JP2010115621A - Water supply system and wastewater treatment equipment - Google Patents

Water supply system and wastewater treatment equipment Download PDF

Info

Publication number
JP2010115621A
JP2010115621A JP2008292116A JP2008292116A JP2010115621A JP 2010115621 A JP2010115621 A JP 2010115621A JP 2008292116 A JP2008292116 A JP 2008292116A JP 2008292116 A JP2008292116 A JP 2008292116A JP 2010115621 A JP2010115621 A JP 2010115621A
Authority
JP
Japan
Prior art keywords
tank
treatment
wastewater
separation tank
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008292116A
Other languages
Japanese (ja)
Other versions
JP5195335B2 (en
Inventor
Hiroshi Tanaka
浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008292116A priority Critical patent/JP5195335B2/en
Publication of JP2010115621A publication Critical patent/JP2010115621A/en
Application granted granted Critical
Publication of JP5195335B2 publication Critical patent/JP5195335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated sludge treatment technology which can efficiently remove nitrogen and phosphorus in wastewater using conventional wastewater treatment equipment. <P>SOLUTION: In a water supply system, three tanks of the wastewater treatment equipment are operated as a first treatment tank 30, a second treatment tank 10, and a separation tank 20 to perform activated sludge treatment. The water supply system has a pump 40, supply lines L31, L11, L21, L50 capable of transferring from a pump discharge port to the first treatment tank, the second treatment tank, the separation tank, and the outside, feed control valves V31, V11, V21, V50 for controlling the transfer of the supply lines, take-in lines L32, L12, L22, L23, L1 capable of transferring from the first treatment tank, the second treatment tank, the separation tank, and a wastewater source to a pump intake port and capable of individually transferring wastewater and activated sludge from the separation tank, take-in control valves V32, V12, V22, V23, V1 for controlling the transfer of the take-in lines, and a control portion for controlling the operation of the feed control valves and the take-in control valves so that the wastewater supplied from the wastewater source is sequentially transferred by driving the pump to the first treatment tank, the second treatment tank, and the separation tank together with the activated sludge before being discharged to the outside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、廃水処理設備を稼動させて廃水の活性汚泥処理を行うための配水システム及びそれを用いた廃水処理設備に関し、特に、従来の廃水処理設備を利用して、廃水から窒素及びリンを効率よく除去可能な活性汚泥処理を実施可能な簡易な構成の配水システム及びそれを用いた廃水処理設備に関する。   The present invention relates to a water distribution system for operating wastewater treatment equipment to perform activated sludge treatment of wastewater and wastewater treatment equipment using the same, and in particular, using conventional wastewater treatment equipment, nitrogen and phosphorus are removed from wastewater. The present invention relates to a water distribution system having a simple configuration capable of performing activated sludge treatment that can be efficiently removed, and a wastewater treatment facility using the water distribution system.

既存の廃水処理設備の多くは、戦後の高度成長期に急速に普及した標準活性汚泥法を基に設計されている。標準活性汚泥法は、主として廃水中の有機物を除去するために考案された方法であるため、窒素やリンについてはさほど除去能力を備えていない。近年大きな問題となっている閉鎖性水域の富栄養化の主な原因は、廃水処理設備から排出される窒素及びリンであることが知られていることから、既存の旧式設備を窒素やリンを除去可能な高度処理設備に置き換えるための対処が必要である。   Many of the existing wastewater treatment facilities are designed based on the standard activated sludge method that rapidly spread during the post-war high growth period. The standard activated sludge method is a method devised mainly for removing organic substances in wastewater, and therefore does not have much removal capability for nitrogen and phosphorus. It is known that the main cause of eutrophication in closed water areas, which has become a major problem in recent years, is nitrogen and phosphorus discharged from wastewater treatment facilities. Action is required to replace it with a removable advanced treatment facility.

