JP2010120801A - Ceramic substrate - Google Patents

Ceramic substrate Download PDF

Info

Publication number
JP2010120801A
JP2010120801A JP2008295213A JP2008295213A JP2010120801A JP 2010120801 A JP2010120801 A JP 2010120801A JP 2008295213 A JP2008295213 A JP 2008295213A JP 2008295213 A JP2008295213 A JP 2008295213A JP 2010120801 A JP2010120801 A JP 2010120801A
Authority
JP
Japan
Prior art keywords
ceramic substrate
particles
alumina
ceramic
alumina particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008295213A
Other languages
Japanese (ja)
Inventor
Aki Yazawa
亜希 矢澤
Noritaka Yoshida
則隆 吉田
Hiroshi Kagata
博司 加賀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008295213A priority Critical patent/JP2010120801A/en
Publication of JP2010120801A publication Critical patent/JP2010120801A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Abstract

<P>PROBLEM TO BE SOLVED: To densely fire a ceramic substrate. <P>SOLUTION: The ceramic substrate is composed of ceramics comprising: an amorphous glass phase 11; alumina particles 12; and crystal particles 13 other than alumina, and, in an SEM image in the ceramics, the number of the alumina particles 12 in which the value of the aspect ratio as a ratio of the maximum width to the minimum width of the particles is ≤1.5 is ≥90%, and also, in the SEM image, the number of the alumina particles with the maximum width of ≤1.5 μm is ≤15%. By using the alumina particles 12, even when the crystal particles 13 other than the alumina particles are present in the ceramic substrate, a glass melt can sufficiently wet the alumina particles. In this way, the ceramic substrate can be densely fired. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波用のセラミックス基板と、これを用いた電子部品に関するものである。   The present invention relates to a high-frequency ceramic substrate and an electronic component using the same.

近年、携帯電話など、モバイル電子機器の薄型化、高性能化に伴い、弾性波デュプレクサなどの高周波電子部品の小型化、高性能化が求められており、部品の基板内部に回路を組み込む、多層回路が実用化されている。この多層回路用のセラミックス基板としては、一般的にアルミナが用いられているが、アルミナの焼成温度は約1500℃と高温であるために、内部導体には、高電気抵抗のWやMoなどを使用しなければならず、多層回路として信号遅延の課題を有していた。そこで、低融点かつ低電気抵抗のCuやAg導体を用いること、すなわちこれら導体と同時焼成可能な低温焼成セラミックス基板を用いた多層回路の開発、実用化が進められている。   In recent years, with the thinning and high performance of mobile electronic devices such as mobile phones, there has been a demand for miniaturization and high performance of high frequency electronic components such as elastic wave duplexers. Circuits are in practical use. As the ceramic substrate for the multilayer circuit, alumina is generally used. Since the firing temperature of alumina is as high as about 1500 ° C., the inner conductor is made of W or Mo having a high electric resistance. It had to be used and had the problem of signal delay as a multilayer circuit. Therefore, the development and practical use of multilayer circuits using low melting point and low electrical resistance Cu or Ag conductors, that is, using low-temperature fired ceramic substrates that can be fired simultaneously with these conductors, is in progress.

なお、この出願に関する先行技術文献としては、例えば、下記特許文献1が知られている。
特許第3008548号公報
As a prior art document related to this application, for example, the following Patent Document 1 is known.
Japanese Patent No. 3008548

