JP2010116588A - Treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, method for producing metal with phosphate film formed by using the same, and method for forming phosphate film on metal surface - Google Patents

Treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, method for producing metal with phosphate film formed by using the same, and method for forming phosphate film on metal surface Download PDF

Info

Publication number
JP2010116588A
JP2010116588A JP2008288974A JP2008288974A JP2010116588A JP 2010116588 A JP2010116588 A JP 2010116588A JP 2008288974 A JP2008288974 A JP 2008288974A JP 2008288974 A JP2008288974 A JP 2008288974A JP 2010116588 A JP2010116588 A JP 2010116588A
Authority
JP
Japan
Prior art keywords
zinc
metal
phosphate
chemical conversion
phosphate film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008288974A
Other languages
Japanese (ja)
Inventor
Yoshio Moriya
喜夫 盛屋
Hitoshi Ishii
均 石井
Yuki Wakabayashi
祐輝 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2008288974A priority Critical patent/JP2010116588A/en
Publication of JP2010116588A publication Critical patent/JP2010116588A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for forming a sufficiently fine and dense phosphate film onto the inner sheet part of a metal component having a bag structure, particularly to the part, where the bag structure is narrow and the stirring of a treatment liquid is inferior. <P>SOLUTION: The treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, in which zinc phosphate fine particles are dispersed into water, contains zinc by 10 to 2,000 ppm as a soluble component, and has the pH of 4 to 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄鋼、亜鉛めっき鋼板、及びアルミニウム等の金属材料の表面に施されるリン酸塩被膜化成処理において、その化成処理前に化成反応の促進及び短時間化並びにリン酸塩被膜結晶の微細化を図るために用いられる表面調整用処理液並びにそれを用いてのリン酸塩被膜を形成した金属の製造方法及び金属表面にリン酸塩被膜を形成する方法に関するものであり、特に袋構造を有する金属構成体の内部に至るまで充分に微細なリン酸塩被膜を生成させるための技術に関するものである。   The present invention relates to a phosphate coating chemical conversion treatment applied to the surface of a metal material such as steel, galvanized steel sheet, and aluminum. The chemical conversion reaction is accelerated and shortened before the chemical conversion treatment, and the phosphate coating crystal is formed. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface conditioning treatment liquid used for miniaturization, a method for producing a metal having a phosphate coating formed thereon, and a method for forming a phosphate coating on a metal surface, and particularly a bag structure The present invention relates to a technique for generating a sufficiently fine phosphate coating up to the inside of a metal structure having s.

近年、自動車のリン酸塩処理においては塗装後の耐食性向上のために金属表面に微細で緻密なリン酸塩被膜結晶を形成することが求められている。そこで、微細で緻密なリン酸塩被膜結晶を得るために金属表面を活性化し、リン酸塩被膜結晶析出のための核をつくる目的で、リン酸塩被膜化成処理工程の前に表面調整工程が採用されている。以下に微細で緻密なリン酸塩被膜結晶を得るために行われている一般的なリン酸塩被膜化成工程を例示する。
(1)脱脂
(2)水洗(多段)
(3)表面調整
(4)リン酸塩被膜化成処理
(5)水洗(多段)
(6)純水洗
In recent years, in automobile phosphate treatment, it is required to form fine and dense phosphate-coated crystals on a metal surface in order to improve corrosion resistance after painting. Therefore, in order to activate the metal surface in order to obtain fine and dense phosphate-coated crystals, and to create nuclei for the precipitation of phosphate-coated crystals, a surface conditioning process is performed before the phosphate film conversion treatment process. It has been adopted. The following is an example of a general phosphate coating forming process that is performed to obtain fine and dense phosphate coating crystals.
(1) Degreasing (2) Washing with water (multistage)
(3) Surface adjustment (4) Phosphate coating conversion treatment (5) Water washing (multistage)
(6) Pure water washing

表面調整工程は、リン酸塩被膜結晶を微細で緻密なものにするために用いられる。その組成物に関しては、主成分としてチタン、ピロリン酸イオン、オルソリン酸イオン及びナトリウムイオン等から構成される「ジャーンステッド塩」と称されるものが使用されてきた(特許文献1〜3)。   The surface conditioning step is used to make the phosphate coating crystal fine and dense. Regarding the composition, what is called “Jurnsted salt” composed of titanium, pyrophosphate ion, orthophosphate ion, sodium ion and the like as main components has been used (Patent Documents 1 to 3).

また、最近ではさらに表面調整効果を上げて、リン酸塩被膜結晶を微細で緻密にするために、リン酸亜鉛の微粒子を用いた表面調整剤が用いられるようになり、これによって自動車の外板部に緻密な被膜を形成することが可能になった(特許文献4及び5)。   Recently, a surface conditioner using fine zinc phosphate particles has been used to further improve the surface conditioning effect and make the phosphate coating crystals finer and denser. It became possible to form a dense film on the part (Patent Documents 4 and 5).

しかしながら、自動車にはドアのように二枚以上の板から構成される袋状の構造を有する部分が多くあり、これらの袋構造内部ではリン酸塩被膜化成処理時に処理液の循環が悪く、攪拌が充分に行われないまま処理される。この結果、袋構造内部の板では(以下、袋構造内部を内板部、外部に露出した部分を外板部と称す)正常なリン酸塩被膜が形成され難く、充分に被膜で覆われずに一部で素材が露出した、いわゆる化成不良の状態となる。このような状態のリン酸塩被膜上に塗装を施しても充分な耐食性が得られないことは明らかである。従って、このような内板部にも充分なリン酸塩被膜を生成させる必要がある。   However, many parts of automobiles have a bag-like structure composed of two or more plates such as doors. Inside these bag structures, the circulation of the treatment liquid is poor during the phosphate coating conversion treatment, and stirring is carried out. Is processed without being fully performed. As a result, with the plate inside the bag structure (hereinafter, the inside of the bag structure is referred to as the inner plate portion and the portion exposed to the outside is referred to as the outer plate portion), it is difficult to form a normal phosphate coating and is not sufficiently covered with the coating. In other words, the material is partially exposed to a so-called formation failure state. It is clear that sufficient corrosion resistance cannot be obtained even if the phosphate coating in such a state is coated. Therefore, it is necessary to generate a sufficient phosphate coating on such an inner plate portion.

これを解決する手段としては、これまで袋構造内部への液の循環を促進するための設備的な手段を主とした技術がほとんどであり、これらは設備改造等大きなコストを必要とするものであった(特許文献6及び7)。また、袋構造の種類によっては充分な液の循環が期待できない場合もあった。
米国特許第2874081号 米国特許第2322349号 米国特許第2310239号 特開平10−245685号 特開2004−68149号 特開平9−279361号 特開平11−33477号 特開2003−27252 特開2006−299379
As a means to solve this, most of the techniques have so far been mainly equipment-related means for promoting the circulation of the liquid into the bag structure, and these require large costs such as equipment modification. (Patent Documents 6 and 7). In addition, depending on the type of bag structure, sufficient liquid circulation may not be expected.
U.S. Pat. No. 2,874,081 U.S. Pat. No. 2,322,349 US Pat. No. 2,310,239 Japanese Patent Laid-Open No. 10-245685 JP 2004-68149 A JP-A-9-279361 JP-A-11-33477 JP2003-27252 JP 2006-299379 A

前記の従来技術では袋構造を有する金属構成体の内板部、特に袋構造が狭くて処理液の攪拌が悪い部位に対して、充分に微細で緻密なリン酸塩被膜を生成させることができなかった。   In the above prior art, a sufficiently fine and dense phosphate coating can be formed on the inner plate portion of the metal structure having a bag structure, particularly on the site where the bag structure is narrow and the processing liquid is not stirred well. There wasn't.

