurry having a concentration of 1.5 mol / L, and the entire amount was put into a polytetrafluoroethylene beaker, Were hydrothermally treated at 200 ° C. for 5 hours with stirring (first step). The titanium hafnium oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.03 μm.

このようにして得られた酸化チタンハフニウムスラリーに窒素雰囲気下に水酸化バリウム八水塩315.4gを加え、加水して、スラリー濃度を1.0モル/L(BaTi0.9Hf0.13 換算)に調整した。以下、実施例2と同様にして、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 The titanium oxide hafnium slurry thus obtained was added with 315.4 g of barium hydroxide octahydrate in a nitrogen atmosphere and hydrated to a slurry concentration of 1.0 mol / L (converted to BaTi 0.9 Hf 0.1 O 3 ). Adjusted. Hereinafter, in the same manner as in Example 2, a composition containing an ABO 3 compound (hereinafter referred to as a composition) was obtained.

この組成物は、X線回折の結果、ペロブスカイト構造を有するチタン酸ハフニウム酸バリウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.05μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、4個であった。蛍光X線にて分析した結果、Ba/(Ti+Hf)比は1.00であった。また、BET比表面積は19m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a perovskite structure. Further, as a result of observation by an electron microscope, the ratio of the particles having a spherical particle having an average particle diameter of 0.05 μm and having nanometer-size pores was 4 out of 100 particles. As a result of analysis by fluorescent X-ray, the Ba / (Ti + Hf) ratio was 1.00. The BET specific surface area was 19 m 2 / g.

実施例18
四塩化チタン75.9g(チタンとして0.4モル)を50℃に保ちながら、これをイオン交換水1300mLに攪拌下に加え、更に、178g/L濃度のオキシ塩化ジルコニウム水溶液100mLを加えて、四塩化チタン−オキシ塩化ジルコニウム混合水溶液を調製した。この四塩化チタン−オキシ塩化ジルコニウム混合水溶液に10.0重量%濃度の水酸化ナトリウム水溶液800gを30分間かけて加えて、水酸化チタンジルコニウム共沈物スラリーを得た。
Example 18
While maintaining 75.9 g of titanium tetrachloride (0.4 mol as titanium) at 50 ° C., this was added to 1300 mL of ion-exchanged water with stirring, and 100 mL of 178 g / L zirconium oxychloride aqueous solution was further added. A titanium chloride-zirconium oxychloride mixed aqueous solution was prepared. To this titanium tetrachloride-zirconium oxychloride mixed aqueous solution, 10.0 g of a sodium hydroxide aqueous solution having a concentration of 10.0% by weight was added over 30 minutes to obtain a titanium zirconium zirconium coprecipitate slurry.

この水酸化チタンジルコニウム共沈物を水洗、濾取し、加水して、1.5モル/Lのスラリーに調整した後、その全量をポリテトラフルオロエチレン製ビーカーに入れ、これを1L容量のオートクレーブに仕込んで、攪拌下、150℃にて5時間水熱反応を行った(第一工程)。このようにして得られた酸化チタンジルコニウムは、電子顕微鏡にて測定したところ、その平均粒径は0.03μmであった。   The titanium-zirconium hydroxide coprecipitate was washed with water, filtered, and hydrated to prepare a 1.5 mol / L slurry, and the whole amount was put into a polytetrafluoroethylene beaker, which was then added to a 1 L autoclave. And a hydrothermal reaction was carried out at 150 ° C. for 5 hours with stirring (first step). The titanium zirconium oxide thus obtained was measured with an electron microscope and found to have an average particle size of 0.03 μm.

得られた酸化チタンジルコニウムスラリーに窒素雰囲気下に水酸化バリウム八水塩149.8gと水酸化カルシウム(Ca(OH) 2) 1.9gを加え、加水して、スラリー濃度を1.0モル/L(Ba0.95Ca0.05Ti0.8Zr0.23 換算)に調整した。以下、実施例1と同様にして、第二工程を行った。 The resulting titanium oxide, zirconium slurry barium hydroxide under a nitrogen atmosphere octahydrate 149.8g of calcium hydroxide (Ca (OH) 2) 1.9g was added, and hydrolysis, the slurry concentration of 1.0 mol / L (Ba 0.95 Ca 0.05 Ti 0.8 Zr 0.2 O 3 equivalent) was adjusted. Thereafter, the second step was performed in the same manner as in Example 1.

