JP2010118569A - Method of manufacturing thin-film solar battery - Google Patents

Method of manufacturing thin-film solar battery Download PDF

Info

Publication number
JP2010118569A
JP2010118569A JP2008291695A JP2008291695A JP2010118569A JP 2010118569 A JP2010118569 A JP 2010118569A JP 2008291695 A JP2008291695 A JP 2008291695A JP 2008291695 A JP2008291695 A JP 2008291695A JP 2010118569 A JP2010118569 A JP 2010118569A
Authority
JP
Japan
Prior art keywords
solution
complex ion
absorption layer
light absorption
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008291695A
Other languages
Japanese (ja)
Other versions
JP5311977B2 (en
Inventor
Isamu Tanaka
勇 田中
Seiichiro Inai
誠一郎 稲井
Yoshihide Okawa
佳英 大川
Tasuke Nishimura
太祐 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008291695A priority Critical patent/JP5311977B2/en
Publication of JP2010118569A publication Critical patent/JP2010118569A/en
Application granted granted Critical
Publication of JP5311977B2 publication Critical patent/JP5311977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a thin-film solar battery capable of controlling a composition of an optical absorption layer using a single precursor. <P>SOLUTION: The method of manufacturing the thin-film solar battery includes: a step of preparing a first complex ion solution by blending Lewis base L and organic metal salt of Cu to attain a molar ratio (Cu/L) of 1/3 or lower and solving it in an organic solvent to prepare a solution in which first complex ions containing Cu and Lewis base L are present; a step of preparing a second complex ion solution of preparing a solution in which second complex ions containing S or Se and In or Ga are present; a step of preparing a single precursor by causing the first complex ions to react with the second complex ions to have them deposited and drying the obtained deposit to prepare the single precursor containing Cu and S or Se, In or Ga and Lewis base L; a step of forming an optical absorption layer by applying an optical absorption layer solution comprising the single precursor solved in an organic solvent on a first electrode layer, and then drying and heat-treating it to form the optical absorption layer; and a step of forming a second electrode layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一対の電極層間に光吸収層を有する薄膜太陽電池の製法に関する。   The present invention relates to a method of manufacturing a thin film solar cell having a light absorption layer between a pair of electrode layers.

図1は、一般的な薄膜太陽電池の基本構造を示している。この薄膜太陽電池は、図1に示すように、例えば、ソーダライムガラスからなる基板1上に裏面電極となる、例えば、Moからなる第1電極層2が形成され、この第1電極層2上に化合物半導体薄膜からなる光吸収層3が形成され、その光吸収層3上にZnS、CdSなどからなるバッファ層4を介して、ZnOなどからなる透明の第2電極層5が形成されている。   FIG. 1 shows a basic structure of a general thin film solar cell. As shown in FIG. 1, the thin-film solar cell has a first electrode layer 2 made of, for example, Mo formed on a substrate 1 made of soda lime glass, for example, and is formed on the first electrode layer 2. A light absorption layer 3 made of a compound semiconductor thin film is formed, and a transparent second electrode layer 5 made of ZnO or the like is formed on the light absorption layer 3 through a buffer layer 4 made of ZnS, CdS, or the like. .

化合物半導体からなる光吸収層3としては、高いエネルギー変換効率が得られるものとして、Cu(In,Ga)Seからなる化合物半導体薄膜が用いられている。 As the light absorption layer 3 made of a compound semiconductor, a compound semiconductor thin film made of Cu (In, Ga) Se 2 is used as one capable of obtaining high energy conversion efficiency.

Cu(In,Ga)Seの製法としては、蒸着法やスパッタ法など真空プロセスを用いる製法と、固相または液相原料を塗布または電着によって成膜する非真空プロセスを用いる製法とに大別される。 Cu (In, Ga) as preparation of Se 2 is large in the production process used and the method of using a vacuum process such as vapor deposition or sputtering, a non-vacuum process for deposition by solid or liquid phase material coating or electrodeposition Separated.

このうち、非真空プロセスの液相原料を塗布するCu(In,Ga)Seの製法としては、Cu、In、Ga、Seの個別の金属塩を有機溶媒に溶解して塗布・乾燥して熱処理する製法と、Cu、In、Ga、Seの元素を含んだ有機化合物もしくは錯体を溶液化して塗布・熱処理する製法がある。 Among these, as a manufacturing method of Cu (In, Ga) Se 2 to apply a liquid phase raw material in a non-vacuum process, individual metal salts of Cu, In, Ga, and Se are dissolved in an organic solvent, applied and dried. There are a manufacturing method in which heat treatment is performed, and a manufacturing method in which an organic compound or complex containing Cu, In, Ga, and Se elements is formed into a solution and applied and heat-treated.

前者の個別の金属塩を使用する製法は、各金属塩によって溶解度が異なるために、乾燥時に組成分離して析出しやすく、薄膜全体の組成が不均一になりやすいという問題がある。一方、有機化合物もしくは錯体を用いる製法では、理想的な有機化合物を作製することができれば、乾燥時に組成分離することがなく、理論的には、均一組成のCu(In,Ga)Se薄膜を形成することが可能である。 The former production method using individual metal salts has a problem in that the solubility differs depending on each metal salt, so that the composition is easily separated and deposited at the time of drying, and the composition of the entire thin film tends to be nonuniform. On the other hand, in the production method using an organic compound or complex, if an ideal organic compound can be produced, the composition does not separate during drying, and theoretically, a Cu (In, Ga) Se 2 thin film having a uniform composition is formed. It is possible to form.

例えば、従来、単一源前駆体法(Single Source Precursor法)が知られており、この方法は、1つの有機化合物内にCuと、Seと、InもしくはGaとを存在させ、その有機化合物を有機溶媒に溶解させて塗布、熱処理することによって、Cu(In,Ga)Se薄膜を形成する製法である(特許文献1参照)。 For example, conventionally, a single source precursor method (Single Source Precursor method) is known. This method includes Cu, Se, In, or Ga in one organic compound. This is a method for forming a Cu (In, Ga) Se 2 thin film by dissolving it in an organic solvent and applying and heat-treating it (see Patent Document 1).