本発明者等は、外板部と比較して内板部に充分な緻密な被膜が形成されない原因を調べた結果、リン酸塩化成処理液の構成成分である可溶性亜鉛成分(典型的には亜鉛イオン)がリン酸塩被膜の形成されやすさと大きく関わっていることを発見した。(以下「化成性」という用語を用いるが、「化成性」とはリン酸塩被膜が素材表面等の多少の反応性の差異に関わらず、如何に容易に被膜が形成されるかを示す用語である。)リン酸塩化成処理液中の可溶性亜鉛成分(典型的には亜鉛イオン)が多いと化成性が良く、内板部のリン酸塩被膜生成状況は良くなる。しかしながら、処理液中の可溶性亜鉛成分(典型的には亜鉛イオン)が多いとリン酸塩被膜の耐食性等の性能が劣化することが知られている。   As a result of examining the reason why a sufficiently dense coating is not formed on the inner plate part as compared with the outer plate part, the present inventors have found that a soluble zinc component (typically, a constituent component of the phosphate chemical conversion treatment liquid) It was discovered that zinc ions) are greatly related to the ease of formation of phosphate coatings. (Hereinafter, the term “chemical conversion” will be used. “Chemical conversion” is a term that indicates how easily a phosphate coating film can be formed regardless of some difference in reactivity such as the surface of the material.) If the amount of the soluble zinc component (typically zinc ions) in the phosphate chemical conversion treatment solution is large, the chemical conversion is good and the condition of forming the phosphate coating on the inner plate portion is improved. However, it is known that the performance such as the corrosion resistance of the phosphate coating deteriorates when the amount of the soluble zinc component (typically zinc ions) in the treatment liquid is large.

このため、種々検討を進めた結果、処理液が無攪拌状態の時、特に狭い袋構造の中ではリン酸塩被膜生成に伴って処理液中の可溶性亜鉛成分(典型的には亜鉛イオン)が減少し、被処理物界面に充分に可溶性亜鉛成分(典型的には亜鉛イオン)が供給されないために化成性が悪くなることをつきとめた。つまり、図1は本発明の実施例に用いた模擬金属構成体であるが、このように開口部が小さな穴のみであり、リン酸塩処理時に処理液はこの構成体の内部に閉じ込められる形となる。この中で、化成反応が進行してリン酸塩被膜が形成され始めると可溶性亜鉛成分(典型的には亜鉛イオン)が被膜成分として消費されて減少するが、開口部が小さく外部から可溶性亜鉛成分(典型的には亜鉛イオン)が拡散してこないため、亜鉛不足となり化成性が悪くなることを明らかにしたのである。さらに化成反応初期の被膜生成状況が化成性に大きな影響を及ぼすこともつきとめた。これより、表面調整剤に可溶性亜鉛成分(典型的には亜鉛イオン源となる水可溶性亜鉛塩)を添加して、被処理物界面の亜鉛濃度を上昇させ、化成性を向上させる方法を見出したのである。   For this reason, as a result of various investigations, the soluble zinc component (typically zinc ions) in the treatment liquid is generated along with the formation of the phosphate film, particularly in a narrow bag structure, when the treatment liquid is in an unstirred state. As a result, it was found that the chemical conversion property deteriorates because the soluble zinc component (typically zinc ions) is not sufficiently supplied to the interface of the workpiece. That is, FIG. 1 shows the simulated metal structure used in the embodiment of the present invention, but the opening is only a small hole in this way, and the treatment liquid is confined inside this structure during the phosphate treatment. It becomes. In this process, when the chemical conversion reaction proceeds and a phosphate coating starts to form, soluble zinc components (typically zinc ions) are consumed and reduced as coating components, but the openings are small and soluble zinc components from the outside. Since (typically, zinc ions) do not diffuse, it has been clarified that zinc becomes insufficient and chemical conversion becomes worse. It was also found that the film formation at the early stage of the chemical conversion reaction has a great influence on the chemical conversion. From this, a soluble zinc component (typically a water-soluble zinc salt serving as a zinc ion source) was added to the surface conditioner to increase the zinc concentration at the workpiece interface and improve the chemical conversion. It is.

表面調整剤には核生成を促進するために、水不溶性のリン酸亜鉛微粒子が含まれており、この微粒子が被処理物表面に吸着し、これを結晶核としてリン酸塩被膜結晶が成長する。この原理を応用したものが従来の表面調整技術である。   The surface conditioner contains water-insoluble zinc phosphate fine particles to promote nucleation, and these fine particles are adsorbed on the surface of the object to be processed, and phosphate-coated crystals grow as crystal nuclei. . The application of this principle is the conventional surface conditioning technology.

発明者等は、吸着したリン酸亜鉛粒子が有効に効果を発揮して核生成に至るには、被処理物界面の処理液の可溶性亜鉛成分濃度(典型的には亜鉛イオン濃度)が重要であり、可溶性亜鉛成分濃度(亜鉛イオン濃度)が高いことにより吸着したリン酸亜鉛微粒子が容易に成長することを見出したのである。つまり、水不溶性のリン酸塩微粒子だけでなく、さらに可溶性亜鉛成分(典型的には水可溶性の亜鉛イオン)を共存させた表面調整剤を用いることにより、化成性が大きく向上することを見出した。   The inventors consider that the soluble zinc component concentration (typically the zinc ion concentration) of the treatment liquid at the workpiece interface is important in order for the adsorbed zinc phosphate particles to be effective and lead to nucleation. It was found that the zinc phosphate fine particles adsorbed easily grow due to the high concentration of soluble zinc component (zinc ion concentration). In other words, it was found that the chemical conversion property is greatly improved by using a surface conditioner in which not only water-insoluble phosphate fine particles but also a soluble zinc component (typically water-soluble zinc ion) coexists. .

一方で、一般に表面調整処理液は表面調整工程中あるいはその後のリン酸塩処理工程に入るまでの間に、素材表面が錆びるのを防止するため、表面調整処理液のpHを8以上にしているものが殆どであり、このpHを保つためにリン酸ナトリウム等が使用されていることが多い。しかし、pH8以上の処理液中では可溶性亜鉛成分の内、大部分を占めると考えられる亜鉛イオンは水酸化亜鉛として沈殿するか、あるいはpH調整に用いられているリン酸ナトリウムによってリン酸亜鉛となって沈殿するため、可溶性亜鉛成分(典型的には亜鉛イオン)として表面調整処理液中に安定に存在させることはできない。このため、本発明ではpHを4〜8として可溶性亜鉛イオンが沈殿しないようにしている。これにより、可溶性の亜鉛イオンとして表面調整処理液中でも安定に存在でき、化成性を向上できる。以下、本発明を説明する。   On the other hand, in general, the surface conditioning treatment liquid has a pH of 8 or more in order to prevent the surface of the material from rusting during the surface conditioning process or before entering the subsequent phosphate treatment process. In most cases, sodium phosphate or the like is used to maintain this pH. However, zinc ions, which are considered to occupy most of the soluble zinc component in a treatment solution having a pH of 8 or higher, precipitate as zinc hydroxide or become zinc phosphate by sodium phosphate used for pH adjustment. Therefore, it cannot be stably present in the surface conditioning solution as a soluble zinc component (typically zinc ions). For this reason, in this invention, pH is set to 4-8 so that soluble zinc ions do not precipitate. Thereby, it can exist stably also in a surface adjustment processing liquid as a soluble zinc ion, and chemical conversion can be improved. The present invention will be described below.

