JP2010120167A - Method of manufacturing preform and fiber reinforced plastic - Google Patents

Method of manufacturing preform and fiber reinforced plastic Download PDF

Info

Publication number
JP2010120167A
JP2010120167A JP2008293084A JP2008293084A JP2010120167A JP 2010120167 A JP2010120167 A JP 2010120167A JP 2008293084 A JP2008293084 A JP 2008293084A JP 2008293084 A JP2008293084 A JP 2008293084A JP 2010120167 A JP2010120167 A JP 2010120167A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
fiber laminate
rubber
preform
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008293084A
Other languages
Japanese (ja)
Inventor
Konosuke Yamamoto
晃之助 山本
Tomoyuki Shinoda
知行 篠田
Mamoru Kanda
守 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008293084A priority Critical patent/JP2010120167A/en
Publication of JP2010120167A publication Critical patent/JP2010120167A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for bringing a reinforced fiber base material into close contact with a shaping mold having rugged parts at side faces to shape the reinforced fiber base material into a mold shape without a crease. <P>SOLUTION: This method of manufacturing a preform obtained by bringing a reinforced fiber laminate into close contact with a male mold having recesses and projections at the side faces, includes at least steps of disposing the reinforced fiber laminate on the male mold, disposing rubber on the reinforced fiber laminate and decompressing a space sealed with the rubber. In the decompressing step, when applying pressure to the reinforced fiber laminate sequentially from the upper face to the side faces through the rubber, external force is applied from the outside of the rubber along the recesses of the side faces. Pressure is thereby applied to the recesses sequentially from the shoulder parts to the side faces of the reinforced fiber laminate, and then pressure is sequentially applied from the upper face to the side faces of the reinforced fiber laminate by the rubber. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、繊維強化プラスチックからなる輸送機器などの構造部材で、特に複雑な形状を持つ桁材を得るために用いられるプリフォームの製造方法、およびその方法により得られるプリフォームを用いた繊維強化プラスチックの製造方法に関する。   The present invention relates to a manufacturing method of a preform used for obtaining a girder having a complicated shape, particularly for a structural member such as a transportation device made of fiber reinforced plastic, and fiber reinforcement using the preform obtained by the method. The present invention relates to a plastic manufacturing method.

近年、輸送機器産業では原油燃料の高騰のあおりを受け燃費の向上が求められている。殊に航空機業界においては、燃費がランニングコストに直結するためエアラインからの要望が強く、各航空機メーカーでは機体の軽量化を進めるために、比剛性、比強度に優れた繊維強化プラスチック(特に、炭素繊維強化プラスチック)の適用を進めている。   In recent years, the transportation equipment industry has been required to improve fuel efficiency in response to soaring crude oil fuel. In the aircraft industry in particular, there is a strong demand from airlines because fuel efficiency is directly linked to running costs. In order to reduce the weight of aircraft in each aircraft manufacturer, fiber reinforced plastics with excellent specific rigidity and specific strength (especially, Application of carbon fiber reinforced plastics is underway.

繊維強化プラスチック製部材は、ガラス繊維、炭素繊維、ポリアミド繊維などを強化繊維としてなる布帛と樹脂材料からなり、前記布帛には予めマトリックス樹脂が含浸されたプリプレグ、マトリックス樹脂を後で注入するドライ基材等があり、それぞれオートクレーブやオーブン等で加熱、加圧しながら脱気や樹脂含浸を行い、マトリックス樹脂を硬化一体化して得られる。   The fiber reinforced plastic member is made of a fabric made of glass fiber, carbon fiber, polyamide fiber or the like as a reinforcing fiber and a resin material. The fabric is pre-impregnated with a matrix resin in advance, and a dry base into which the matrix resin is injected later. There are materials, etc., and each is obtained by degassing or impregnating resin while heating and pressurizing in an autoclave, oven or the like, and curing and integrating the matrix resin.

上述のような成形方法で得られた繊維強化プラスチックが輸送機器等に用いる構造部材の場合は、航空機用C型断面スパーに代表されるように複雑な形状のものが多く、形状出し(以下、賦形という)技術が重要となる。金属材料で形状出しを行う場合は機械加工を行えるが、繊維強化プラスチックは繊維の切断が剛性や強度低下に直結するため、安易に機械加工を適用できず、複雑な型に強化繊維基材を沿わせて成形する必要がある。   In the case of a structural member used for transportation equipment or the like, the fiber reinforced plastic obtained by the molding method as described above has many complicated shapes as represented by the C-type cross section spar for aircraft, Technology called shaping is important. When shaping with a metal material, it can be machined, but fiber reinforced plastics are directly connected to the reduction in rigidity and strength, so machining cannot be applied easily, and a reinforced fiber substrate can be applied to a complex mold. It is necessary to mold along.

強化繊維を複雑な型に沿わせて賦形するには種々の課題がある。例えば、型の凹部に繊維が上手く沿わずに、凹部と強化繊維の間に隙間が生じ所望の形状が得られないことがある。また、強化繊維を型に沿わせる際に力を加えすぎて繊維の屈曲や配向角度のズレが生じ所望の物性が得られないこともある。   There are various problems in shaping reinforcing fibers along a complex mold. For example, the fibers do not fit well in the concave portion of the mold, and a gap may be formed between the concave portion and the reinforcing fiber, and a desired shape may not be obtained. Further, when force is applied to the reinforcing fiber along the mold, the fiber may be bent or the orientation angle may be deviated, and desired physical properties may not be obtained.

以上のような課題を解決するために、特許文献1では複合材料シート加工装置について記載されているが、本装置は強化繊維基材に樹脂を含浸させ、これを複数枚積層させたものが対象のため、真空吸引による大型の形状出しは、多大な手間が必要で、かつ、皺が発生しないようにするには困難と記載がある。   In order to solve the problems as described above, Patent Document 1 describes a composite material sheet processing apparatus, but this apparatus is intended for impregnating a reinforcing fiber base material with a resin and laminating a plurality of them. Therefore, there is a description that it is difficult to obtain a large shape by vacuum suction, and it is difficult to prevent wrinkles from occurring.

また、特許文献2において、賦形型の上に配置した繊維基材の略中央部を押さえた後、中央部から端部へ離隔する方向に向かって、連続的に押さえる方法を用いることで繊維のブリッジングを抑制する方法が記載されている。しかし、本方法は幾何学的な型の展開図が繊維基材と異なる場合の対策については記載されておらず、繊維基材に切欠きを入れる方法があるのみで、切欠きは繊維切断による強度低下を招くため構造部材を念頭に入れているとは考え難い製法である。   Moreover, in patent document 2, after pressing the substantially center part of the fiber base material arrange | positioned on a shaping type | mold, it is fiber by using the method of pressing continuously in the direction separated from a center part to an edge part. A method for suppressing bridging is described. However, this method does not describe the countermeasures when the development view of the geometric type is different from that of the fiber base material, and there is only a method of notching the fiber base material. It is a manufacturing method that is unlikely to have a structural member in mind because it causes a decrease in strength.

また、特許文献3において、平面部と、平面部から隆起し所定方向に複数配列されたビード部とを有するプリフォームの製造する方法が記載されている。本方法では強化繊維基材をラバーで覆ってさらに上から錘を配置する際に、中央部から離れるように順次配置し、次いで、ラバー内を減圧することで強化繊維基材を賦形型に密着させるが、平面部のため錘を配置することが可能で、側面に隆起がある場合には対応していない。
特開2006−335049号公報(0003、0010 1〜3行目) 特開2006−188791号公報(請求項1、0022 1〜2行目) 特開2008−230019号公報(請求項1)
Further, Patent Document 3 describes a method of manufacturing a preform having a flat part and a plurality of bead parts protruding from the flat part and arranged in a predetermined direction. In this method, when the reinforcing fiber base material is covered with rubber and the weight is further arranged from above, the reinforcing fiber base material is sequentially placed away from the central portion, and then the inside of the rubber is decompressed to form the reinforcing fiber base material into a shaping mold. Although it adheres, it is possible to arrange a weight for the flat portion, and it does not correspond to the case where there is a bulge on the side surface.
JP 2006-335049 A (0003, 0010 1-3 lines) JP 2006-188791 A (Claim 1, 0022 1-2 lines) JP 2008-230019 (Claim 1)

そこで、本発明はかかる従来の問題点を解消し、特に、側面に凹凸部を有する賦形型に強化繊維基材を密着させて、当該強化繊維基材を皺無く賦形型の形状に賦形して得られるプリフォームを製造する方法を提供することにある。   Therefore, the present invention solves such a conventional problem, and in particular, the reinforcing fiber base material is closely attached to a shaping mold having a concavo-convex portion on the side surface, and the reinforcing fiber base material is applied to the shaping mold shape without any defects. The object is to provide a method for producing a preform obtained by shaping.

かかる課題を解決するための本発明は、以下の構成からなる。すなわち、
1.少なくとも側面に凹凸を有する雄型に強化繊維積層体を密着させることにより得られるプリフォームの製造方法であって、前記雄型の上に強化繊維積層体を配置する工程と、前記強化繊維積層体の上からラバーを配置する工程と、前記ラバーで密閉された空間を減圧する工程を少なくとも含み、前記減圧する工程において、前記ラバーを介して前記強化繊維積層体に上面から側面に順次押し圧を加える際に、前記側面の凹部に沿ってラバーの外から外力を加えることにより、前記凹部を前記強化繊維積層体の肩部から側面にかけて順次押し圧を加え、しかる後に、前記ラバーにより前記強化繊維積層体の上面から側面に順次押し圧を加えることを特徴とするプリフォームの製造方法。
The present invention for solving this problem has the following configuration. That is,
1. A method of manufacturing a preform obtained by closely attaching a reinforcing fiber laminate to a male mold having irregularities on at least side surfaces, the step of arranging the reinforcing fiber laminate on the male mold, and the reinforcing fiber laminate A step of disposing rubber from above and a step of decompressing the space sealed with the rubber, and in the step of depressurizing, the reinforcing fiber laminate is sequentially pressed from the upper surface to the side surface through the rubber. When applying, an external force is applied from the outside of the rubber along the concave portion of the side surface, so that the concave portion is sequentially pressed from the shoulder portion to the side surface of the reinforcing fiber laminate, and then the reinforcing fiber is applied by the rubber. A method for producing a preform, wherein a pressing force is sequentially applied from the upper surface to the side surface of the laminate.

2.前記側面の凹部に押し圧を加える際に、該凹部に対向する側面にも押し圧を加える、1.に記載のプリフォーム製造方法。   2. 1. When pressing pressure is applied to the concave portion on the side surface, pressing pressure is also applied to the side surface facing the concave portion. The preform production method according to 1.

3.前記強化繊維積層体はドライ基材で構成されている、1.または2.に記載のプリフォームの製造方法。   3. The reinforcing fiber laminate is composed of a dry substrate. Or 2. A process for producing the preform as described in 1.