対処法は、新たに高度処理設備を設置する、又は、旧式設備を改造して窒素やリンの除去能力を備える、の何れかとなり、例えば、下記特許文献1のような処理によると、窒素やリンを効率的に除去することができる。
特開2008−23498号公報
The countermeasure is to either install a new advanced treatment facility or to remodel an old-style facility to have a nitrogen and phosphorus removal capability. For example, according to the treatment described in Patent Document 1 below, Phosphorus can be removed efficiently.
JP 2008-23498 A

しかし、廃水処理設備は、一般に、廃水発生源近傍の都市部に設けられることから、新たな設備を別の場所に設置する場合、十分な土地を確保することが難しい。また、同じ場所で旧式設備を新たな設備に建て替える場合、現在行っている廃水の受け入れを一時的に中断する必要があるが、大量且つ常に発生する廃水を未処理のまま放流することはできないので、事実上、実行は困難である。他方、旧式設備を改造する場合、既存の設備の制約を受けた状態で高度処理設備の設計を取り入れようとすると、十分な処理能力を備えるように改造するには限界がある。また、設備の新設や改造には多額の費用を必要とするため、資金力の乏しい中小企業や地方自治体においては、高度処理設備の導入を断念せざるを得ない場合もある。   However, since wastewater treatment facilities are generally provided in urban areas near the wastewater generation source, it is difficult to secure sufficient land when installing new facilities in another location. In addition, when rebuilding old equipment to new equipment at the same place, it is necessary to temporarily interrupt the acceptance of the current wastewater, but a large amount of wastewater that is always generated cannot be discharged untreated. In practice, it is difficult to implement. On the other hand, when retrofitting an old-fashioned facility, there is a limit to remodeling it to have sufficient processing capacity if an attempt is made to incorporate the design of an advanced processing facility under the constraints of the existing facility. In addition, since a large amount of money is required for the construction and remodeling of equipment, small and medium-sized enterprises and local governments with insufficient financial power may have to give up the introduction of advanced treatment equipment.

本発明は、従来の廃水処理設備を巧く利用して、活性汚泥によって窒素やリンを効率よく除去可能な廃水処理の実施を可能とする、簡易な構造の配水システム、及び、それを用いて活性汚泥処理を進行することによって好適に廃水の窒素及びリンを除去できる廃水処理設備を提供することを課題とする。   The present invention is a water distribution system with a simple structure that makes it possible to implement waste water treatment capable of efficiently removing nitrogen and phosphorus by activated sludge by utilizing conventional waste water treatment equipment, and using the same It is an object of the present invention to provide a wastewater treatment facility capable of suitably removing nitrogen and phosphorus from wastewater by proceeding with activated sludge treatment.

又、本発明は、経済的に負担とならない簡易な構成要素を用いて配水の制御によって、効率的な活性汚泥処理の実施を実現可能な配水システム、及び、それを設置して稼動させることにより、廃水の窒素及びリンが好適に除去できる廃水処理設備を提供することを課題とする。   In addition, the present invention provides a water distribution system that can implement efficient activated sludge treatment by controlling water distribution using simple components that are not economically burdened, and by installing and operating the water distribution system. An object of the present invention is to provide a wastewater treatment facility capable of suitably removing nitrogen and phosphorus from wastewater.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、3つの槽を有する廃水処理設備に設置する配水ラインの構成を工夫することによって、ポンプを用いて廃水を効率よく各槽に配水して、窒素及びリンを好適に除去可能な回分式の活性汚泥処理を実行可能となるように構成可能であることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research, and by devising the configuration of the water distribution line installed in the wastewater treatment facility having three tanks, the wastewater can be efficiently discharged using a pump. The present inventors have found that it is possible to construct a batch activated sludge treatment capable of suitably removing nitrogen and phosphorus by distributing water to each tank, and the present invention has been completed.