本発明(1)は、リン酸亜鉛微粒子が水中に分散した、金属のリン酸塩被膜化成処理用の表面調整用処理液において、亜鉛を可溶性成分として10〜2000ppm含有し{典型的には亜鉛イオン(Zn2+)を10〜2000ppm含有し}、かつ、pHが4〜8であることを特徴とする表面調整用処理液である。 The present invention (1) is a surface-conditioning treatment solution for forming a metal phosphate film in which zinc phosphate fine particles are dispersed in water, and contains 10 to 2000 ppm of zinc as a soluble component {typically zinc It contains 10 to 2000 ppm of ions (Zn 2+ )} and has a pH of 4 to 8.

本発明(2)は、金属をリン酸塩化成処理液に適用する化成工程を含む、リン酸塩被膜が形成された金属の製造方法において、前記化成工程に先立ち、リン酸亜鉛微粒子が水中に分散した、金属のリン酸塩被膜化成処理用の表面調整用処理液であって、亜鉛を可溶性成分として10〜2000ppm含有し{典型的には亜鉛イオン(Zn2+)を10〜2000ppm含有し}、かつ、pHが4〜8である液を金属に適用する表面調整工程を含むことを特徴とする方法である。 This invention (2) is a manufacturing method of the metal in which the phosphate coating film was formed including the chemical conversion process which applies a metal to a phosphate chemical conversion liquid, Prior to the said chemical conversion process, zinc phosphate microparticles | fine-particles are in water. Dispersed surface conditioning treatment solution for metal phosphate coating, containing 10 to 2000 ppm of zinc as a soluble component {typically containing 10 to 2000 ppm of zinc ions (Zn 2+ ). } And a surface adjustment step of applying a liquid having a pH of 4 to 8 to the metal.

本発明(3)は、金属が袋構造を有する金属構成体である、前記発明(2)の方法である。   This invention (3) is the method of the said invention (2) whose metal is a metal structure which has a bag structure.

本発明(4)は、金属構成体が自動車車体又は自動車部品である、前記発明(3)の方法である。   The present invention (4) is the method according to the invention (3), wherein the metal component is an automobile body or an automobile part.

本発明(5)は、金属をリン酸塩化成処理液に適用する化成工程を含む、リン酸塩被膜を金属表面に形成させる方法において、前記化成工程に先立ち、リン酸亜鉛微粒子が水中に分散した、金属のリン酸塩被膜化成処理用の表面調整用処理液であって、亜鉛を可溶性成分として10〜2000ppm含有し{典型的には亜鉛イオン(Zn2+)を10〜2000ppm含有し}、かつ、pHが4〜8である液を金属に適用する表面調整工程を含むことを特徴とする方法である。 The present invention (5) is a method for forming a phosphate coating on a metal surface, including a chemical conversion step in which a metal is applied to a phosphate chemical conversion treatment solution, wherein the zinc phosphate fine particles are dispersed in water prior to the chemical conversion step. A surface conditioning treatment solution for metal phosphate coating conversion treatment, containing 10 to 2000 ppm of zinc as a soluble component {typically containing 10 to 2000 ppm of zinc ions (Zn 2+ )} And it is a method characterized by including the surface adjustment process which applies the liquid whose pH is 4-8 to a metal.

本発明(6)は、金属が袋構造を有する金属構成体である、前記発明(5)の方法である。   The present invention (6) is the method of the invention (5), wherein the metal is a metal structure having a bag structure.

本発明(7)は、金属構成体が自動車車体又は自動車部品である、前記発明(6)の方法である。以下、本発明を詳述する。   This invention (7) is the method of the said invention (6) whose metal structure is a motor vehicle body or a motor vehicle part. The present invention is described in detail below.

≪表面調整処理液≫
本発明に係る表面調整処理液は、リン酸亜鉛微粒子と可溶性亜鉛成分とを必須成分として含む、水を主成分とする液体媒体である。以下、各成分を詳述する。
≪Surface conditioning solution≫
The surface conditioning treatment liquid according to the present invention is a liquid medium containing water as a main component and containing zinc phosphate fine particles and a soluble zinc component as essential components. Hereinafter, each component will be described in detail.

(リン酸亜鉛微粒子)
本発明に係るリン酸亜鉛微粒子は、液体媒体に不溶である限り特に限定されないが、好適には平均粒径が1μm以下のリン酸亜鉛微粒子である。ここで、「リン酸亜鉛」とは、リン酸(PO)と亜鉛を少なくとも含有する塩であればよく、他の金属等を含有していても水和物の形態であってもよい。好適には、アニオンがリン酸のみでありカチオンが亜鉛のみであるZn(PO・4HO(例えば、ホパイト)である。また、「平均粒径」は、サブミクロン粒子アナライザー(コールターN4型:コールター社製)で測定された値を指す。尚、平均粒径の下限値は特に限定されないが、例えば0.001μmである。
(Zinc phosphate fine particles)
The zinc phosphate fine particles according to the present invention are not particularly limited as long as they are insoluble in a liquid medium, but are preferably zinc phosphate fine particles having an average particle diameter of 1 μm or less. Here, the “zinc phosphate” may be a salt containing at least phosphoric acid (PO 4 ) and zinc, and may contain other metals or may be in the form of a hydrate. Preferred is Zn 3 (PO 4 ) 2 .4H 2 O (for example, hopite) in which the anion is only phosphoric acid and the cation is only zinc. The “average particle diameter” refers to a value measured with a submicron particle analyzer (Coulter N4 type: manufactured by Coulter). The lower limit value of the average particle diameter is not particularly limited, but is, for example, 0.001 μm.

(可溶性亜鉛成分)
本発明に係る可溶性亜鉛成分は、液体媒体に可溶である亜鉛成分である限り特に限定されず、亜鉛イオンや亜鉛イオンを含有する錯体を挙げることができるが、典型的には亜鉛イオンである。
(Soluble zinc component)
The soluble zinc component according to the present invention is not particularly limited as long as it is a zinc component that is soluble in a liquid medium, and examples thereof include zinc ions and complexes containing zinc ions, and are typically zinc ions. .