この特許文献1の製法を具体的に説明すると、Cu(CHCN)・PFなどの金属塩とP(Cなどのルイス塩基とを反応させて{P(CCu(CHCN) のような形の錯イオンを作製し、この錯イオンとInもしくはGaとSeとを含む錯イオンとを反応させることによって、Cu、InもしくはGa、Seを含む単一前駆体を作製している。
米国特許第6992202号明細書
The production method of Patent Document 1 will be specifically described. A metal salt such as Cu (CH 3 CN) 4 .PF 6 and a Lewis base such as P (C 6 H 5 ) 3 are reacted to produce {P (C 6 By preparing a complex ion of a form such as H 5 ) 3 } 2 Cu (CH 3 CN) 2 + and reacting this complex ion with a complex ion containing In or Ga and Se, Cu, In or A single precursor containing Ga and Se is produced.
US Pat. No. 6,992,202

特許文献1の製法によれば、理想的な有機化合物を作製することができれば、理論的には、Cuと(In+Ga)との比が1対1の均一な光吸収層を形成することができるが、{P(CCu(CHCN) のような純粋な錯イオンを得ることは困難であり、その結果、目的とする単一前駆体の他に副生成物を生じてしまい、結果としてCu、In、Ga、Seの組成比が変動してしまうという問題があった。 According to the production method of Patent Document 1, if an ideal organic compound can be produced, theoretically, a uniform light absorption layer in which the ratio of Cu to (In + Ga) is 1: 1 can be formed. However, it is difficult to obtain a pure complex ion such as {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + , and as a result, in addition to the target single precursor, There is a problem that a product is generated, and as a result, the composition ratio of Cu, In, Ga, and Se varies.

すなわち、本発明者等によれば、特許文献1の製法では、{P(CCu(CHCN) のような純粋な錯イオンを得ることが困難であり、その量が少なく、{P(CCu(CHCN) の錯イオンが存在する溶液と、InもしくはGaとSeとを含む錯イオンが存在する溶液とを混合しても、{P(CCu(CHCN) の錯イオンと反応するInもしくはGaとSeとを含む錯イオンが少なくなり、Cu、InもしくはGa、Seを含む沈殿物と、CuとSeとを含有する化合物の沈殿物を生じ、さらに、それ以外に、InもしくはGaが上記沈殿物上方の溶液中に錯イオンとなって存在してしまうことがわかった。 That is, according to the present inventors, it is difficult to obtain a pure complex ion such as {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + by the production method of Patent Document 1. , A solution containing a complex ion of {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + and a complex ion containing In or Ga and Se. be mixed, complex ion decreases containing in or Ga and Se which reacts with {P (C 6 H 5) 3} 2 Cu (CH 3 CN) 2 + of complex ions, Cu, in or Ga, A precipitate containing Se and a precipitate of a compound containing Cu and Se are generated, and in addition, In or Ga may be present as complex ions in the solution above the precipitate. all right.

従って、沈殿物上方の溶液を排出して、残った沈殿物を乾燥させ前駆体を作製する際に、溶液中のInもしくはGaの錯イオンが排出され除去されてしまい、Cuと(In+Ga)との比が1対1になるような仕込組成としても、InもしくはGa量が少なくなり、特にGaがイオン化し易いためGa量が不足し、この前駆体を熱処理して作製された光吸収層では、Cuと(In+Ga)との比が1対1の光吸収層が得られず、CuSeのような導電性の低い化合物が生成し、エネルギー変換効率が低くなるという問題があった。 Therefore, when the solution above the precipitate is discharged and the remaining precipitate is dried to produce a precursor, complex ions of In or Ga in the solution are discharged and removed, and Cu and (In + Ga) In the light absorption layer produced by heat-treating this precursor, the amount of In or Ga is reduced, especially because the amount of In or Ga is small, and Ga is easily ionized. There is a problem that a light absorption layer having a ratio of Cu to (In + Ga) of 1: 1 is not obtained, a compound having low conductivity such as Cu 2 Se is generated, and energy conversion efficiency is lowered.

本発明は、単一前駆体を用いて光吸収層の組成を制御できる薄膜太陽電池の製法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the thin film solar cell which can control the composition of a light absorption layer using a single precursor.

本発明者等は、ルイス塩基LとCuの有機金属塩とを有機溶媒中に溶解させ、Cuとルイス塩基Lとを含む第1錯イオンが存在する溶液を作製する際に、ルイス塩基LとCuの有機塩とを、モル比(Cu/L)が1/3以下となるように配合して、言い換えれば、ルイス塩基Lを多く配合して、有機溶媒中に溶解させることにより、{P(CCu(CHCN) のような第1錯イオンを容易にかつ大量に作製することができることを見いだし、本発明に至った。 When the present inventors dissolved Lewis base L and an organometallic salt of Cu in an organic solvent to prepare a solution containing a first complex ion containing Cu and Lewis base L, Lewis base L and By blending an organic salt of Cu with a molar ratio (Cu / L) of 1/3 or less, in other words, by blending a large amount of Lewis base L and dissolving it in an organic solvent, {P It has been found that a first complex ion such as (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + can be produced easily and in large quantities, and has led to the present invention.

本発明の薄膜太陽電池の製法は、第1電極層と第2電極層との間に光吸収層を有する薄膜太陽電池の製法であって、ルイス塩基LとCuの有機金属塩とを、モル比(Cu/L)が1/3以下となるように配合して有機溶媒中に溶解させ、Cuとルイス塩基Lとを含む第1錯イオンが存在する溶液を作製する第1錯イオン溶液作製工程と、SまたはSeとInまたはGaとを含む第2錯イオンが存在する溶液を作製する第2錯イオン溶液作製工程と、前記第1錯イオン溶液と前記第2錯イオン溶液とを混合し、前記第1錯イオンと前記第2錯イオンとを反応させて沈殿させ、得られた沈殿物を乾燥して、CuとSまたはSeとInまたはGaと前記ルイス塩基Lとを含む単一前駆体を作製する単一前駆体作製工程と、該単一前駆体を有機溶媒に溶解した光吸収層溶液を、前記第1電極層上に塗布して乾燥した後、熱処理することにより、CuとSまたはSeとInまたはGaとを含有する前記光吸収層を形成する光吸収層形成工程と、該光吸収層上に前記第2電極層を形成する第2電極層形成工程とを具備することを特徴とする。   The method for producing a thin film solar cell of the present invention is a method for producing a thin film solar cell having a light absorption layer between a first electrode layer and a second electrode layer, wherein a Lewis base L and an organometallic salt of Cu are mixed with each other. Preparation of a first complex ion solution for preparing a solution containing a first complex ion containing Cu and a Lewis base L by mixing and dissolving in an organic solvent so that the ratio (Cu / L) is 1/3 or less Mixing a step, a second complex ion solution preparation step for preparing a solution containing a second complex ion containing S or Se and In or Ga, and the first complex ion solution and the second complex ion solution. A single precursor containing Cu and S or Se and In or Ga and the Lewis base L is dried by reacting the first complex ion and the second complex ion. Single precursor production process for producing a body, and using the single precursor as an organic solvent A light absorbing layer that forms the light absorbing layer containing Cu and S or Se and In or Ga by applying a heat treatment on the first electrode layer after drying the dissolved light absorbing layer solution and drying the solution. And a second electrode layer forming step of forming the second electrode layer on the light absorption layer.