本発明の一態様によれば、配水システムは、廃水処理設備の3つの槽を、第1処理槽、第2処理槽、及び、廃水から活性汚泥を分離する分離槽として稼動して活性汚泥処理を実施するための配水システムであって、廃水及び/又は活性汚泥を移送するための1つのポンプ装置と;前記ポンプ装置の排出口から前記第1処理槽、前記第2処理槽、前記分離槽及び外部の各々への移送が可能な供給ラインと;前記供給ラインによる前記第1処理槽、前記第2処理槽、前記分離槽及び外部の各々への移送を制御するための供給制御弁と;前記第1処理槽、前記第2処理槽、前記分離槽及び廃水源の各々から前記ポンプ装置の取入口への移送が可能で、前記分離槽から廃水及び活性汚泥を個別に移送可能な取込ラインと;前記取込ラインによる前記第1処理槽、前記第2処理槽、前記分離槽及び廃水源の各々からの移送を制御するための取込制御弁と;前記ポンプ装置の駆動により、廃水源から供給される廃水が、外部へ排出される前に、前記第1処理槽、前記第2処理槽、前記分離槽の順に活性汚泥と共に移送されるように前記供給制御弁及び前記取込制御弁の動作を制御する制御部とを有することを要旨とする。   According to one aspect of the present invention, the water distribution system operates as an activated sludge treatment system in which three tanks of a wastewater treatment facility are operated as a first treatment tank, a second treatment tank, and a separation tank that separates activated sludge from wastewater. A pump system for transferring waste water and / or activated sludge; and a first treatment tank, a second treatment tank, and a separation tank from an outlet of the pump apparatus. A supply line capable of being transferred to the outside, and a supply control valve for controlling the transfer to the first treatment tank, the second treatment tank, the separation tank and the outside by the supply line; The first treatment tank, the second treatment tank, the separation tank, and the wastewater source can be transferred to the intake of the pump device, and the wastewater and activated sludge can be individually transferred from the separation tank. A line; and by the intake line An intake control valve for controlling the transfer from each of the treatment tank, the second treatment tank, the separation tank, and the wastewater source; the wastewater supplied from the wastewater source is discharged to the outside by driving the pump device; A control unit that controls the operation of the supply control valve and the intake control valve so that the first control tank, the second processing tank, and the separation tank are transferred together with the activated sludge in this order. This is the gist.

又、上記態様によれば、本発明に係る廃水処理設備は、少なくとも3つの槽を有し、上記の配水システムが設けられて、前記3つの槽が、活性汚泥処理用の第1処理槽、第2処理槽、及び、廃水から活性汚泥を分離する分離槽として稼動することを要旨とする。   In addition, according to the above aspect, the wastewater treatment facility according to the present invention has at least three tanks, the water distribution system is provided, and the three tanks are a first treatment tank for activated sludge treatment, The gist is to operate as a second treatment tank and a separation tank for separating activated sludge from wastewater.

本発明の他の態様によれば、配水システムは、廃水処理設備の3つの槽を、処理槽、及び、廃水から活性汚泥を分離する第1分離槽及び第2分離槽として稼動して活性汚泥処理を実施するための配水システムであって、廃水及び/又は活性汚泥を移送するための1つのポンプ装置と;前記ポンプ装置の排出口から前記処理槽、前記第1分離槽、前記第2分離槽及び外部の各々への移送が可能な供給ラインと;前記供給ラインによる前記処理槽、前記第1分離槽、前記第2分離槽及び外部の各々への移送を制御するための供給制御弁と;前記処理槽、前記第1分離槽、前記第2分離槽及び廃水源の各々から前記ポンプ装置の取入口への移送が可能な取込ラインと;前記取込ラインによる前記処理槽、前記第1分離槽、前記第2分離槽及び廃水源の各々からの移送を制御するための取込制御弁と;前記ポンプ装置の駆動により、廃水源から前記第1分離槽及び第2分離槽の一方に交互に供給される廃水が、外部へ排出される前に、活性汚泥と共に前記処理槽を経て前記第1分離槽及び第2分離槽の一方へ交互に移送されるように前記供給制御弁及び前記取込制御弁の動作を制御する制御部とを有することを要旨とする。   According to another aspect of the present invention, the water distribution system operates as three activated water sludge treatment tanks as a treatment tank and a first separation tank and a second separation tank for separating activated sludge from the waste water. A water distribution system for carrying out treatment, one pump device for transferring waste water and / or activated sludge; and the treatment tank, the first separation tank, and the second separation from an outlet of the pump device A supply line capable of transferring to each of the tank and the outside; a supply control valve for controlling the transfer to the processing tank, the first separation tank, the second separation tank, and the outside by the supply line; An intake line capable of being transferred from each of the treatment tank, the first separation tank, the second separation tank, and a wastewater source to an intake port of the pump device; the treatment tank by the intake line; 1 separation tank, the second separation tank and wastewater source An intake control valve for controlling the transfer from each of them; by driving the pump device, waste water supplied alternately from the waste water source to one of the first separation tank and the second separation tank is discharged to the outside. A control unit for controlling the operation of the supply control valve and the intake control valve so as to be alternately transferred to one of the first separation tank and the second separation tank through the treatment tank together with activated sludge. It is summarized as having.