ここで、本特許請求の範囲及び本明細書における「可溶性成分である亜鉛」及び「不溶性成分であるリン酸亜鉛微粒子」の濃度は、以下の方法で決定される。まず、使用した原料に基づく場合、添加した水溶性の亜鉛塩及び水不溶性のリン酸亜鉛微粒子の量から計算で算出することができる。また、表面調整用処理液を直接分析する場合、以下の方法に従って導くことができる。尚、通常は、いずれの手法によっても両者に有意な差は生じない。
方法:本発明に係る表面調整処理液にはリン酸亜鉛微粒子が一様に分散しており、通常の状態では沈殿しないように調整されている。このため、表面調整処理液中のリン酸亜鉛微粒子を遠心分離によって沈降させて分離する。従って、リン酸亜鉛微粒子が全て沈降するような遠心分離条件を選定する必要がある。一例として、日立工機株式会社製 Himac CP80WX形分離用超遠心機を用い、50000回転で1時間、遠心分離を行う。これにより、上澄み部分は完全に透明な液となる。この後、得られた上澄み部分を可溶性成分として分析に供する。この状態における沈殿層に存在する成分を「不溶性」、上澄み層に存在する成分を「可溶性」と称することとする。尚、可溶性亜鉛成分(亜鉛として)の測定方法に関しては、例えば、前記の遠心分離法によってリン酸亜鉛微粒子を除いた上澄み液をキレート滴定、ICP発光分析等により分析する。また、リン酸亜鉛微粒子の測定方法に関しては、例えば、表面調整処理液の一定量を採取して、減圧乾燥にて水分を除去した後に再度重量を測定し、乾燥前後の重量差より溶液中に含まれる全成分の重量を求めこれをAg/Lとする。次に先の遠心分離法によって得られた上澄み液も同様に一定量を採取し、乾燥して重量を求め上澄み液中に含まれる成分をBg/Lとする。(A−B)g/lが表面調整液中に含まれる不溶性の成分であるのでこれをリン酸亜鉛微粒子の重量とする。実際には分散剤の一部等が不溶性成分として沈降することも考えられるが、微量であり実用上差し支えない。
Here, the concentrations of “zinc as a soluble component” and “zinc phosphate fine particles as an insoluble component” in the claims and the present specification are determined by the following method. First, when based on the raw material used, it can be calculated by calculation from the amount of the added water-soluble zinc salt and water-insoluble zinc phosphate fine particles. Moreover, when analyzing the processing liquid for surface adjustment directly, it can guide | induce according to the following method. Normally, no significant difference occurs between the two methods.
Method: In the surface conditioning treatment liquid according to the present invention, zinc phosphate fine particles are uniformly dispersed and adjusted so as not to precipitate in a normal state. For this reason, the zinc phosphate microparticles | fine-particles in a surface adjustment process liquid are settled and separated by centrifugation. Therefore, it is necessary to select a centrifugal separation condition in which all zinc phosphate fine particles settle. As an example, using a Himac CP80WX separation ultracentrifuge manufactured by Hitachi Koki Co., Ltd., centrifugation is performed at 50000 rpm for 1 hour. Thereby, a supernatant part turns into a completely transparent liquid. Thereafter, the obtained supernatant is subjected to analysis as a soluble component. In this state, the component present in the precipitation layer is referred to as “insoluble”, and the component present in the supernatant layer is referred to as “soluble”. In addition, regarding the measuring method of a soluble zinc component (as zinc), for example, the supernatant liquid from which zinc phosphate fine particles have been removed by the above-described centrifugal separation method is analyzed by chelate titration, ICP emission analysis, or the like. Regarding the measurement method of the zinc phosphate fine particles, for example, a certain amount of the surface conditioning treatment liquid is collected, and after removing moisture by drying under reduced pressure, the weight is measured again. The weight of all the components contained is calculated | required and this is made into Ag / L. Next, a certain amount of the supernatant obtained by the previous centrifugation method is also collected and dried to obtain the weight, and the component contained in the supernatant is defined as Bg / L. Since (A-B) g / l is an insoluble component contained in the surface conditioning liquid, this is defined as the weight of the zinc phosphate fine particles. In practice, a part of the dispersant or the like may be precipitated as an insoluble component, but the amount is very small and may be practically used.

本発明に係る表面調整処理液は、例えば、リン酸亜鉛微粒子を液体媒体中で安定化させるための分散剤(例えば特開2004−68149の段落番号0023〜段落番号0036に記載された分散剤)や、pHが酸性域であることに起因して生じ得る錆を防止する防錆剤、を含有していてもよい。   The surface conditioning treatment liquid according to the present invention is, for example, a dispersant for stabilizing zinc phosphate fine particles in a liquid medium (for example, a dispersant described in paragraph Nos. 0023 to 0036 of JP-A-2004-68149). Alternatively, it may contain a rust preventive agent that prevents rust that may be caused by the pH being in the acidic range.

(液体媒体)
本発明に係る表面調整処理液の液体媒体(リン酸亜鉛微粒子の分散媒、可溶性亜鉛成分の溶媒として機能)は、水を80重量%以上含む水性媒体である。ここで、水以外の媒体としては各種有機溶媒を用いることができるが、有機溶媒の含有量は低く抑えるのが良く、好適には水性媒体の10重量%以下、より好適には5重量%以下である。特に環境問題等を考慮すると、水のみから構成することがより好適である。
(Liquid medium)
The liquid medium of the surface conditioning treatment liquid according to the present invention (which functions as a dispersion medium for zinc phosphate fine particles and a solvent for a soluble zinc component) is an aqueous medium containing 80% by weight or more of water. Here, various organic solvents can be used as the medium other than water, but the content of the organic solvent should be kept low, preferably 10% by weight or less, more preferably 5% by weight or less of the aqueous medium. It is. Considering environmental problems in particular, it is more preferable to use only water.

(各成分の量)
必須成分であるリン酸亜鉛微粒子の含有量は、好適には10〜2000ppm(mg/l)、より好適には20〜500ppmである。また、必須成分である可溶性亜鉛成分(典型的には亜鉛イオン)は、添加する可溶性亜鉛成分(典型的には亜鉛イオン)の濃度は少なすぎると効果がなく、多すぎると経済的に不利であるため、好適には10〜2000ppm(亜鉛として)、より好適には20〜1000ppm(mg/l)である。また、任意成分である分散剤は、例えば1〜2000ppm、防錆剤は、1〜2000ppmである。
(Amount of each component)
The content of the essential zinc phosphate fine particles is preferably 10 to 2000 ppm (mg / l), more preferably 20 to 500 ppm. Moreover, the soluble zinc component (typically zinc ion), which is an essential component, is ineffective when the concentration of the soluble zinc component (typically zinc ion) to be added is too small, and economically disadvantageous when the amount is too large. Therefore, it is preferably 10 to 2000 ppm (as zinc), more preferably 20 to 1000 ppm (mg / l). Moreover, the dispersing agent which is an arbitrary component is 1-2000 ppm, for example, and a rust preventive agent is 1-2000 ppm.