本発明の薄膜太陽電池の製法では、ルイス塩基LとCuの有機金属塩とを有機溶媒中に溶解させ、Cuとルイス塩基Lとを含む第1錯イオンが存在する溶液を作製する際に、ルイス塩基LとCuの有機金属塩とを、モル比(Cu/L)が1/3以下となるように配合し、通常よりもルイス塩基Lを多く配合して有機溶媒中に溶解させることにより、CuとSeとの化合物のような副生成物の生成を抑制し、{P(CCu(CHCN) のような第1錯イオンを容易にかつ大量に作製することができる。 In the method for producing a thin film solar cell of the present invention, when a Lewis base L and an organometallic salt of Cu are dissolved in an organic solvent to prepare a solution containing a first complex ion containing Cu and the Lewis base L, By mixing the Lewis base L and the organometallic salt of Cu so that the molar ratio (Cu / L) is 1/3 or less, the Lewis base L is added more than usual and dissolved in an organic solvent. , Suppresses the formation of by-products such as a compound of Cu and Se, and easily and a large amount of a first complex ion such as {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + Can be produced.

従って、第1錯イオン溶液と、SまたはSeとInまたはGaとを含む第2錯イオン溶液とを混合すると、第2錯イオンと反応する第1錯イオンが大量に存在するため、InまたはGaの錯イオン化を抑制し、CuとSまたはSeとInまたはGaとルイス塩基Lとを含む錯イオンの生成を促進でき、単一前駆体中におけるCuと(In+Ga)の比を1:1に近づける組成制御を行うことができる。   Therefore, when the first complex ion solution is mixed with the second complex ion solution containing S or Se and In or Ga, a large amount of the first complex ions react with the second complex ions, so that In or Ga Of complex ions containing Cu and S or Se and In or Ga and Lewis base L, and the ratio of Cu and (In + Ga) in a single precursor is close to 1: 1. Composition control can be performed.

これにより、第1錯イオンと第2錯イオンとを反応させて沈殿させ、得られた沈殿物を乾燥して、単一前駆体を作製し、この単一前駆体を有機溶媒に溶解した光吸収層溶液を熱処理して光吸収層を作製すると、CuSeのような導電率の低い化合物の生成を抑制して、Cu(In,Ga)Seの生成を促進することができ、エネルギー変換効率を向上できる。 Thereby, the first complex ion and the second complex ion are allowed to react and precipitate, and the resulting precipitate is dried to produce a single precursor, and light obtained by dissolving the single precursor in an organic solvent. When the absorption layer solution is heat-treated to produce a light absorption layer, generation of a compound having low conductivity such as Cu 2 Se can be suppressed, and generation of Cu (In, Ga) Se 2 can be promoted. Conversion efficiency can be improved.

また、本発明の薄膜太陽電池の製法は、上記構成において、前記第2錯イオンは、SeとGaとを含むことを特徴とする。   Moreover, the manufacturing method of the thin film solar cell of this invention is characterized by the said 2nd complex ion containing Se and Ga in the said structure.

従来、Gaを用いた光吸収層では、特に、第1錯イオンと第2錯イオンとを反応させる際に、Gaが錯イオンとして存在しやすいため本発明を好適に用いることができる。   Conventionally, in a light absorption layer using Ga, the present invention can be preferably used because Ga tends to exist as a complex ion, particularly when the first complex ion and the second complex ion are reacted.

すなわち、従来、{P(CCu(CHCN) のような第1錯イオンを生成することは困難であったため、この第1錯イオンと反応するGaとSeとを含む錯イオンが少なくなり、仕込組成でCuとGaの比が1:1となるように添加したとしても、Cu、Ga、Seを含む沈殿物以外に、CuとSeとを含有する化合物のような沈殿物を生じ、さらに、それ以外にGaが上記沈殿物上方の溶液中に錯イオンとなって存在し、このGaの錯イオンが排出されることにより、単一前駆体中のGaの割合が低下する傾向にあったが、本発明によれば、{P(CCu(CHCN) のような第1錯イオンを容易にかつ大量に作製できるため、Gaを用いた場合に好適に本発明を好適に用いることができる。 That is, conventionally, since it has been difficult to generate a first complex ion such as {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + , Ga and the like that react with the first complex ion Even if it is added so that the complex ion containing Se is reduced and the ratio of Cu to Ga is 1: 1 in the charge composition, it contains Cu and Se in addition to the precipitate containing Cu, Ga and Se. A precipitate like a compound is generated, and in addition, Ga is present as a complex ion in the solution above the precipitate, and the complex ion of Ga is discharged, so that Although the proportion of Ga tended to decrease, according to the present invention, the first complex ions such as {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + can be easily and in large quantities. Since it can be manufactured, the present invention is preferably used when Ga is used. Door can be.

本発明の薄膜太陽電池の製法によれば、ルイス塩基LとCuの有機金属塩とを有機溶媒中に溶解させ、Cuとルイス塩基Lとを含む第1錯イオンが存在する溶液を作製する際に、ルイス塩基LとCuの有機金属塩とを、モル比(Cu/L)が1/3以下となるように配合し、通常よりもルイス塩基Lを多く配合して有機溶媒中に溶解させることにより、CuとSeとの化合物のような副生成物の生成を抑制し、{P(CCu(CHCN) のような第1錯イオンを容易にかつ大量に作製することができ、これによりInまたはGaの錯イオン化を抑制し、CuとSまたはSeとInまたはGaとルイス塩基Lとを含む錯イオンの生成を促進でき、単一前駆体中におけるCuと(In+Ga)との比を1:1に近づける組成制御を行うことができる。 According to the method for manufacturing a thin film solar cell of the present invention, when Lewis base L and an organometallic salt of Cu are dissolved in an organic solvent, a solution containing the first complex ions containing Cu and Lewis base L is produced. In addition, the Lewis base L and the organometallic salt of Cu are blended so that the molar ratio (Cu / L) is 1/3 or less, and more Lewis base L is blended than usual and dissolved in the organic solvent. By suppressing the formation of by-products such as a compound of Cu and Se, the first complex ions such as {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + can be easily formed. And can be produced in large quantities, thereby suppressing the complex ionization of In or Ga, and promoting the generation of complex ions containing Cu and S or Se and In or Ga and Lewis base L. In a single precursor The ratio of Cu to (In + Ga) in this is close to 1: 1 Composition control can be performed that.