4.前記ドライ基材の少なくとも片側表面には樹脂材料が付与されており、前記強化繊維積層体を加熱して前記樹脂材料を軟化させることにより、前記ドライ基材の層間を一体化させる、3.に記載のプリフォームの製造方法。   4). 2. A resin material is applied to at least one surface of the dry substrate, and the layers of the dry substrate are integrated by heating the reinforcing fiber laminate and softening the resin material. A process for producing the preform as described in 1.

5.前記強化繊維積層体を加熱した後に、冷却して前記樹脂材料を固化させる、4.に記載のプリフォームの製造方法。   5. 3. After heating the reinforcing fiber laminate, the resin material is solidified by cooling. A process for producing the preform as described in 1.

6.1.〜5.のいずれかに記載のプリフォームに、液状の樹脂を注入・含浸した後に、該樹脂を硬化する工程を有する、繊維強化プラスチックの製造方法。   6.1. ~ 5. A method for producing a fiber reinforced plastic, comprising a step of injecting and impregnating a liquid resin into the preform according to any one of the above, and then curing the resin.

本発明は、複雑形状を有する桁部材を製造するために、複雑形状を有する雄型に強化繊維積層体を皺無く密着させる方法を採用するので、強度発現率の高い繊維強化プラスチックを得ることのできる所望のプリフォームが得られる。   Since the present invention employs a method in which a reinforcing fiber laminate is closely adhered to a male mold having a complex shape in order to produce a girder member having a complex shape, a fiber-reinforced plastic having a high strength expression rate can be obtained. The desired preform that can be obtained is obtained.

本発明の発明者らは鋭意検討の結果、前記課題、つまり、複雑形状を有する桁材を皺などの欠陥なく製造するために、側面に凹凸を有する雄型5に強化繊維積層体20を密着させる工程を経て得られるプリフォームを製造する方法見出した。本方法の適用できる形状(ここでは特に断面形状)は、図1に記載のようにC型断面1、L型断面2、ハット型断面3、Z型断面4などに適用することができるが、側面に凹凸を有する雄型5を用いて製造できる形状であれば限定するものではない。   As a result of intensive studies, the inventors of the present invention closely attached the reinforcing fiber laminate 20 to the male mold 5 having irregularities on the side surfaces in order to manufacture the above-mentioned problem, that is, a girder having a complicated shape without defects such as wrinkles. The present inventors have found a method for producing a preform obtained through the step of causing the preform to be obtained. The shape to which this method can be applied (here, particularly the cross-sectional shape) can be applied to the C-shaped cross section 1, the L-shaped cross section 2, the hat-shaped cross section 3, the Z-shaped cross section 4 and the like as shown in FIG. The shape is not limited as long as the shape can be produced using the male mold 5 having unevenness on the side surface.

はじめに、図1の側面に凹凸を有する雄型5を用いて得た、側面に凹凸を有するプリフォーム6を構成する強化繊維積層体20に皺36やブリッジング35が発生する原因について、図2、3を用いて説明する。図2には左図に側面に凹凸を有する雄型5の一例である立体形状、右図にそのA断面である断面図を示している。側面に凹凸を有する雄型5の構成はA断面7を用いて、上面8、肩部9、側面10に分類することができ、前記側面に凹凸を有する雄型5の側面8には少なくとも1箇所以上、凹部11、凸部12を有している。   First, the reason why wrinkles 36 and bridging 35 are generated in the reinforcing fiber laminate 20 constituting the preform 6 having unevenness on the side surface obtained by using the male mold 5 having unevenness on the side surface in FIG. 3, will be described. FIG. 2 shows a three-dimensional shape as an example of the male mold 5 having irregularities on the side surface on the left side, and a cross-sectional view showing the A cross section on the right side. The configuration of the male mold 5 having irregularities on the side surface can be classified into an upper surface 8, a shoulder portion 9, and a side surface 10 using the A cross section 7, and the side surface 8 of the male mold 5 having irregularities on the side surface is at least 1 There are more than the number of recesses 11 and protrusions 12.

側面に凹部11、凸部12を有する雄型は図3のように示される。すなわち、図3に示す、前記側面に凹凸を有する雄型5の展開部分13を使って展開して得た雄型展開図14において明らかにされるとおり、雄型の凹部15の側面10には重なり17を生じさせ、雄型の凸部16の側面10には隙間18を生じさせる。前記雄型展開図14と本発明で用いられる強化繊維積層体20の平面図19を比較すると、前記雄型の凹部15では強化繊維積層体20が不足し、前記雄型と凸部16では強化繊維積層体20が余ることとなる。このような不足や余りを含んだ雄型展開図14を有する雄型に、強化繊維積層体20を型隙46(図10、11参照)や皺(弛み)36(図11、12参照)が無く沿わせるためには、前記強化繊維積層体20を伸縮(変形)させつつ密着させなければならず、前記変形が上手くいかないと前記強化繊維積層体20に皺36(弛み)やブリッジング35(図10、11参照)が生じる。強化繊維積層体20に発生した前記皺36やブリッジング35はプリフォームとなっても消えることはなく、前記プリフォームを樹脂成形した成形品においても痕跡が残り、前記成形品は皺36やブリッジング35が無いものと比較して、強度や表面品位が低下する。この低下を引き起こす皺36やブリッジング35は、前記雄型展開図14と強化繊維積層体20との幾何学形状の不一致と強化繊維積層体20の変形能に強く依存し、後者では、例えば、樹脂に拘束されているプリプレグからなる強化繊維積層体20は皺36が発生しやすく、一方、樹脂に拘束されていないドライ基材では発生しにくい。本発明のプリフォーム製造方法は、前記強化繊維積層体20の変形能力を十分に発揮させる製造方法であり、変形能力の高いドライ基材への適用が好ましい。   A male mold having a concave portion 11 and a convex portion 12 on the side surface is shown in FIG. That is, as shown in the male development view 14 obtained by developing using the development portion 13 of the male mold 5 having unevenness on the side surface shown in FIG. An overlap 17 is generated, and a gap 18 is generated on the side surface 10 of the male convex portion 16. Comparing the male development view 14 and the plan view 19 of the reinforcing fiber laminate 20 used in the present invention, the male concave portion 15 lacks the reinforcing fiber laminate 20, and the male die and the convex portion 16 reinforce. The fiber laminate 20 is left over. The male fiber having the male development view 14 including such deficiencies and surpluses is provided with a reinforcing fiber laminate 20 having a gap 46 (see FIGS. 10 and 11) and a heel (slack) 36 (see FIGS. 11 and 12). In order to keep the reinforced fiber laminate 20 in close contact with each other, the reinforced fiber laminate 20 must be brought into close contact with the expansion and contraction (deformation). (See FIGS. 10 and 11). The ridges 36 and bridging 35 generated in the reinforcing fiber laminate 20 do not disappear even if they become a preform, and traces remain even in a molded product obtained by resin-molding the preform. The strength and surface quality are reduced as compared with the case without the ring 35. The wrinkles 36 and the bridging 35 that cause this decrease strongly depend on the geometrical mismatch between the male development view 14 and the reinforcing fiber laminate 20 and the deformability of the reinforcing fiber laminate 20, and in the latter case, for example, The reinforcing fiber laminate 20 made of a prepreg constrained by a resin is likely to generate wrinkles 36, whereas it is difficult to occur in a dry base material not constrained by a resin. The preform manufacturing method of the present invention is a manufacturing method that sufficiently exhibits the deformability of the reinforcing fiber laminate 20, and is preferably applied to a dry substrate having a high deformability.

本発明のプリフォーム製造工程の一部を示した図4〜9を用いて本発明を説明する。本発明を実施するに当たって使用する装置構成の一例は、図4のように金属枠21の付いたラバー22に蝶番23を取り付けたツール24からなり、前記ツール24には側面に凹凸を有する雄型5、ラバーシール25、バキュームポート26が配設されている。本装置構成は本発明を限定するものではない。   The present invention will be described with reference to FIGS. 4 to 9 showing a part of the preform manufacturing process of the present invention. An example of an apparatus configuration used in carrying out the present invention is a tool 24 having a hinge 23 attached to a rubber 22 with a metal frame 21 as shown in FIG. 5, a rubber seal 25 and a vacuum port 26 are provided. This apparatus configuration does not limit the present invention.

まず、本発明のプリフォーム製造方法の一工程を示す図5のように、側面に凹凸を有する雄型5上に強化繊維積層体20を配置し、バキュームポート26に真空ライン27を取り付ける。次に、図6にように前記金属枠21を有するラバー22をツール24上に被せて、前記ツール24上に取り付けられた突起物にあたるラバーシール25と前記ラバー22を密着させて、ツール24、ラバー22、ラバーシール25で密閉空間28を形成する。ここで、前記ツール24や側面に凹凸を有する雄型5は加熱機構を具備していることが好ましく、加熱機構としては熱媒配管や電気ヒーターをツール24や雄型5内に配設する手段やIHなどが挙げられるが安定して加熱できればこれらに限らない。ラバーシール25やラバー22の材質は前記加熱により永久変形しないことが好ましく、具体的にはネオプレン、エチレンプロピレンゴム、シリコンゴム、フッ素ゴムなどが挙げられるが、加熱や真空吸引の際に所望形状に賦形でき、かつ、繰返し使用できればこれらに限らない。   First, as shown in FIG. 5 showing one step of the preform manufacturing method of the present invention, the reinforcing fiber laminate 20 is disposed on the male mold 5 having unevenness on the side surface, and the vacuum line 27 is attached to the vacuum port 26. Next, as shown in FIG. 6, a rubber 22 having the metal frame 21 is placed on a tool 24, and a rubber seal 25 corresponding to a protrusion attached on the tool 24 and the rubber 22 are brought into close contact with each other. A sealed space 28 is formed by the rubber 22 and the rubber seal 25. Here, it is preferable that the tool 24 and the male mold 5 having unevenness on the side surface include a heating mechanism. As the heating mechanism, a heating medium pipe or an electric heater is provided in the tool 24 or the male mold 5. And IH, but are not limited to these as long as they can be heated stably. The material of the rubber seal 25 or the rubber 22 is preferably not permanently deformed by the heating, and specific examples thereof include neoprene, ethylene propylene rubber, silicon rubber, and fluoro rubber. It is not limited to these as long as it can be shaped and used repeatedly.