(表面調整処理液の物性)
本発明に係る表面調整処理液のpHは、4〜8程度であり、好適には6〜7程度である。pHを高くすると水酸化亜鉛となって沈殿するので、亜鉛成分(典型的には亜鉛イオン)を可溶性形態で液中に存在させるには、当該範囲である必要があるからである。更には、pHをあまり酸性側にすると表面調整工程時あるいはその後にリン酸塩被膜化成処理が行われるまでの間に錆が発生することがあるので、この点からも上記範囲とする意味がある。ここで、従来技術との対比を示す。特許文献8には、請求項1に「表面調整処理工程とリン酸塩化成処理工程とからなる金属表面の処理方法であって、前記表面調整処理工程は、重量基準で、亜鉛イオン濃度が300〜1000ppmであり、リン酸イオンを含む表面調整剤により行われ、かつ前記リン酸塩処理工程は・・・」の記述があるが、詳細な説明を見ると、実質的には水不溶性のリン酸亜鉛微粒子のコロイドであることが示されている。また、リン酸イオンと亜鉛イオンを含む液をpH7.0〜7.5にすると水不溶性のリン酸亜鉛結晶となることは明らかである。また、実施例にもリン酸亜鉛濃度40%の濃縮液に界面活性剤を添加してボールミルを用いて分散していることからも水不溶性のリン酸亜鉛微粒子を用いているだけであることは明らかで、本発明とは異なるものである。また、特許文献9には、リン酸亜鉛粒子と亜硝酸亜鉛を用いた表面調整剤が開示されている。しかし、これは先に述べたように表面調整工程中あるいはその後のリン酸塩処理工程に入るまでの間に、素材表面が錆びるのを防止するため、亜硝酸塩を混合させているものであり、その1つの塩として亜硝酸亜鉛が提示されている。亜鉛塩を使用している理由は化成工程に表面調整剤が持込まれて異種金属が蓄積するのを防止するために、化成処理液に含まれている亜鉛を選択した事が段落[0025]に記されている。また、実施例にはリン酸亜鉛の分散液に亜硝酸亜鉛を加え、苛性ソーダにてpH9〜10に調整しているが、このpHでは亜鉛イオンは水酸化亜鉛となり、水不溶性となっていることは明らかで、実質的には水可溶性亜鉛イオンを含んでいない。つまり、本発明のようにリン酸亜鉛の分散液に水可溶性の亜鉛イオンを含んでいるものではない。以上のように、上記引例は亜鉛イオンを含んだ表面調整剤のように表現されているが、実質的には水可溶性亜鉛成分を含んでいないので本発明とは異なるものであり、また本発明になんら示唆を与えるものではない事は明らかである。
(Physical properties of surface conditioning solution)
The pH of the surface conditioning solution according to the present invention is about 4-8, preferably about 6-7. This is because zinc hydroxide (typically zinc ions) precipitates in a soluble form in the solution because it is precipitated as zinc hydroxide when the pH is raised. Furthermore, if the pH is set too acidic, rust may be generated during the surface adjustment step or after the phosphate coating conversion treatment is performed thereafter, so that the above range is also meaningful in this respect. . Here, a comparison with the prior art is shown. Patent Document 8 states in claim 1 that “a method of treating a metal surface comprising a surface conditioning treatment step and a phosphate chemical conversion treatment step, wherein the surface conditioning treatment step has a zinc ion concentration of 300 on a weight basis. ˜1000 ppm, which is carried out by a surface conditioner containing phosphate ions, and the phosphating treatment process is described as “...”. It is shown to be a colloid of zinc acid fine particles. In addition, it is clear that when the liquid containing phosphate ions and zinc ions is adjusted to pH 7.0 to 7.5, water-insoluble zinc phosphate crystals are obtained. In addition, in the examples, a surfactant is added to a concentrated solution having a zinc phosphate concentration of 40% and dispersed using a ball mill, so that only water-insoluble zinc phosphate fine particles are used. It is clear and different from the present invention. Patent Document 9 discloses a surface conditioner using zinc phosphate particles and zinc nitrite. However, as described above, nitrite is mixed in order to prevent the material surface from rusting during the surface conditioning process or before entering the subsequent phosphating process, Zinc nitrite is proposed as one of the salts. The reason why the zinc salt is used is that the zinc contained in the chemical conversion solution is selected in paragraph [0025] in order to prevent the surface conditioning agent from being brought into the chemical conversion process and accumulating foreign metals. It is written. In the examples, zinc nitrite was added to the dispersion of zinc phosphate, and the pH was adjusted to 9 to 10 with caustic soda. At this pH, the zinc ions became zinc hydroxide and were insoluble in water. Is clear and substantially free of water-soluble zinc ions. That is, unlike the present invention, the zinc phosphate dispersion does not contain water-soluble zinc ions. As described above, the above reference is expressed as a surface conditioner containing zinc ions, but is substantially different from the present invention because it does not contain a water-soluble zinc component. It is clear that it does not give any suggestions.

≪表面調整処理液の製造方法≫
本発明に係る表面調整処理液の製造方法は、上述した水性媒体にリン酸亜鉛微粒子を分散させる工程と、上述した水性媒体に水可溶性の亜鉛化合物を溶解させる工程と、を含む。不溶性のリン酸亜鉛結晶(ホパイト)を原料とし、これを分散剤等とともに水に分散させた状態で、ボールミル等の粉砕機を用いて微粒子化する。この後に必要なら防錆剤等の添加剤を加え、水溶性の亜鉛化合物の水溶液を添加して、pH調整を行う。pH調整には硝酸等の酸や水酸化ナトリウム等の典型的な酸、アルカリが用いられる。ただし、この手順は一例を示したものに過ぎず、何ら制約されるものではない。ここで、水可溶性の亜鉛塩としては、多種のものが使用できるが、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛、ギ酸亜鉛、塩化亜鉛、フッ化亜鉛、珪フッ化亜鉛等が具体的に挙げられる。しかし、これ以外の亜鉛塩でも水溶性であれば水溶液中では可溶性亜鉛成分(典型的には亜鉛イオン)として存在するのでどのような塩であっても効果が期待できる。尚、酸化亜鉛や水酸化亜鉛等の水不溶性の塩ではリン酸塩処理液中ではなかなか溶けないため、すぐにはリン酸塩被膜の結晶原料とはなり得ず、効果が得られない。
≪Method for manufacturing surface conditioning solution≫
The method for producing a surface conditioning treatment liquid according to the present invention includes a step of dispersing zinc phosphate fine particles in the above-described aqueous medium and a step of dissolving a water-soluble zinc compound in the above-described aqueous medium. An insoluble zinc phosphate crystal (hopeite) is used as a raw material, and this is dispersed in water together with a dispersant and the like, and then finely divided using a pulverizer such as a ball mill. Thereafter, if necessary, an additive such as a rust inhibitor is added, and an aqueous solution of a water-soluble zinc compound is added to adjust the pH. For pH adjustment, an acid such as nitric acid, a typical acid such as sodium hydroxide, or an alkali is used. However, this procedure is only an example, and is not limited at all. Here, various water-soluble zinc salts can be used, and specific examples include zinc sulfate, zinc nitrate, zinc acetate, zinc formate, zinc chloride, zinc fluoride, and zinc silicofluoride. However, even if other zinc salts are water-soluble, any salt can be expected to be effective because it is present as a soluble zinc component (typically zinc ions) in an aqueous solution. In addition, since water-insoluble salts such as zinc oxide and zinc hydroxide do not readily dissolve in the phosphating solution, they cannot be immediately used as a crystal raw material for the phosphate coating, and the effect cannot be obtained.

≪表面調整処理液の使用方法(リン酸塩被膜が形成された金属の製造方法)≫
(作用機序)
本技術は不溶性リン酸亜鉛粒子と可溶性亜鉛成分(典型的には亜鉛イオン)を共存させたものを表面調整剤として用いることにより、まず、被処理物表面に不溶性であるリン酸亜鉛微粒子を吸着させた状態とし、さらにリン酸塩化成処理工程においては、被処理物表面に付着している可溶性亜鉛成分(典型的には亜鉛イオン)によって、実質的に化成処理液の亜鉛濃度を上昇させることにより、化成性をさらに向上させるものである。こうする事により、吸着したリン酸亜鉛微粒子が化成処理液で溶解あるいは脱落して充分に機能しなくなることを防止し、結晶核として効率的に働くことにより被処理物表面に無数の結晶を析出させることができるため、化成性を大幅に向上させることを可能にした技術である。
≪Usage method of surface conditioning solution (manufacturing method of metal with phosphate coating) ≫
(Mechanism of action)
This technology first adsorbs zinc phosphate particles that are insoluble on the surface of the workpiece by using a surface conditioner that contains insoluble zinc phosphate particles and a soluble zinc component (typically zinc ions). In the phosphate chemical conversion treatment step, the zinc concentration of the chemical conversion treatment liquid is substantially increased by the soluble zinc component (typically zinc ions) adhering to the surface of the object to be treated. Thus, the chemical conversion is further improved. By doing so, the adsorbed zinc phosphate fine particles are prevented from dissolving or falling off in the chemical conversion solution and failing to function sufficiently, and countless crystals are precipitated on the surface of the object to be processed by acting efficiently as crystal nuclei. Therefore, it is a technology that makes it possible to greatly improve the chemical conversion.