従って、第1錯イオンと第2錯イオンとを反応させて沈殿させ、得られた沈殿物を乾燥して、単一前駆体を作製し、この単一前駆体を有機溶媒に溶解した光吸収層溶液を熱処理して光吸収層を作製すると、CuSeのような導電率の低い化合物の生成を抑制して、Cu(In,Ga)Seの生成を促進することができ、エネルギー変換効率を向上できる。 Accordingly, the first complex ion and the second complex ion are allowed to react and precipitate, and the resulting precipitate is dried to produce a single precursor, and the single precursor is dissolved in an organic solvent. When the light absorption layer is produced by heat-treating the layer solution, it is possible to suppress the formation of a compound having a low conductivity such as Cu 2 Se and promote the formation of Cu (In, Ga) Se 2 , thereby converting energy. Efficiency can be improved.

本発明の製法により作製された薄膜太陽電池は、一対の電極層間に光吸収層を有する薄膜太陽電池であり、例えば、図1に示したように、基板1上に裏面電極となる第1電極層2が形成され、この第1電極層2上に化合物半導体薄膜からなる光吸収層3が形成され、その光吸収層3上にバッファ層4を介して透明の第2電極層5が形成されている。   The thin film solar cell produced by the manufacturing method of the present invention is a thin film solar cell having a light absorption layer between a pair of electrode layers. For example, as shown in FIG. A layer 2 is formed, a light absorption layer 3 made of a compound semiconductor thin film is formed on the first electrode layer 2, and a transparent second electrode layer 5 is formed on the light absorption layer 3 via a buffer layer 4. ing.

基板1としては、例えば、ソーダライムガラス基板、Mo、SUSなどの金属基板、ポリイミドなどの樹脂基板等を用いることができる。この基板1上には第1電極層2が形成され、この第1電極層2上に光吸収層3が形成されている。この光吸収層3上にバッファ層4を介して第2電極層5が形成され、光吸収層3は第1電極層2と第2電極層5により挟持されており、これにより、一対の第1、第2電極層2、5間に光吸収層3を有する薄膜太陽電池が構成されている。   As the substrate 1, for example, a soda lime glass substrate, a metal substrate such as Mo or SUS, a resin substrate such as polyimide, or the like can be used. A first electrode layer 2 is formed on the substrate 1, and a light absorption layer 3 is formed on the first electrode layer 2. A second electrode layer 5 is formed on the light absorption layer 3 via the buffer layer 4, and the light absorption layer 3 is sandwiched between the first electrode layer 2 and the second electrode layer 5. 1, a thin film solar cell having a light absorption layer 3 between the second electrode layers 2 and 5 is configured.

尚、基板1、第1電極層2、光吸収層3、バッファ層4、第2電極層5を順次積層した例について説明したが、本発明では、一対の第1、第2電極層2、5間に光吸収層3を有する限り、上記層の間に種々の中間層を形成しても良い。また、本発明は基板1を有しないタイプ、言い換えれば、第1電極層2が基板として機能するタイプであっても良い。   In addition, although the example which laminated | stacked the board | substrate 1, the 1st electrode layer 2, the light absorption layer 3, the buffer layer 4, and the 2nd electrode layer 5 was demonstrated sequentially, in this invention, a pair of 1st, 2nd electrode layer 2, As long as the light absorption layer 3 is provided between the layers 5, various intermediate layers may be formed between the layers. Further, the present invention may be of a type that does not have the substrate 1, in other words, a type in which the first electrode layer 2 functions as a substrate.

化合物半導体からなる光吸収層3としては、高いエネルギー変換効率が得られるものとして、カルコパイライト構造からなる化合物半導体である、CuInSe、CuGaSe、Cu(In,Ga)Seが用いられている。 As the light absorption layer 3 made of a compound semiconductor, CuInSe 2 , CuGaSe 2 , and Cu (In, Ga) Se 2 , which are compound semiconductors made of a chalcopyrite structure, are used to obtain high energy conversion efficiency. .

本発明の薄膜太陽電池の製法について説明する。先ず、例えば、ソーダライムガラスからなる基板1を準備する。この基板1に第1電極層2を形成する。この第1電極層2は、モリブデン(Mo)、タングステン(W)、クロム(Cr)、ポリシリコン(SiO)、メタルシリサイド、またはアルミニウム(Al)等のうちいずれかの電極材料を用いることが望ましい。第1電極層2は、蒸着法、スパッタリング法、塗布法などで形成することができる。 The manufacturing method of the thin film solar cell of this invention is demonstrated. First, for example, a substrate 1 made of soda lime glass is prepared. A first electrode layer 2 is formed on the substrate 1. The first electrode layer 2 is made of any electrode material selected from molybdenum (Mo), tungsten (W), chromium (Cr), polysilicon (SiO 2 ), metal silicide, aluminum (Al), and the like. desirable. The first electrode layer 2 can be formed by a vapor deposition method, a sputtering method, a coating method, or the like.

次に、第1電極層2上に光吸収層3を形成する。先ず、光吸収層3を形成するための光吸収層溶液を作製する。この光吸収層溶液は、Cu、In、Ga、およびSeを含有する単一前駆体が溶解した溶液である。この単一前駆体は、第1錯イオン溶液作製工程で得られた第1錯イオンと、第2錯イオン溶液作製工程で得られた第2錯イオンとを反応させて作製することができる。
(第1錯イオン溶液作製工程)
まず、P(Cなどのルイス塩基Lと、Cu(CHCN)・PFなどのCuの有機金属塩とをアセトニトリルなどの有機溶媒中で反応させて{P(CCu(CHCN) のような形の第1錯イオンが存在する第1錯イオン溶液を作製する(第1錯イオン溶液作製工程)。
Next, the light absorption layer 3 is formed on the first electrode layer 2. First, a light absorption layer solution for forming the light absorption layer 3 is prepared. This light absorption layer solution is a solution in which a single precursor containing Cu, In, Ga, and Se is dissolved. This single precursor can be produced by reacting the first complex ion obtained in the first complex ion solution production step with the second complex ion obtained in the second complex ion solution production step.
(First complex ion solution preparation process)
First, a Lewis base L such as P (C 6 H 5 ) 3 and an organometallic salt of Cu such as Cu (CH 3 CN) 4 · PF 6 are reacted in an organic solvent such as acetonitrile to obtain {P (C A first complex ion solution in which a first complex ion having a shape such as 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + is present is prepared (first complex ion solution preparation step).

ここで、Cuの有機金属塩としては、CuCl、CuCl、CuBr、CuIなどのハロゲン化物を用いても良く、ルイス塩基Lとしては、NもしくはAsを含んだもの、例えば、As(CやN(Cであっても良い。また、ルイス塩基LとCuの有機金属塩とを溶解する有機溶媒としては、アセトニトリルの他に、アセトン、メタノール、エタノール、イソプロパノールなどを用いることができる。 Here, as the organometallic salt of Cu, a halide such as CuCl, CuCl 2 , CuBr, or CuI may be used, and the Lewis base L includes N or As, for example, As (C 6 H 5 ) 3 or N (C 6 H 5 ) 3 may be used. In addition to acetonitrile, acetone, methanol, ethanol, isopropanol, or the like can be used as an organic solvent for dissolving the Lewis base L and the organometallic salt of Cu.