次に、図6のように前記ツール24とラバー22で形成された密閉空間28を、バキュームポート26を介して取り付けられた真空ライン27から真空吸引すると、図6の右方の断面図であるB−B’断面29に示すように、前記ラバー22によって前記強化繊維積層体20は前記側面に凹凸を有する雄型5の上面8、肩部9、側面10の順に側面下方へ密着され、最終的に、図7のB−B’断面29のように側面に凹凸を有する雄型5と強化繊維積層体20が密着し、真空吸引により発生する力とラバーの張力が釣り合うところでラバー22の動きは停止する。ラバーの動きが停止した時点で密着すべき側面の密着高さ31は、少なくとも前記強化繊維積層体20の側面の製品ライン32まで密着していることが好ましい。さらに、強化繊維積層体20を賦形して得られるプリフォームの形態安定性やコンシステンシーを考慮すると、前記強化繊維積層体20の全面が密着していることが望ましい。   Next, when the sealed space 28 formed by the tool 24 and the rubber 22 as shown in FIG. 6 is vacuum-sucked from the vacuum line 27 attached via the vacuum port 26, it is a cross-sectional view on the right side of FIG. As shown in the BB ′ cross section 29, the rubber fiber 22 causes the reinforcing fiber laminate 20 to be in close contact with the lower surface in the order of the upper surface 8, the shoulder portion 9, and the side surface 10 of the male mold 5 having irregularities on the side surface. Specifically, as shown in the BB ′ cross section 29 in FIG. 7, the male mold 5 having unevenness on the side surface and the reinforcing fiber laminate 20 are in close contact with each other, and the movement of the rubber 22 occurs when the force generated by vacuum suction and the rubber tension are balanced. Stops. It is preferable that the contact height 31 of the side surface to be contacted when the movement of the rubber stops is at least as close as the product line 32 on the side surface of the reinforcing fiber laminate 20. Furthermore, considering the form stability and consistency of the preform obtained by shaping the reinforcing fiber laminate 20, it is desirable that the entire surface of the reinforcing fiber laminate 20 is in close contact.

ここで、従来の賦形方法において、強化繊維積層体20を、側面に凹凸を有する雄型5の側面の凹部11に密着させる際にブリッジング35を生じる原因について、図6の凹部断面37の図(凹部断面図40)と凹部近傍断面38の図(凹部近傍断面図A41)である図8と、図7の凹部における皺発生箇所であるC断面33を示す図10を用いて説明する。   Here, in the conventional shaping method, the reason why the bridging 35 is caused when the reinforcing fiber laminate 20 is brought into close contact with the concave portion 11 on the side surface of the male mold 5 having irregularities on the side surface is shown in FIG. FIG. 8 which is a diagram (concave portion sectional view 40), FIG. 8 which is a diagram of the concave portion vicinity section 38 (concave portion sectional view A41), and FIG. 10 which shows a C cross section 33 which is a wrinkle occurrence place in the concave portion.

図8の真空吸引Aの図において、真空ライン27を通して真空吸引をすると、ラバー22が上面8、肩部9、側面10に順次密着していき真空吸引A、B、Cのように密着高さ31が低くなる。凹部断面図40と凹部近傍断面図A41の密着高さ31を比較すると、真空吸引B、Cにおいて、密閉高さ28に差が生じている。この差はラバー22の幾何学的な不足が一因で、図3の雄型展開図14で示したように、前記ラバー22が不足する凹部断面図40では不足しない凹部近傍断面図A41と比較して側面に凹凸を有する雄型5に密着するまでに大きな変形を要し、前記変形に要する力も大きく、真空吸引B、Cの図における凹部断面図40のラバー22は凹部近傍断面図A41より遅れて強化繊維積層体20を前記側面に凹凸を有する型5に密着する。その結果、前記凹部断面図40における強化繊維積層体20は、凹部近傍断面図A41の強化繊維積層体20が拘束される影響を受けて変形を抑制されて、ブリッジング35が発生する。ブリッジング35の原因となる密着高さの差は時系列的に、図3の雄型展開図14に見られるように、肩部9から離れるに従って強化繊維積層体20の不足量が多くなることにより、真空吸引B,Cの順に大きくなる。   In the vacuum suction A diagram of FIG. 8, when vacuum suction is performed through the vacuum line 27, the rubber 22 is brought into close contact with the upper surface 8, the shoulder portion 9, and the side surface 10 in order, and the contact height is increased as in vacuum suction A, B, and C. 31 becomes lower. Comparing the contact height 31 between the recess sectional view 40 and the recess vicinity sectional view A41, there is a difference in the sealing height 28 between the vacuum suctions B and C. This difference is partly due to the geometrical deficiency of the rubber 22, and as shown in the male development view 14 of FIG. Thus, a large amount of deformation is required until the male mold 5 having unevenness on the side surface is brought into close contact with, and the force required for the deformation is large, and the rubber 22 in the sectional view of the recess 40 in the drawings of vacuum suction B and C is from the sectional view A41 near the recess. The reinforcing fiber laminate 20 is brought into close contact with the mold 5 having irregularities on the side surfaces with a delay. As a result, the reinforcing fiber laminate 20 in the recess sectional view 40 is restrained from being deformed due to the influence of the reinforcing fiber laminate 20 in the recess vicinity sectional view A41 being restrained, and the bridging 35 is generated. As shown in the male development view 14 of FIG. 3, the difference in the adhesion height that causes the bridging 35 is that the shortage of the reinforcing fiber laminate 20 increases as the distance from the shoulder 9 increases. Thus, the vacuum suction B and C increase in this order.

ブリッジング形状を別の断面から示した図10の従来法43を用いて説明すると、凹部11ではラバー22のラバー押付力49により凹部近傍断面図B50の強化繊維積層体20が側面に凹凸を有する雄型5に押しつけられるため凹部11の強化繊維積層体20は変形できず、前記側面に凹凸を有する雄型5と前記強化繊維積層体20の間に型隙46を生じて、ブリッジング35が発生する。   When the conventional method 43 of FIG. 10 showing the bridging shape from another cross section will be described, the reinforcing fiber laminate 20 in the cross sectional view B50 in the vicinity of the concave portion has irregularities on the side surface by the rubber pressing force 49 of the rubber 22 in the concave portion 11. Since the reinforcing fiber laminate 20 in the recess 11 cannot be deformed because it is pressed against the male mold 5, a gap 46 is formed between the male mold 5 having irregularities on the side surface and the reinforcing fiber laminate 20, and the bridging 35 is formed. appear.

そこで、本発明では、前記型隙46が生じないように、図6の凹部断面37の図(凹部断面図40)と凹部近傍38の断面図(凹部近傍断面図A41)である図9より、真空吸引A,Bのようにラバー22の外から強化繊維積層体20に外力42を加えることで、凹部近傍断面A41の密着高さ31より凹部断面図40の密着高さ31を低く保ち、前記凹部近傍断面A41のラバー22が加えた押付力による拘束の影響が前記凹部断面図41の強化繊維積層体20に及ぶことを抑制する。   Therefore, in the present invention, in order to prevent the mold gap 46 from occurring, FIG. 9 is a view of the recess cross section 37 of FIG. 6 (recess cross section view 40) and a cross section of the recess vicinity 38 (recess vicinity cross sectional view A41). By applying an external force 42 to the reinforcing fiber laminate 20 from the outside of the rubber 22 as in vacuum suction A and B, the contact height 31 of the recess sectional view 40 is kept lower than the contact height 31 of the recess vicinity cross section A41, It restrains that the influence of the restraint by the pressing force applied by the rubber 22 in the recess vicinity section A41 reaches the reinforcing fiber laminate 20 in the recess section view 41.

その結果、図6の次の工程に当たる図7のC断面33の断面図に相当する、図10の本発明44に示したように、前記強化繊維積層体20は側面に凹凸を有する雄型5の凹部11に型隙46を生じることなく密着することができる。また、図2のL型断面2、ハット型断面3、Z型断面4のようにアーク形状の凹部5の場合においてもC型断面1の凹部5と同様に、ラバー22の外から外力42を加えることでアーク形状の凹部5に密着させることができる。ラバー22に外力42を加えるタイミングは、ラバー22の外から外力42を加えた際に起こりうる強化繊維積層体20の位置ズレ抑制を考慮して、図9の本発明の断面模式図のように、まず、真空吸引Aにおいて前記ツール24とラバー22で形成された密閉空間28を真空吸引し、前記ラバー22を介して、前記側面に凹凸を有する雄型5の上面8と肩部9の強化繊維積層体10に押し圧を加えて、ある程度拘束した後が好ましい。さらには好ましくは、図9の本発明の断面模式図のように、前記側面に凹凸を有する雄型5の凹部11に対向する側面にも同様に外力42を加えて両側面から強化繊維積層体20を拘束する方法が挙げられる。ただし、配置した強化繊維積層体20の位置ズレを防止する方法であればこれらに限らない。   As a result, as shown in the present invention 44 in FIG. 10, which corresponds to the sectional view of the C section 33 in FIG. 7 corresponding to the next step in FIG. 6, the reinforcing fiber laminate 20 has the male mold 5 having irregularities on the side surfaces. It is possible to make close contact with the recess 11 without forming the mold gap 46. Further, in the case of the arc-shaped concave portion 5 such as the L-shaped cross section 2, the hat-shaped cross section 3, and the Z-shaped cross section 4 of FIG. In addition, it can be brought into close contact with the arc-shaped recess 5. The timing at which the external force 42 is applied to the rubber 22 is as shown in the schematic cross-sectional view of the present invention in FIG. 9 in consideration of the positional displacement suppression of the reinforcing fiber laminate 20 that may occur when the external force 42 is applied from the outside of the rubber 22. First, in the vacuum suction A, the sealed space 28 formed by the tool 24 and the rubber 22 is vacuum-sucked, and the upper surface 8 and the shoulder 9 of the male mold 5 having irregularities on the side surface are reinforced through the rubber 22. It is preferable to apply a pressing pressure to the fiber laminate 10 and restrain it to some extent. More preferably, as shown in the schematic cross-sectional view of the present invention in FIG. 9, the reinforcing fiber laminate is applied from both sides by applying an external force 42 to the side surface facing the recess 11 of the male mold 5 having irregularities on the side surface. The method of restraining 20 is mentioned. However, the method is not limited thereto as long as it is a method for preventing the positional deviation of the arranged reinforcing fiber laminate 20.

また、図1に示したL型断面2、ハット型断面3、Z型断面4のようにアーク形状の凹部11に外力42を加える位置は側面に凹凸を有するプリフォーム6のアーク形状の最大凹部51に加えることが好ましい。これは前記最大凹部51が最も変形を要するためブリッジング35発生頻度が高く、前記最大凹部51に外力42を加えるとブリッジング抑制効果も大きいと考えられるためである。   Further, the position where the external force 42 is applied to the arc-shaped recess 11 such as the L-shaped section 2, the hat-shaped section 3, and the Z-shaped section 4 shown in FIG. It is preferable to add to 51. This is because bridging 35 is frequently generated because the maximum concave portion 51 requires the most deformation, and when an external force 42 is applied to the maximum concave portion 51, it is considered that the bridging suppression effect is also large.