又、上記態様によれば、本発明に係る廃水処理設備は、少なくとも3つの槽を有し、上記の配水システムが設けられて、前記3つの槽が、活性汚泥処理用の処理槽、及び、廃水から活性汚泥を分離する第1分離槽及び第2分離槽として稼動することを要旨とする。   Further, according to the above aspect, the wastewater treatment facility according to the present invention has at least three tanks, the water distribution system is provided, and the three tanks are treatment tanks for activated sludge treatment, and The gist is to operate as a first separation tank and a second separation tank for separating activated sludge from wastewater.

本発明によれば、少なくとも3つの処理槽を備える処理設備を利用して、窒素及びリンを好適に除去できる回分式の活性汚泥処理を実施でき、特殊な設備改造を施さなくても効率良く廃水処理を行うことができる。又、廃水処理を行うための活性汚泥処理装置における改良は、ポンプを含む給排水ラインによって構成される簡易なものであり、煩雑な操作や工程管理を要せず、簡便且つ短時間で設置・改良を進めることができる。従って、従来の標準活性汚泥法による稼動状態を維持したまま、既存の設備を利用しつつ、追加部品の数及び購入費用を最小限に抑えて窒素及びリンの除去が可能な高度処理設備にアップグレードすることができる。又、廃水の水質が変わった際に、脱窒、硝化、沈降等の各工程に費やす時間などの変更によって柔軟に対応できるので、大規模な装置改造等を必要としない。   According to the present invention, a batch type activated sludge treatment capable of suitably removing nitrogen and phosphorus can be carried out using a treatment facility including at least three treatment tanks, and wastewater can be efficiently discharged without special equipment modification. Processing can be performed. Moreover, the improvement in the activated sludge treatment apparatus for performing wastewater treatment is a simple one constituted by a water supply / drainage line including a pump, and does not require complicated operation and process management, and can be easily installed and improved in a short time. Can proceed. Therefore, while maintaining the operating state of the conventional standard activated sludge method, upgrade to an advanced treatment facility that can remove nitrogen and phosphorus while minimizing the number of additional parts and purchasing costs while using existing facilities. can do. In addition, when the quality of the wastewater changes, it can be flexibly dealt with by changing the time spent in each process such as denitrification, nitrification, and sedimentation, so that no large-scale equipment modification is required.

一般に、標準活性汚泥法は、連続式で処理を行い、原水槽に流入した原廃水は、曝気槽に流下して活性汚泥と共に曝気を受け、酸化・浄化(有機物の分解)される。十分に浄化された廃水は、活性汚泥と共に沈殿槽に流下し、活性汚泥が沈降した後、上澄み廃水は放流し、沈降汚泥は再び曝気槽に還流されて曝気槽における活性汚泥濃度を維持する。   In general, the standard activated sludge process is performed continuously, and the raw wastewater that has flowed into the raw water tank flows down to the aeration tank and is aerated together with the activated sludge to be oxidized and purified (decomposition of organic substances). Sufficiently purified wastewater flows down to the sedimentation tank together with the activated sludge. After the activated sludge settles, the supernatant wastewater is discharged, and the sedimented sludge is returned to the aeration tank to maintain the activated sludge concentration in the aeration tank.