従来の低温焼成セラミッス基板は一般的にガラス相と結晶粒子とから成るものである。結晶粒子としては、一般的にアルミナ粒子が用いられる。焼成時、温度上昇とともにガラス原料粉末が溶融し、結晶粒子を濡らしながら緻密化する。この低温焼成セラミックスは、その抗折強度200MPa以上など、求められる特性を満たすために、結晶粒子の体積割合は50%であることが望ましい。しかしながら近年、セラミックス基板の高強度化や低誘電損失化などが期待できるとし、フィラーとしてアルミナ粒子とそれ以外の結晶質セラミックス粒子を添加したり、ガラスから結晶が析出する結晶化ガラスを用いたりするなど、セラミックス基板はより多相系となってきている。このため、セラミックス基板の焼成緻密化が困難となってきている。これは、フィラー粒子を濡らすのに十分なガラス融液が確保できないためである。その結果、強度の低下や、誘電損失のばらつきなどの問題が生じる。   Conventional low-temperature fired ceramic substrates are generally composed of a glass phase and crystal particles. As crystal particles, alumina particles are generally used. During firing, the glass raw material powder melts with increasing temperature and becomes dense while wetting the crystal particles. In order to satisfy the required properties of this low-temperature fired ceramic such as a bending strength of 200 MPa or more, it is desirable that the volume ratio of the crystal particles is 50%. However, in recent years, ceramic substrates can be expected to have high strength and low dielectric loss, and alumina particles and other crystalline ceramic particles are added as fillers, or crystallized glass in which crystals are precipitated from glass is used. For example, ceramic substrates are becoming more multiphase. For this reason, it has become difficult to densify the ceramic substrate. This is because a sufficient glass melt cannot be secured to wet the filler particles. As a result, problems such as a decrease in strength and variations in dielectric loss occur.

そこで本発明は、ガラス相、アルミナ粒子、及びアルミナ以外の結晶粒子を含み、焼結性良好なセラミックス基板を得ることを目的とする。   Accordingly, an object of the present invention is to obtain a ceramic substrate that includes a glass phase, alumina particles, and crystal particles other than alumina and has good sinterability.

上記目的を達成するために、上記3種類の相のうち、様々な粒径や形態の粒子が容易に入手可能なアルミナ粒子に着目することにした。本発明のセラミックス基板は、セラミックスからなる複数の誘電体層を積層して形成されたセラミックス基板であって、複数の誘電体層間に形成された内部電極を備え、セラミックスは、ガラス相、アルミナ粒子、及びアルミナ以外の結晶粒子を有し、セラミックスにおけるSEM画像において、粒子の最小幅に対する最大幅の比であるアスペクト比の値が1.5以下のアルミナ粒子の個数が90%以上であり、且つ、SEM画像において、粒子の最大幅1.5μm以下のアルミナ粒子の個数が15%以下であることを特徴とする。   In order to achieve the above object, attention was paid to alumina particles in which particles of various particle sizes and forms are readily available among the above three types of phases. The ceramic substrate of the present invention is a ceramic substrate formed by laminating a plurality of dielectric layers made of ceramics, and includes an internal electrode formed between the plurality of dielectric layers. And the number of alumina particles having an aspect ratio value of 1.5 or less, which is a ratio of the maximum width to the minimum width of the particles, is 90% or more in the SEM image of the ceramic having crystal particles other than alumina, and In the SEM image, the number of alumina particles having a maximum width of 1.5 μm or less is 15% or less.

本発明のセラミックスは、上記アルミナ粒子を用いることにより、セラミックス基板内にアルミナ粒子以外の結晶粒子が存在し、且つアルミナ粒子と結晶粒子の体積割合がガラス相よりも多くても、ガラス融液がアルミナ粒子を十分に濡らすことができるようになる。これにより、セラミックス基板を緻密に焼成させることが容易となる。   In the ceramic of the present invention, by using the alumina particles, even if crystal particles other than the alumina particles exist in the ceramic substrate and the volume ratio of the alumina particles to the crystal particles is larger than the glass phase, the glass melt can be obtained. The alumina particles can be sufficiently wetted. Thereby, it becomes easy to fire the ceramic substrate densely.

(実施の形態1)
以下、実施の形態1のセラミックス基板1について、図面を用いて説明する。
(Embodiment 1)
Hereinafter, the ceramic substrate 1 of Embodiment 1 is demonstrated using drawing.