次に、本発明の適用に好ましい雄型の側面形状について、本発明と従来法のプリフォーム製造方法の一部を比較した断面図である図11と、従来法の凸部を示した断面図である図12を用いて説明する。図11の従来法43の断面図では、雄型の凹部11に相当する強化繊維積層体20は不足し、かつ、ラバー押付力49によって拘束を受けるため、前記強化繊維積層体20の凹部11はブリッジング35、型隙46を生じる。一方で、図12に示すように凸部12では強化繊維積層体20が余るため皺36を生じる。そこで、図11の本発明44では凹部近傍50が拘束される前に凹部11に外力42を加えて、凸部12に生じる強化繊維積層体10の皺(弛み)を凹部方向に移動47、変形させることで、ブリッジング35を無くすと同時に皺36を抑制することができる。ただし、凹部11と凸部12の距離が遠い場合は上手く力が伝わらないため効果が小さく、凹部11と凸部12の距離は近い方が好ましい。   Next, FIG. 11 which is a cross-sectional view comparing a part of the preform manufacturing method of the present invention and the conventional method, and a cross-sectional view showing the convex portion of the conventional method with respect to the male side shape preferable for application of the present invention This will be described with reference to FIG. In the cross-sectional view of the conventional method 43 in FIG. 11, the reinforcing fiber laminate 20 corresponding to the male recess 11 is insufficient and is restrained by the rubber pressing force 49. Bridging 35 and mold gap 46 are generated. On the other hand, as shown in FIG. Therefore, in the present invention 44 of FIG. 11, the external force 42 is applied to the concave portion 11 before the vicinity of the concave portion 50 is restrained, and the wrinkles (slackness) of the reinforcing fiber laminate 10 generated in the convex portion 12 is moved 47 in the concave direction. By doing so, the bridging 35 can be eliminated and at the same time the heel 36 can be suppressed. However, when the distance between the concave portion 11 and the convex portion 12 is long, the effect is small because the force is not transmitted well, and the distance between the concave portion 11 and the convex portion 12 is preferably close.

次に、本発明の強化繊維積層体20は側面に凹凸を有する雄型5に密着され、その形状を維持するために、タック性を持つ樹脂材料を強化繊維基材表面に付与していることが好ましく、前記強化繊維積層体20の表面に樹脂材料が付与されている場合、ラバー22を介して略真空圧を付与した状態で加熱されると(加熱時の図はない)、前記樹脂材料が軟化し、前記強化繊維積層体20の層間を一体化することができる。前記樹脂材料が軟化状態にある前記強化繊維積層体20は形状安定性に欠けるため、前記強化繊維積層体20を一旦冷却して、前記樹脂材料を固化することで前記側面に凹凸を有する雄型5に略一致した形状のプリフォームを得ることが望ましい。ただし、賦形型(ここでは側面に凹凸を有する雄型)と成形型が同一の場合は冷却せずに成形しても良い。冷却後の前記プリフォーム表面はハンドリングや異物付着を防ぐために常温ではベタベタせず、形状の経時変化が少ないことが好ましく、前記樹脂材料は常温で固体(40℃以下)であることが好ましい。   Next, the reinforcing fiber laminate 20 of the present invention is closely attached to the male mold 5 having irregularities on the side surfaces, and in order to maintain the shape, a tacky resin material is applied to the surface of the reinforcing fiber base. In the case where a resin material is applied to the surface of the reinforcing fiber laminate 20, when the resin material is heated with a substantially vacuum pressure applied through the rubber 22 (there is no figure at the time of heating), the resin material Is softened, and the layers of the reinforcing fiber laminate 20 can be integrated. Since the reinforcing fiber laminate 20 in which the resin material is in a softened state lacks shape stability, the reinforcing fiber laminate 20 is once cooled to solidify the resin material, whereby a male mold having irregularities on the side surface. It is desirable to obtain a preform having a shape substantially corresponding to 5. However, when the shaping mold (here, the male mold having irregularities on the side surface) and the molding mold are the same, the molding may be performed without cooling. The preform surface after cooling is not sticky at room temperature to prevent handling and adhesion of foreign matter, and it is preferable that the shape change with time is small, and the resin material is solid (40 ° C. or lower) at room temperature.

また、前記樹脂材料は繰返し賦形できるように、繰返し軟化できる熱可塑性樹脂を主成分とすることが好ましく、例えば、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、フェノキシから少なくとも1種のであることが好ましく、その中でもポリアミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフォンがとりわけ好ましい。また、樹脂材料の形態としては繊維、フィルム、粒子状等が挙げられるが、中でも粒子状であることが好ましい。粒子状の場合は強化繊維積層体20を構成するドライ基材の表面に、スプレーやカレンダーロールで散布、塗布でき、粒径や粒子付着量を容易に制御できる。このように制御された粒径はマトリックス樹脂を注入して成形する時のマトリックス樹脂への粒子溶解量を制御でき、好適な層間物性を実現することができる。また、制御された粒子付着量はドライ基材の通気量(厚み方向のマトリックス樹脂の含浸性と相関のあるパラメータ)や強化繊維積層体の層間の隙間を適切に形成させ、厚み方向と層間方向に対するマトリックス樹脂の含浸性を好適に制御できる。   The resin material is preferably composed mainly of a thermoplastic resin that can be repeatedly softened so that it can be repeatedly shaped, for example, polyamide, polysulfone, polyethersulfone, polyetherimide, polyphenylene ether, polyimide, polyamideimide. At least one of phenoxy is preferable, and among these, polyamide, polyetherimide, polyphenylene ether, and polyether sulfone are particularly preferable. In addition, examples of the form of the resin material include fibers, films, and particulates. Among these, particulates are preferable. In the case of particles, it can be sprayed and applied to the surface of the dry base material constituting the reinforcing fiber laminate 20 with a spray or calender roll, and the particle size and the amount of adhered particles can be easily controlled. The particle diameter controlled in this way can control the amount of particles dissolved in the matrix resin when the matrix resin is injected and molded, thereby realizing suitable interlayer physical properties. In addition, the controlled particle adhesion amount is suitable for forming a gap between layers of the reinforcing fiber laminate by appropriately forming the air permeability of the dry base material (a parameter having a correlation with the impregnation property of the matrix resin in the thickness direction) and the reinforcing fiber laminate. It is possible to suitably control the impregnation property of the matrix resin.

熱可塑性樹脂は、樹脂材料からなる粒子の主成分となり、樹脂材料中の熱可塑性樹脂の配合量が70〜100重量%であることが好ましい。より好ましくは75〜97重量%であり、さらに好ましくは80〜95重量%である。配合量が70重量%未満であると、耐衝撃性に優れた繊維強化プラスチックを得難い場合がある。また、熱可塑性樹脂を主成分とした場合、樹脂材料からなる粒子の織物への接着性や接着加工性が劣る場合がある。この場合には、粒子に少量の粘着付与剤、可塑剤等を配合すると良い。   The thermoplastic resin is a main component of particles made of a resin material, and the blending amount of the thermoplastic resin in the resin material is preferably 70 to 100% by weight. More preferably, it is 75-97 weight%, More preferably, it is 80-95 weight%. If the blending amount is less than 70% by weight, it may be difficult to obtain a fiber reinforced plastic excellent in impact resistance. Moreover, when a thermoplastic resin is the main component, the adhesion of the resin material particles to the woven fabric and the bondability may be inferior. In this case, it is preferable to add a small amount of a tackifier, a plasticizer or the like to the particles.

このような樹脂材料が表面に付与された強化繊維基材(ドライ基材)を積層した強化繊維積層体20は、前記樹脂材料を利用して層間を部分的に接着されていると、ハンドリングの際に毛羽、バラケ、積層角度乱れが生じ難いため好ましい。また、前記部分的な接着形態は、強化繊維基材の略一面に渡り厚さ方向にスポットで接着(62)されていると、ドライ基材の特徴である変形能力を概ね維持してハンドリング性を付与することができるため好ましい。また、前記スポット接着62の範囲は、ストランドを4本以上跨がないようにすると、ドライ基材の変形能力を必要以上に抑制しないため好ましい。ただし、前記強化繊維積層体20が局所的に大変形を要する部分、例えば、凹部11や凸部12、には接着を適用しなくとも良い。前記スポット接着方法は前記強化繊維積層体20をオーブン、ホットプレート、IH等で加熱し、前記樹脂材料を軟化させた状態で前記強化繊維積層体20上からスポット加圧する方法や、スポット加圧するための圧子61を加熱して前記強化繊維積層体20に押し当てることで前記強化繊維積層体20の層間を一体化する方法が挙げられるが特に限定するものではないが、圧子61を使った接着方法を用いることで圧子材質、形状、ピッチ64、加熱温度、圧力、加熱・加圧保持時間などから、容易に接着強度を制御できるため好ましい。前記接着強度の制御により、強化繊維積層体20の変形能力とハンドリング性などを好適に設定することができる。   The reinforcing fiber laminate 20 obtained by laminating the reinforcing fiber base material (dry base material) provided with the resin material on the surface thereof is handled when the interlayer is partially bonded using the resin material. In this case, fluff, looseness, and stacking angle are unlikely to occur, which is preferable. In addition, when the partial adhesive form is adhered (62) with a spot in the thickness direction over substantially one surface of the reinforcing fiber base material, the deformability characteristic of the dry base material is generally maintained and the handling property is maintained. Is preferable. Moreover, the range of the said spot adhesion 62 is preferable when it does not straddle four or more strands in order not to suppress the deformation | transformation capability of a dry base material more than necessary. However, it is not necessary to apply the adhesive to the portion where the reinforcing fiber laminate 20 needs to undergo large deformation locally, for example, the concave portion 11 and the convex portion 12. In the spot bonding method, the reinforcing fiber laminate 20 is heated by an oven, a hot plate, IH, or the like, and the resin material is softened and spot pressed from above the reinforcing fiber laminate 20, or for spot pressurization. Although the method of integrating the layers of the reinforcing fiber laminate 20 by heating and pressing the indenter 61 against the reinforcing fiber laminate 20 is not particularly limited, an adhesion method using the indenter 61 is included. Is preferable because the adhesive strength can be easily controlled from the indenter material, shape, pitch 64, heating temperature, pressure, heating / pressurization holding time, and the like. By controlling the adhesive strength, the deformability and handling property of the reinforcing fiber laminate 20 can be suitably set.