第二工程で表される得られた組成物を電気炉にて900℃で熱処理した後、ジルコニアボールを用いるナイロン製ポットミルにて湿式粉砕して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 The composition obtained in the second step was heat-treated at 900 ° C. in an electric furnace, and then wet pulverized in a nylon pot mill using zirconia balls, and a composition containing an ABO 3 compound (hereinafter referred to as composition) It was called a thing.)

この組成物は、X線回折の結果、図9に示すように、立方晶のペロブスカイト構造を有するチタン酸ジルコン酸バリウムカルシウムであることを確認した。また、電子顕微鏡による観察の結果、平均粒子径が0.2μmの球状粒子であり、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、7個であった。蛍光X線にて分析した結果、(Ba+Ca)/(Ti+Zr)比は1.00であった。また、BET比表面積は7m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium calcium zirconate titanate having a cubic perovskite structure as shown in FIG. Further, as a result of observation by an electron microscope, the ratio of particles having an average particle diameter of 0.2 μm and having nanometer-sized pores was 7 out of 100 particles. As a result of analysis by fluorescent X-ray, the (Ba + Ca) / (Ti + Zr) ratio was 1.00. The BET specific surface area was 7 m 2 / g.

比較例1
高純度炭酸バリウムと高純度酸化チタンを等モル比にて混合し、十分に乾燥させた後、1200℃で2時間仮焼した。得られた仮焼物をジルコニアボールを用いるポリエチレン製ポットミルにて湿式粉砕して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。
Comparative Example 1
High purity barium carbonate and high purity titanium oxide were mixed at an equimolar ratio, sufficiently dried, and then calcined at 1200 ° C. for 2 hours. The obtained calcined product was wet pulverized in a polyethylene pot mill using zirconia balls to obtain a composition containing an ABO 3 compound (hereinafter referred to as a composition).

この組成物は、X線回折の結果、正方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。X線回折の(111)面の半値幅の値をシェーラー(Scherrer) の式に当てはめて算出した結晶子の値は1200Åであった。このチタン酸バリウム粒子は、電子顕微鏡による観察の結果、平均粒子径1.6μmの不揃いな破砕状物であった。蛍光X線にて分析した結果、Ba/Ti比は1.00であった。また、BET比表面積は1.2m2/gであった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a tetragonal perovskite structure. The crystallite value calculated by applying the half-value width of the (111) plane of X-ray diffraction to the Scherrer equation was 1200 Å. As a result of observation with an electron microscope, the barium titanate particles were irregular crushed materials having an average particle diameter of 1.6 μm. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.00. The BET specific surface area was 1.2 m 2 / g.

比較例2
四塩化チタン94.9g(チタンとして0.5モル)を50℃に保ちながら、これをイオン交換水1300mLに攪拌下に加えて、四塩化チタン水溶液を調製した。この四塩化チタン水溶液に10.0重量%濃度の水酸化ナトリウム水溶液800gを30分間かけて加えて、水酸化チタンスラリーを得た。
Comparative Example 2
While maintaining 94.9 g of titanium tetrachloride (0.5 mol as titanium) at 50 ° C., this was added to 1300 mL of ion-exchanged water with stirring to prepare an aqueous solution of titanium tetrachloride. To this titanium tetrachloride aqueous solution, 800 g of a 10.0 wt% sodium hydroxide aqueous solution was added over 30 minutes to obtain a titanium hydroxide slurry.