図1は、実施の形態1のセラミックス基板1を用いた電子部品2の断面模式図である。セラミックス基板1は、セラミックスからなる複数の誘電体層3を積層されて形成されている。また、セラミックス基板1は、その内部に内部電極を有する。この内部電極は、例えば、複数の誘電体層3間に形成された内部電極層4と、この内部電極に接続されて誘電体層3を貫通するように形成されたビア電極5とを有する。これら内部電極層4とビア電極5により、共振器、コンデンサ、インダクタ等の機能部品がセラミックス基板1の内部に三次元的に構成される。さらに、この内部電極は、セラミックス基板1の下面に設けられた下部電極6により例えばマザー基板(図示せず)に接続され、セラミックス基板1の上面に設けられた上部電極8により、例えば弾性波フィルタ7に接続される。   FIG. 1 is a schematic cross-sectional view of an electronic component 2 using the ceramic substrate 1 of the first embodiment. The ceramic substrate 1 is formed by laminating a plurality of dielectric layers 3 made of ceramics. The ceramic substrate 1 has an internal electrode inside. The internal electrode includes, for example, an internal electrode layer 4 formed between the plurality of dielectric layers 3 and a via electrode 5 formed so as to be connected to the internal electrode and penetrate the dielectric layer 3. By these internal electrode layers 4 and via electrodes 5, functional parts such as a resonator, a capacitor, and an inductor are three-dimensionally formed inside the ceramic substrate 1. Further, the internal electrode is connected to, for example, a mother substrate (not shown) by a lower electrode 6 provided on the lower surface of the ceramic substrate 1, and an elastic wave filter is provided by an upper electrode 8 provided on the upper surface of the ceramic substrate 1. 7 is connected.

さらに、電子部品2は、弾性波フィルタ7の下部領域に空間を設ける為に弾性波フィルタを覆うように形成された樹脂9と、樹脂9の外面にシールドとして形成された金属層10とを備える。   Further, the electronic component 2 includes a resin 9 formed so as to cover the elastic wave filter in order to provide a space in a lower region of the elastic wave filter 7, and a metal layer 10 formed as a shield on the outer surface of the resin 9. .

次に上記誘電体層3を構成するセラミックスについて図2を用いて説明する。図2は、実施の形態1の誘電体層3を構成するセラミックス内部構造の断面模式図である。図2に示す様に、誘電体層3を構成するセラミックスは、ガラス相11、アルミナ粒子12、及びアルミナ以外の結晶粒子13を有する。   Next, ceramics constituting the dielectric layer 3 will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of the ceramic internal structure constituting the dielectric layer 3 of the first embodiment. As shown in FIG. 2, the ceramic constituting the dielectric layer 3 has a glass phase 11, alumina particles 12, and crystal particles 13 other than alumina.

また、上記セラミックスの50μm四方SEM画像3視野において、最小幅に対する最大幅の比であるアスペクト比の値が1.5以下のアルミナ粒子の個数が90%以上であり、且つ、SEM画像において、最大幅1.5μm以下のアルミナ粒子の個数が15%以下である。アスペクト比の算出方法については、図3に示すように、アルミナ粒子の最大幅をaとし、アルミナ粒子の最小幅をbとしたとき、a/bで求める。   Further, in three fields of 50 μm square SEM image of the ceramic, the number of alumina particles having an aspect ratio value of 1.5 or less, which is the ratio of the maximum width to the minimum width, is 90% or more, and in the SEM image, The number of alumina particles having a size of 1.5 μm or less is 15% or less. As shown in FIG. 3, the aspect ratio is calculated by a / b, where a is the maximum width of alumina particles and b is the minimum width of alumina particles.