中でも、熱伝導率を考慮すると、圧子61の材質は金属材料であることが好ましい。また、圧子61の形状は、面圧付与時に強化繊維を損傷しないように、円形や楕円形などの曲線で形成されていることや、面取りやRが施された尖頭部を有する形状で形成されていることが好ましい。前記円形の圧子61における直径65は、前記接着62の好ましい範囲であるストランドを4本以上跨がないことを考慮して設定することができる。例えば、ストランド幅が2mmとすると、2mm/本×4本=8mmより小さい直径(楕円径の場合は長径)が3mmとなるように面圧を付与できる範囲で設定することができる。次に、好ましい加熱温度は、前記樹脂材料のTg(ガラス転移温度)に依存し、ドライ基材の変形を必要以上に抑制しないTg±30℃以内、さらに好ましくはTg±20℃以内である。また、好ましい圧力範囲は、前記スポット接着部周囲の繊維うねり63を助長しない0.01MPaを越え0.4MPa以下である。さらに好ましくは0.05MPaを越え0.2MPa以下である。前記接着部周囲の繊維うねり63の助長が有意かどうかについては成形後の成形品の断面観察(繊維うねりの高さ、幅、曲率半径などの測定)や圧縮強度試験(SACMA SRM 1R−94に基づく)などで確認することができる。また、好ましい加熱・加圧保持時間は、強化繊維積層体20が所望の温度±5℃以内に達するまでの時間を考慮して設定され0.5分以上10分以下である。前記加熱・保持時間範囲の測定は、強化繊維積層体20の厚さ方向、前記圧子61で面圧付与相当箇所の中層および表層近傍に熱電対を配設して測定することができる。   In particular, considering the thermal conductivity, the material of the indenter 61 is preferably a metal material. Further, the shape of the indenter 61 is formed with a curve such as a circle or an ellipse, or a shape having a chamfered or rounded head so that the reinforcing fiber is not damaged when surface pressure is applied. It is preferable that The diameter 65 of the circular indenter 61 can be set in consideration of not straddling four or more strands, which is a preferable range of the adhesive 62. For example, if the strand width is 2 mm, the surface pressure can be set within a range where the surface pressure can be applied so that the diameter (long diameter in the case of an elliptical diameter) smaller than 2 mm / 4 × 4 = 8 mm is 3 mm. Next, a preferable heating temperature depends on Tg (glass transition temperature) of the resin material, and is within Tg ± 30 ° C., more preferably within Tg ± 20 ° C., which does not unnecessarily suppress deformation of the dry base material. Moreover, a preferable pressure range is more than 0.01 MPa and 0.4 MPa or less which does not promote the fiber undulation 63 around the spot bonded portion. More preferably, it exceeds 0.05 MPa and is 0.2 MPa or less. Whether the fiber undulation 63 around the bonded portion is significantly promoted is determined by cross-sectional observation (measurement of fiber undulation height, width, radius of curvature, etc.) and compression strength test (SACMA SRM 1R-94). Etc.). A preferable heating / pressurizing holding time is set in consideration of the time required for the reinforcing fiber laminate 20 to reach a desired temperature within ± 5 ° C., and is not less than 0.5 minutes and not more than 10 minutes. The heating / holding time range can be measured by arranging thermocouples in the thickness direction of the reinforcing fiber laminate 20 and in the vicinity of the middle layer and the surface layer corresponding to the application of surface pressure with the indenter 61.

本発明で得られた側面に凹凸を有するプリフォーム6に、液状の樹脂を注入・含浸した後に、該樹脂を硬化(液状の樹脂として熱可塑性樹脂を用いる場合は、冷却固化を意味する)せしめて得られる側面に凹凸を有する成形品(繊維強化プラスチック)はブリッジング35が発生しないため型隙46が無く、樹脂リッチが極めて小さい。そのため、熱や荷重による繰返し応力がかかった場合に破壊の起点となるき裂が発生し難く、疲労強度を高く見積もることができる。また、皺36(繊維蛇行)が小さいため、圧縮応力がかかった場合に強化繊維の座屈変形を生じ難く、圧縮強度の発現率が高い。その結果、表面品位は元より、設計強度を高く設定可能となり、複合材料の利点である高比強度、高比剛性を十分に発揮することができる。なお、液状の樹脂としては、熱硬化性樹脂が好ましく用いられる。かかる熱硬化性樹脂としては、例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド、ビスマレイミドおよびシアネートエステル等が例示され、これらの共重合体、変性体およびこれらの少なくとも2種をブレンドした樹脂も使用することができる。   After injecting and impregnating a liquid resin into the preform 6 having unevenness on the side obtained in the present invention, the resin is cured (in the case of using a thermoplastic resin as the liquid resin, it means cooling and solidification). The molded product (fiber reinforced plastic) having unevenness on the side surface obtained in this manner does not generate bridging 35, so there is no mold gap 46 and the resin richness is extremely small. For this reason, when a repeated stress due to heat or load is applied, a crack that becomes a starting point of fracture hardly occurs, and the fatigue strength can be estimated high. Further, since the ridge 36 (fiber meandering) is small, it is difficult for buckling deformation of the reinforcing fiber when compressive stress is applied, and the expression rate of compressive strength is high. As a result, not only the surface quality but also the design strength can be set high, and the high specific strength and high specific rigidity, which are advantages of the composite material, can be sufficiently exhibited. As the liquid resin, a thermosetting resin is preferably used. Examples of such thermosetting resins include unsaturated polyesters, vinyl esters, epoxies, phenols (resol type), urea melamines, polyimides, bismaleimides and cyanate esters, and their copolymers, modified products and A resin obtained by blending at least two of these can also be used.

このような前記側面に凹凸を有する成形品は、機械的特性を要求される、例えば航空機主翼や尾翼を構成する構造部材(桁材)であるスパーやその他輸送機器の構造部材、建築用構造部材などに好適に用いることができる。ただし、本発明は側面に凹凸を有する桁材に広く適用できる技術であり、前述例の適用範囲に限定されるものではない。   Such a molded product having irregularities on the side surface is required to have mechanical characteristics, for example, a structural member (girder) constituting a main wing or tail wing of an aircraft, a structural member for other transportation equipment, or a structural member for construction It can use suitably for. However, the present invention is a technique that can be widely applied to girders having irregularities on the side surfaces, and is not limited to the scope of application of the above-described example.

(実施例1)
本発明のプリフォーム製造工程の一部を示した図4〜9を用いて説明する。使用した装置構成は図4のようにラバー22に取り付けられた金属枠21(Al製アングル材)を、蝶番23を介して接続したツール24(SUS、板厚10mm)からなり、前記ツール24には側面に凹凸を有する雄型5(SUS製、約長さ4m、幅400mm、高さ100mm、板厚5mm、内部に温調用の配管が配設されている)、ラバーシール25(Φ30mmのシリコンラバー丸紐をシリコン系接着剤で接着一体化)、バキュームポート26(ツールにタップ加工を施したネジ穴に前記ツール22の裏面から真鍮製カプラジョイントを取付け)が設けられている。
Example 1
This will be described with reference to FIGS. 4 to 9 showing a part of the preform manufacturing process of the present invention. As shown in FIG. 4, the apparatus used consists of a tool 24 (SUS, plate thickness 10 mm) in which a metal frame 21 (Al angle material) attached to a rubber 22 is connected via a hinge 23 as shown in FIG. Is a male mold 5 (made of SUS, approximately 4 m in length, 400 mm in width, 100 mm in height, 5 mm in thickness, with a pipe for temperature control inside), rubber seal 25 (silicon with a diameter of 30 mm) A rubber round string is bonded and integrated with a silicon-based adhesive), and a vacuum port 26 (a brass coupler joint is attached to the screw hole in which the tool is tapped from the back surface of the tool 22).

まず、図5のように、側面に凹凸を有する雄型5上に、強化繊維積層体20を配置し、バキュームポート26に真空ライン27を取り付けた。前記強化繊維積層体20は炭素繊維(東レ製:T800S−24K)からなる強化繊維を製織して得られた一方向織物基材で、表面には熱可塑性樹脂を主成分とする粒子状の樹脂材料が塗布されている。塗布されている粒子状の前記樹脂材料はTg=67℃、粒径は200μm以下で、強化繊維積層体20を加熱、加圧すれば層間を一体化し形態を保持することができる。前記強化繊維積層体20は、図13の強化繊維積層体20層間を接着した一態様で示すように、70℃に加熱された金属製の圧子61(直径65:Φ3mm、ピッチ64:15mm)を配列した圧着用治具60を使って、強化繊維積層体20に一圧子当たり100kPa相当の荷重をかけて押圧して、5分間保持した後に前記圧子治具60を除去した強化繊維積層体20である。   First, as shown in FIG. 5, the reinforcing fiber laminate 20 was disposed on the male mold 5 having irregularities on the side surfaces, and the vacuum line 27 was attached to the vacuum port 26. The reinforcing fiber laminate 20 is a unidirectional woven fabric substrate obtained by weaving reinforcing fibers made of carbon fibers (Toray: T800S-24K), and has a particulate resin whose main component is a thermoplastic resin on the surface. Material is applied. The particulate resin material applied has Tg = 67 ° C. and a particle size of 200 μm or less. If the reinforcing fiber laminate 20 is heated and pressurized, the layers can be integrated and the form can be maintained. The reinforcing fiber laminate 20 has a metal indenter 61 (diameter 65: Φ 3 mm, pitch 64: 15 mm) heated to 70 ° C., as shown in an embodiment in which the layers of the reinforcing fiber laminate 20 are bonded in FIG. 13. Using the arranged crimping jigs 60, the reinforcing fiber laminate 20 is pressed by applying a load equivalent to 100 kPa per indenter, held for 5 minutes, and then the indenter jig 60 is removed. is there.

次に、図6にように前記金属枠21を有するラバー22をツール24上に被せて、前記ツール24上に取り付けられたラバーシール25と前記ラバー22を密着させて、ツール24、ラバー22、ラバーシール25で密閉空間28を形成する。   Next, as shown in FIG. 6, the rubber 22 having the metal frame 21 is placed on the tool 24, and the rubber seal 25 attached on the tool 24 and the rubber 22 are brought into close contact with each other, so that the tool 24, the rubber 22, A sealed space 28 is formed by the rubber seal 25.

形成された密閉空間28を真空吸引するために、真空ライン27のバルブを開けた。真空ライン27が開くと、図9の真空吸引Aに記載のように前記強化繊維積層体22の型部9の一部に前記ラバー22の押し圧がかかった後に、図9に記載のように前記側面に凹凸部を有する雄型5の凹部11に沿って外力42を加えた。凹部11に加えた外力は、凹部の密着高さ31が凹部近傍50の密着高さ31を越えないように加えた。   In order to vacuum-suck the formed sealed space 28, the valve of the vacuum line 27 was opened. When the vacuum line 27 is opened, as shown in FIG. 9, after the pressure of the rubber 22 is applied to a part of the mold part 9 of the reinforcing fiber laminate 22, as shown in the vacuum suction A of FIG. An external force 42 was applied along the concave portion 11 of the male mold 5 having an uneven portion on the side surface. The external force applied to the recess 11 was applied so that the contact height 31 of the recess did not exceed the contact height 31 of the vicinity 50 of the recess.