この水酸化チタンを水洗し、濾取した。これを加熱処理することなく(即ち、第一工程なしにて)、加水して、2.0モル/Lのスラリーに調整した後、その全量をポリテトラフルオロエチレン製ビーカーに入れ、更に、これに水酸化バリウム八水塩157.7gを加え、加水して、スラリー濃度を1.0モル/L(BaTiO3 換算)に調整した。 The titanium hydroxide was washed with water and collected by filtration. This was heated without heat treatment (ie, without the first step) and adjusted to a 2.0 mol / L slurry, and then the whole amount was put into a polytetrafluoroethylene beaker. Was added with 157.7 g of barium hydroxide octahydrate, and the slurry was adjusted to 1.0 mol / L (in terms of BaTiO 3 ).

これを1L容量のオートクレーブに仕込んで、550〜600rpmで攪拌しながら、90分で150℃まで昇温し、150℃にて5時間水熱反応を行った。この水熱反応の後、得られたスラリーにpHが6.5になるまで、炭酸ガスを吹き込んだ後、塩素が検出されなくなるまで水洗し、濾過し、110℃で乾燥して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。 This was charged into an autoclave having a capacity of 1 L, heated to 150 ° C. in 90 minutes while stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 150 ° C. for 5 hours. After this hydrothermal reaction, carbon dioxide gas was blown into the resulting slurry until the pH became 6.5, then water was washed until chlorine was no longer detected, filtered, dried at 110 ° C., and ABO 3 compound. The composition (henceforth a composition) containing this was obtained.

この組成物は、X線回折の結果、立方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。蛍光X線にて分析した結果、Ba/Ti比は1.00であった。BET比表面積は13m2/gであった。しかし、電子顕微鏡による観察の結果、得られた組成物は平均粒子径0.1μmの球状粒子であったが、ナノメーターサイズの空孔が存在する粒子の割合は、100個中、32個であった。 As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a cubic perovskite structure. As a result of analysis by fluorescent X-ray, the Ba / Ti ratio was 1.00. The BET specific surface area was 13 m 2 / g. However, as a result of observation with an electron microscope, the obtained composition was spherical particles having an average particle diameter of 0.1 μm, but the proportion of particles having nanometer-sized pores was 32 out of 100 particles. there were.

比較例3
比較例2で得られた組成物を実施例7と同様にして仮焼した後、湿式粉砕して、ABO3 化合物を含有する組成物(以下、組成物という。)を得た。この組成物は、X線回折の結果、正方晶のペロブスカイト構造を有するチタン酸バリウムであることを確認した。このチタン酸バリウム粒子は、電子顕微鏡による観察の結果、平均粒子径は0.2μmであった。ナノメーターサイズの空孔が存在する粒子の割合は、100個中、37個であった。


Comparative Example 3
The composition obtained in Comparative Example 2 was calcined in the same manner as in Example 7, and then wet pulverized to obtain a composition containing an ABO 3 compound (hereinafter referred to as a composition). As a result of X-ray diffraction, this composition was confirmed to be barium titanate having a tetragonal perovskite structure. As a result of observation with an electron microscope, the average particle diameter of the barium titanate particles was 0.2 μm. The ratio of particles having nanometer-sized vacancies was 37 out of 100 particles.


Claims (9)