ガラス相11は、例えば、TiO2、Al23、及びZnO等が添加されたSiO2−B23−RO(Rはアルカリ土類)系ガラスである。また、上記アルミナ以外の結晶粒子13は、例えば、エンスタタイト、フォルステライト、アノーサイト、ディオプサイド、スポジュメン、イルメナイト、ガーナイト、ウレマタイトのうち少なくとも1種類である。より好ましいのは、請求項2記載のエンスタタイト、フォルステライト、アノーサイト、ディオプサイドである。このように結晶粒子13を含むセラミックスをセラミックス基板1として用いることによって、セラミックス基板1の電気的特性向上が期待できる。これは、結晶粒子13は、原子が規則的に配列されていることにより、セラミックス基板1の誘電損失が少なくなるからである。さらに、結晶粒子13は原子同士が規則的に結合していることにより、セラミックス基板1の強度を高めることができるのである。 The glass phase 11 is, for example, SiO 2 —B 2 O 3 —RO (R is alkaline earth) glass to which TiO 2 , Al 2 O 3 , ZnO, and the like are added. The crystal particles 13 other than alumina are at least one of enstatite, forsterite, anorsite, diopside, spodumene, ilmenite, garnite, and urematite. More preferred are enstatite, forsterite, anorthite and diopside according to claim 2. Thus, by using the ceramics containing the crystal particles 13 as the ceramic substrate 1, it is possible to expect an improvement in the electrical characteristics of the ceramic substrate 1. This is because the dielectric loss of the ceramic substrate 1 is reduced because the crystal particles 13 are regularly arranged with atoms. Furthermore, the crystal particles 13 can increase the strength of the ceramic substrate 1 because atoms are regularly bonded to each other.

誘電体層3のアルミナ以外の結晶粒子13が、ガラス相11の原料成分から析出する場合、すなわち結晶化ガラスを用いた場合、焼成の昇温時、ガラスの溶融と同時に結晶化が起こり、ガラス融液の流動性が低下し、アルミナ粒子12を十分に濡らすことができなくなり、セラミックス基板の緻密化が困難となる。特に、セラミックス基板1における結晶粒子13の体積が、ガラス相11の体積より大きい場合、又、ガラス転移温度と結晶化開始温度との差が80℃以下である場合に、この事象が深刻な問題となる。そこでアルミナ粒子12を、最小幅に対する最大幅の比であるアスペクト比の値が1.5以下とする、即ち、略球形に近づけ、さらに、1.5μm以下のアルミナ粒子12の微粉を少なくすることにより、ガラス相11および結晶粒子13を含む結晶化ガラスセラミックスを基板材料として用いても、ガラス融液がアルミナ粒子12を十分に濡らすことができるようになる。これにより、セラミックス基板1を1000℃以下の焼成温度で緻密に焼成させることが容易となる。その結果、このセラミックスは、内部電極層4としてAgやCu等の高周波特性の優れた金属を用いることができる。   When the crystal particles 13 other than alumina of the dielectric layer 3 are precipitated from the raw material component of the glass phase 11, that is, when crystallized glass is used, crystallization occurs simultaneously with melting of the glass when the temperature of firing is increased. The fluidity of the melt is lowered, the alumina particles 12 cannot be sufficiently wetted, and it becomes difficult to densify the ceramic substrate. In particular, when the volume of the crystal particles 13 in the ceramic substrate 1 is larger than the volume of the glass phase 11, and when the difference between the glass transition temperature and the crystallization start temperature is 80 ° C. or less, this phenomenon is a serious problem. It becomes. Therefore, the alumina particles 12 should have an aspect ratio value of 1.5 or less, that is, the ratio of the maximum width to the minimum width, that is, close to a substantially spherical shape and further reduce the fine particles of the alumina particles 12 of 1.5 μm or less. Thus, even when crystallized glass ceramics including the glass phase 11 and the crystal particles 13 are used as the substrate material, the glass melt can sufficiently wet the alumina particles 12. Thereby, it becomes easy to densely fire the ceramic substrate 1 at a firing temperature of 1000 ° C. or less. As a result, this ceramic can use a metal having excellent high frequency characteristics such as Ag and Cu as the internal electrode layer 4.

以下、本実施の形態1のセラミックス基板1の焼成工程における比較実験について説明する。   Hereinafter, a comparative experiment in the firing process of the ceramic substrate 1 of the first embodiment will be described.