外力42を加える方法は図11の本発明のようにハンドローラー52を使用した。その結果、図11の本発明44のように凹部11、凸部12ともにブリッジング35や皺36は発生しなかった。そこで、前記雄型の配管に取り付けられたカプラに耐圧ホースを介して金型温調器(KAWATA製 TWK−600MD)を接続し、前記ラバー22の上から断熱材(グラスウール、約100mm)で覆って、前記金型温調器の温度を前記樹脂材料のTg以上である80℃に設定し、前記強化繊維積層体20を80±5℃で3時間保持した。   The method of applying the external force 42 used the hand roller 52 as in the present invention in FIG. As a result, bridging 35 and wrinkles 36 did not occur in the concave portion 11 and the convex portion 12 as in the present invention 44 of FIG. Therefore, a mold temperature controller (TWK-600MD manufactured by KAWATA) is connected to the coupler attached to the male pipe through a pressure hose, and the rubber 22 is covered with a heat insulating material (glass wool, about 100 mm). Then, the temperature of the mold temperature controller was set to 80 ° C. which is equal to or higher than the Tg of the resin material, and the reinforcing fiber laminate 20 was held at 80 ± 5 ° C. for 3 hours.

その後、金型温調器を20℃に設定して、プリフォームを冷却して、前記樹脂材料を固化させた後に、前記真空ラインを閉止して密閉空間28を大気開放してプリフォームを得た。得られた側面に凹凸を有するプリフォーム6の凹部11、凸部12にはブリッジング35や皺36は観察できなかった。   Thereafter, the mold temperature controller is set to 20 ° C., the preform is cooled, the resin material is solidified, the vacuum line is closed, and the sealed space 28 is opened to the atmosphere to obtain a preform. It was. Bridging 35 and ridges 36 could not be observed in the concave portion 11 and the convex portion 12 of the preform 6 having irregularities on the obtained side surface.

次に、得られたプリフォームをVaRTM成形するために成形用の雌型内に、ピールプライ(樹脂剥離層)、メディア(樹脂拡散媒体)、プレッシャープレート、樹脂注入、吸引口を設けて前記樹脂注入、吸引口にナイロンチューブを接続した。樹脂注入口側のナイロンチューブの端部は密閉し、樹脂吸引口側のナイロンチューブには樹脂トラップを介して真空ライン27に接続した。その後、バギングフィルム(リッチモンド製、HS−800)で雌型全体を覆って、前記雌型の周囲とバギングフィルムをシーラントテープ(リッチモンド製、タッキーテープ)で密閉し、前記真空ライン27のバルブ開いて真空吸引し、前記プリフォームを前記雌型に密着させた。   Next, in order to form the obtained preform into VaRTM, a peel ply (resin release layer), a medium (resin diffusion medium), a pressure plate, a resin injection, and a suction port are provided in the molding female mold to inject the resin. A nylon tube was connected to the suction port. The end of the nylon tube on the resin injection port side was sealed, and the nylon tube on the resin suction port side was connected to the vacuum line 27 via a resin trap. Thereafter, the entire female mold is covered with a bagging film (Richmond, HS-800), the periphery of the female mold and the bagging film are sealed with sealant tape (Richmond, Tacky tape), and the valve of the vacuum line 27 is opened. Vacuum was applied to bring the preform into close contact with the female mold.

その後、前記雌型全体を180℃まで加熱可能な乾燥炉内に配置し、炉温を80℃に設定し、前記雌型全体が約80℃以上になった時点で、前記樹脂注入口に接続されたナイロンチューブをバイスグリップでクランプした後に、前記ナイロンチューブの端部を開封し、2液型のエポキシ樹脂を満たしたカップ(ディスポカップ、5L)に挿入した。   Thereafter, the entire female mold is placed in a drying furnace capable of heating up to 180 ° C., the furnace temperature is set to 80 ° C., and when the entire female mold reaches about 80 ° C. or higher, it is connected to the resin injection port. After clamping the nylon tube with a vise grip, the end of the nylon tube was opened and inserted into a cup (dispo cup, 5 L) filled with a two-pack type epoxy resin.

挿入したナイロンチューブに空気が混入しないように、クランプ部を徐々に開いてクランプ部のところまで前記エポキシ樹脂を充填した。そして、2分経過後に前記クランプを開いてプリフォームに樹脂を注入した。樹脂の注入停止は注入された樹脂が樹脂吸引口に到達したのを目視確認して判断し、樹脂注入口に接続されているナイロンチューブをバイスグリップでクランプして行った。その後、速やかに樹脂吸引口側のナイロンチューブをバイスグリップでクランプし、乾燥炉を130℃に昇温し、3時間保持してエポキシ樹脂を硬化させた後に、常温(約30℃)まで約3時間かけて冷却した。前記雌型から脱型して得られた成形品表面、特に、凹部11にはブリッジング35が生じていた場合に見られる樹脂リッチ、また、凸部12には皺36(繊維の蛇行)は観察されなかった。   The clamp part was gradually opened so that the air was not mixed into the inserted nylon tube, and the epoxy resin was filled up to the clamp part. Then, after 2 minutes, the clamp was opened and resin was injected into the preform. The injection stop of the resin was judged by visually confirming that the injected resin reached the resin suction port, and the nylon tube connected to the resin injection port was clamped with a vise grip. Thereafter, the nylon tube on the resin suction port side is quickly clamped with a vise grip, and the drying furnace is heated to 130 ° C. and held for 3 hours to cure the epoxy resin, and then about 3 to room temperature (about 30 ° C.). Cooled over time. The surface of the molded product obtained by demolding from the female mold, in particular, the resin rich seen when the bridging 35 is formed in the concave portion 11, and the ridge 36 (fiber meander) is present in the convex portion 12. Not observed.

(比較例1)
本発明のプリフォーム製造工程の一部を示した図4〜9を用いて説明する。使用した装置構成は図4のようにラバー22に取り付けられた金属枠21(Al製アングル材)を、蝶番23を介して接続したツール24(SUS、板厚10mm)からなり、前記ツール24には側面に凹凸を有する雄型5(SUS製、約長さ4m、幅400mm、高さ100mm、板厚5mm、内部に温調用の配管が配設されている)、ラバーシール25(Φ30mmのシリコンラバー丸紐をシリコン系接着剤で接着一体化)、バキュームポート26(ツールにタップ加工を施したネジ穴に前記ツール22の裏面から真鍮製カプラジョイントを取付け)が設けられている。
(Comparative Example 1)
This will be described with reference to FIGS. 4 to 9 showing a part of the preform manufacturing process of the present invention. As shown in FIG. 4, the apparatus used consists of a tool 24 (SUS, plate thickness 10 mm) in which a metal frame 21 (Al angle material) attached to a rubber 22 is connected via a hinge 23 as shown in FIG. Is a male mold 5 (made of SUS, approximately 4 m in length, 400 mm in width, 100 mm in height, 5 mm in thickness, with a pipe for temperature control inside), rubber seal 25 (silicon with a diameter of 30 mm) A rubber round string is bonded and integrated with a silicon-based adhesive), and a vacuum port 26 (a brass coupler joint is attached to the screw hole in which the tool is tapped from the back surface of the tool 22).

まず、図5のように、側面に凹凸を有する雄型5上に、強化繊維積層体20を配置し、バキュームポート26に真空ライン27を取り付けた。前記強化繊維積層体20は炭素繊維(東レ製:T800S−24K)からなる強化繊維を製織して得られた一方向織物基材で、表面には熱可塑性樹脂を主成分とする粒子状の樹脂材料が塗布されている。塗布されている粒子状の前記樹脂材料はTg=67℃、粒径は200μm以下で、強化繊維積層体20を加熱、加圧すれば層間を一体化し形態を保持することができる。前記強化繊維積層体20は、図13の強化繊維積層体20層間を接着した一態様で示すように、70℃に加熱された金属製の圧子61(直径65:Φ3mm、ピッチ64:15mm)を配列した圧着用治具60を使って、強化繊維積層体20に一圧子当たり100kPa相当の荷重をかけて押圧して、5分間保持した後に前記圧子治具60を除去した強化繊維積層体20である。   First, as shown in FIG. 5, the reinforcing fiber laminate 20 was disposed on the male mold 5 having irregularities on the side surfaces, and the vacuum line 27 was attached to the vacuum port 26. The reinforcing fiber laminate 20 is a unidirectional woven fabric substrate obtained by weaving reinforcing fibers made of carbon fibers (Toray: T800S-24K), and has a particulate resin whose main component is a thermoplastic resin on the surface. Material is applied. The particulate resin material applied has Tg = 67 ° C. and a particle size of 200 μm or less. If the reinforcing fiber laminate 20 is heated and pressurized, the layers can be integrated and the form can be maintained. The reinforcing fiber laminate 20 has a metal indenter 61 (diameter 65: Φ 3 mm, pitch 64: 15 mm) heated to 70 ° C., as shown in an embodiment in which the layers of the reinforcing fiber laminate 20 are bonded in FIG. 13. Using the arranged crimping jigs 60, the reinforcing fiber laminate 20 is pressed by applying a load equivalent to 100 kPa per indenter, held for 5 minutes, and then the indenter jig 60 is removed. is there.

次に、図6にように前記金属枠21を有するラバー22をツール24上に被せて、前記ツール24上に取り付けられたラバーシール25と前記ラバー22を密着させて、ツール24、ラバー22、ラバーシール25で密閉空間28を形成する。   Next, as shown in FIG. 6, the rubber 22 having the metal frame 21 is placed on the tool 24, and the rubber seal 25 attached on the tool 24 and the rubber 22 are brought into close contact with each other, so that the tool 24, the rubber 22, A sealed space 28 is formed by the rubber seal 25.

形成された密閉空間28を真空吸引するために、真空ライン27のバルブを開けた。真空ライン27が開くと、図6の右図のように前記強化繊維積層体20の上面8、型部9、側面の一部に前記ラバー22を介して圧がかかり、図8のように凹部断面37の密閉高さ28が凹部近傍断面38より高い状態で、賦形が完了した。その結果、図11の従来法43のように凹部11にブリッジング35、凸部12に皺36が発生した。   In order to vacuum-suck the formed sealed space 28, the valve of the vacuum line 27 was opened. When the vacuum line 27 is opened, pressure is applied to the upper surface 8, the mold part 9, and a part of the side surface of the reinforcing fiber laminate 20 via the rubber 22 as shown in the right figure of FIG. The shaping was completed in a state where the sealing height 28 of the cross section 37 was higher than the cross section 38 near the recess. As a result, bridging 35 was generated in the concave portion 11 and wrinkles 36 were generated in the convex portion 12 as in the conventional method 43 of FIG.