上記の設備では、動力として、ポンプ1つと曝気ブロア1つとを最低限必要とするが、原水槽から曝気槽への送水、及び、曝気槽から沈殿槽への送水は重力による流下であり、沈降汚泥の返送において動力による汲み上げを使用する。   The above equipment requires at least one pump and one aeration blower as power, but the water supply from the raw water tank to the aeration tank and the water supply from the aeration tank to the settling tank are flowing down due to gravity, and sedimentation. Use power pumping to return sludge.

本発明では、上述のような構成要素を活用して、リン及び窒素を同時に除去可能な高度処理型の設備に改善する。その具体例について以下に説明する。   In the present invention, the above-described components are utilized to improve the advanced processing type equipment capable of removing phosphorus and nitrogen simultaneously. Specific examples thereof will be described below.

図1は、本発明に係る配水システムを装備した廃水処理設備の一実施形態を示す。この処理設備1は、3つの槽を有する設備に配水システムを装備したものであり、3つの槽は、廃水W及び活性汚泥Sを収容するための処理槽10、廃水Wに含まれる活性汚泥Sを沈降分離するための分離槽20、及び、分離した活性汚泥Sの一部又は全部に新たな廃水Waを供給して嫌気性条件下におく下処理を行うための下処理槽30として使用する。配水システムは、ポンプ装置40と、配水ラインと、配水ラインの連通/遮断を切り換える切換弁システムと、切換弁システムを系統的に管理・制御する制御部(図示略)とを有する。配水ラインは、ポンプ装置40の排出口から各部へ廃水及び/又は汚泥を供給する供給ラインと、各部からポンプ装置の取入口へ廃水及び/又は汚泥を取り込む取込ラインとからなり、切替弁システムは、供給ラインの各部との連通/遮断を切り換える供給制御弁と、取込ラインの各部との連通/遮断を切り換える取込制御弁とからなる。図1においては、供給制御弁は、供給ラインが各部へ分岐する分岐ライン毎に付設される複数の開閉弁で構成され、取込制御弁は、取込ラインの分岐ライン毎に付設される複数の開閉弁で構成される。具体的には、供給ラインは、処理槽10へのラインL11、分離槽20へのラインL21、下処理槽30へのラインL31、及び、処理後廃水の放出先である外部へのラインL50を有し、供給制御弁として、これらのラインの連通/遮断を個別に切り換える開閉弁V11,V21,V31,V50が各々付設されている。取込ラインは、処理槽10からのラインL12、分離槽20からのラインL22,L23、下処理槽30からのラインL32、及び、廃水源から廃水を取り込むためのラインL1を有し、取込制御弁として、これらのラインの連通/遮断を個別に切り換える開閉弁V12,V22,V23,V32,V1が各々付設されている。ラインL22及び開閉弁V22は、分離槽20で沈降分離された上澄みの配水を排出ためのライン及びその開閉のための弁であり、一方、ラインL23及び開閉弁V23は、分離槽20で沈降分離された分離槽20底部の活性汚泥を排出するためのライン及びその開閉のための弁である。処理槽10及び下処理槽30の底部には、各々、配水に酸素(空気)を供給するための曝気装置11,31、廃水を均一に混合するための撹拌装置12,32が付設されている。開閉弁V1,V11,V12,V21,V22,V23,V31,V32,V50は、電磁制御、油圧制御、機械制御等によって開閉動作を制御可能な弁であり、各々、電気接続、油圧系等の接続手段(図示略)を介して制御部に接続して、各開閉弁の個別の開閉動作を制御部において系統的に管理・制御することができる。供給制御弁の1つと取込制御弁の1つとを開放する様に制御することによって、供給ラインの1つと取込ラインの1つがポンプ装置を介して連通し、ポンプ装置の駆動によって、3つの槽及び廃水源のうちの1つから3つの槽及び外部のうちの1つへ廃水及び/又は汚泥が移送される。又、ポンプ装置40、撹拌装置12,32及び曝気装置12,32の作動制御についても、制御部において上記開閉弁の制御と共に系統的に管理・制御することができる。   FIG. 1 shows an embodiment of a wastewater treatment facility equipped with a water distribution system according to the present invention. This treatment equipment 1 is equipped with a water distribution system in equipment having three tanks. The three tanks are a treatment tank 10 for containing waste water W and activated sludge S, and activated sludge S contained in waste water W. Is used as a separation tank 20 for settling and separating the activated sludge S, and as a pretreatment tank 30 for supplying a new wastewater Wa to a part or all of the separated activated sludge S to perform an anaerobic condition. . The water distribution system includes a pump device 40, a water distribution line, a switching valve system that switches communication / blocking of the water distribution line, and a control unit (not shown) that systematically manages and controls the switching valve system. The water distribution line is composed of a supply line for supplying waste water and / or sludge from the discharge port of the pump device 40 to each part, and an intake line for taking waste water and / or sludge from each part to the inlet of