誘電体層3を構成するガラス相11およびアルミナ以外の結晶粒子13の原料として、エンスタタイト系の結晶化ガラス原料粉末を用いた。アルミナ粒子12としては、(表1)に示すように、粒径やアスペクト比の異なる粒子A、B、C、D、E、F、Gの7種類を用いた。セラミックスにおけるアルミナの重量割合が30%となるように、アルミナ粒子12とガラス原料粉末を混合した。混合は、600mlのポット中に、上記粉末と、粉末全体に対して重量比2〜3%のバインダーと、φ10のジルコニアボール600gと、エタノールとを加え、回転速度84rpmにて、10時間行った。混合後、スラリーを乳鉢に移し、エタノールが揮発して粉末が乾燥するまで乳棒で攪拌し続けた。   Enstatite crystallized glass raw material powder was used as a raw material for the crystal phase 13 other than the glass phase 11 and alumina constituting the dielectric layer 3. As the alumina particles 12, as shown in Table 1, seven types of particles A, B, C, D, E, F, and G having different particle diameters and aspect ratios were used. The alumina particles 12 and the glass raw material powder were mixed so that the weight ratio of alumina in the ceramic was 30%. Mixing was carried out in a 600 ml pot by adding the above powder, a binder having a weight ratio of 2 to 3% to the whole powder, 600 g of zirconia balls of φ10, and ethanol at a rotational speed of 84 rpm for 10 hours. . After mixing, the slurry was transferred to a mortar and kept stirring with a pestle until the ethanol evaporated and the powder dried.

乾燥した粉末を、#32メッシュパス後、径φ13mm、厚み約10mmになるように、1.5MPaで一軸プレスを行い、ペレット状の成形体を作製し、875℃で焼成を行った。セラミックス焼成体の乾燥重量W(g)及び、セラミックス焼成体の寸法から、セラミックス焼成体の嵩密度(g/cm3)を算出し、更に、セラミックス焼成体の乾燥重量W(g)と純水中にて30分間脱泡したセラミックス焼成体を、含水した後に固く絞ったガーゼで拭き取り測定した重量Ww´(g)から、セラミックス焼成体の吸水率(wt%)を算出した。ここで、セラミックスの給水率が0.1wt%以下でセラミックスは緻密に焼成されたものであると判断した。吸水率(wt%)は以下の式から算出した。 The dried powder was subjected to # 32 mesh pass, uniaxially pressed at 1.5 MPa so as to have a diameter of 13 mm and a thickness of about 10 mm to produce a pellet-shaped formed body, and fired at 875 ° C. The bulk density (g / cm 3 ) of the ceramic fired body is calculated from the dry weight W (g) of the ceramic fired body and the dimensions of the ceramic fired body, and further, the dry weight W (g) of the ceramic fired body and pure water. The water absorption (wt%) of the ceramic fired body was calculated from the weight W w ′ (g) measured by wiping the ceramic fired body degassed for 30 minutes with a gauze that had been hydrated and then squeezed tightly. Here, it was determined that the ceramic water supply rate was 0.1 wt% or less, and the ceramic was densely fired. The water absorption rate (wt%) was calculated from the following equation.

Figure 2010120801
Figure 2010120801

又、セラミックス焼成体断面研磨面のSEM観察を行い、セラミックスの50μm四方SEM画像3視野において、アルミナ粒子12の、最小幅に対する最大幅の比であるアスペクト比の値を算出し、又最大幅1.5μm以下のアルミナ粒子12の個数の割合を調べた。又、上記SEM画像の色を2値化することでガラス相11と結晶粒子相(アルミナ粒子12とアルミナ以外の結晶粒子13)に分け、その面積比を3/2乗することで、ガラス相11と、結晶粒子相の体積比を求めた。その結果、いずれの焼成体においても結晶粒子相のセラミックスにおける体積割合は80%以上であることが分かった。   In addition, SEM observation of the cross-section polished surface of the ceramic fired body was performed, and the value of the aspect ratio, which is the ratio of the maximum width to the minimum width, of the alumina particles 12 was calculated in three fields of 50 μm square SEM images of the ceramic. The ratio of the number of alumina particles 12 of 5 μm or less was examined. Also, by binarizing the color of the SEM image, it is divided into a glass phase 11 and a crystal particle phase (alumina particles 12 and crystal particles 13 other than alumina), and the area ratio is raised to 3/2 to obtain a glass phase. 11 and the volume ratio of the crystal grain phase. As a result, it was found that the volume ratio in the ceramic of the crystal grain phase was 80% or more in any of the fired bodies.