そして、本発明の薄膜太陽電池の製法では、ルイス塩基LとCuの有機金属塩とを、モル比(Cu/L)が1/3以下となるように配合し、これらのルイス塩基LとCuの有機金属塩とを混合して、この混合物を有機溶媒中に溶解させることが重要である。特に、反応収率を向上させるという点から、モル比(Cu/L)は0.1以上であることが望ましい。
(第2錯イオン溶液作製工程)
SまたはSeを含む有機化合物とInまたはGaのハロゲン化物とを含む第2錯イオンを作製する。
And in the manufacturing method of the thin film solar cell of this invention, the Lewis base L and the organometallic salt of Cu are mix | blended so that molar ratio (Cu / L) may be 1/3 or less, These Lewis base L and Cu are mixed. It is important that the organic metal salt is mixed and the mixture is dissolved in an organic solvent. In particular, the molar ratio (Cu / L) is preferably 0.1 or more from the viewpoint of improving the reaction yield.
(Second complex ion solution preparation process)
A second complex ion containing an organic compound containing S or Se and a halide of In or Ga is prepared.

例えば、NaOCHと有機セレン化合物または有機イオウ化合物とが反応した有機化合物と、InClまたはGaClとをメタノールからなる溶媒中で反応させて、In{SeR} またはGa{SeR} のような形の第2錯イオンを形成する。ここで、Rはアクリル、アリル、アルキル、ビニル、パーフルオロ、カルバメートから選ばれる一種である。 For example, an organic compound and NaOCH 3 and an organic selenium compound or an organic sulfur compound reacts with the InCl 3 or GaCl 3 are reacted in a solvent consisting of methanol, In {SeR} 4 - or Ga {SeR} 4 - To form a second complex ion. Here, R is a kind selected from acrylic, allyl, alkyl, vinyl, perfluoro, and carbamate.

有機セレン化合物としては、例えば、HSeCなどが、有機イオウ化合物としては、HSCなどが用いられる。また、メタノールの代わりに、エタノールやプロパノール等の溶媒を用いることができる。尚、第1錯イオンの作製と第2錯イオンの作製の順序はどちらが先でも構わない。
(単一前駆体作製工程)
次に、第1錯イオンと第2錯イオンとを反応させて、Cuと、SまたはSeと、InまたはGaと、ルイス塩基Lとを含む単一前駆体を作製する。すなわち、Cuを含む第1錯イオン溶液と、InまたはGaと、Seとを含む第2錯イオン溶液とを混合して、第1錯イオンと第2錯イオンとを反応させることにより、CuとSまたはSeとInまたはGaとルイス塩基Lとを含む沈殿物と、この沈殿物の上方の溶液とに分離し、溶液部分を排出し、乾燥することにより、単一前駆体を作製できる。
For example, HSeC 6 H 5 is used as the organic selenium compound, and HSC 6 H 5 is used as the organic sulfur compound. Further, a solvent such as ethanol or propanol can be used instead of methanol. Note that the first complex ion and the second complex ion may be produced in any order.
(Single precursor production process)
Next, the first complex ion and the second complex ion are reacted to produce a single precursor containing Cu, S or Se, In or Ga, and the Lewis base L. That is, by mixing a first complex ion solution containing Cu, a second complex ion solution containing In or Ga, and Se, and reacting the first complex ion and the second complex ion, Cu and A single precursor can be prepared by separating a precipitate containing S or Se, In or Ga, and a Lewis base L and a solution above the precipitate, discharging the solution portion, and drying.

第1錯イオンと第2錯イオンとを反応させる時の温度は0〜30℃が望ましく、反応時間は1〜5時間が望ましい。反応して沈殿した部分は、NaやClなどの不純物を取り除くために、遠心分離もしくは濾過などの手法を用いて洗浄することが望ましい。
(光吸収層形成工程)
単一前駆体を有機溶媒に溶解した光吸収層溶液を、第1電極層2上に塗布して乾燥した後、熱処理することにより、CuとSまたはSeとInまたはGaとを含有する光吸収層を形成する。
The temperature when the first complex ion and the second complex ion are reacted is preferably 0 to 30 ° C., and the reaction time is preferably 1 to 5 hours. In order to remove impurities such as Na and Cl, the portion precipitated by the reaction is desirably washed using a technique such as centrifugation or filtration.
(Light absorption layer forming process)
A light absorption layer solution in which a single precursor is dissolved in an organic solvent is applied onto the first electrode layer 2 and dried, followed by heat treatment, whereby light absorption containing Cu and S or Se and In or Ga. Form a layer.

すなわち、上記単一前駆体をトルエン、ピリジン、キシレン、アセトンなどの有機溶媒に溶解することにより、光吸収層溶液を作製する。そして、この光吸収層溶液を、上記した基板1の第1電極2上に塗布し、乾燥した後、還元雰囲気で熱処理し、第1電極層2上に光吸収層3を形成することができる。この光吸収層3の厚みは、例えば、1.0〜2.5μmとされている。   That is, the light-absorbing layer solution is prepared by dissolving the single precursor in an organic solvent such as toluene, pyridine, xylene, and acetone. Then, this light absorption layer solution is applied on the first electrode 2 of the substrate 1 described above, dried, and then heat-treated in a reducing atmosphere to form the light absorption layer 3 on the first electrode layer 2. . The thickness of the light absorption layer 3 is, for example, 1.0 to 2.5 μm.

第1電極層2上への光吸収層溶液の塗布は、スピンコータ、スクリーン印刷、ディッピング、スプレー、ダイコータなどを用いることが望ましい。乾燥は、還元雰囲気下で行うことが望ましい。乾燥時の温度は、例えば、50〜300℃で行う。   The application of the light absorption layer solution onto the first electrode layer 2 is desirably performed using a spin coater, screen printing, dipping, spraying, a die coater, or the like. Drying is desirably performed in a reducing atmosphere. The temperature at the time of drying is 50-300 degreeC, for example.

熱処理は、還元雰囲気下で行うことが望ましい。特には、窒素雰囲気、フォーミングガス雰囲気および水素雰囲気のうちいずれかであることが望ましい。熱処理時の還元雰囲気は、吸湿剤を通して水分除去した還元雰囲気であることが望ましい。吸収剤は、水を除去できるものであれば特に制限はないが、モレキュラーシーブなどが好適に用いられる。熱処理温度は、例えば、400℃〜600℃とされている。   The heat treatment is desirably performed in a reducing atmosphere. In particular, any one of a nitrogen atmosphere, a forming gas atmosphere, and a hydrogen atmosphere is desirable. The reducing atmosphere during the heat treatment is preferably a reducing atmosphere in which moisture is removed through a hygroscopic agent. The absorbent is not particularly limited as long as it can remove water, but a molecular sieve or the like is preferably used. The heat treatment temperature is set to 400 ° C. to 600 ° C., for example.