Ti、Zr、Hf及びSnから選ばれる少なくとも一種のB群元素の含水酸化物を100〜300℃の範囲の温度で水熱反応に付して、上記含水酸化物を脱水する第一工程と、
上記第一工程で得られた反応生成物とBa、Sr、Ca、Mg及びPbから選ばれる少なくとも一種のA群元素の水酸化物とを水性媒体の存在下、100〜300℃の範囲の温度で水熱反応させる第二工程
を含むことを特徴とするペロブスカイト型化合物を含有する組成物の製造方法。
A first step of dehydrating the hydrated oxide by subjecting the hydrated oxide of at least one group B element selected from Ti, Zr, Hf and Sn to a hydrothermal reaction at a temperature in the range of 100 to 300 ° C .;
The reaction product obtained in the first step and a hydroxide of at least one group A element selected from Ba, Sr, Ca, Mg, and Pb in the presence of an aqueous medium, a temperature in the range of 100 to 300 ° C. The manufacturing method of the composition containing the perovskite type | mold compound characterized by including the 2nd process made to hydrothermal-react with.
第一工程において、Ti、Zr、Hf及びSnから選ばれる少なくとも一種のB群元素の含水酸化物を150〜300℃の範囲の温度で水熱反応に付して、上記含水酸化物を脱水する請求項1に記載の方法。   In the first step, the hydrous oxide of at least one group B element selected from Ti, Zr, Hf and Sn is subjected to a hydrothermal reaction at a temperature in the range of 150 to 300 ° C. to dehydrate the hydrous oxide. The method of claim 1. 第二工程で得られた組成物を800〜1200℃で熱処理する第三工程を含む請求項1に記載の方法。   The method of Claim 1 including the 3rd process of heat-processing the composition obtained at the 2nd process at 800-1200 degreeC. 第一工程において、B群元素の含水酸化物を無機酸の存在下に加熱する請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein in the first step, the hydrous oxide of the group B element is heated in the presence of an inorganic acid. 無機酸が硝酸又は塩酸である請求項4に記載の方法。   The method according to claim 4, wherein the inorganic acid is nitric acid or hydrochloric acid. 第一工程において、B群元素の含水酸化物を有機酸の存在下に加熱する請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein in the first step, the hydrous oxide of the group B element is heated in the presence of an organic acid. 有機酸が有機多価カルボン酸、有機オキシ多価カルボン酸、それらのアルカリ金属塩又はアルカリ土類金属塩である請求項6に記載の方法。   The method according to claim 6, wherein the organic acid is an organic polyvalent carboxylic acid, an organic oxypolyvalent carboxylic acid, an alkali metal salt or an alkaline earth metal salt thereof. 第一工程において、B群元素の含水酸化物を塩基の存在下に加熱する請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein in the first step, the hydrous oxide of the group B element is heated in the presence of a base. 塩基がアルカリ金属水酸化物又はアミン類である請求項8に記載の方法。

The method according to claim 8, wherein the base is an alkali metal hydroxide or an amine.

JP2010013115A 2010-01-25 2010-01-25 Method for producing the composition Expired - Lifetime JP5353728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013115A JP5353728B2 (en) 2010-01-25 2010-01-25 Method for producing the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013115A JP5353728B2 (en) 2010-01-25 2010-01-25 Method for producing the composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003310593A Division JP4556398B2 (en) 2003-09-02 2003-09-02 Method for producing the composition

Publications (2)

Publication Number Publication Date
JP2010120850A true JP2010120850A (en) 2010-06-03
JP5353728B2 JP5353728B2 (en) 2013-11-27

Family

ID=42322518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013115A Expired - Lifetime JP5353728B2 (en) 2010-01-25 2010-01-25 Method for producing the composition

Country Status (1)