Figure 2010120801
Figure 2010120801

(表1)に、7種類のアルミナ粒子を用いた場合の、セラミックス焼成体の嵩密度、吸水率、アスペクト比1.5以下のアルミナ粒子12の個数割合、更に最大幅1.5μm以下のアルミナ粒子12の個数の割合を示す。請求項1に示す、アスペクト比の値が1.5以下のアルミナ粒子12の個数が90%以上であり、且つ、前記SEM画像において、最大幅1.5μm以下のアルミナ粒子12が15%以下であるという条件を満たさないようなアルミナ粒子A、C、D、E、Gを用いた場合には、セラミックス焼成体の嵩密度は総じて低く、吸水率も0.1wt%以上となった。特に、上記どちらの条件も満たさないアルミナ粒子A、Cを用いた場合にはセラミックス焼成体の吸水率は3.52〜3.26wt%と、非常に大きな値を示し、緻密化が困難であったことが分かる。逆に、上記条件を共に満たすアルミナ粒子B、Fを用いた場合にはセラミックス焼成体の嵩密度は高く、吸水率0.1wt%以下であり、緻密に焼成ができた。これは、上述したように、アルミナ粒子を略球形に近づけ、微粉を少なくすることにより、アルミナ粒子の比表面積が減少し、ガラス融液がアルミナ粒子を十分に濡らすことができるようになったためと考えられる。   In Table 1, when 7 types of alumina particles are used, the bulk density of the ceramic fired body, the water absorption, the number ratio of the alumina particles 12 having an aspect ratio of 1.5 or less, and the alumina having a maximum width of 1.5 μm or less The ratio of the number of particles 12 is shown. The number of alumina particles 12 having an aspect ratio value of 1.5 or less shown in claim 1 is 90% or more, and in the SEM image, alumina particles 12 having a maximum width of 1.5 μm or less are 15% or less. When alumina particles A, C, D, E, and G that do not satisfy the condition of being present were used, the bulk density of the ceramic fired body was generally low, and the water absorption rate was 0.1 wt% or more. In particular, when alumina particles A and C that do not satisfy either of the above conditions are used, the water absorption rate of the ceramic fired body is as high as 3.52 to 3.26 wt%, and it is difficult to densify. I understand that. On the contrary, when alumina particles B and F satisfying both of the above conditions were used, the bulk density of the ceramic fired body was high, the water absorption was 0.1 wt% or less, and it could be fired densely. This is because, as described above, the alumina particles are made nearly spherical and the fine powder is reduced, thereby reducing the specific surface area of the alumina particles and allowing the glass melt to sufficiently wet the alumina particles. Conceivable.

以上説明したように、本発明によれば、ガラス相、アルミナ粒子、及びアルミナ以外の結晶粒子を含むセラミックス基板を緻密に焼成することができ、このセラミックス基板を携帯電話等の電子機器におけるノイズ除去フィルタとして利用可能である。   As described above, according to the present invention, a ceramic substrate containing a glass phase, alumina particles, and crystal particles other than alumina can be densely fired, and this ceramic substrate can be used for noise removal in electronic devices such as mobile phones. It can be used as a filter.

