JP2010117332A - Bistatic radar device - Google Patents

Bistatic radar device Download PDF

Info

Publication number
JP2010117332A
JP2010117332A JP2008292861A JP2008292861A JP2010117332A JP 2010117332 A JP2010117332 A JP 2010117332A JP 2008292861 A JP2008292861 A JP 2008292861A JP 2008292861 A JP2008292861 A JP 2008292861A JP 2010117332 A JP2010117332 A JP 2010117332A
Authority
JP
Japan
Prior art keywords
pulse
transmission
radar device
radio wave
side radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008292861A
Other languages
Japanese (ja)
Other versions
JP4779128B2 (en
Inventor
Yoriyuki Asada
順之 浅田
Taisho Nakahama
大晶 中濱
Shinya Kitagawa
真也 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES DEV INST MINI DEFENCE
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
TECH RES DEV INST MINI DEFENCE
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES DEV INST MINI DEFENCE, Technical Research and Development Institute of Japan Defence Agency filed Critical TECH RES DEV INST MINI DEFENCE
Priority to JP2008292861A priority Critical patent/JP4779128B2/en
Publication of JP2010117332A publication Critical patent/JP2010117332A/en
Application granted granted Critical
Publication of JP4779128B2 publication Critical patent/JP4779128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform position orientation of a target by a reception side radar device wherein a specification table which is a candidate of a pulse specification is known, by utilizing the fact that a transmission radio wave has a different pulse specification according to an orientation azimuth and an orientation distance. <P>SOLUTION: This device includes a transmission side radar device; and a reception side radar device positioned separately therefrom, for receiving a transmission radio wave. The transmission radio wave has a different pulse specification including a pulse repeating frequency, a pulse width and the number of bits according to the orientation azimuth and the orientation distance, and the specification table which is the candidate of the pulse specification is known on the reception side radar device side, and the position orientation of the target is performed by utilizing the fact that the pulse specification depends on the orientation azimuth and a distance range of the transmission radio wave. In this case, the pulse specification is analyzed from a direct wave signal, and a replica of a transmission pulse is generated and utilized for mutual correlation calculation, to thereby maintain pulse compression efficiency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、相互に離隔した送信側及び受信側のレーダ装置により目標の検出を行うバイスタティックレーダ装置に関する。   The present invention relates to a bistatic radar apparatus that detects a target by using a radar apparatus on a transmission side and a reception side that are separated from each other.

図3は、一般的なバイスタティックレーダ装置の構成図であり、送信側レーダ装置の送信機1に接続された送信空中線2から送信電波が送出される。前記送信電波を受信する受信側レーダ装置10は、送信機1から受信側レーダ装置10に直接伝播する信号である直接波を受信するための第1の受信空中線11及び第1の検波手段12と、航空機等の目標30で送信電波が散乱された信号である散乱波を受信するための第2の受信空中線21及び第2の検波手段22と、相互相関計算手段13と、遅延時間推定手段14とを具備している。送信側レーダ装置は既存のレーダ局を利用することが一般的である。   FIG. 3 is a configuration diagram of a general bistatic radar apparatus, in which a transmission radio wave is transmitted from a transmission antenna 2 connected to the transmitter 1 of the transmission-side radar apparatus. The reception-side radar device 10 that receives the transmission radio wave includes a first reception antenna 11 and a first detection unit 12 for receiving a direct wave that is a signal directly propagating from the transmitter 1 to the reception-side radar device 10. The second reception antenna 21 and the second detection means 22 for receiving the scattered wave that is a signal in which the transmission radio wave is scattered by the target 30 such as an aircraft, the cross-correlation calculation means 13, and the delay time estimation means 14 It is equipped with. In general, an existing radar station is used as the transmission-side radar apparatus.