皺の発生した強化繊維積層体を加熱するために、前記雄型の配管に取り付けられたカプラに耐圧ホースを介して金型温調器(KAWATA製 TWK−600MD)を接続し、前記ラバー22の上から断熱材(グラスウール、約100mm)で覆って、前記金型温調器の温度を前記樹脂材料のTg以上である80℃に設定し、前記強化繊維積層体20を80±5℃で3時間保持した。   In order to heat the reinforcing fiber laminate in which wrinkles are generated, a mold temperature controller (TWK-600MD manufactured by KAWATA) is connected to the coupler attached to the male pipe via a pressure hose, and the rubber 22 It is covered with a heat insulating material (glass wool, about 100 mm) from above, the temperature of the mold temperature controller is set to 80 ° C. which is equal to or higher than the Tg of the resin material, and the reinforcing fiber laminate 20 is 3 at 80 ± 5 ° C. Held for hours.

その後、金型温調器を20℃に設定して、プリフォームを冷却して、前記樹脂材料を固化させた後に、前記真空ラインを閉止して密閉空間28を大気開放してプリフォームを得た。得られた側面に凹凸を有するプリフォーム6の凹部11、凸部12にはブリッジング35や皺36が観察された。   Thereafter, the mold temperature controller is set to 20 ° C., the preform is cooled, the resin material is solidified, the vacuum line is closed, and the sealed space 28 is opened to the atmosphere to obtain a preform. It was. Bridging 35 and wrinkles 36 were observed on the concave portions 11 and the convex portions 12 of the preform 6 having irregularities on the obtained side surfaces.

次に、得られたプリフォームにVaRTM成形をするために成形用の雌型内に、ピールプライ(樹脂剥離層)、メディア(樹脂拡散媒体)、プレッシャープレート、樹脂注入、吸引口を設けて前記樹脂注入、吸引口にナイロンチューブを接続した。樹脂注入口側のナイロンチューブの端部は密閉し、樹脂吸引口側のナイロンチューブには樹脂トラップを介して真空ライン27に接続した。その後、バギングフィルム(リッチモンド製、HS−800)で雌型全体を覆って、前記雌型の周囲とバギングフィルムをシーラントテープ(リッチモンド製、タッキーテープ)で密閉し、前記真空ライン27のバルブ開いて真空吸引し、前記プリフォームを前記雌型に密着させた。   Next, a peel ply (resin release layer), a medium (resin diffusion medium), a pressure plate, a resin injection, and a suction port are provided in a molding die for VaRTM molding of the obtained preform. A nylon tube was connected to the injection and suction ports. The end of the nylon tube on the resin injection port side was sealed, and the nylon tube on the resin suction port side was connected to the vacuum line 27 via a resin trap. Thereafter, the entire female mold is covered with a bagging film (Richmond, HS-800), the periphery of the female mold and the bagging film are sealed with sealant tape (Richmond, Tacky tape), and the valve of the vacuum line 27 is opened. Vacuum was applied to bring the preform into close contact with the female mold.

その後、前記雌型全体を180℃まで加熱可能な乾燥炉内に配置し、炉温を80℃に設定し、前記雌型全体が約80℃以上になった時点で、前記樹脂注入口に接続されたナイロンチューブをバイスグリップでクランプした後に、前記ナイロンチューブの端部を開封し、2液型のエポキシ樹脂を満たしたカップ(ディスポカップ、5L)に挿入した。   Thereafter, the entire female mold is placed in a drying furnace capable of heating up to 180 ° C., the furnace temperature is set to 80 ° C., and when the entire female mold reaches about 80 ° C. or higher, it is connected to the resin injection port. After clamping the nylon tube with a vise grip, the end of the nylon tube was opened and inserted into a cup (dispo cup, 5 L) filled with a two-pack type epoxy resin.

挿入したナイロンチューブに空気が混入しないように、クランプ部を徐々に開いてクランプ部のところまで前記エポキシ樹脂を充填した。そして、2分経過後に前記クランプを開いてプリフォームに樹脂を注入した。樹脂の注入停止は注入された樹脂が樹脂吸引口に到達したのを目視確認して判断し、樹脂注入口に接続されているナイロンチューブをバイスグリップでクランプして行った。その後、速やかに樹脂吸引口側のナイロンチューブをバイスグリップでクランプし、乾燥炉を130℃に昇温し、3時間保持してエポキシ樹脂を硬化させた後に、常温(約30℃)まで約3時間かけて冷却した。前記雌型から脱型して得られた成形品表面、特に、凹部11にはブリッジング35の痕跡があり樹脂リッチがあった。また、凸部12の板厚が厚かった。そのため、板厚が厚い部分の断面を切断し、観察したところ、層に大きな蛇行が観察された。   The clamp part was gradually opened so that the air was not mixed into the inserted nylon tube, and the epoxy resin was filled up to the clamp part. Then, after 2 minutes, the clamp was opened and resin was injected into the preform. The injection stop of the resin was judged by visually confirming that the injected resin reached the resin suction port, and the nylon tube connected to the resin injection port was clamped with a vise grip. Thereafter, the nylon tube on the resin suction port side is quickly clamped with a vise grip, and the drying furnace is heated to 130 ° C. and held for 3 hours to cure the epoxy resin, and then about 3 to room temperature (about 30 ° C.). Cooled over time. The surface of the molded product obtained by demolding from the female mold, in particular, the recess 11 had traces of bridging 35 and was resin-rich. Moreover, the plate | board thickness of the convex part 12 was thick. Therefore, when the cross section of the thick part was cut and observed, a large meandering was observed in the layer.

この図は、本発明のプリフォームの形状を模式的に例示するものである。This figure schematically illustrates the shape of the preform of the present invention. この図は、本発明の型の構成を模式的に例示するものである。This figure schematically illustrates the configuration of the mold of the present invention. この図は、本発明の型の展開図と強化繊維積層体の平面図を模式的に例示するものである。This figure schematically illustrates a development view of the mold of the present invention and a plan view of the reinforcing fiber laminate. この図は、本発明のプリフォーム製造方法の製造装置を模式的に例示するものである。This figure schematically illustrates the manufacturing apparatus of the preform manufacturing method of the present invention. この図は、本発明のプリフォーム製造工程の一部を模式的に例示するものである。This figure schematically illustrates a part of the preform manufacturing process of the present invention. この図は、本発明のプリフォーム製造工程の一部を模式的に例示するものである。This figure schematically illustrates a part of the preform manufacturing process of the present invention. この図は、本発明のプリフォーム製造工程の一部を模式的に例示するものである。This figure schematically illustrates a part of the preform manufacturing process of the present invention. この図は、比較例のプリフォーム製造工程断面図の一部を模式的に例示するものである。This figure schematically illustrates a part of a preform manufacturing process sectional view of a comparative example. この図は、本発明のプリフォーム製造工程断面図の一部を模式的に例示するものである。This figure schematically illustrates a part of the preform manufacturing process sectional view of the present invention. この図は、本発明と比較例を対比したプリフォーム製造工程断面図の一部を模式的に例示するものである。This figure schematically illustrates a part of a sectional view of a preform manufacturing process comparing the present invention with a comparative example. この図は、本発明と比較例を対比したプリフォーム製造工程断面図の一部を模式的に例示するものである。This figure schematically illustrates a part of a sectional view of a preform manufacturing process comparing the present invention with a comparative example. この図は、比較例のプリフォーム製造工程断面図の一部を模式的に例示するものである。This figure schematically illustrates a part of a preform manufacturing process sectional view of a comparative example. この図は、本発明の強化繊維積層体の製造方法、および一態様を模式的に例示するものであるThis figure schematically illustrates a method for producing a reinforced fiber laminate according to the present invention and one embodiment.

符号の説明Explanation of symbols

1 C型断面
2 L型断面
3 ハット型断面
4 Z型断面
5 側面に凹凸を有する雄型
6 側面に凹凸を有するプリフォーム
7 A断面
8 上面
9 肩部
10 側面
11 凹部
12 凸部
13 展開部分
14 雄型展開図
15 雄型の凹部
16 雄型の凸部
17 重なり
18 隙間
19 強化繊維積層体の平面図
20 強化繊維積層体
21 金属枠
22 ラバー
23 蝶番
24 ツール
25 ラバーシール
26 バキュームポート
27 真空ライン
28 密閉空間
29 B−B’断面
30 側面下方
31 密閉高さ
32 製品ライン
33 C断面
34 D断面
35 ブリッジング
36 皺(弛み)
37 凹部断面
38 凹部近傍断面
39 凸部断面
40 凹部断面図
41 凹部近傍断面図A
42 外力
43 従来法
44 本発明
45 雄型
46 型隙
47 皺が凹部方向に移動
48 最大凹部
49 ラバー押付力
50 凹部近傍
51 最大凹部
52 ハンドローラー
60 圧子治具
61 圧子
62 スポット接着
63 接着部周囲の繊維うねり
64 ピッチ
65 直径
DESCRIPTION OF SYMBOLS 1 C type cross section 2 L type cross section 3 Hat type cross section 4 Z type cross section 5 Male mold 6 which has unevenness on the side surface 7 Preform having unevenness on the side surface A Across section 8 14 Male mold development 15 Male concave part 16 Male convex part 17 Overlap 18 Clearance 19 Plan view of reinforcing fiber laminate 20 Reinforcing fiber laminate 21 Metal frame 22 Rubber 23 Hinge 24 Tool 25 Rubber seal 26 Vacuum port 27 Vacuum Line 28 Sealed space 29 BB 'cross section 30 Side downward 31 Sealed height 32 Product line 33 C cross section 34 D cross section 35 Bridging 36 皺 (slack)
37 Concave section 38 Concave section 39 Convex section 40 Concave section 41 Concave section A
42 External force 43 Conventional method 44 The present invention 45 Male mold 46 Mold gap 47 The heel moves toward the concave portion 48 Maximum concave portion 49 Rubber pressing force 50 Near the concave portion 51 Maximum concave portion 52 Hand roller 60 Indenter jig 61 Indenter 62 Spot adhesion 63 Around the adhesion portion Fiber swell 64 pitch 65 diameter

Claims (6)