本発明の実施の形態1におけるセラミックス基板を用いた電子部品の断面摸式図Sectional schematic diagram of an electronic component using a ceramic substrate in Embodiment 1 of the present invention 同セラミックス基板における誘電体層の断面模式図Cross-sectional schematic diagram of dielectric layer on the same ceramic substrate 同セラミックス基板の説明図Illustration of the ceramic substrate

符号の説明Explanation of symbols

1 セラミックス基板
2 電子部品
3 誘電体層
4 内部電極層
5 ビア電極
6 下部電極
11 非晶質ガラス相
12 アルミナ粒子
13 アルミナ以外の結晶粒子
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 2 Electronic component 3 Dielectric layer 4 Internal electrode layer 5 Via electrode 6 Lower electrode 11 Amorphous glass phase 12 Alumina particle 13 Crystal particles other than alumina

Claims (8)

セラミックスからなる複数の誘電体層が積層されたセラミックス基板であって、
前記セラミックス基板に形成された内部電極を備え、
前記セラミックスは、ガラス相、アルミナ粒子、及びアルミナ以外の結晶粒子を有し、
前記アルミナ粒子とアルミナ以外の粒子の体積の割合の和が50%以上であり、かつ
前記セラミックスのSEM画像において、最小幅に対する最大幅の比であるアスペクト比の値が1.5以下のアルミナ粒子の個数が90%以上であり、且つ、前記SEM画像において、最大幅1.5μm以下のアルミナ粒子が15%以下であるセラミックス基板。
A ceramic substrate in which a plurality of dielectric layers made of ceramics are laminated,
An internal electrode formed on the ceramic substrate;
The ceramic has a glass phase, alumina particles, and crystal particles other than alumina,
Alumina particles having a volume ratio of the alumina particles and particles other than alumina of 50% or more and an aspect ratio value of 1.5 or less, which is a ratio of the maximum width to the minimum width, in the SEM image of the ceramics And a ceramic substrate having 15% or less of alumina particles having a maximum width of 1.5 μm or less in the SEM image.
前記ガラス相は、SiO2−B23−RO(Rはアルカリ土類)系ガラスであり、
かつ、前記結晶粒子は、エンスタタイト、フォルステライト、アノーサイト、ディオプサイド、ガーナイトのうち少なくとも1種類を含む請求項1に記載のセラミックス基板。
The glass phase is SiO 2 —B 2 O 3 —RO (R is alkaline earth) glass,
The ceramic substrate according to claim 1, wherein the crystal particles include at least one of enstatite, forsterite, anorthite, diopside, and garnite.
前記セラミックス基板は、結晶が析出するようなガラス原料粉末を用いていることを特徴とする請求項1に記載のセラミックス基板。 2. The ceramic substrate according to claim 1, wherein the ceramic substrate uses a glass raw material powder from which crystals are precipitated. 前記アルミナ以外の結晶粒子の体積は、前記ガラス相の体積より大きい請求項1に記載のセラミックス基板。 The ceramic substrate according to claim 1, wherein a volume of crystal particles other than alumina is larger than a volume of the glass phase. 前記内部電極の主成分は、AgもしくはCuである請求項1に記載のセラミックス基板。 The ceramic substrate according to claim 1, wherein a main component of the internal electrode is Ag or Cu. 前記セラミックスにおける前記アルミナ粒子の重量割合は45%以下となるように配合した請求項1に記載のセラミックス基板。 The ceramic substrate according to claim 1, wherein the weight percentage of the alumina particles in the ceramic is blended to be 45% or less. 前記セラミックスはガラス転移点と結晶化温度との差は80℃以上であるガラス粉末を用いた請求項1に記載のセラミックス基板。 The ceramic substrate according to claim 1, wherein the ceramic is a glass powder having a difference between a glass transition point and a crystallization temperature of 80 ° C. or more. 請求項1に記載のセラミックス基板と、
前記セラミックス電子基板上に搭載された弾性波フィルタを備えた電子部品。
A ceramic substrate according to claim 1;
An electronic component comprising an acoustic wave filter mounted on the ceramic electronic substrate.
JP2008295213A 2008-11-19 2008-11-19 Ceramic substrate Pending JP2010120801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295213A JP2010120801A (en) 2008-11-19 2008-11-19 Ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295213A JP2010120801A (en) 2008-11-19 2008-11-19 Ceramic substrate