そして、受信側レーダ装置10で直接波と散乱波の到来時刻差を検出することで、目標30を標定している。到来時刻差は直接波と散乱波のそれぞれの検波信号の相互相関を相互相関計算手段13にて計算してパルス圧縮したのち、その絶対値のピークを探索するのが1つの方法である。   Then, the target 30 is determined by detecting the arrival time difference between the direct wave and the scattered wave by the receiving-side radar device 10. One method is to search for the peak of the absolute value after calculating the cross-correlation between the detection signals of the direct wave and the scattered wave by the cross-correlation calculating means 13 and performing pulse compression on the arrival time difference.

図3の従来装置において、送信側レーダ装置−目標間の距離をR、目標−受信側レーダ装置間の距離をR、送信側レーダ装置−受信側レーダ装置間距離R、直接波と散乱波の到来時刻差tとしたとき、下記式(1)
+R−R=ct (但し、c:光速) …(1)
の関係が成立する。従って、直接波と散乱波の到来時刻差tから目標がR+R=ct+R(一定)である楕円上に存在すると言える。
In the conventional apparatus of FIG. 3, the distance between the transmission-side radar apparatus and the target is R 1 , the distance between the target-reception-side radar apparatus is R 2 , the distance R between the transmission-side radar apparatus and the reception-side radar apparatus, direct waves and scattering When the wave arrival time difference is t, the following formula (1)
R 1 + R 2 −R = ct (where c is the speed of light) (1)
The relationship is established. Therefore, it can be said that the target exists on an ellipse with R 1 + R 2 = ct + R (constant) from the arrival time difference t between the direct wave and the scattered wave.

ところで、従来の直接波と散乱波の相互相関を計算する方法では、直接波の受信品質によりパルス圧縮の圧縮効率が左右される問題がある。   By the way, in the conventional method of calculating the cross-correlation between the direct wave and the scattered wave, there is a problem that the compression efficiency of the pulse compression is influenced by the reception quality of the direct wave.

また、相互相関計算結果であるパルスのコヒーレント積分を行う場合、送信パルス(送信電波の検波信号)のパルス繰り返し周期相当のレンジ全域に渡って積分を実行し、目標を探索する必要があり、計算負荷が過大となる問題があった。   In addition, when performing coherent integration of the pulse that is the result of cross-correlation calculation, it is necessary to perform integration over the entire range corresponding to the pulse repetition period of the transmission pulse (detection signal of the transmission radio wave) and search for the target. There was a problem of excessive load.

本発明はこうした状況を認識してなされたものであり、その第1の目的は、送信電波が、指向方位及び指向距離によってパルス繰り返し周波数、パルス幅及びヒット数を含むパルス諸元が異なることに鑑み、前記パルス諸元の候補である諸元テーブルを既知としている(諸元テーブルを有している)受信側レーダ装置にて目標の位置標定を行う際に、前記送信電波のパルス諸元を解析し、利用することで、目標の存在する概ねの範囲を推定し、目標検出感度の向上や計算負荷の低減を図ることのできるバイスタティックレーダ装置を提供することにある。   The present invention has been made in recognition of such a situation, and the first object of the present invention is that the transmission radio wave has different pulse specifications including the pulse repetition frequency, the pulse width, and the number of hits depending on the directional direction and the directional distance. In view of the above, when performing positioning of a target in a receiving-side radar device that has a known specification table that is a candidate for the pulse specification (has a specification table), the pulse specification of the transmission radio wave is determined. An object of the present invention is to provide a bistatic radar apparatus that can estimate the approximate range where the target exists by analyzing and using it, and improve the target detection sensitivity and reduce the calculation load.

本発明の第2の目的は、受信した直接波信号から送信電波のパルス諸元を解析し雑音のない送信パルスのレプリカを作成することによりパルス圧縮の効率を維持し、高感度の目標検出が可能なバイスタティックレーダ装置を提供することにある。   The second object of the present invention is to analyze the pulse parameters of the transmitted radio wave from the received direct wave signal and create a replica of the transmitted pulse without noise, thereby maintaining the efficiency of pulse compression and enabling highly sensitive target detection. An object of the present invention is to provide a possible bistatic radar device.