少なくとも側面に凹凸を有する雄型に強化繊維積層体を密着させることにより得られるプリフォームの製造方法であって、前記雄型の上に強化繊維積層体を配置する工程と、前記強化繊維積層体の上からラバーを配置する工程と、前記ラバーで密閉された空間を減圧する工程を少なくとも含み、前記減圧する工程において、前記ラバーを介して前記強化繊維積層体に上面から側面に順次押し圧を加える際に、前記側面の凹部に沿ってラバーの外から外力を加えることにより、前記凹部を前記強化繊維積層体の肩部から側面にかけて順次押し圧を加え、しかる後に、前記ラバーにより前記強化繊維積層体の上面から側面に順次押し圧を加えることを特徴とするプリフォームの製造方法。 A method of manufacturing a preform obtained by closely attaching a reinforcing fiber laminate to a male mold having irregularities on at least side surfaces, the step of arranging the reinforcing fiber laminate on the male mold, and the reinforcing fiber laminate A step of disposing rubber from above and a step of decompressing the space sealed with the rubber, and in the step of depressurizing, the reinforcing fiber laminate is sequentially pressed from the upper surface to the side surface through the rubber. When applying, an external force is applied from the outside of the rubber along the concave portion of the side surface, so that the concave portion is sequentially pressed from the shoulder portion to the side surface of the reinforcing fiber laminate, and then the reinforcing fiber is applied by the rubber. A method for producing a preform, wherein a pressing force is sequentially applied from the upper surface to the side surface of the laminate. 前記側面の凹部に押し圧を加える際に、該凹部に対向する側面にも押し圧を加える、請求項1に記載のプリフォーム製造方法。 The preform manufacturing method according to claim 1, wherein when a pressing pressure is applied to the concave portion on the side surface, the pressing pressure is also applied to the side surface facing the concave portion. 前記強化繊維積層体はドライ基材で構成されている、請求項1または2に記載のプリフォームの製造方法。 The method for producing a preform according to claim 1 or 2, wherein the reinforcing fiber laminate is composed of a dry base material. 前記ドライ基材の少なくとも片側表面には樹脂材料が付与されており、前記強化繊維積層体を加熱して前記樹脂材料を軟化させることにより、前記ドライ基材の層間を一体化させる、請求項3に記載のプリフォームの製造方法。 The resin material is provided to at least one side surface of the dry base material, and the layers of the dry base material are integrated by heating the reinforcing fiber laminate to soften the resin material. A process for producing the preform as described in 1. 前記強化繊維積層体を加熱した後に、冷却して前記樹脂材料を固化させる、請求項4に記載のプリフォームの製造方法。 The preform manufacturing method according to claim 4, wherein after heating the reinforcing fiber laminate, the resin material is solidified by cooling. 請求項1〜5のいずれかに記載のプリフォームに、液状の樹脂を注入・含浸した後に、該樹脂を硬化する工程を有する、繊維強化プラスチックの製造方法。 A method for producing a fiber-reinforced plastic, comprising a step of curing the resin after injecting and impregnating the liquid resin into the preform according to claim 1.
JP2008293084A 2008-11-17 2008-11-17 Method of manufacturing preform and fiber reinforced plastic Pending JP2010120167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293084A JP2010120167A (en) 2008-11-17 2008-11-17 Method of manufacturing preform and fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293084A JP2010120167A (en) 2008-11-17 2008-11-17 Method of manufacturing preform and fiber reinforced plastic

Publications (1)

Publication Number Publication Date
JP2010120167A true JP2010120167A (en) 2010-06-03

Family

ID=42321943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293084A Pending JP2010120167A (en) 2008-11-17 2008-11-17 Method of manufacturing preform and fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP2010120167A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178141A1 (en) * 2014-05-21 2015-11-26 株式会社イノアックコーポレーション Carbon fiber composite material
JP2017030329A (en) * 2015-08-06 2017-02-09 三菱重工業株式会社 Fiber-reinforced plastic production device, movable stand, method for producing size enlargement fiber base material and method for producing fiber-reinforced plastic
WO2018047869A1 (en) * 2016-09-07 2018-03-15 三菱重工業株式会社 Method for molding composite material and jig for molding composite material
CN109131190A (en) * 2014-06-16 2019-01-04 沙特基础工业全球技术有限公司 Prepare method, energy absorption device, energy absorption device composition and the forming tool of laminate
KR20190014462A (en) * 2017-08-02 2019-02-12 더 보잉 컴파니 Controlling application of forces to different portions of object surface using flexible wall
KR20190014466A (en) * 2017-08-02 2019-02-12 더 보잉 컴파니 Controlling Application of Forces to Different Portions of Object Surface Using Flexible Wall
JP2019526474A (en) * 2016-09-07 2019-09-19 エアバス オペレーションズ リミティド Vacuum forming of laminated charge
US10744701B2 (en) 2016-01-22 2020-08-18 Mitsubishi Heavy Industries, Ltd. Method for molding composite material, jig for molding composite material, and composite material
US11008050B2 (en) 2016-12-30 2021-05-18 Sabic Global Technologies B.V. Hybrid structures and methods of making the same
WO2021140561A1 (en) 2020-01-07 2021-07-15 三菱重工業株式会社 Shaping method and shaping device
CN113211820A (en) * 2021-04-07 2021-08-06 航天材料及工艺研究所 Low-friction, high-resistance-reduction, light-weight and high-strength rudder sledge device and forming method
WO2021157106A1 (en) * 2020-02-07 2021-08-12 三菱重工業株式会社 Composite material structure body production method, layered body production method, layered body, and layered form
CN114734655A (en) * 2021-01-07 2022-07-12 上海飞机制造有限公司 Manufacturing method for manufacturing C-shaped part by using composite material

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178141A1 (en) * 2014-05-21 2015-11-26 株式会社イノアックコーポレーション Carbon fiber composite material
EP3513958A3 (en) * 2014-06-16 2019-10-23 SABIC Global Technologies B.V. Method of making a laminate and a forming tool
CN109131190A (en) * 2014-06-16 2019-01-04 沙特基础工业全球技术有限公司 Prepare method, energy absorption device, energy absorption device composition and the forming tool of laminate
US11603142B2 (en) 2014-06-16 2023-03-14 Sabic Global Technologies B.V. Structural body of a vehicle having an energy absorbing device and a method of forming the energy absorbing device
CN109131190B (en) * 2014-06-16 2022-08-12 沙特基础工业全球技术有限公司 Method for producing a laminate, energy absorber composition and forming tool
JP2017030329A (en) * 2015-08-06 2017-02-09 三菱重工業株式会社 Fiber-reinforced plastic production device, movable stand, method for producing size enlargement fiber base material and method for producing fiber-reinforced plastic
WO2017022667A1 (en) * 2015-08-06 2017-02-09 三菱重工業株式会社 Fiber-reinforced-plastic producing device, movable stage, shaped fiber base material producing method, and fiber-reinforced-plastic producing method
US10807282B2 (en) 2015-08-06 2020-10-20 Mitsubishi Heavy Industries, Ltd. Fiber-reinforced plastic producing device, movable stage, shaped fabric producing method, and fiber-reinforced plastic producing method
US10744701B2 (en) 2016-01-22 2020-08-18 Mitsubishi Heavy Industries, Ltd. Method for molding composite material, jig for molding composite material, and composite material
WO2018047869A1 (en) * 2016-09-07 2018-03-15 三菱重工業株式会社 Method for molding composite material and jig for molding composite material
JP2019526474A (en) * 2016-09-07 2019-09-19 エアバス オペレーションズ リミティド Vacuum forming of laminated charge
JPWO2018047869A1 (en) * 2016-09-07 2019-07-04 三菱重工業株式会社 Method of forming composite material and jig for forming composite material
US10987880B2 (en) 2016-09-07 2021-04-27 Mitsubishi Heavy Industries, Ltd. Method for molding composite material and jig for molding composite material
US11008050B2 (en) 2016-12-30 2021-05-18 Sabic Global Technologies B.V. Hybrid structures and methods of making the same
KR20190014466A (en) * 2017-08-02 2019-02-12 더 보잉 컴파니 Controlling Application of Forces to Different Portions of Object Surface Using Flexible Wall
KR102554296B1 (en) 2017-08-02 2023-07-10 더 보잉 컴파니 Controlling application of forces to different portions of object surface using bladder
JP2019025544A (en) * 2017-08-02 2019-02-21 ザ・ボーイング・カンパニーThe Boeing Company Controlling application of forces to different portions of object surface using flexible wall
KR102554264B1 (en) 2017-08-02 2023-07-10 더 보잉 컴파니 Controlling Application of Forces to Different Portions of Object Surface Using Flexible Wall
JP7260257B2 (en) 2017-08-02 2023-04-18 ザ・ボーイング・カンパニー Controlling forces on different parts of an object surface using flexible walls
KR20190014462A (en) * 2017-08-02 2019-02-12 더 보잉 컴파니 Controlling application of forces to different portions of object surface using flexible wall
WO2021140561A1 (en) 2020-01-07 2021-07-15 三菱重工業株式会社 Shaping method and shaping device
WO2021157106A1 (en) * 2020-02-07 2021-08-12 三菱重工業株式会社 Composite material structure body production method, layered body production method, layered body, and layered form
WO2021157082A1 (en) * 2020-02-07 2021-08-12 三菱重工業株式会社 Method for manufacturing composite-material structure body, method for manufacturing laminated body, laminated body, and lamination mold
JPWO2021157106A1 (en) * 2020-02-07 2021-08-12
JP7412458B2 (en) 2020-02-07 2024-01-12 三菱重工業株式会社 Composite material structure manufacturing method, laminate manufacturing method, laminate and laminate type
CN114734655A (en) * 2021-01-07 2022-07-12 上海飞机制造有限公司 Manufacturing method for manufacturing C-shaped part by using composite material
CN114734655B (en) * 2021-01-07 2024-01-30 上海飞机制造有限公司 Method for manufacturing C-shaped part by using composite material
CN113211820A (en) * 2021-04-07 2021-08-06 航天材料及工艺研究所 Low-friction, high-resistance-reduction, light-weight and high-strength rudder sledge device and forming method

Similar Documents

Publication Publication Date Title
JP2010120167A (en) Method of manufacturing preform and fiber reinforced plastic
CA2662476C (en) Forming-molding tool and process for producing preforms and fiber reinforced plastics with the tool
KR102069926B1 (en) Composite structure having a stabilizing element
JP6630480B2 (en) Production of composite laminates using temporarily sewn preforms
JP6563284B2 (en) Manufacturing apparatus for fiber-reinforced plastic molded product and manufacturing method thereof
JP5251004B2 (en) Preform manufacturing method, preform, and fiber reinforced plastic girder
JP5445037B2 (en) Fiber-reinforced plastic structure and method for manufacturing the same
JP5151668B2 (en) Manufacturing method of FRP
EP2883687B1 (en) Manufacturing method of partially cured composite components
US10005267B1 (en) Formation of complex composite structures using laminate templates
JP2011083975A (en) Method of manufacturing fiber reinforced plastic
WO2014112274A1 (en) Method for producing composite material
JP2006256202A (en) Substrate for preform and its manufacturing method
US10744724B2 (en) Composite aircraft manufacturing tooling and methods using articulating mandrels
JP6261574B2 (en) COMPOSITE TANK WITH JOINT WITH SOFTENIZED STRIP AND METHOD FOR PRODUCING THE TANK
JP2007008147A (en) Preform, frp molded article, and method for producing the same
JP6083248B2 (en) Manufacturing method of fiber reinforced thermoplastic resin integrated structure
KR20170123893A (en) double side Z-pinning patch and manufacturing method thereof
KR101144768B1 (en) Manufacturing Method for Composite Sandwiches
JP6351584B2 (en) Apparatus for controlling stress of bonding at low temperature and manufacturing method thereof
JP2010131846A (en) Method of manufacturing fiber-reinforced plastic
US11554559B2 (en) Caul plate for irregular surface
JP2015528070A5 (en)