Publications (1)

Publication Number Publication Date
JP2010120801A true JP2010120801A (en) 2010-06-03

Family

ID=42322477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295213A Pending JP2010120801A (en) 2008-11-19 2008-11-19 Ceramic substrate

Country Status (1)

Country Link
JP (1) JP2010120801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148597A1 (en) 2010-05-26 2011-12-01 Canon Kabushiki Kaisha Imaging apparatus, control method of the same, and program
KR20180111943A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
KR20180111939A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
KR20180111938A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
KR20180111940A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper / ceramic composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342074A (en) * 2000-05-31 2001-12-11 Kyocera Corp Composite particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342074A (en) * 2000-05-31 2001-12-11 Kyocera Corp Composite particle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148597A1 (en) 2010-05-26 2011-12-01 Canon Kabushiki Kaisha Imaging apparatus, control method of the same, and program
KR20180111943A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
KR20180111939A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
KR20180111938A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
KR20180111940A (en) * 2016-02-26 2018-10-11 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper / ceramic composite
CN108698935A (en) * 2016-02-26 2018-10-23 贺利氏德国有限两合公司 Copper-ceramic complexes
CN108698944A (en) * 2016-02-26 2018-10-23 贺利氏德国有限两合公司 Copper-ceramic complexes
EP3419952B1 (en) 2016-02-26 2020-04-01 Heraeus Deutschland GmbH & Co. KG Copper- ceramic composite
KR102206422B1 (en) 2016-02-26 2021-01-22 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper/ceramic composite
KR102206421B1 (en) 2016-02-26 2021-01-22 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
KR102222223B1 (en) * 2016-02-26 2021-03-03 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
CN108698944B (en) * 2016-02-26 2021-03-30 贺利氏德国有限两合公司 Copper-ceramic composite
KR102250917B1 (en) * 2016-02-26 2021-05-12 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Copper-ceramic composite
US11498878B2 (en) 2016-02-26 2022-11-15 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
US11584696B2 (en) 2016-02-26 2023-02-21 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite

Similar Documents

Publication Publication Date Title
JP5056528B2 (en) Insulator ceramic composition and insulator ceramic using the same
TW200524835A (en) Multilayered wiring board and process for producing the same
JP2010120801A (en) Ceramic substrate
JP2010226038A (en) Ceramic electronic component
JP2011211158A (en) Ceramic electronic component and method of manufacturing ceramic electronic component
JP2008053525A (en) Multilayer ceramic substrate and its manufacturing method
JP5887074B2 (en) Ceramic composition, ceramic sintered body and electronic component
JP2009120477A (en) Glass composition, dielectric composition containing the same and laminated ceramic capacitor built-in type low temperature simultaneously fired ceramic substrate using the same
JP2011216521A (en) Ceramic electronic component and method of manufacturing ceramic electronic component
JP2007284327A (en) Ceramic composition and laminated ceramic circuit device
JP4703207B2 (en) Wiring board
JP5527053B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
WO2007114055A1 (en) Process for production of ceramic porcelains, ceramic porcelains and electronic components
WO2011021484A1 (en) Glass ceramic composition, ceramic green sheet, and multilayered ceramic substrate
JP4619173B2 (en) Composite electronic component materials
JP2005217170A (en) Composite multilayer ceramic electronic component
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JP2020196635A (en) Alumina sintered body, and printed circuit board
JP5527052B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP2012250903A (en) Glass-ceramic composite material
JP3149613B2 (en) Ceramic substrate and method of manufacturing the same
JP2010098023A (en) Ceramic electronic component and electronic device using the same
JP2010109133A (en) Ceramic electronic component and electronic apparatus using the same
JP4057853B2 (en) Glass ceramic sintered body and multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820