光吸収層3の形成後に、表面のCuSeなどからなる高抵抗層をKCN水溶液でエッチングし、除去することが望ましい。
(バッファ層、第2電極層形成工程)
この後、光吸収層3の上にヘテロ接合のためのn型のバッファ層4を形成する。バンドギャップが小さくて、短波長側の光を透過しにくい、CdS、ZnS、ZnSe、ZnMgO、ZnS/ZnMgO、ZnO、InS、InSe、In(OH)、ZnInSe、ZnInS、ZnSSe、CuI、Mg(OH)などの材料が用いられる。これらは、浸漬塗布法、CBD法(溶液成長法)等により光吸収層まで形成した基板を水溶液に浸して微粒子を堆積させるようにして作製することができる。
After the formation of the light absorption layer 3, it is desirable to remove the high resistance layer made of Cu 2 Se or the like on the surface by etching with a KCN aqueous solution.
(Buffer layer, second electrode layer forming step)
Thereafter, an n-type buffer layer 4 for heterojunction is formed on the light absorption layer 3. CdS, ZnS, ZnSe, ZnMgO, ZnS / ZnMgO, ZnO, InS, InSe, In (OH) 3 , ZnInSe, ZnInS, ZnSSe, CuI, Mg Materials such as OH) 2 are used. These can be produced by immersing a substrate formed up to the light absorption layer by a dip coating method, a CBD method (solution growth method) or the like in an aqueous solution to deposit fine particles.

次に、バッファ層4上にITOまたはZnOからなる透明の第2電極層5を形成する。スパッタ、スプレー、コーティングにより、形成することができる。バッファ層4の厚みは、例えば、10〜200nmとされ、第2電極層5の厚みは、例えば、0.5〜3.0μmとされている。   Next, a transparent second electrode layer 5 made of ITO or ZnO is formed on the buffer layer 4. It can be formed by sputtering, spraying or coating. The thickness of the buffer layer 4 is, for example, 10 to 200 nm, and the thickness of the second electrode layer 5 is, for example, 0.5 to 3.0 μm.

本発明の薄膜太陽電池の製法では、光吸収層溶液の原料となる単一前駆体を製造する際に、CHClのような毒性物質を用いた抽出工程を経ることなく、ほぼ純粋な単一前駆体を得ることができ、Cu/In/Ga/Seのような組成比を制御することが可能となる。 In the method for producing a thin film solar cell of the present invention, when producing a single precursor as a raw material for the light absorption layer solution, it is almost pure without going through an extraction process using a toxic substance such as CH 2 Cl 2. A single precursor can be obtained, and a composition ratio such as Cu / In / Ga / Se can be controlled.

すなわち、ルイス塩基LとCuの有機金属塩を有機溶媒中に溶解させ、Cuとルイス塩基Lとを含む第1錯イオンが存在する溶液を作製する際に、ルイス塩基LとCuの有機塩とを、モル比(Cu/L)が1/3以下となるように配合し、通常よりもルイス塩基Lを多く配合して有機溶媒中に溶解させることにより、CuとSeとの化合物のような副生成物の生成を抑制し、{P(CCu(CHCN) のような第1錯イオンを容易にかつ大量に作製することができ、これによりInまたはGaの錯イオン化を抑制し、Cuと、SまたはSeと、InまたはGaと、ルイス塩基Lとを含む錯イオンの生成を促進でき、単一前駆体中におけるCuと(In+Ga)の比を1:1に近づける組成制御を行うことができる。 That is, when an organic metal salt of Lewis base L and Cu is dissolved in an organic solvent to prepare a solution containing a first complex ion containing Cu and Lewis base L, an organic salt of Lewis base L and Cu Is blended so that the molar ratio (Cu / L) is 1/3 or less, and more Lewis base L is blended than usual and dissolved in an organic solvent, such as a compound of Cu and Se. By suppressing the formation of by-products, the first complex ions such as {P (C 6 H 5 ) 3 } 2 Cu (CH 3 CN) 2 + can be easily and in large quantities, and thus, In Alternatively, complex ionization of Ga can be suppressed, and formation of complex ions containing Cu, S or Se, In or Ga, and Lewis base L can be promoted, and the ratio of Cu and (In + Ga) in a single precursor can be increased. The composition can be controlled close to 1: 1. .

従って、第1錯イオンと第2錯イオンとを反応させて沈殿させ、該沈殿物を乾燥させ、単一前駆体を作製し、この単一前駆体を有機溶媒に溶解した光吸収層溶液を熱処理して光吸収層を作製すると、CuSeのような導電率の低い化合物の生成を抑制して、Cu(In,Ga)Seの生成を促進することができ、エネルギー変換効率を向上できる。 Accordingly, the first complex ion and the second complex ion are allowed to react and precipitate, the precipitate is dried to produce a single precursor, and a light absorbing layer solution in which this single precursor is dissolved in an organic solvent is prepared. When a light absorption layer is produced by heat treatment, the production of a compound having low conductivity such as Cu 2 Se can be suppressed, and the production of Cu (In, Ga) Se 2 can be promoted, thereby improving the energy conversion efficiency. it can.

以下、実施例および比較例を挙げて本発明の薄膜太陽電池の製法を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。   Hereinafter, although the example and the comparative example are given and the manufacturing method of the thin film solar cell of this invention is demonstrated in detail, this invention is not limited only to a following example.

銅の有機金属塩としてCu(CHCN)・PFを1mmol、ルイス塩基LとしてP(Cを10mmol、3mmol、および2mmolを、それぞれ10mlのアセトニトリルに溶解し、Cu(CHCN)・PF/P(Cのモル比(Cu/L)が、表1に示すように、1/10、1/3、1/2の溶液を準備した。これらの溶液が均一に溶解したのを確認した後、マグネチックスターラーにて室温で5時間攪拌させ、第1錯イオンを含有する第1錯イオン溶液1を作製した(第1錯イオン溶液作製工程)。 1 mmol of Cu (CH 3 CN) 4 .PF 6 as the organometallic salt of copper and 10 mmol, 3 mmol and 2 mmol of P (C 6 H 5 ) 3 as the Lewis base L were dissolved in 10 ml of acetonitrile, respectively. CH 3 CN) 4 .PF 6 / P (C 6 H 5 ) 3 molar ratios (Cu / L) were prepared as shown in Table 1, and 1/10, 1/3, and 1/2 solutions were prepared. . After confirming that these solutions were uniformly dissolved, the solution was stirred for 5 hours at room temperature with a magnetic stirrer to prepare the first complex ion solution 1 containing the first complex ions (first complex ion solution preparation step) ).