Country Link
JP (1) JP5353728B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2391192A1 (en) 2010-05-26 2011-11-30 Jtekt Corporation Multilayer circuit substrate
JP2012188334A (en) * 2011-03-14 2012-10-04 National Institute Of Advanced Industrial Science & Technology Method for producing barium titanate nanocrystal
JP2016037400A (en) * 2014-08-05 2016-03-22 日立造船株式会社 Manufacturing method of perovskite type manganese oxide, film formation method of perovskite type manganese oxide and metal air secondary battery
JP2017128462A (en) * 2016-01-19 2017-07-27 太平洋セメント株式会社 Manufacturing method of titanium niobium oxide, manufacturing method of titanium niobium oxide anode active material using the obtained titanium niobium oxide
JP2019061219A (en) * 2017-04-27 2019-04-18 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
WO2020218150A1 (en) * 2019-04-23 2020-10-29 堺化学工業株式会社 Ytterbium-doped barium zirconate particles and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191232A (en) * 1981-05-19 1982-11-25 Mizusawa Ind Chem Ltd Preparation of lead-containing perowskite-type composite oxide
JPS6081023A (en) * 1983-10-12 1985-05-09 Asahi Chem Ind Co Ltd Barium titanate powder
JPS6131345A (en) * 1984-07-25 1986-02-13 堺化学工業株式会社 Manufacture of composition
JPS6374915A (en) * 1986-07-14 1988-04-05 キヤボツト コ−ポレ−シヨン Manufacture of diatomic cation titanate
JPH0648734A (en) * 1992-07-27 1994-02-22 Teika Corp Production of crystalline titanic acid based perovskite-type fine particle
JPH06305729A (en) * 1993-04-19 1994-11-01 Titan Kogyo Kk Fine powder of perovskite type compound and its production
JP2000509703A (en) * 1997-02-18 2000-08-02 キャボット コーポレイション Barium titanate material coated with dispersible metal oxide
JP2004300027A (en) * 2001-07-04 2004-10-28 Showa Denko Kk Barium titanate and its production method
JP2005162587A (en) * 2002-12-18 2005-06-23 Showa Denko Kk Barium titanate and electronic part using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191232A (en) * 1981-05-19 1982-11-25 Mizusawa Ind Chem Ltd Preparation of lead-containing perowskite-type composite oxide
JPS6081023A (en) * 1983-10-12 1985-05-09 Asahi Chem Ind Co Ltd Barium titanate powder
JPS6131345A (en) * 1984-07-25 1986-02-13 堺化学工業株式会社 Manufacture of composition
JPS6374915A (en) * 1986-07-14 1988-04-05 キヤボツト コ−ポレ−シヨン Manufacture of diatomic cation titanate
JPH0648734A (en) * 1992-07-27 1994-02-22 Teika Corp Production of crystalline titanic acid based perovskite-type fine particle
JPH06305729A (en) * 1993-04-19 1994-11-01 Titan Kogyo Kk Fine powder of perovskite type compound and its production
JP2000509703A (en) * 1997-02-18 2000-08-02 キャボット コーポレイション Barium titanate material coated with dispersible metal oxide
JP2004300027A (en) * 2001-07-04 2004-10-28 Showa Denko Kk Barium titanate and its production method
JP2005162587A (en) * 2002-12-18 2005-06-23 Showa Denko Kk Barium titanate and electronic part using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2391192A1 (en) 2010-05-26 2011-11-30 Jtekt Corporation Multilayer circuit substrate
JP2012188334A (en) * 2011-03-14 2012-10-04 National Institute Of Advanced Industrial Science & Technology Method for producing barium titanate nanocrystal
JP2016037400A (en) * 2014-08-05 2016-03-22 日立造船株式会社 Manufacturing method of perovskite type manganese oxide, film formation method of perovskite type manganese oxide and metal air secondary battery
JP2017128462A (en) * 2016-01-19 2017-07-27 太平洋セメント株式会社 Manufacturing method of titanium niobium oxide, manufacturing method of titanium niobium oxide anode active material using the obtained titanium niobium oxide
JP2019061219A (en) * 2017-04-27 2019-04-18 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
WO2020218150A1 (en) * 2019-04-23 2020-10-29 堺化学工業株式会社 Ytterbium-doped barium zirconate particles and method for producing same
JP6787537B1 (en) * 2019-04-23 2020-11-18 堺化学工業株式会社 Ytterbium-added barium zirconate particles and their manufacturing method
TWI825304B (en) * 2019-04-23 2023-12-11 日商堺化學工業股份有限公司 Ytterbium-doped barium zirconate particles and mehtod for producing same

Also Published As

Publication number Publication date
JP5353728B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP6368246B2 (en) Method for producing coated barium titanate fine particles
JPH0459261B2 (en)
JP4556398B2 (en) Method for producing the composition
JP5353728B2 (en) Method for producing the composition
KR101295161B1 (en) Method for manufacturing composite oxide powder
KR101158953B1 (en) Method for producing composition
JP2006089368A (en) Barium calcium titanate, production process thereof and capacitor
JP3751304B2 (en) Barium titanate and electronic components using the same
JP4702515B2 (en) Tetragonal barium titanate fine particle powder and production method thereof
TWI635048B (en) Process for producing barium titanate poweder
JPH06305729A (en) Fine powder of perovskite type compound and its production
JP5765506B1 (en) Method for producing barium titanate powder
KR100558460B1 (en) A Method for Producing the Barium Titanate Based Powder by Oxalate Process
KR20090080680A (en) Method for preparing Barium Titanate nano powder of MLCC application

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term