本発明の第3の目的は、送信電波のパルス諸元の解析結果を利用して距離及び方位方向の目標探索処理範囲を限定することで、低計算負荷を実現可能なバイスタティックレーダ装置を提供することにある。   A third object of the present invention is to provide a bistatic radar device capable of realizing a low calculation load by limiting the target search processing range in the distance and azimuth directions using the analysis result of the pulse specifications of the transmission radio wave. There is to do.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明のある態様のバイスタティックレーダ装置は、送信側レーダ装置と、前記送信側レーダー装置から離隔した位置にあって、前記送信側レーダ装置から送信された送信電波を受信する受信側レーダ装置とを備える構成において、
前記送信電波は、指向方位及び指向距離によってパルス繰り返し周波数、パルス幅及びヒット数を含むパルス諸元が異なるものであり、
前記パルス諸元の候補である諸元テーブルが前記受信側レーダ装置側で既知であり、
前記パルス諸元が前記送信電波の指向方位及び距離範囲に依存することを利用して目標の位置標定を行なうことを特徴としている。
In order to achieve the above object, a bistatic radar device according to an aspect of the present invention includes a transmission-side radar device and a transmission radio wave transmitted from the transmission-side radar device at a position separated from the transmission-side radar device. In a configuration comprising a receiving-side radar device for receiving
The transmission radio wave has different pulse specifications including the pulse repetition frequency, the pulse width, and the number of hits depending on the directional direction and the directional distance,
A specification table that is a candidate for the pulse specification is known on the receiving radar device side,
The position of the target is determined by utilizing the fact that the pulse specifications depend on the directivity and distance range of the transmission radio wave.

前記態様のバイスタティックレーダ装置において、前記受信側レーダ装置で受信した受信信号に含まれる、前記送信側レーダ装置から前記受信側レーダ装置に直接伝播する信号である直接波信号のパルス諸元を解析し、既知である前記送信電波のパルス諸元と照合して送信パルスのレプリカを作成し、前記レプリカと前記送信電波が目標で散乱された信号である散乱波信号との相互相関計算を行うことでパルス圧縮する構成としてもよい。   In the bistatic radar device according to the aspect, the pulse specification of the direct wave signal, which is a signal directly propagated from the transmission-side radar device to the reception-side radar device, included in the reception signal received by the reception-side radar device is analyzed. Then, a replica of a transmission pulse is created by comparing with known pulse specifications of the transmission radio wave, and a cross-correlation calculation between the replica and a scattered wave signal that is a signal obtained by scattering the transmission radio wave at a target is performed. It is good also as a structure which carries out pulse compression by.

前記態様のバイスタティックレーダ装置において、前記パルス諸元の照合により推定した前記送信電波のパルス諸元を利用し、相互相関計算結果のコヒーレント積分を行い信号対雑音比を改善する構成としてもよい。   The bistatic radar device according to the aspect may be configured to improve the signal-to-noise ratio by performing coherent integration of a cross-correlation calculation result using the pulse specifications of the transmission radio wave estimated by collating the pulse specifications.

前記態様のバイスタティックレーダ装置において、前記コヒーレント積分のレンジ処理範囲を、推定したパルス諸元に対応する目標標定範囲により限定し、計算負荷を低減する構成としてもよい。   In the bistatic radar device of the above aspect, the range processing range of the coherent integration may be limited by a target orientation range corresponding to the estimated pulse specifications to reduce a calculation load.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明に係るバイスタティックレーダ装置によれば、送信電波が、指向方位及び指向距離によってパルス繰り返し周波数、パルス幅及びヒット数を含むパルス諸元が異なることに鑑み、前記パルス諸元の候補である諸元テーブルを既知としている(諸元テーブルを有している)受信側レーダ装置にて目標の位置標定を行う際に、前記送信電波のパルス諸元を解析し、利用することで、目標の存在する概ねの範囲を推定し、目標検出感度の向上や計算負荷の低減を図ることが可能である。また、受信した直接波信号からパルス諸元を解析し雑音のない送信パルスのレプリカを作成して相互相関計算に利用する場合、パルス圧縮の効率を維持できる。さらに、前記解析されたパルス諸元を用いて距離及び方位方向の目標探索処理を限定する場合、低計算負荷を実現可能である。   According to the bistatic radar apparatus of the present invention, the transmitted radio wave is a candidate for the pulse specifications in view of the fact that the pulse specifications including the pulse repetition frequency, the pulse width, and the number of hits differ depending on the pointing direction and the pointing distance. When the target position is determined by the receiving radar device having the specification table (having the specification table), the pulse specification of the transmission radio wave is analyzed and used to It is possible to estimate the approximate range that exists and to improve the target detection sensitivity and reduce the calculation load. Further, when the pulse specifications are analyzed from the received direct wave signal and a replica of the transmission pulse without noise is generated and used for the cross-correlation calculation, the efficiency of pulse compression can be maintained. Further, when the target search processing in the distance and azimuth direction is limited using the analyzed pulse specifications, a low calculation load can be realized.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一又は同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