一方、NaOCHを4mmol、HSeCを4mmolを30mlのメタノールに溶解させた後、InClおよび/またはGaClを合計1mmolになるように溶解させた。完全に溶解したのを確認した後、マグネチックスターラーにて室温で5時間攪拌させ、第2錯イオンを含有する第2錯イオン溶液2を作製した(第2錯イオン溶液作製工程)。表1に、Cu、Se、In、Gaの仕込組成を記載した。 On the other hand, 4 mmol of NaOCH 3 and 4 mmol of HSeC 6 H 5 were dissolved in 30 ml of methanol, and then InCl 3 and / or GaCl 3 was dissolved to a total of 1 mmol. After confirming complete dissolution, the mixture was stirred with a magnetic stirrer at room temperature for 5 hours to prepare a second complex ion solution 2 containing a second complex ion (second complex ion solution preparation step). Table 1 shows the charged compositions of Cu, Se, In, and Ga.

次に、第1錯イオン溶液1に第2錯イオン溶液2を1分間に10mlの速度で滴下した。これにより、滴下中に白い析出物が生成することが確認された。滴下終了後、マグネチックスターラーにて室温で1時間攪拌させたところ、析出物が沈殿していた。   Next, the second complex ion solution 2 was dropped into the first complex ion solution 1 at a rate of 10 ml per minute. Thereby, it was confirmed that a white precipitate was generated during the dropping. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour with a magnetic stirrer. As a result, a precipitate was precipitated.

この析出物のみを取り出すために、遠心分離機にて溶媒を分離し、メタノール50mlに分散させて遠心分離をかけるという操作を2回繰り返した。その結果、最終生成物には、Naの残留量が1ppm以下となっていることが確認された。   In order to take out only this precipitate, the operation of separating the solvent with a centrifuge, dispersing it in 50 ml of methanol, and centrifuging it was repeated twice. As a result, it was confirmed that the residual amount of Na in the final product was 1 ppm or less.

析出物を真空中において室温で乾燥させて溶媒を取り除いて、単一前駆体を作製した。この単一前駆体にピリジンを添加して単一前駆体が全量中50質量%の光吸収層溶液を作製した。この光吸収層溶液をドクターブレード法にて、ソーダライムガラス基板のMoからなる第1電極層上に薄膜形成した。薄膜は、グローブボックス内で、キャリアガスとして窒素ガスを用いて光吸収層溶液を塗布し、第1電極層への塗布を行った。塗布の後、ソーダライムガラス基板をホットプレートで110℃に加熱しながら、5分間乾燥させた。   The precipitate was dried in vacuum at room temperature to remove the solvent to make a single precursor. Pyridine was added to this single precursor to produce a light absorption layer solution with a single precursor of 50% by mass in the total amount. This light absorbing layer solution was formed into a thin film on the first electrode layer made of Mo of the soda lime glass substrate by the doctor blade method. The thin film was applied to the first electrode layer by applying the light absorption layer solution using nitrogen gas as a carrier gas in the glove box. After the application, the soda lime glass substrate was dried for 5 minutes while being heated to 110 ° C. on a hot plate.

薄膜形成後、水素ガス雰囲気下で熱処理を実施した。熱処理条件は、525℃まで5分間で急速昇温し、525℃で1時間保持することで行い、自然冷却し、厚み1.5μmの化合物半導体薄膜を作製した。この後、酢酸カドミウム、チオ尿素をアンモニアに溶解し、これに基板を浸漬し、化合物半導体薄膜上に厚み0.05μmのCdSからなるバッファ層を形成した。さらに、バッファ層の上に、スパッタリング法にてAlドープ酸化亜鉛膜(第2電極層)を形成した。最後に蒸着にてアルミ電極(取出電極)を形成して、薄膜太陽電池セルを作製した。   After forming the thin film, heat treatment was performed in a hydrogen gas atmosphere. The heat treatment was performed by rapidly raising the temperature to 525 ° C. in 5 minutes and holding at 525 ° C. for 1 hour, followed by natural cooling to produce a compound semiconductor thin film having a thickness of 1.5 μm. Thereafter, cadmium acetate and thiourea were dissolved in ammonia, and the substrate was immersed therein to form a buffer layer made of CdS having a thickness of 0.05 μm on the compound semiconductor thin film. Furthermore, an Al-doped zinc oxide film (second electrode layer) was formed on the buffer layer by sputtering. Finally, an aluminum electrode (extraction electrode) was formed by vapor deposition to produce a thin film solar cell.

本発明者等は、第1錯イオン作製工程で、Cu(CHCN)・PF/P(Cのモル比(Cu/L)が1/10、1/3、1/2を用いたそれぞれの場合について、単一前駆体の組成分析を発光分光分析(ICP)で行い、表1中に記載した。 In the first complex ion preparation step, the inventors have a molar ratio (Cu / L) of Cu (CH 3 CN) 4 .PF 6 / P (C 6 H 5 ) 3 of 1/10, 1/3, In each case using 1/2, the composition analysis of a single precursor was performed by emission spectroscopy (ICP) and listed in Table 1.

Figure 2010118569
Figure 2010118569

この表1から、第1錯イオン作製工程で、Cu(CHCN)・PF/P(Cのモル比(Cu/L)が1/3以下の場合には、仕込組成に近い組成の単一前駆体が得られており、熱処理後においても、Cu(In,Ga)Seの生成を促進することができ、エネルギー変換効率を向上できることがわかる。 From Table 1, when the molar ratio (Cu / L) of Cu (CH 3 CN) 4 .PF 6 / P (C 6 H 5 ) 3 is 1/3 or less in the first complex ion production step, A single precursor having a composition close to the charged composition is obtained, and it can be seen that the formation of Cu (In, Ga) Se 2 can be promoted even after the heat treatment, and the energy conversion efficiency can be improved.

一方、Cu(CHCN)・PF/P(Cのモル比(Cu/L)が1/2の場合には、In、Ga、もしくはSeが仕込組成よりも著しく低くなっていることがわかる。これにより、Cu(In,Ga)Seの生成量が少なく、エネルギー変換効率が低いことがわかる。 On the other hand, when the molar ratio (Cu / L) of Cu (CH 3 CN) 4 .PF 6 / P (C 6 H 5 ) 3 is 1/2, In, Ga, or Se is remarkably higher than the charged composition. You can see that it is lower. Thus, Cu (In, Ga) the amount of Se 2 is small, it can be seen that the energy conversion efficiency is low.