特に、従来の化成処理法によると、内板部では化成処理時に処理液成分が消費されて希薄になるが、狭い構造の場合に攪拌等によって処理液成分が拡散しないために成分補給(特に亜鉛イオン)が間に合わず、化成不良になる。他方、本発明に係る表面調整処理液を用いての化成処理法によると、表面調整処理液が可溶性亜鉛成分(典型的には亜鉛イオン)を含有しているため、特に重要である化成処理の初期に多くの結晶核生成を促すことができる結果、化成性が大幅に向上する。このように、結晶核の元となる水不溶性のリン酸亜鉛微結晶が内板部に多数吸着した状態で化成処理液の可溶性亜鉛成分濃度(典型的には亜鉛イオン濃度)を上昇させる事が重要である。   In particular, according to the conventional chemical conversion treatment method, the processing solution components are consumed and diluted in the inner plate portion during the chemical conversion treatment. Ion) is not in time, resulting in poor formation. On the other hand, according to the chemical conversion treatment method using the surface conditioning treatment liquid according to the present invention, since the surface conditioning treatment liquid contains a soluble zinc component (typically zinc ions), the chemical conversion treatment is particularly important. As a result of being able to promote the formation of many crystal nuclei in the initial stage, the chemical conversion is greatly improved. Thus, the soluble zinc component concentration (typically the zinc ion concentration) in the chemical conversion solution can be increased in a state where a large number of water-insoluble zinc phosphate microcrystals that are the source of crystal nuclei are adsorbed on the inner plate. is important.

以下、本発明に係る表面調整処理液が特に有効な、袋構造を有する金属構成体の内外面に表面処理をする場合を例にとり、表面調整処理液の使用方法(リン酸塩被膜が形成された金属の製造方法)を具体的に説明する。   Hereinafter, the surface conditioning treatment liquid according to the present invention is particularly effective, and the surface conditioning treatment liquid is used as an example when the surface treatment is performed on the inner and outer surfaces of the metal structure having a bag structure (a phosphate coating is formed). The method for producing the metal will be specifically described.

(適用対象)
表面処理の対象は、袋構造を有する金属構成体(自動車車体又は自動車部品)であり、少なくとも一部が冷延鋼板及び/又はアルミニウム合金板であるものである。例えば、処理される金属構成体は、自動車のドアのように2枚以上の金属板から成り、袋状の構造を有するものである。ここで、袋構造部に関する定義としては、袋構造部の内部の表面積に対する開口部の面積との面積比率を、本発明では尺度として用いている。具体的な例を挙げると、一片が10cmの正方形の板6枚からなる立方体の場合、内部の面積は計算上600cmとなるが、この立方体の上下に位置する板にそれぞれ1個の穴を開けると仮定した場合、1個の穴の面積が30cmであれば、開口部の面積は合計60cmとなり、開口部の面積/袋構造部の内部の面積比率が10%となる。また、一つの穴の面積が0.3cmである場合には、その開口部の面積/袋構造部の面積比率は、0.1%と計算される。以下、袋構造部を有する金属構成体における袋構造部の開口部の面積と袋構造部の内部の面積との面積比率を、「開口部/袋構造部の面積比率」と定義することにする。本発明に係る表面調整処理液を用いての表面処理に際しては、開口部/袋構造部の面積比率は、0.1〜10%が好ましく、0.2〜7%がより好ましく、0.5〜5%が最も好ましい。この開口部/袋構造部の面積比率は、本発明に係る表面調整処理液を用いての表面処理で顕著な効果が認められる面積比率である。
(Applicable)
The object of the surface treatment is a metal structure (automobile body or automobile part) having a bag structure, and at least a part thereof is a cold-rolled steel plate and / or an aluminum alloy plate. For example, the metal structure to be processed is composed of two or more metal plates like a car door and has a bag-like structure. Here, as a definition regarding the bag structure portion, an area ratio of the area of the opening to the surface area inside the bag structure portion is used as a scale in the present invention. As a specific example, in the case of a cube composed of six square plates each having a size of 10 cm, the internal area is calculated to be 600 cm 2 , but one hole is provided in each plate located above and below the cube. Assuming opening, if the area of one hole is 30 cm 2 , the area of the opening is 60 cm 2 in total, and the ratio of the area of the opening / the area inside the bag structure is 10%. When the area of one hole is 0.3 cm 2 , the ratio of the area of the opening / the area of the bag structure is calculated as 0.1%. Hereinafter, the area ratio between the area of the opening of the bag structure portion and the area inside the bag structure portion in the metal structure having the bag structure portion is defined as “opening / area ratio of the bag structure portion”. . In the surface treatment using the surface conditioning treatment liquid according to the present invention, the area ratio of the opening / bag structure portion is preferably 0.1 to 10%, more preferably 0.2 to 7%, 0.5 ~ 5% is most preferred. The area ratio of the opening / bag structure is an area ratio at which a remarkable effect is recognized in the surface treatment using the surface conditioning treatment liquid according to the present invention.

(方法)
本例に係るリン酸塩被膜を金属表面に形成させる方法(リン酸塩被膜が形成された金属の製造方法)は、金属をリン酸塩化成処理液に適用する化成工程と、当該化成工程に先立ち、本発明に係る表面調整処理液を金属に適用する表面調整工程を必須的に含む。ここで、一般的には下記に示すような工程にて処理されるが、処理方法は各工程共に浸漬処理で行われる。典型的には広く行われている自動車ボディーの化成処理工程である。
(1)脱脂
(2)水洗(多段)
(3)表面調整
(4)リン酸塩被膜化成処理
(5)水洗(多段)
(6)純水洗
(Method)
The method of forming the phosphate coating on the metal surface according to this example (a method for producing a metal having a phosphate coating) includes a chemical conversion step in which the metal is applied to a phosphate chemical treatment liquid, and the chemical conversion step. Prior to this, a surface adjustment step of applying the surface adjustment treatment liquid according to the present invention to a metal is essential. Here, in general, the treatment is performed in the following steps, but the treatment method is performed by immersion treatment in each step. Typically, this is a chemical conversion treatment process for an automobile body that is widely used.
(1) Degreasing (2) Washing with water (multistage)
(3) Surface adjustment (4) Phosphate coating conversion treatment (5) Water washing (multistage)
(6) Pure water washing

本発明は、従来のリン酸塩被膜化成処理方法では充分な被膜生成が困難であった袋構造内部(内板部)の化成性を大幅に向上させ、外板部と同様に緻密で微細なリン酸塩被膜を形成させることを可能とした。これにより、内板部の耐食性を向上させることができる。また、本発明によれば設備改造等コストのかかる対策は必要でなく、リン酸塩被膜化成処理液も変更する必要が無いために、これらの変更に伴うコストも生じない。さらに被膜物性等にも大きな影響が無いので、容易に現状のラインに適用できる大きなメリットもある。   The present invention greatly improves the chemical conversion inside the bag structure (inner plate part), which was difficult to produce a sufficient film by the conventional phosphate film conversion treatment method, and is dense and fine like the outer plate part. It was possible to form a phosphate coating. Thereby, the corrosion resistance of the inner plate part can be improved. Further, according to the present invention, costly measures such as facility modification are not necessary, and it is not necessary to change the phosphate coating conversion treatment liquid, so that the cost associated with these changes does not occur. Further, since there is no great influence on the physical properties of the film, there is a great merit that it can be easily applied to the current line.

(金属構成体)
図1に本発明の効果を実証するために使用した模擬金属構成体(自動車部品を模倣した金属構成体)を示す。板厚0.8mm、70×150mmの冷延鋼板SPCC(JIS 3141)、又はアルミニウム板(JIS 5052)を用い、第1図に示すような袋構造を有するボックスを形成した。上下面2枚にSPCC又はアルミニウム板をその間隔が10mmとなるように配置し、側面はプラスチック板とし2箇所に直径10mmの孔を空けた。側面のプラスチック板により上下2枚のSPCC又はアルミニウム板を固定する構造とし、処理液の出入りは側面2箇所の孔からのみとなるように構成した。この模擬金属構成体を処理液に浸漬して処理を行い、処理後に解体して化成処理状況を観察した。尚、この金属構成体の開口部/袋構造部の面積比率は、0.7%である。
(Metal construction)
FIG. 1 shows a simulated metal structure (a metal structure imitating an automobile part) used for demonstrating the effects of the present invention. A cold rolled steel plate SPCC (JIS 3141) or aluminum plate (JIS 5052) having a plate thickness of 0.8 mm and 70 × 150 mm was used to form a box having a bag structure as shown in FIG. SPCC or aluminum plates were placed on the top and bottom two sheets so that the distance between them was 10 mm, and the side surfaces were plastic plates and holes with a diameter of 10 mm were formed in two places. The upper and lower two SPCC or aluminum plates are fixed by the side plastic plates, and the processing solution enters and exits only through the holes on the two sides. This simulated metal component was treated by immersing it in a treatment solution, and disassembled after the treatment to observe the state of chemical conversion treatment. In addition, the area ratio of the opening part / bag structure part of this metal structure is 0.7%.

(アルカリ脱脂液)
実施例、比較例ともにファインクリーナーE2001(登録商標:日本パーカライジング(株)製)を使用し、浸漬処理にて脱脂し、完全に水ぬれすることを確認した。
(Alkaline degreasing solution)
In both Examples and Comparative Examples, fine cleaner E2001 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) was used, and it was confirmed that the sample was degreased by immersion treatment and completely wetted.

(表面調整剤)
表1に実施例及び比較例で使用した表面調整用処理液の組成を示す。なお、リン酸亜鉛微粒子はZn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボールミルで粉砕したものを用いた。このリン酸亜鉛微粒子を縣濁液とした後に5μmのペーパーフィルターで濾過し、濾液の平均粒径をサブミクロン粒子アナライザー(コールターN4型:コールター社)で測定した結果、0.31μmであった。また、表1中のリン酸亜鉛微粒子の含有量及び可溶性亜鉛濃度に関しては、添加したリン酸亜鉛微粒子が液体媒体(本実施例では水)に対して不溶性であること・添加した可溶性亜鉛塩が液体媒体(本実施例では水)に対して完全に溶解することを踏まえ、添加量を液中の存在量と推定して記載した。また、液中の可溶性亜鉛成分の存在形態は、ほぼ亜鉛イオンであると推定される。但し、いくつかのサンプルについて明細書に記載の遠心分離法で沈殿物と上澄み液を分析したが略推定通りであることは確認済みである。可溶性亜鉛塩を添加後に、PHを所定のPHになるように硝酸、水酸化ナトリウム水溶液で調整した。

Figure 2010116588
(Surface conditioner)
Table 1 shows the composition of the treatment liquid for surface adjustment used in Examples and Comparative Examples. The zinc phosphate fine particles were obtained by pulverizing Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads. The zinc phosphate fine particles were made into a suspension, filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4 type: Coulter). As a result, it was 0.31 μm. In addition, regarding the content of zinc phosphate fine particles and the soluble zinc concentration in Table 1, the added zinc phosphate fine particles are insoluble in the liquid medium (in this example, water). Based on the fact that it completely dissolves in the liquid medium (water in this example), the amount added was estimated as the amount present in the liquid. Moreover, the presence form of the soluble zinc component in a liquid is estimated to be a zinc ion substantially. However, some samples were analyzed for precipitates and supernatants by the centrifugation described in the specification, but it was confirmed that they were almost as estimated. After addition of the soluble zinc salt, the pH was adjusted with nitric acid and an aqueous sodium hydroxide solution so that the pH became a predetermined pH.
Figure 2010116588

(リン酸塩処理液)
実施例、比較例ともにパルボンドSX35(登録商標:日本パーカライジング(株)製)を現在、自動車用リン酸亜鉛処理として一般に用いられている濃度に調整して使用した。以下に処理工程を示す。
(Phosphate treatment solution)
In both Examples and Comparative Examples, Palbond SX35 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) was used after adjusting to a concentration generally used for zinc phosphate treatment for automobiles. The processing steps are shown below.

(処理工程)
(1)アルカリ脱脂 40℃、120秒 浸漬
(2)水洗 室温、30秒 浸漬
(3)表面調整 室温 30秒 浸漬、実施例及び比較例参照
(4)リン酸塩処理 35℃、120秒浸漬
(5)水洗 室温、30秒 浸漬
(6)脱イオン水洗 室温、30秒 浸漬
(Processing process)
(1) Alkaline degreasing 40 ° C., 120 seconds immersion (2) Washing at room temperature, 30 seconds Immersion (3) Surface conditioning Room temperature 30 seconds See immersion, Examples and Comparative Examples (4) Phosphate treatment 35 ° C., 120 seconds immersion ( 5) Water washing Room temperature, 30 seconds immersion (6) Deionized water washing Room temperature, 30 seconds immersion

(リン酸塩被膜の評価方法)
(1)外観
目視観察により、リン酸亜鉛被膜のスケ、ムラの有無を確認した。評価は以下の通りとした。
◎ 均一良好な外観
○ 一部ムラあり
△ ムラ、スケあり
× スケ多し
(Evaluation method of phosphate coating)
(1) Appearance
By visual observation, the presence or absence of scum and unevenness of the zinc phosphate coating was confirmed. Evaluation was as follows.
◎ Uniform and good appearance
○ Some unevenness
△ Unevenness and scale
× Too much

実施例及び比較例にて処理した結果を表1に示す。これより、可溶性亜鉛イオンを不溶性リン酸亜鉛微粒子と共存させた実施例はいずれも良好な化成性を示した。これに対し、可溶性亜鉛イオンを含まないものやその量が10ppm以下のものはムラやスケが多く、良好な化成性が得られなかった。また、可溶性亜鉛イオンを加えた比較例6ではpHを9にしたために、亜鉛イオンは水酸化亜鉛として沈殿し、実質的には可溶性亜鉛イオンとして存在しなかったため、良好な化成性が得られなかった。   Table 1 shows the results of processing in Examples and Comparative Examples. From this, all the examples in which soluble zinc ions were allowed to coexist with insoluble zinc phosphate fine particles showed good chemical conversion. On the other hand, those not containing soluble zinc ions and those having an amount of 10 ppm or less had many unevenness and scales, and good chemical conversion properties could not be obtained. In Comparative Example 6 in which soluble zinc ions were added, the pH was adjusted to 9, so that zinc ions were precipitated as zinc hydroxide and were not substantially present as soluble zinc ions, so that good chemical conversion was not obtained. It was.

図1は、本発明の実施例で使用した模擬金属構成体を示した図である。FIG. 1 is a diagram showing a simulated metal structure used in an example of the present invention.

Claims (7)

リン酸亜鉛微粒子が水中に分散した、金属のリン酸塩被膜化成処理用の表面調整用処理液において、亜鉛を可溶性成分として10〜2000ppm含有し、かつ、pHが4〜8であることを特徴とする表面調整用処理液。   In a surface conditioning treatment solution for metal phosphate coating conversion treatment in which zinc phosphate fine particles are dispersed in water, it contains 10 to 2000 ppm of zinc as a soluble component and has a pH of 4 to 8. Surface treatment solution. 金属をリン酸塩化成処理液に適用する化成工程を含む、リン酸塩被膜が形成された金属の製造方法において、
前記化成工程に先立ち、リン酸亜鉛微粒子が水中に分散した、金属のリン酸塩被膜化成処理用の表面調整用処理液であって、亜鉛を可溶性成分として10〜2000ppm含有し、かつ、pHが4〜8である液を金属に適用する表面調整工程
を含むことを特徴とする方法。
In the manufacturing method of the metal in which the phosphate film was formed including the chemical conversion process which applies a metal to a phosphate chemical conversion liquid,
Prior to the chemical conversion step, zinc phosphate fine particles are dispersed in water, a surface conditioning treatment solution for metal phosphate coating chemical conversion, containing 10 to 2000 ppm of zinc as a soluble component, and having a pH of A method comprising a surface conditioning step of applying a liquid of 4 to 8 to a metal.
金属が袋構造を有する金属構成体である、請求項2記載の方法。   The method according to claim 2, wherein the metal is a metal structure having a bag structure. 金属構成体が自動車車体又は自動車部品である、請求項3記載の方法。   The method according to claim 3, wherein the metal component is an automobile body or an automobile part. 金属をリン酸塩化成処理液に適用する化成工程を含む、リン酸塩被膜を金属表面に形成させる方法において、
前記化成工程に先立ち、リン酸亜鉛微粒子が水中に分散した、金属のリン酸塩被膜化成処理用の表面調整用処理液であって、亜鉛を可溶性成分として10〜2000ppm含有し、かつ、pHが4〜8である液を金属に適用する表面調整工程
を含むことを特徴とする方法。
In a method of forming a phosphate coating on a metal surface, including a chemical conversion step of applying a metal to a phosphate chemical conversion treatment solution,
Prior to the chemical conversion step, zinc phosphate fine particles are dispersed in water, a surface conditioning treatment solution for metal phosphate coating chemical conversion, containing 10 to 2000 ppm of zinc as a soluble component, and having a pH of A method comprising a surface conditioning step of applying a liquid of 4 to 8 to a metal.
金属が袋構造を有する金属構成体である、請求項5記載の方法。   The method according to claim 5, wherein the metal is a metal structure having a bag structure. 金属構成体が自動車車体又は自動車部品である、請求項6記載の方法。   The method according to claim 6, wherein the metal component is an automobile body or an automobile part.
JP2008288974A 2008-11-11 2008-11-11 Treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, method for producing metal with phosphate film formed by using the same, and method for forming phosphate film on metal surface Pending JP2010116588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288974A JP2010116588A (en) 2008-11-11 2008-11-11 Treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, method for producing metal with phosphate film formed by using the same, and method for forming phosphate film on metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288974A JP2010116588A (en) 2008-11-11 2008-11-11 Treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, method for producing metal with phosphate film formed by using the same, and method for forming phosphate film on metal surface

Publications (1)

Publication Number Publication Date
JP2010116588A true JP2010116588A (en) 2010-05-27

Family

ID=42304416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288974A Pending JP2010116588A (en) 2008-11-11 2008-11-11 Treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, method for producing metal with phosphate film formed by using the same, and method for forming phosphate film on metal surface

Country Status (1)

Country Link
JP (1) JP2010116588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179242A (en) * 2013-03-14 2014-09-25 Toyota Central R&D Labs Inc Electrode material and battery equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179242A (en) * 2013-03-14 2014-09-25 Toyota Central R&D Labs Inc Electrode material and battery equipped with the same

Similar Documents

Publication Publication Date Title
RU2748349C2 (en) Improved method for nickel-free phosphating of metal surfaces
JP3451334B2 (en) Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method
CN102066612B (en) Optimized passivation on Ti-/Zr-basis for metal surfaces
RU2248409C1 (en) Solution for metal article treatment, method for production of corrosion-resistant chromium(iii)-based coating on metal substrate and article containing coated metal substrate (variants)
RU2439197C2 (en) Anti-corrosion treatment method for clear uncovered metal surfaces (versions) and acid chlorine-free water solution for treating such surfaces
AU2006246764B2 (en) Method for preparing metallic workpieces for cold forming
TWI669416B (en) Use of aqueous coating composition and coating method using the same
DE102008054407B4 (en) Process for coating metallic surfaces with an activating agent before phosphating, corresponding activating agents and use of the substrates coated with the process
WO2010050131A1 (en) Treatment solution for chemical conversion of metal material and method for treatment
RU2428518C2 (en) Solution of phosphatisation with hydrogen peroxide and chelate forming carbonic acids
US20100126633A1 (en) Agent for the Production of Anti-Corrosion Layers on Metal Surfaces
JPH11502569A (en) Phosphate treatment method with post-rinse step containing metal
CN103687979A (en) Aqueous acidic composition for forming chromium-containing conversion coating on ferrous member, and ferrous member having conversion coating formed using said composition
JP7287901B2 (en) Method for continuous zinc phosphating of metal parts to form layers
JP2004218073A (en) Chemical conversion coating agent and surface-treated metal
JP2001049451A (en) Phosphate chemical conversion treating method for metallic material
JP2010116588A (en) Treatment liquid for surface conditioning for metal phosphate film chemical conversion treatment, method for producing metal with phosphate film formed by using the same, and method for forming phosphate film on metal surface
KR102594023B1 (en) Method for continuously zinc phosphatizing metal components in a sludge-free manner to form layers.
US20030150527A1 (en) Method for treating or pre-treating components comprising aluminum surfaces
AU2013311905B2 (en) Method for corrosion-protective serial surface treatment of metallic components
KR20140044785A (en) Processes and compositions for improving corrosion performance of zirconium oxide pretreated zinc surfaces
US20060060265A1 (en) Lubricant system for cold forming, process and composition therefor
JP2011001626A (en) Method of treating surface of metal structure at low agitation speed
JP2001295063A (en) Method for forming phosphate film to nonferrous metallic material and plated steel sheet
JP2007224426A (en) Pretreatment liquid for surface control before phosphate film chemical conversion treatment of metal, and surface controlling method