本発明の実施の形態について図1を用いて説明する。図1はパルス諸元を推定して送信パルスのレプリカを利用するバイスタティックレーダ装置の受信側レーダ装置を示す構成図である。31は受信空中線、32は検波手段、33は相互相関計算手段、34は遅延時間推定手段であり、これらは従来装置と同様構成でよい。35は直接波抽出手段、36はパルス諸元推定手段、37はレプリカ作成手段、38はコヒーレント積分手段である。図3にて示した送信側レーダ装置の送信機及び目標の図示は省略した。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing a receiving-side radar device of a bistatic radar device that estimates pulse specifications and uses a replica of a transmission pulse. Reference numeral 31 is a reception antenna, 32 is a detection means, 33 is a cross-correlation calculation means, and 34 is a delay time estimation means, which may have the same configuration as the conventional apparatus. 35 is direct wave extracting means, 36 is pulse specification estimating means, 37 is replica creating means, and 38 is coherent integrating means. The transmitter and target of the transmission-side radar apparatus shown in FIG. 3 are not shown.

送信側レーダ装置(既存のレーダ局を利用可能)の送信機から受信側レーダ装置に直接伝播した送信電波である直接波と、航空機等の目標で送信電波が散乱された信号である散乱波とが、受信空中線31にて受信され、直接波及び散乱波成分を含んだ受信信号が検波手段32に入力され、ここで検波されるようになっている。直接波抽出手段35は検波後の受信信号から直接波信号を抽出する手段であり、パルス諸元推定手段36は抽出された直接波信号から送信電波のパルス諸元(パルス繰り返し周波数(パルス間隔の逆数)、パルス幅及びヒット数(同一方向に送信するパルス個数)を含む)を推定する手段である。レプリカ作成手段37はパルス諸元推定手段36で推定された送信電波のパルス諸元から直接波信号(送信パルス)のレプリカを作成する手段である。相互相関計算手段33は検波後の受信信号と、直接波信号(送信パルス)のレプリカとの相互相関を計算する。コヒーレント積分手段38は推定されたパルス諸元の信号をパルス諸元推定手段36から受けて、そのパルス諸元から目標の存在する可能性のあるレンジ(距離及び方位)を考慮して、処理レンジを限定して相互相関の計算結果をコヒーレント積分する手段である。   A direct wave that is a transmission radio wave directly propagated from a transmitter of a transmission-side radar device (which can use an existing radar station) to a reception-side radar device, and a scattered wave that is a signal in which the transmission radio wave is scattered by a target such as an aircraft Is received by the reception antenna 31 and a reception signal including a direct wave and a scattered wave component is input to the detection means 32 and detected there. The direct wave extracting means 35 is a means for extracting a direct wave signal from the received signal after detection, and the pulse specification estimating means 36 is a pulse specification (pulse repetition frequency (pulse interval frequency) of the transmission radio wave from the extracted direct wave signal. A reciprocal number), a pulse width and a hit number (including the number of pulses transmitted in the same direction). The replica creation means 37 is a means for creating a replica of a direct wave signal (transmission pulse) from the pulse specifications of the transmission radio wave estimated by the pulse specification estimation means 36. The cross-correlation calculation means 33 calculates the cross-correlation between the received signal after detection and the replica of the direct wave signal (transmission pulse). The coherent integration unit 38 receives the estimated pulse specification signal from the pulse specification estimation unit 36, and considers the range (distance and azimuth) where the target may exist from the pulse specification, and the processing range. Is a means for coherent integration of the cross-correlation calculation results.

動作について図2のフローチャートにより説明する。受信信号を検波手段32で検波したのち、その検波信号の絶対値に対して、直接波抽出手段35において閾値を超えたパルスを検出する。閾値は送信側レーダ装置の送信機の実効輻射電力及び送受信側レーダ装置間の距離を考慮して定めるものとする。   The operation will be described with reference to the flowchart of FIG. After the received signal is detected by the detection means 32, the direct wave extraction means 35 detects a pulse exceeding the threshold value with respect to the absolute value of the detection signal. The threshold value is determined in consideration of the effective radiant power of the transmitter of the transmission side radar device and the distance between the transmission and reception side radar devices.

検出したパルスについてパルス諸元推定手段36にてパルス幅、パルス間隔を検出する。また、連続するパルス列について、パルス間隔が一定であるパルス数を計数して、ヒット数を算出する。そして、検出したパルス幅、パルス間隔、ヒット数をもとに、諸元テーブルと照合し、最も近いパルス諸元を直接波のパルス諸元と推定する。送信機のパルス諸元の候補である諸元テーブルが受信側レーダ装置側で既知であることから、この照合が可能となる。   The pulse width and pulse interval are detected by the pulse specification estimation means 36 for the detected pulse. In addition, the number of hits is calculated by counting the number of pulses with a constant pulse interval for successive pulse trains. Then, based on the detected pulse width, pulse interval, and number of hits, it is checked against the specification table, and the closest pulse specification is estimated as the pulse specification of the direct wave. Since the specification table which is a candidate for the pulse specification of the transmitter is already known on the receiving radar device side, this verification is possible.

推定されたパルス諸元を元に、レプリカ作成手段37にて直接波信号のレプリカ(送信電波を検波したもの、つまり送信パルスに相当)を作成する。   Based on the estimated pulse specifications, a replica of a direct wave signal (a transmission wave detected, that is, a transmission pulse) is created by the replica creation means 37.

検波後の受信信号と、直接波信号のレプリカに対して相互相関計算手段33にて相互相関計算を行なう。   The cross-correlation calculation unit 33 performs cross-correlation calculation on the received signal after detection and the replica of the direct wave signal.

送信側レーダ装置が送信する送信電波は、3次元の指向方位(アジマス角及びエレベーション角)及び指向距離によってパルス繰り返し周波数(パルス間隔の逆数)、パルス幅及びヒット数が異なっているから、推定したパルス諸元から、送信側レーダ装置が指向している目標が存在するレンジ範囲が決まるため、この範囲に限定して相互相関結果のコヒーレント積分を行なう。   The transmission radio wave transmitted by the transmission-side radar device is estimated because the pulse repetition frequency (reciprocal of the pulse interval), the pulse width, and the number of hits differ depending on the three-dimensional directivity (azimuth angle and elevation angle) and directivity distance. Since the range of the target in which the transmission-side radar apparatus is directed is determined from the pulse specifications, the coherent integration of the cross-correlation result is performed only within this range.

そして、遅延時間推定手段34にて直接波と散乱波の受信時刻の差から遅延時間を推定する。前記式(1)の関係から、直接波と散乱波の到来時刻差tから目標がR+R=ct+R(一定)である楕円上に存在すると言える。また、推定したパルス諸元から送信側レーダ装置が指向している目標が存在するレンジ範囲が求まり、このレンジ範囲内に絞って、目標位置の位置標定を行なうことができる。 Then, the delay time estimation means 34 estimates the delay time from the difference between the reception times of the direct wave and the scattered wave. From the relationship of the formula (1), it can be said that the target exists on an ellipse with R 1 + R 2 = ct + R (constant) from the arrival time difference t between the direct wave and the scattered wave. Further, a range range where the target directed by the transmission-side radar apparatus exists is obtained from the estimated pulse specifications, and the target position can be determined by narrowing down to the range range.

本実施の形態によれば、下記の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 送信側レーダ装置からの送信電波が、指向方位及び指向距離によってパルス繰り返し周波数、パルス幅及びヒット数を含むパルス諸元が異なることに鑑み、前記パルス諸元の候補である諸元テーブルを既知としている(諸元テーブルを有している)受信側レーダ装置にて目標の位置標定を行う際に、前記送信電波のパルス諸元を解析し、利用することで、目標の存在する概ねの範囲を推定し、目標検出感度の向上や計算負荷の低減を図ることが可能である。 (1) A specification table that is a candidate for the pulse specification, considering that the transmission radio wave from the transmission-side radar device has different pulse specifications including the pulse repetition frequency, the pulse width, and the number of hits depending on the pointing direction and the pointing distance. When the position of a target is determined by a receiving-side radar apparatus that has a known (having a specification table), by analyzing and using the pulse specifications of the transmission radio wave, the existence of the target It is possible to improve the target detection sensitivity and reduce the calculation load.

(2) 受信した直接波信号からパルス諸元を解析し雑音のない送信パルスのレプリカを作成して相互相関計算に利用するので、直接波中に含まれる雑音成分の影響を除去でき、パルス圧縮の効率を維持できる。 (2) Analyzing pulse specifications from the received direct wave signal, creating a replica of the transmitted pulse without noise and using it for cross-correlation calculations, eliminating the effects of noise components contained in the direct wave and pulse compression Can maintain efficiency.

(3) 送信側レーダ装置が送信する送信電波のパルス諸元は、レーダ装置が標定している、又は標定しようとしている目標の送信側レーダ装置からの距離及び方位により変化することを利用し、相関処理結果のコヒーレント積分の処理範囲を限定し、計算負荷を低減ささせる効果がある。また、推定したパルス諸元を使ってコヒーレント積分が行えるので、受信信号の信号対雑音比を改善することも可能である。 (3) Utilizing the fact that the pulse specifications of the transmission radio wave transmitted by the transmission-side radar device are changed by the distance and direction from the transmission-side radar device of the target that the radar device is or is trying to locate, There is an effect of reducing the calculation load by limiting the processing range of the coherent integration of the correlation processing result. In addition, since coherent integration can be performed using the estimated pulse specifications, it is possible to improve the signal-to-noise ratio of the received signal.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way.

本発明に係るバイスタティックレーダ装置の実施の形態を示す構成図である。It is a block diagram which shows embodiment of the bistatic radar apparatus which concerns on this invention. 本発明の実施の形態の動作説明を示すフローチャートである。It is a flowchart which shows operation | movement description of embodiment of this invention. 従来のバイスタティックレーダ装置を示す構成図である。It is a block diagram which shows the conventional bistatic radar apparatus.

符号の説明Explanation of symbols

1 送信機
10 受信側レーダ装置
11,21,31 受信空中線
12,22,32 検波手段
13,33 相互相関計算手段
14,34 遅延時間推定手段
35 直接波抽出手段
36 パルス諸元推定手段
37 レプリカ作成手段
38 コヒーレント積分手段
DESCRIPTION OF SYMBOLS 1 Transmitter 10 Receiving side radar device 11, 21, 31 Reception antenna
12, 22, 32 Detection means
13, 33 Cross-correlation calculation means 14, 34 Delay time estimation means
35 Direct wave extraction means 36 Pulse specification estimation means 37 Replica creation means 38 Coherent integration means

Claims (4)

送信側レーダ装置と、前記送信側レーダー装置から離隔した位置にあって、前記送信側レーダ装置から送信された送信電波を受信する受信側レーダ装置とを備えるバイスタティックレーダ装置において、
前記送信電波は、指向方位及び指向距離によってパルス繰り返し周波数、パルス幅及びヒット数を含むパルス諸元が異なるものであり、
前記パルス諸元の候補である諸元テーブルが前記受信側レーダ装置側で既知であり、
前記パルス諸元が前記送信電波の指向方位及び距離範囲に依存することを利用して目標の位置標定を行なうことを特徴とするバイスタティックレーダ装置。
In a bistatic radar apparatus comprising: a transmission-side radar apparatus; and a reception-side radar apparatus that is located at a position separated from the transmission-side radar apparatus and that receives a transmission radio wave transmitted from the transmission-side radar apparatus.
The transmission radio wave has different pulse specifications including the pulse repetition frequency, the pulse width, and the number of hits depending on the directional direction and the directional distance,
A specification table that is a candidate for the pulse specification is known on the receiving radar device side,
A bistatic radar apparatus, wherein a target position is determined by utilizing the fact that the pulse specifications depend on a directivity direction and a distance range of the transmission radio wave.
前記受信側レーダ装置で受信した受信信号に含まれる、前記送信側レーダ装置から前記受信側レーダ装置に直接伝播する信号である直接波信号のパルス諸元を解析し、既知である前記送信電波のパルス諸元と照合して送信パルスのレプリカを作成し、前記レプリカと前記送信電波が目標で散乱された信号である散乱波信号との相互相関計算を行うことでパルス圧縮する請求項1記載のバイスタティックレーダ装置。   Analyzing pulse specifications of a direct wave signal, which is a signal directly propagated from the transmission side radar device to the reception side radar device, included in the reception signal received by the reception side radar device, The pulse compression is performed by creating a replica of a transmission pulse by collating with a pulse specification, and performing a cross-correlation calculation between the replica and a scattered wave signal that is a signal obtained by scattering the transmission radio wave at a target. Bistatic radar device. 前記パルス諸元の照合により推定した前記送信電波のパルス諸元を利用し、相互相関結果のコヒーレント積分を行い信号対雑音比を改善する請求項2記載のバイスタティックレーダ装置。   3. The bistatic radar device according to claim 2, wherein the pulse specifications of the transmission radio wave estimated by collating the pulse specifications are used to improve the signal-to-noise ratio by performing coherent integration of the cross-correlation result. 前記コヒーレント積分のレンジ処理範囲を、推定したパルス諸元に対応する目標標定範囲により限定し、計算負荷を低減する請求項3記載のバイスタティックレーダ装置。   4. The bistatic radar device according to claim 3, wherein a range processing range of the coherent integration is limited by a target orientation range corresponding to the estimated pulse data to reduce a calculation load.
JP2008292861A 2008-11-15 2008-11-15 Bistatic radar device Active JP4779128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292861A JP4779128B2 (en) 2008-11-15 2008-11-15 Bistatic radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292861A JP4779128B2 (en) 2008-11-15 2008-11-15 Bistatic radar device

Publications (2)

Publication Number Publication Date
JP2010117332A true JP2010117332A (en) 2010-05-27
JP4779128B2 JP4779128B2 (en) 2011-09-28

Family

ID=42305084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292861A Active JP4779128B2 (en) 2008-11-15 2008-11-15 Bistatic radar device

Country Status (1)

Country Link
JP (1) JP4779128B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029420A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Passive radar system
JP2013044642A (en) * 2011-08-24 2013-03-04 Mitsubishi Electric Corp Passive radar device
CN104714224A (en) * 2015-03-13 2015-06-17 哈尔滨工程大学 Bistatic MIMO radar dynamic tracking method based on cultural modem cluster searching mechanism
CN105137417A (en) * 2015-08-17 2015-12-09 周口师范学院 Fixed target time domain positioning method of bistatic radar
JP2017026444A (en) * 2015-07-22 2017-02-02 格一 塩見 Reflection type radar receiver and secondary surveillance radar system
KR20190090592A (en) * 2018-01-25 2019-08-02 광운대학교 산학협력단 Polar format processing based moving target detection apparatus and method in bistatic ground-to-air radar environment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148318A (en) * 1992-11-04 1994-05-27 Toshiba Corp Bi-static radar device
JP2002181925A (en) * 2000-12-18 2002-06-26 Mitsubishi Electric Corp Passive radar apparatus
JP2002350538A (en) * 2001-05-29 2002-12-04 Oki Electric Ind Co Ltd Target identifier of sonar
JP2003149323A (en) * 2001-11-07 2003-05-21 Mitsubishi Electric Corp Radar device
JP2006242844A (en) * 2005-03-04 2006-09-14 Mitsubishi Electric Corp Radar apparatus and transmitted beam controlling technique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148318A (en) * 1992-11-04 1994-05-27 Toshiba Corp Bi-static radar device
JP2002181925A (en) * 2000-12-18 2002-06-26 Mitsubishi Electric Corp Passive radar apparatus
JP2002350538A (en) * 2001-05-29 2002-12-04 Oki Electric Ind Co Ltd Target identifier of sonar
JP2003149323A (en) * 2001-11-07 2003-05-21 Mitsubishi Electric Corp Radar device
JP2006242844A (en) * 2005-03-04 2006-09-14 Mitsubishi Electric Corp Radar apparatus and transmitted beam controlling technique

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029420A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Passive radar system
JP2013044642A (en) * 2011-08-24 2013-03-04 Mitsubishi Electric Corp Passive radar device
CN104714224A (en) * 2015-03-13 2015-06-17 哈尔滨工程大学 Bistatic MIMO radar dynamic tracking method based on cultural modem cluster searching mechanism
JP2017026444A (en) * 2015-07-22 2017-02-02 格一 塩見 Reflection type radar receiver and secondary surveillance radar system
CN105137417A (en) * 2015-08-17 2015-12-09 周口师范学院 Fixed target time domain positioning method of bistatic radar
KR20190090592A (en) * 2018-01-25 2019-08-02 광운대학교 산학협력단 Polar format processing based moving target detection apparatus and method in bistatic ground-to-air radar environment
KR102128156B1 (en) 2018-01-25 2020-07-09 광운대학교 산학협력단 Polar format processing based moving target detection apparatus and method in bistatic ground-to-air radar environment

Also Published As

Publication number Publication date
JP4779128B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
CN108761418B (en) Radar multipath target eliminating method based on micro-Doppler characteristics
CN106125053B (en) Pulse Doppler radar polarization anti jamming method
JP4779128B2 (en) Bistatic radar device
CN107607937B (en) Radar target ranging method based on time reversal
CN103954951A (en) Power mid value and normalization covariance estimation based sea-surface target detection method
CN107462873A (en) A kind of radar chaff method for quickly identifying
KR102162284B1 (en) Cloud data processing gnss jamming monitoring method and system
JP2009250616A (en) Radar signal processing device
CN106879068A (en) The arrival time method of estimation of signal under a kind of strong multi-path environment
KR20170029899A (en) Apparatus and method for estimating lfm signal parameter of active sonar system
KR101908455B1 (en) Low power Frequency Modulated Continuous Waveform system and controlling method thereof
Rovnáková et al. Signal processing for through wall moving target tracking by M-sequence UWB radar
US10673485B2 (en) Method and receiving node for determining time of arrival, TOA, for a received radio signal
KR101582404B1 (en) Method and apparatus for counting number of object using uwb radar
JP6398689B2 (en) Signal processing apparatus, signal processing method, and program
JP3881209B2 (en) Doppler shift frequency measuring device and device using the same
JP4994769B2 (en) Radar equipment
JP5996325B2 (en) Pulse detector
CN106501787B (en) Coded Signals method for parameter estimation based on smooth pseudo derivative feedback
KR101674254B1 (en) Method and apparatus for processing radar signal
KR102097080B1 (en) Multiple transmit/receive array antenna radar apparatus and method using virtual channel
JP2021105536A (en) Sensor device
JP2008256409A (en) Target detection apparatus
KR20200114467A (en) Method and apparatus for reducing number of radar target detection operations
JP6161465B2 (en) Radar signal processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350