薄膜太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of a thin film solar cell.

符号の説明Explanation of symbols

1・・・基板
2・・・第1電極層
3・・・光吸収層
4・・・バッファ層
5・・・第2電極層
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... 1st electrode layer 3 ... Light absorption layer 4 ... Buffer layer 5 ... 2nd electrode layer

Claims (2)

第1電極層と第2電極層との間に光吸収層を有する薄膜太陽電池の製法であって、ルイス塩基LとCuの有機金属塩とを、モル比(Cu/L)が1/3以下となるように配合して有機溶媒中に溶解させ、Cuとルイス塩基Lとを含む第1錯イオンが存在する溶液を作製する第1錯イオン溶液作製工程と、SまたはSeとInまたはGaとを含む第2錯イオンが存在する溶液を作製する第2錯イオン溶液作製工程と、前記第1錯イオン溶液と前記第2錯イオン溶液とを混合し、前記第1錯イオンと前記第2錯イオンとを反応させて沈殿させ、得られた沈殿物を乾燥し、CuとSまたはSeとInまたはGaと前記ルイス塩基Lとを含む単一前駆体を作製する単一前駆体作製工程と、該単一前駆体を有機溶媒に溶解した光吸収層溶液を、前記第1電極層上に塗布して乾燥した後、熱処理することにより、CuとSまたはSeとInまたはGaとを含有する前記光吸収層を形成する光吸収層形成工程と、該光吸収層上に前記第2電極層を形成する第2電極層形成工程とを具備することを特徴とする薄膜太陽電池の製法。   A method of manufacturing a thin film solar cell having a light absorption layer between a first electrode layer and a second electrode layer, wherein a molar ratio (Cu / L) of Lewis base L and an organometallic salt of Cu is 1/3. A first complex ion solution preparation step of preparing a solution containing the first complex ions containing Cu and Lewis base L and blended so as to be as follows, and S or Se and In or Ga A second complex ion solution preparation step for preparing a solution containing the second complex ions including the first complex ion solution and the second complex ion solution, and mixing the first complex ion and the second complex ion solution. A single precursor preparation step of preparing a single precursor containing Cu and S or Se and In or Ga and the Lewis base L by drying the resulting precipitate by reacting with complex ions; , A light absorption layer solution obtained by dissolving the single precursor in an organic solvent, A light absorption layer forming step of forming the light absorption layer containing Cu and S or Se and In or Ga by applying heat treatment after drying on the polar layer, and the light absorption layer on the light absorption layer And a second electrode layer forming step of forming a second electrode layer. 前記第2錯イオンは、SeとGaとを含むことを特徴とする請求項1記載の薄膜太陽電池の製法。   The method for producing a thin-film solar cell according to claim 1, wherein the second complex ion includes Se and Ga.
JP2008291695A 2008-11-14 2008-11-14 Thin film solar cell manufacturing method Expired - Fee Related JP5311977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291695A JP5311977B2 (en) 2008-11-14 2008-11-14 Thin film solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291695A JP5311977B2 (en) 2008-11-14 2008-11-14 Thin film solar cell manufacturing method

Publications (2)

Publication Number Publication Date
JP2010118569A true JP2010118569A (en) 2010-05-27
JP5311977B2 JP5311977B2 (en) 2013-10-09

Family

ID=42306035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291695A Expired - Fee Related JP5311977B2 (en) 2008-11-14 2008-11-14 Thin film solar cell manufacturing method

Country Status (1)

Country Link
JP (1) JP5311977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013657A1 (en) * 2009-07-30 2011-02-03 京セラ株式会社 Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
JP2012146943A (en) * 2010-12-24 2012-08-02 Kyocera Corp Method for manufacturing semiconductor layer and method for manufacturing photoelectric conversion device
JP2012151430A (en) * 2010-12-27 2012-08-09 Kyocera Corp Manufacturing method of photoelectric conversion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992202B1 (en) * 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992202B1 (en) * 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013657A1 (en) * 2009-07-30 2011-02-03 京セラ株式会社 Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
US9023680B2 (en) 2009-07-30 2015-05-05 Kyocera Corporation Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
JP2012146943A (en) * 2010-12-24 2012-08-02 Kyocera Corp Method for manufacturing semiconductor layer and method for manufacturing photoelectric conversion device
JP2012151430A (en) * 2010-12-27 2012-08-09 Kyocera Corp Manufacturing method of photoelectric conversion device

Also Published As

Publication number Publication date
JP5311977B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5328355B2 (en) Manufacturing method of solar cell absorption layer
KR100909179B1 (en) Method for manufacturing a CIS-based solar cell absorption layer
JP2013512311A (en) Aqueous production process for crystalline copper chalcogenide nanoparticles, nanoparticles so produced, and inks and coated substrates incorporating these nanoparticles
US20140220728A1 (en) Methods of forming semiconductor films including i2-ii-iv-vi4 and i2-(ii,iv)-iv-vi4 semiconductor films and electronic devices including the semiconductor films
JP5137794B2 (en) Thin film solar cell manufacturing method
JP5928612B2 (en) Compound semiconductor solar cell
JP6330051B2 (en) Method for doping Cu (In, Ga) (S, Se) 2 nanoparticles with sodium or antimony
JP5311984B2 (en) Thin film solar cell manufacturing method
JP5311977B2 (en) Thin film solar cell manufacturing method
JP5317648B2 (en) Thin film solar cell manufacturing method
JP5213777B2 (en) Thin film solar cell manufacturing method
JP6554332B2 (en) Homogeneous coating liquid and method of manufacturing the same, light absorbing layer for solar cell and method of manufacturing the same, and solar cell and method of manufacturing the same
WO2011121701A1 (en) Process for manufacture of photoelectric conversion device, and semiconductor-forming solution
JP5137795B2 (en) Compound semiconductor thin film manufacturing method and thin film solar cell manufacturing method
TWI595680B (en) Method for preparing copper indium gallium diselenide/disulfide (cigs) nanoparticles,cigs nanoparticles prepared by the process and photovoltaic device based on it
US8765518B1 (en) Chalcogenide solutions
JP2017212404A (en) Method of manufacturing homogeneous coating liquid, method of manufacturing light-absorbing layer for solar battery, and method of manufacturing solar battery
JP5383162B2 (en) Thin film solar cell manufacturing method
JP5305862B2 (en) Thin film solar cell manufacturing method
WO2016068155A1 (en) Homogeneous application liquid and production method for same, light-absorbing layer for solar cell and production method for same, and solar cell and production method for same
JP2017212398A (en) Method of manufacturing homogeneous coating liquid, method of forming light-absorbing layer for solar battery, and method of manufacturing solar battery
JP2017069481A (en) Manufacturing method for photoelectric conversion layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees