JP2010117326A - Device and method for measuring stress - Google Patents

Device and method for measuring stress Download PDF

Info

Publication number
JP2010117326A
JP2010117326A JP2008292703A JP2008292703A JP2010117326A JP 2010117326 A JP2010117326 A JP 2010117326A JP 2008292703 A JP2008292703 A JP 2008292703A JP 2008292703 A JP2008292703 A JP 2008292703A JP 2010117326 A JP2010117326 A JP 2010117326A
Authority
JP
Japan
Prior art keywords
optical path
path difference
value
rgb value
measurement sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008292703A
Other languages
Japanese (ja)
Inventor
Masahiko Kase
征彦 加瀬
Fumihide Aono
史英 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2008292703A priority Critical patent/JP2010117326A/en
Publication of JP2010117326A publication Critical patent/JP2010117326A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stress measuring device and a stress measuring method capable of measuring optical path difference with higher accuracy, by removing a problem of color irregularity of a background color, and by reducing a measurement error caused by a sense generated in each measurer relative to the optical path difference and a measurement error caused by the color irregularity of the background. <P>SOLUTION: This device includes: a background illumination means 1 including a white light source 1a; first and second polarizing plates 2, 3 forming a crossed Nicol state; a sensitive color plate 4 constituted so that a green (G) value becomes minimum in the state of the optical path difference 0 nm; a photographing means 5 for photographing an image transmitted through the members 2, 3, 4; and an analysis means 6 for operating a difference between a background color RGB value acquired from image data of only the background color and an optical path difference standard plate RGB value acquired from image data including an optical path difference standard plate to use the result as a reference RGB value, using a difference between a measured sample RGB value acquired from image data of a measured sample and the reference RGB value as an optical path difference estimated value, and operating by adding a thickness of the measured sample and a photoelastic coefficient of the material to the optical path difference estimated value, to thereby determine a stress value of the measuring sample. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガラス製品などの透明性部材の応力測定に用いる応力測定装置および応力測定方法に関する。   The present invention relates to a stress measuring apparatus and a stress measuring method used for measuring a stress of a transparent member such as a glass product.

ガラス製品のうち、例えば放電ランプなどの民生、産業用途に広く使用されている製品は、動作時の圧力、温度といった負荷が作用する場合にも要求される寿命時間まで破壊しないことが求められる。ガラス製品は、グリフィスのクラック理論によって説明されるように、表面に微視的な大きさの傷(クラック)が起点となって破壊しやすいとともに、荷重が作用する場合、特に引っ張り方向の応力が強く作用する部分から破壊する特徴を有している。   Among glass products, for example, products widely used in consumer and industrial applications such as discharge lamps are required not to be destroyed until the required life time even when a load such as pressure and temperature during operation is applied. As explained by Griffith's crack theory, glass products are susceptible to breakage starting from microscopic scratches (cracks) on the surface. It has the feature of breaking from the strongly acting part.

一般に、ガラス製品の破壊は、(1)製作後にガラス内に発生する残留応力、(2)動作時の負荷、の2因子が使用時に相加して作用する応力がガラスの破壊限界を越えた場合に発生する。このため、製品を設計、製作する際は上記2因子がどの程度破壊に影響を及ぼすかを予測するとともに、出荷前の検査などで破壊の危険がある製品を除外することが、消費者に安全な製品を提供するうえで重要である。   In general, fracture of glass products is due to the fact that (1) residual stress generated in the glass after production and (2) load during operation, which is a combination of two factors acting during use, exceeded the fracture limit of glass. Occurs when. For this reason, when designing and manufacturing products, it is safe for consumers to predict how much the above two factors will affect destruction and to exclude products that are at risk of destruction by inspection before shipping. It is important to provide a reliable product.

ガラス内の応力を可視化し、ガラス製品の良否を判断する手法として光弾性による検査や測定方法が広く用いられている。この方法は、透明な物体に応力が生じている場合、その物体に光を通過させると光に複屈折が生じることを利用して、複屈折の強弱、分布から応力状態を調べる方法である。この手法を用いた検査装置はガラスひずみ計測器などの名称で市販されている。また、上記光弾性の手法のうち、色の分布によって応力状態を判断する鋭敏色法が広く用いられている。   Inspection and measurement methods using photoelasticity are widely used as methods for visualizing stress in glass and judging the quality of glass products. This method is a method for examining the stress state from the strength and distribution of birefringence by utilizing the fact that when a transparent object is stressed and light is passed through the object, birefringence is generated in the light. An inspection apparatus using this technique is commercially available under the name of a glass strain measuring instrument. In addition, among the photoelastic methods, a sensitive color method for determining a stress state based on a color distribution is widely used.

鋭敏色法は、測定者が応力測定装置内に観察したい測定試料を入れ、現れる鋭敏色の分布状態を目視で観察することにより、応力の有無およびその強度を調べることができる。応力強度は、標準板と称される色見本と測定試料の色状態を比較し、色見本により得られる複屈折の光路差から応力値を計算するのが一般的である。   In the sensitive color method, a measurer puts a measurement sample to be observed in a stress measuring device and visually observes the distribution state of the sensitive color that appears, whereby the presence or absence of stress and its strength can be examined. The stress intensity is generally calculated by comparing the color state of a color sample called a standard plate with the color state of a measurement sample and calculating the stress value from the optical path difference of birefringence obtained by the color sample.

例えば、鋭敏色法を用いた応力測定器および測定方法として、光源と、光軸に対し固定された固定偏光板と、幅および位置調整可能なスリットと、バビネ補償板を用いた第1の測定手段と、直交鋭敏色板を用いた第2の測定手段と、前記第1および第2の測定手段を切換えるための切換え手段と、光軸に対し回転可能な回転偏光板と、接眼レンズとを備えた透明板状体のエッジ応力測定器および測定方法が知られている(特許文献1参照。)。   For example, as a stress measuring instrument and measuring method using a sensitive color method, a first measurement using a light source, a fixed polarizing plate fixed with respect to the optical axis, a slit whose width and position can be adjusted, and a Babinet compensator Means, a second measuring means using an orthogonal sensitive color plate, a switching means for switching the first and second measuring means, a rotating polarizing plate rotatable with respect to the optical axis, and an eyepiece An edge stress measuring device and a measuring method for a transparent plate-like body provided are known (see Patent Document 1).

また、鋭敏色法を用いて応力状態を可視化する場合、写真機などを用いて測定試料の鋭敏色を撮影し、そのRGBの色特性をマッピングすることで応力状態を可視化することが行われている。   Also, when visualizing the stress state using the sensitive color method, the stress state is visualized by photographing the sensitive color of the measurement sample using a photographer or the like and mapping the RGB color characteristics. Yes.

特開2003−262553号公報JP 2003-262553 A

従来の応力測定装置を用いて応力を測定する場合の問題点として、以下がある。
(1)色見本間の差が小さい場合、光路差を厳密に判断することが難しい。
(2)測定者により、色の感覚に偏差が生じる場合があり、得られた光路差が測定者によって変化する場合がある。
(3)応力測定装置の光源や拡散板の特性に起因して、背景色に色むらが生じる場合が多くて、視野内の測定位置によって得られる光路差が異なり、正確な応力状態を判断することが難しい。この問題は、光源や拡散板の経年劣化に起因していて、光源や拡散板などの配置を改良しても解決し得ないで依然として存在するため、正確な応力の数値化が困難であった。したがって、同応力の場合にも異応力として数値が測定される。また、これとは逆に異応力が作用する場合にも同応力として測定される場合があり、問題が生じていた。さらに、応力測定装置の位置やその周囲の明るさなどによっても影響を受ける。さらに、写真データなどでデータ収集、解析を行い可視化する場合にも背景色や色むらの問題から測定日、測定環境間で光路差が変動する場合がある。
Problems when measuring stress using a conventional stress measuring device include the following.
(1) When the difference between the color samples is small, it is difficult to accurately determine the optical path difference.
(2) Depending on the measurer, the color sense may vary, and the obtained optical path difference may vary depending on the measurer.
(3) Due to the characteristics of the light source and diffusion plate of the stress measurement device, the background color often has uneven color, and the optical path difference obtained differs depending on the measurement position in the field of view, so that an accurate stress state is judged. It is difficult. This problem is caused by aging of the light source and the diffusion plate, and it cannot be solved even if the arrangement of the light source and the diffusion plate is improved, so it is difficult to accurately quantify the stress. . Therefore, even in the case of the same stress, a numerical value is measured as a different stress. On the contrary, when a different stress is applied, the stress may be measured as the same stress, causing a problem. Furthermore, it is also affected by the position of the stress measuring device and the brightness around it. Furthermore, even when data is collected and analyzed with photographic data and visualized, the optical path difference may vary between measurement dates and measurement environments due to problems of background color and color unevenness.

前記(3)の問題点は、上述から理解できるように鋭敏色法を用いて応力状態を可視化する場合であっても解決されていない。   The problem (3) has not been solved even when the stress state is visualized using a sensitive color method as can be understood from the above description.

本発明は、背景色の色むらの問題をなくして、透明質物体の光路差について、測定者毎に生じる感覚に起因する測定誤差および背景の色むらに起因する測定誤差を減少させて、光路差測定をより一層高精度で行うことができる応力測定装置および応力測定方法を提供することを目的とする。   The present invention eliminates the problem of uneven color of the background color, reduces the measurement error caused by the sensation generated for each measurer and the measurement error caused by the uneven color of the background for the optical path difference of the transparent object, and reduces the optical path. An object of the present invention is to provide a stress measuring apparatus and a stress measuring method capable of performing difference measurement with higher accuracy.

第1の発明の応力測定装置は、白色光源を備え、測定試料をその背方から照明する背景照明手段と;背景照明手段および測定試料の間に介在する第1の偏向板と;白色光源を備え、測定試料をその背方から照明する背景照明手段と;背景照明手段および測定試料の間に介在する第1の偏向板と;測定試料を挟んで第1の偏向板に対向し、かつ第1の偏向板と協働して直交ニコル状態を作る第2の偏向板と;緑色(G)値を光路差0nmの状態で最小にするように構成され、測定試料および第2の偏向板の間に介在する鋭敏色板と;第2の偏向板を透過した画像を撮影する撮影手段と;背景照明手段の前方に光路差標準板を入れて撮影した画像データから得た光路差標準板RGB値と、背景色のみの画像データから得た背景色RGB値との差を演算して基準RGB値とし、測定試料の画像データから得た測定試料RGB値と基準RGB値との差を光路差推定値とし、光路差推定値に測定試料の厚さおよび材料の光弾性係数を加え演算して測定試料の応力値を求める解析手段と;を具備していることを特徴としている。   A stress measurement device according to a first aspect of the present invention includes a background illumination unit that includes a white light source and illuminates a measurement sample from the back; a first deflection plate interposed between the background illumination unit and the measurement sample; and a white light source. A background illumination means for illuminating the measurement sample from the back; a first deflection plate interposed between the background illumination means and the measurement sample; and opposed to the first deflection plate with the measurement sample sandwiched therebetween A second deflector that cooperates with the first deflector to create an orthogonal Nicol state; and is configured to minimize the green (G) value in a state where the optical path difference is 0 nm, between the measurement sample and the second deflector An intervening sensitive color plate; photographing means for photographing an image transmitted through the second deflecting plate; and an RGB value of an optical path difference standard plate obtained from image data obtained by photographing an optical path difference standard plate in front of the background illumination means; The difference from the RGB value of the background color obtained from the image data of only the background color Calculate the reference RGB value, and use the difference between the measurement sample RGB value obtained from the image data of the measurement sample and the reference RGB value as the optical path difference estimation value. The optical path difference estimation value includes the thickness of the measurement sample and the photoelastic coefficient of the material. And an analysis means for calculating the stress value of the measurement sample by adding

第2の発明の応力測定方法は、背景色のみの画像を撮影して得た画像データを変換して背景色RGB値を求め、次に背景照明手段の前方に光路差標準板を入れて撮影して得た画像データを変換して光路差標準板RGB値を求め、光路差標準板RGB値と背景色データRGB値の差を基準RGB値として予め求める第1の工程と;次に背景照明手段の前方に測定試料を入れて撮影して得た画像データを変換して測定試料RGB値を求め、測定試料RGB値と予め得た基準RGB値の差を比較して光路差推定値を求め、光路差推定値に測定試料の厚さおよびその材料の光弾性係数を加えて演算して測定試料の応力を求める第2の工程と;を具備していることを特徴としている。   In the stress measuring method of the second invention, image data obtained by photographing an image of only the background color is converted to obtain a background color RGB value, and then an optical path difference standard plate is inserted in front of the background illumination means. A first step of obtaining the RGB value of the optical path difference standard plate by converting the image data obtained in this manner, and obtaining in advance the difference between the RGB value of the optical path difference standard plate and the background color data RGB value as a reference RGB value; The measurement sample RGB value is obtained by converting the image data obtained by photographing the measurement sample in front of the means, and the optical path difference estimated value is obtained by comparing the difference between the measurement sample RGB value and the reference RGB value obtained in advance. And a second step of calculating a stress of the measurement sample by adding the thickness of the measurement sample and the photoelastic coefficient of the material to the estimated optical path difference value.

第1の発明によれば、解析手段が、光路差標準板を含む画像データから得た光路差標準板RGB値と背景色のみの画像データから得た背景色RGB値との差を演算して基準RGB値とし、測定試料の画像データから得た測定試料RGB値と基準RGB値との差を演算して光路差推定値とし、光路差推定値に測定試料の厚さおよび材料の光弾性係数を加え演算して測定試料の応力値を求めることにより、背景色の色むらの問題をなくして、背景色むらに起因する測定誤差を減少させるとともに、ガラスなどの透明質物体からなる測定試料の光路差について測定者毎に生じる感覚に起因する測定誤差をなくして、光路差測定をより一層高精度で行うことができる応力測定装置を提供することができる。   According to the first invention, the analyzing means calculates a difference between the optical path difference standard plate RGB value obtained from the image data including the optical path difference standard plate and the background color RGB value obtained from the image data of only the background color. The reference RGB value is calculated, and the difference between the measurement sample RGB value obtained from the image data of the measurement sample and the reference RGB value is calculated to obtain an optical path difference estimated value. The optical path difference estimated value includes the thickness of the measured sample and the photoelastic coefficient of the material. And calculating the stress value of the measurement sample by eliminating the problem of uneven color of the background color, reducing the measurement error caused by the uneven color of the background color, and reducing the measurement sample made of a transparent object such as glass. It is possible to provide a stress measuring apparatus that can perform optical path difference measurement with higher accuracy by eliminating measurement errors caused by a sense generated for each measurer with respect to the optical path difference.

第2の発明によれば、第1の工程において、背景色のみの画像データを変換して背景色RGB値を求め、次に背景照明手段の前方に光路差標準板を入れて撮影して得た画像データを変換して光路差標準板RGB値を求め、光路差標準板RGB値と背景色データRGB値の差を基準RGB値として予め求め、第2の工程において、背景照明手段の前方に測定試料を入れて撮影して得た画像データを変換して測定試料RGB値を求め、測定試料RGB値と予め得た基準RGB値の差を比較して光路差推定値を求め、光路差推定値に測定試料の厚さおよびその材料の光弾性係数を加えて演算して測定試料の応力を求めることにより、背景色の色むらの問題をなくして、背景色むらに起因する測定誤差を減少させるとともに、ガラスなどの透明質物体からなる測定試料の光路差について測定者毎に生じる感覚に起因する測定誤差をなくして、光路差測定をより一層高精度で行うことができる応力測定方法を提供することができる。   According to the second invention, in the first step, the image data of only the background color is converted to obtain the background color RGB value, and then the optical path difference standard plate is put in front of the background illumination means and photographed. The obtained image data is converted to obtain the RGB value of the optical path difference standard plate, and the difference between the RGB value of the optical path difference plate and the background color data RGB value is obtained in advance as a reference RGB value. The image data obtained by putting the measurement sample into the image is converted to obtain the measurement sample RGB value, the difference between the measurement sample RGB value and the reference RGB value obtained in advance is compared to obtain the optical path difference estimated value, and the optical path difference estimation is performed. By adding the thickness of the measurement sample and the photoelastic coefficient of the material to the value and calculating the stress of the measurement sample, the problem of uneven color of the background color is eliminated and measurement errors due to uneven color of the background are reduced. And transparent objects such as glass The optical path difference Ranaru measurement sample by eliminating the measurement error caused by the sensation occurs every measurer, it is possible to provide a more stress measuring method can be performed in a more accurate optical path difference measurement.

以下、図面を参照して本発明を実施するための形態を説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、第1の発明の応力測定装置を実施するための一形態を示すブロック図である。図において、応力測定装置は、背景照明手段1、第1および第2の偏向板2、3、鋭敏色板4、撮影手段5ならびに解析手段6を具備している。   FIG. 1 is a block diagram showing an embodiment for carrying out the stress measuring apparatus of the first invention. In the figure, the stress measuring device includes a background illumination means 1, first and second deflecting plates 2, 3, a sensitive color plate 4, an imaging means 5, and an analysis means 6.

背景照明手段1は、白色光源1aおよび拡散板1bを含み、測定試料11をその背方から白色光で照明する。白色光源1aは、例えば環形蛍光ランプなどからなり、白色光を発生する。また、拡散板1bは、測定試料11を均一照度で照明するために、白色光源1aから発生した白色光を拡散させる。   The background illumination means 1 includes a white light source 1a and a diffuser plate 1b, and illuminates the measurement sample 11 with white light from the back. The white light source 1a includes, for example, an annular fluorescent lamp and generates white light. The diffuser plate 1b diffuses white light generated from the white light source 1a in order to illuminate the measurement sample 11 with uniform illuminance.

第1および第2の偏向板2、3は、λ/4板とも称され、背景照明手段1の前方において、前後に対向する関係に配設されて直交ニコル状態を作り出す一対の偏向板であり、それらの間に測定試料11が配置される。そして、所望により一方、例えば第1の偏向板2を固定し、他方、例えば第2の偏向板3を回動可能にして、微調整を行って直交状態を確認できるようにすることができる。   The first and second deflecting plates 2 and 3 are also referred to as λ / 4 plates, and are a pair of deflecting plates that are arranged in a front-rear facing relationship in front of the background illumination means 1 to create an orthogonal Nicole state. The measurement sample 11 is arranged between them. If desired, for example, the first deflecting plate 2 can be fixed, and the second deflecting plate 3 can be turned, for example, so that the orthogonal state can be confirmed by fine adjustment.

鋭敏色板4は、緑色(G)値を光路差0nmの状態で最小にするように例えば透過光の偏向面を波長に依存する量だけ回転させるような結晶板で構成されている。そして、測定試料11および第2の偏向板3の間に配設される。そして、鋭敏色板4を透過する白色光中の緑色(G)値が光路差0nmの状態で最小になるように構成されているため、第2の偏向板3を透過する光に含まれる緑色(G)値が最小になるが、光路差が大きくなるにしたがって緑色(G)値が増加する。また、緑色(G)値の光路差が0nmの状態のとき、白色光のうち赤色(R)光および青色(B)光のみが透過して、赤紫色光のいわゆる鋭敏色になる。鋭敏色板4の透過光は、光路差に応じてその光色が敏感に変化する。   The sensitive color plate 4 is formed of a crystal plate that rotates, for example, the deflection surface of transmitted light by an amount depending on the wavelength so as to minimize the green (G) value in a state where the optical path difference is 0 nm. Then, it is disposed between the measurement sample 11 and the second deflection plate 3. Since the green (G) value in the white light transmitted through the sensitive color plate 4 is configured to be minimum in a state where the optical path difference is 0 nm, the green color included in the light transmitted through the second deflection plate 3 Although the (G) value is minimized, the green (G) value increases as the optical path difference increases. Further, when the optical path difference of the green (G) value is 0 nm, only red (R) light and blue (B) light among white light is transmitted, and a so-called sensitive color of red-violet light is obtained. The light color of the transmitted light of the sensitive color plate 4 changes sensitively according to the optical path difference.

撮影手段5は、第1および第2の偏向板2、3ならびに鋭敏色板4を透過した透過光が作る画像を撮影する手段であり、画像のRGB値を出力するディジタル式のもの、例えばCCDカメラなどであるのが望ましい。しかし、アナログ式の撮影手段であってもRGB値に変換するA/D変換器を付設すれば画像のRGB値を出力することができるから差し支えない。   The photographing means 5 is a means for photographing an image produced by the transmitted light that has passed through the first and second deflecting plates 2 and 3 and the sensitive color plate 4, and is a digital type that outputs RGB values of the image, for example, a CCD. A camera or the like is desirable. However, even if it is an analog type photographing means, an RGB value of an image can be output if an A / D converter for converting to an RGB value is attached.

解析手段6は、本発明の特徴的構成部分であり、応力測定の準備段階および応力測定の実行段階において、それぞれ所定の解析を行って背景色の色むらを相殺して応力値または/および応力強度分布を求めることができるように構成されている。また、所望によりその結果をモニタに表示するように構成することができる。解析手段6をパソコンなどのコンピュータを用いて構成することができる。   The analysis means 6 is a characteristic component of the present invention, and performs a predetermined analysis in each of the stress measurement preparation stage and the stress measurement execution stage to cancel out the color unevenness of the background color, and thereby the stress value or / and stress. It is comprised so that intensity distribution can be calculated | required. Moreover, it can comprise so that the result may be displayed on a monitor if desired. The analysis means 6 can be configured using a computer such as a personal computer.

測定試料11は、背景光が透過するように透明質物体であり、例えばガラスなどからなる。そして、その応力を測定する際に応力測定装置の第1の偏向板2と鋭敏色板4との間の光路上に配置される。   The measurement sample 11 is a transparent object that allows background light to pass through, and is made of, for example, glass. And when measuring the stress, it arrange | positions on the optical path between the 1st deflection plate 2 and the sensitive color plate 4 of a stress measuring device.

図2は、第2の発明の応力測定方法を実施するための一形態および第1の発明における解析手段における解析手順を示すフローチャートである。なお、図の中間を横切る線の上部は応力測定の準備段階としての第1の工程を、下部は応力測定の実行段階としての第2の工程)を、それぞれ示している。なお、図中の丸で囲んだ数字は一例としての手順を示し、以下では「」で囲んだ数字に変えて示す。   FIG. 2 is a flowchart showing an analysis procedure in one embodiment for implementing the stress measurement method of the second invention and the analysis means in the first invention. The upper part of the line crossing the middle of the figure shows the first step as a stress measurement preparation stage, and the lower part shows the second step as the stress measurement execution stage. Note that numbers in circles in the figure indicate an example procedure, and are shown in the following in place of numbers surrounded by “”.

応力測定の準備段階である(1)準備段階における手順は、以下のとおりである。
「1」では、撮影手段5を用いて「背景撮影」と表記し背景色のみの画像データを得る。この画像データは、光路差の標準板(以下、光路差標準板という。)および測定試料11を応力測定装置内へ入れないで、背景照明手段1のみを作動させて、背景色のみの画像を撮影手段5で撮影して取得したものである。
「2」では、背景色のみの画像データを撮影手段の視野の全域にわたりRGB値に変換して「背景データ」と表記した背景色RGB値を得る。
「3」では、「標準板を撮影」と表記しているように光路差標準板を応力測定装置内へ入れて撮影する。この撮影では、光路差標準板の光路差画像および背景色の画像を含めて全域を撮影するとともに、その撮影データを「光路差標準板RGB値」に変換する。
「4」では、光路差標準板RGB値と「2」の背景色RGB値の差を視野の全域にわたり演算して図中「RGB差値」と表記した基準RGB値を求める。
「5」で応力測定の準備段階が完了する。
The procedure in the preparation stage of the stress measurement (1) preparation stage is as follows.
In “1”, using the photographing unit 5, “background photographing” is described and image data of only the background color is obtained. The image data includes an optical path difference standard plate (hereinafter referred to as an optical path difference standard plate) and a measurement sample 11 that are not placed in the stress measuring device, and only the background illumination means 1 is operated to produce an image of only the background color. This is obtained by photographing with the photographing means 5.
In “2”, image data of only the background color is converted into RGB values over the entire field of view of the photographing unit, and a background color RGB value expressed as “background data” is obtained.
In “3”, the optical path difference standard plate is put into the stress measuring device and is photographed as described as “photographing the standard plate”. In this photographing, the entire region including the optical path difference image and the background color image of the optical path difference standard plate is photographed, and the photographing data is converted into “optical path difference standard plate RGB values”.
In “4”, a difference between the RGB value of the optical path difference standard plate and the background color RGB value of “2” is calculated over the entire field of view to obtain a reference RGB value represented as “RGB difference value” in the drawing.
“5” completes the stress measurement preparation stage.

なお、上記両画像の撮影はどちらが先でもよいが、背景色の変動の影響を受けないように同時期に行うべきである。また、応力測定の準備段階は、所望の時期に実施することができる。例えば、毎月1回実施してもよいし、測定のたびに実施するのでもよい。   Either of the two images may be taken first, but should be performed at the same time so as not to be affected by fluctuations in the background color. In addition, the stress measurement preparation stage can be performed at a desired time. For example, it may be performed once a month or may be performed every measurement.

応力測定の実行段階である(2)資料中の応力測定は、以下のとおりである。
「1」では、「試料を入れる」と表記しているように測定試料11を応力測定装置内へ入れて、測定試料11の光路差画像および背景色の画像を一緒に撮影手段5で撮影して「測定資料画像データ」を得る。測定試料画像データを視野の全域にわたり変換して測定試料RGB値を得る。
「2」では、測定試料RGB値と(1)の準備段階で求めた背景色RGB値との差を画像の全域にわたり演算して演算(RGB値)を得る。
「3」では、演算(RGB値)と(1)の準備段階で求めた基準RGB値を全域にわたり比較して推定光路差値を求める。
「4」では、推定光路差値に測定試料11の厚さおよびその材料の光弾性係数を加えて応力値を計算する。
「5」では、「4」の結果、測定試料11の応力値が得られる。
(2) Stress measurement in the material, which is the execution stage of stress measurement, is as follows.
In “1”, the measurement sample 11 is put into the stress measuring device as “put sample”, and the optical path difference image and the background color image of the measurement sample 11 are taken together by the photographing means 5. To obtain “measurement material image data”. The measurement sample image data is converted over the entire field of view to obtain measurement sample RGB values.
In “2”, the difference between the RGB value of the measurement sample and the background color RGB value obtained in the preparation stage of (1) is calculated over the entire area of the image to obtain the calculation (RGB value).
In “3”, the estimated optical path difference value is obtained by comparing the calculation (RGB value) and the reference RGB value obtained in the preparation stage of (1) over the entire area.
In “4”, the stress value is calculated by adding the thickness of the measurement sample 11 and the photoelastic coefficient of the material to the estimated optical path difference value.
In “5”, as a result of “4”, the stress value of the measurement sample 11 is obtained.

そうして、得られた応力値には、背景色の影響が相殺されてなくなっている。   Thus, the effect of the background color is not offset in the obtained stress value.

図3は、第1および第2の発明における背景色RGB値と光路差の関係を示すグラフである。図3のグラフは、鋭敏色法によって得られる光路差と背景色(白色)のRGB値の関係を示すグラフであり、図2の(1)の「2」に対応するものである。図中、横軸は光路差(nm)を、縦軸は色値(RGB)を、それぞれ示している。また、図中の曲線Gは波長530nmの緑色(G)値、曲線Rは赤色(R)値、曲線Bは青色(B)値であり、いずれも光路差とその光路差における色値の大きさを示している。   FIG. 3 is a graph showing the relationship between the background color RGB value and the optical path difference in the first and second inventions. The graph of FIG. 3 is a graph showing the relationship between the optical path difference obtained by the sensitive color method and the RGB value of the background color (white), and corresponds to “2” in (1) of FIG. In the figure, the horizontal axis represents the optical path difference (nm) and the vertical axis represents the color value (RGB). Also, the curve G in the figure is a green (G) value at a wavelength of 530 nm, the curve R is a red (R) value, and the curve B is a blue (B) value, both of which are the optical path difference and the magnitude of the color value in the optical path difference. It shows.

図3から理解できるように、光路差が0のときに緑色(G)値が最小であり、赤色(R)値が約195であり、青色(B)値が最大の約205であるから、青味がやや強い赤紫色の鋭敏色状態を呈する。光路差がプラス(+)側へ大きくなっていくにしたがい赤色(R)値が低減し、青色(B)値が大きな値で飽和し続けるので、鋭敏色(赤紫色)の青味が増していく。反対に、光路差がマイナス(−)側へ大きくなるにしたがい赤色(R)値が増加しやがて飽和し、青色(B)値が低減していくので、鋭敏色(赤紫色)の赤味が増していく。要するに、赤色(R)値および青色(B)値の正負符号が光路差0nmを境界として逆転することを利用して、透明質物体中の応力値および応力の方向を計算することができる。   As can be seen from FIG. 3, when the optical path difference is 0, the green (G) value is minimum, the red (R) value is about 195, and the blue (B) value is about 205, which is the maximum. It has a deep reddish purple color with a strong bluish tint. As the optical path difference increases toward the plus (+) side, the red (R) value decreases and the blue (B) value continues to saturate at a large value, increasing the bluishness of the sensitive color (red purple). Go. On the other hand, as the optical path difference increases to the minus (−) side, the red (R) value increases and eventually becomes saturated, and the blue (B) value decreases. It will increase. In short, the stress value and the direction of the stress in the transparent object can be calculated by utilizing the fact that the sign of the red (R) value and the blue (B) value is reversed with the optical path difference of 0 nm as a boundary.

図4は、第1および第2の発明における基準RGB値と光路差の関係を示すグラフである。図4に示すグラフは、図3に示す背景色RGB値と標準板各光路差RGB値の差を計算した結果を示していて、図2の(1)の「4」に対応するものである。図において、横軸は光路差(nm)を、縦軸は色値−光路差ゼロ色値を、それぞれ示す。   FIG. 4 is a graph showing the relationship between the reference RGB value and the optical path difference in the first and second inventions. The graph shown in FIG. 4 shows the result of calculating the difference between the background color RGB value shown in FIG. 3 and the standard plate optical path difference RGB value, and corresponds to “4” in (1) of FIG. . In the figure, the horizontal axis represents the optical path difference (nm), and the vertical axis represents the color value-zero optical path difference color value.

図4から理解できるように、図3と同様な色値の増減傾向が得られていることから、応力値およびその方向を判断することができる。   As can be understood from FIG. 4, since the increase / decrease tendency of the color value similar to that of FIG. 3 is obtained, the stress value and its direction can be determined.

図5は、光路差標準板RGB値のマッピング時における偏差を説明するグラフである。図において、横軸および縦軸はともに光路差(nm)を示す。また、図中の■は測定値、■の上下に付した範囲を示す記号は偏差の生じ得る範囲を示している。   FIG. 5 is a graph for explaining a deviation at the time of mapping the optical path difference standard plate RGB value. In the figure, both the horizontal axis and the vertical axis indicate the optical path difference (nm). Further, in the figure, ■ indicates a measured value, and symbols indicating ranges above and below ■ indicate a range where deviation can occur.

光路差標準板RGB値は、背景色の色むらを無視した従来技術に対応するものであり、横軸の光路差の値を測定値としたとき、縦軸において、測定値の上下に10nm程度の偏差が生じ得ることを示している。したがって、撮影画像全域の中の位置によっては、光路差に最大10nm程度の偏差が生じ得ることになる。   The RGB value of the optical path difference standard plate corresponds to the prior art in which the uneven color of the background color is ignored. When the optical path difference value on the horizontal axis is taken as the measurement value, the vertical axis is about 10 nm above and below the measurement value. It is shown that the deviation of can occur. Therefore, depending on the position in the entire captured image, a maximum deviation of about 10 nm can occur in the optical path difference.

図6は、第1および第2の発明の基準RGB値のマッピング時における偏差のない状態を説明するグラフである。図において、横軸および縦軸はともに光路差(nm)を示す。また、図中の■は測定値である。   FIG. 6 is a graph for explaining a state in which there is no deviation when mapping the reference RGB values of the first and second inventions. In the figure, both the horizontal axis and the vertical axis indicate the optical path difference (nm). Also, ■ in the figure is a measured value.

図6から理解できるように、本発明の基準RGB値を用いて測定試料の応力値およびその方向を計算すれば、上記偏差が生じなくなることが理解できる。   As can be understood from FIG. 6, it can be understood that the above deviation does not occur when the stress value and the direction of the measurement sample are calculated using the reference RGB values of the present invention.

ところで、光路差は、計算式:(光路差)=(光弾性係数)×(応力)×(厚さ)で表すことができる。したがって、この計算式を変形すれば、計算式:(応力)=(光路差)/(光弾性係数)×(厚さ)により、測定試料の光弾性係数および厚さが既知であるから、光路差および光路差の方向を測定して演算すれば、応力値および応力の方向を求めることができる。   By the way, the optical path difference can be expressed by a calculation formula: (optical path difference) = (photoelastic coefficient) × (stress) × (thickness). Therefore, if this calculation formula is modified, the photoelastic coefficient and thickness of the measurement sample are known from the calculation formula: (stress) = (optical path difference) / (photoelastic coefficient) × (thickness). By measuring and calculating the direction of the difference and the optical path difference, the stress value and the direction of the stress can be obtained.

また、計算結果の応力値および応力の方向を画像化したり、数値化したりしてモニタやドキュメントに表示させることができる。   Further, the stress value and the direction of the stress as a calculation result can be imaged or digitized and displayed on a monitor or a document.

第1の発明の応力測定装置を実施するための一形態を示すブロック図The block diagram which shows one form for implementing the stress measuring apparatus of 1st invention 第2の発明の応力測定方法を実施するための一形態および第1の発明における解析手段における解析手順を示すフローチャートThe flowchart which shows the analysis procedure in the form for implementing the stress measuring method of 2nd invention, and the analysis means in 1st invention 第1および第2の発明における背景色RGB値と光路差の関係を示すグラフThe graph which shows the relationship between the background color RGB value and the optical path difference in the first and second inventions 第1および第2の発明における基準RGB値と光路差の関係を示すグラフThe graph which shows the relationship between the reference | standard RGB value and optical path difference in 1st and 2nd invention 光路差標準板RGB値のマッピング時における偏差を説明するグラフOptical path difference standard plate Graph explaining the deviation when mapping RGB values 第1および第2の発明の基準RGB値のマッピング時における偏差のない状態を説明するグラフThe graph explaining the state without a deviation at the time of mapping of the reference RGB values of the first and second inventions

符号の説明Explanation of symbols

1…背景照明手段、1a…白色光源、1b…拡散板、2…第1の偏向板、3…第2の偏向板、4…鋭敏色板、5…撮影手段、6…解析手段   DESCRIPTION OF SYMBOLS 1 ... Background illumination means, 1a ... White light source, 1b ... Diffuser plate, 2 ... 1st deflection plate, 3 ... 2nd deflection plate, 4 ... Sensitive color plate, 5 ... Imaging means, 6 ... Analysis means

Claims (2)

白色光源を備え、測定試料をその背方から照明する背景照明手段と;
背景照明手段および測定試料の間に介在する第1の偏向板と;
測定試料を挟んで第1の偏向板に対向し、かつ第1の偏向板と協働して直交ニコル状態を作る第2の偏向板と;
緑色(G)値を光路差0nmの状態で最小にするように構成され、測定試料および第2の偏向板の間に介在する鋭敏色板と;
第2の偏向板を透過した画像を撮影する撮影手段と;
背景照明手段の前方に光路差標準板を入れて撮影した画像データから得た光路差標準板RGB値と、背景色のみの画像データから得た背景色RGB値との差を演算して基準RGB値とし、測定試料の画像データから得た測定試料RGB値と基準RGB値との差を光路差推定値とし、光路差推定値に測定試料の厚さおよび材料の光弾性係数を加え演算して測定試料の応力値を求める解析手段と;
を具備していることを特徴とする応力測定装置。
Background illumination means comprising a white light source and illuminating the measurement sample from the back;
A first deflection plate interposed between the background illumination means and the measurement sample;
A second deflecting plate that faces the first deflecting plate across the measurement sample and creates an orthogonal Nicol state in cooperation with the first deflecting plate;
A sensitive color plate configured to minimize the green (G) value in a state where the optical path difference is 0 nm and interposed between the measurement sample and the second deflecting plate;
Photographing means for photographing an image transmitted through the second deflection plate;
The standard RGB by calculating the difference between the RGB value of the optical path difference standard plate obtained from the image data taken with the optical path difference standard plate in front of the background illumination means and the background color RGB value obtained from the image data of only the background color The difference between the measurement sample RGB value obtained from the image data of the measurement sample and the reference RGB value is the optical path difference estimated value, and the optical path difference estimated value is added to the thickness of the measurement sample and the photoelastic coefficient of the material. An analysis means for obtaining a stress value of a measurement sample;
A stress measuring device comprising:
背景色のみの画像を撮影して得た画像データを変換して背景色RGB値を求め、次に背景照明手段の前方に光路差標準板を入れて撮影して得た画像データを変換して光路差標準板RGB値を求め、光路差標準板RGB値と背景色データRGB値の差を基準RGB値として予め求める第1の工程と;
次に背景照明手段の前方に測定試料を入れて撮影して得た画像データを変換して測定試料RGB値を求め、測定試料RGB値と予め得た基準RGB値の差を比較して光路差推定値を求め、光路差推定値に測定試料の厚さおよびその材料の光弾性係数を加えて演算して測定試料の応力を求める第2の工程と;
を具備していることを特徴とする応力測定方法。
Image data obtained by photographing an image of only the background color is converted to obtain a background color RGB value, and then the image data obtained by photographing with an optical path difference standard plate placed in front of the background illumination means is converted. A first step of obtaining an optical path difference standard plate RGB value and obtaining in advance a difference between the optical path difference standard plate RGB value and the background color data RGB value as a reference RGB value;
Next, convert the image data obtained by putting the measurement sample in front of the background illumination means to obtain the measurement sample RGB value, and compare the difference between the measurement sample RGB value and the reference RGB value obtained in advance to compare the optical path difference. A second step of obtaining an estimated value and calculating the stress of the measured sample by adding the thickness of the measured sample and the photoelastic coefficient of the material to the estimated optical path difference;
The stress measuring method characterized by comprising.
JP2008292703A 2008-11-14 2008-11-14 Device and method for measuring stress Pending JP2010117326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292703A JP2010117326A (en) 2008-11-14 2008-11-14 Device and method for measuring stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292703A JP2010117326A (en) 2008-11-14 2008-11-14 Device and method for measuring stress

Publications (1)

Publication Number Publication Date
JP2010117326A true JP2010117326A (en) 2010-05-27

Family

ID=42305081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292703A Pending JP2010117326A (en) 2008-11-14 2008-11-14 Device and method for measuring stress

Country Status (1)

Country Link
JP (1) JP2010117326A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152123A1 (en) * 2010-06-03 2011-12-08 ヤマハ発動機株式会社 Residual stress measurement device and residual stress measurement method
CN105043612A (en) * 2015-07-13 2015-11-11 清华大学 Stress measuring system of optical materials
CN108827511A (en) * 2018-05-30 2018-11-16 中国科学院高能物理研究所 The measurement method and measuring device of noncrystal transparent material internal stress
CN113514178A (en) * 2021-04-16 2021-10-19 江南大学 Photoelastic stress measurement system and method based on three-wavelength illumination light source
CN114061803A (en) * 2021-11-29 2022-02-18 江南大学 Circular polarization photoelastic stress measuring system and measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152123A1 (en) * 2010-06-03 2011-12-08 ヤマハ発動機株式会社 Residual stress measurement device and residual stress measurement method
JP2011252839A (en) * 2010-06-03 2011-12-15 Yamaha Motor Co Ltd Residual stress measurement device and residual stress measurement method
CN105043612A (en) * 2015-07-13 2015-11-11 清华大学 Stress measuring system of optical materials
CN108827511A (en) * 2018-05-30 2018-11-16 中国科学院高能物理研究所 The measurement method and measuring device of noncrystal transparent material internal stress
CN113514178A (en) * 2021-04-16 2021-10-19 江南大学 Photoelastic stress measurement system and method based on three-wavelength illumination light source
CN114061803A (en) * 2021-11-29 2022-02-18 江南大学 Circular polarization photoelastic stress measuring system and measuring method

Similar Documents

Publication Publication Date Title
TWI436051B (en) A pattern inspection apparatus, a pattern inspection method, and a recording medium in which a program is recorded
JP2010117326A (en) Device and method for measuring stress
US20150069247A1 (en) Method and system for real time inspection of a silicon wafer
TWI295369B (en) Inspection method and device for deformation of lens
Ajovalasit et al. RGB photoelasticity applied to the analysis of membrane residual stress in glass
JP4000632B2 (en) Display device inspection method and inspection device
JP6405828B2 (en) Crucible measurement method
JP2007170961A (en) Inspection device and inspection method
KR101661613B1 (en) Measuring method for skin condition
JPH06109545A (en) Color tone inspecting method
JP2006250721A (en) Inspection device and inspection method
JP2016064932A (en) Silica glass crucible
KR20120122301A (en) Automatic inspection apparatus for stain in the polarizing plate using color difference analysis
TW201122309A (en) Method of calibrating a light source
JP5163940B2 (en) Image quality inspection apparatus and image quality inspection method
JP2006071316A (en) Film thickness acquiring method
CN111487795B (en) Light leakage brightness detection system and detection method
JP2006300615A (en) Visual examination device and visual examination method
JP7411155B2 (en) Color unevenness inspection device and color unevenness inspection method
JP2007033223A (en) Measuring method of stress and stress measuring system
JP2016064931A (en) Crucible measurement device
TW201939014A (en) An automatic optical inspection system to obtain mura defect from the panel
JP2014085243A (en) True stress measuring method and apparatus
Chang et al. Determination of reflection photoelasticity fringes analysis with digital image-discrete processing
JP3506170B2 (en) Inspection apparatus and inspection method for semiconductor parts