the pump device. Consists of a supply control valve for switching communication / blocking with each part of the supply line and an intake control valve for switching communication / blocking with each part of the intake line. In FIG. 1, the supply control valve is configured by a plurality of on-off valves provided for each branch line where the supply line branches to each part, and the intake control valve is provided for each branch line of the intake line. It consists of an on-off valve. Specifically, the supply line includes a line L11 to the treatment tank 10, a line L21 to the separation tank 20, a line L31 to the lower treatment tank 30, and a line L50 to the outside that is a discharge destination of the treated wastewater. On-off valves V11, V21, V31, and V50 that individually switch communication / blocking of these lines are provided as supply control valves. The intake line has a line L12 from the treatment tank 10, lines L22 and L23 from the separation tank 20, a line L32 from the lower treatment tank 30, and a line L1 for taking waste water from the waste water source. As control valves, on-off valves V12, V22, V23, V32, and V1 for individually switching communication / blocking of these lines are attached. The line L22 and the on-off valve V22 are a line for discharging the water distribution of the supernatant sedimented and separated in the separation tank 20 and a valve for opening and closing the line, while the line L23 and the on-off valve V23 are settled and separated in the separation tank 20 2 is a line for discharging activated sludge at the bottom of the separation tank 20 and a valve for opening and closing the line. Aeration devices 11 and 31 for supplying oxygen (air) to the water distribution, and stirring devices 12 and 32 for uniformly mixing waste water are attached to the bottoms of the treatment tank 10 and the lower treatment tank 30, respectively. . The on-off valves V1, V11, V12, V21, V22, V23, V31, V32, and V50 are valves that can control the opening / closing operation by electromagnetic control, hydraulic control, mechanical control, etc. By connecting to a control unit via a connecting means (not shown), the individual opening / closing operations of each on-off valve can be systematically managed and controlled in the control unit. By controlling one of the supply control valves and one of the intake control valves to open, one of the supply lines and one of the intake lines communicate with each other via the pump device, and three pumps are driven by driving the pump device. Wastewater and / or sludge is transferred from one of the tanks and the wastewater source to one of the three tanks and the outside. Further, the operation control of the pump device 40, the stirring devices 12, 32 and the aeration devices 12, 32 can be systematically managed and controlled together with the control of the on-off valve in the control unit.

処理槽10には、槽内の廃水及び活性汚泥を好気性条件に調整するための作動切り換え可能な酸素供給手段である曝気装置11と、廃水及び活性汚泥を混合するための攪拌装置12とを有し、廃水の活性汚泥処理を行うための処理機構として働く。処理槽10で行われる活性汚泥処理には、廃水を嫌気性条件に調整する嫌気性工程と、この後の廃水を好気性条件に調整する好気性工程とが有る。嫌気性工程では、処理槽10内で、廃水W及び活性汚泥Sを攪拌装置12によって混合し、この時、嫌気性状態とするために必要に応じて槽内は外気から遮断されるが、水面からの酸素の溶け混みが無視できる程度であれば外気の遮断は不要である。この工程で、脱窒細菌の活動によって廃水W中の硝酸態窒素が還元され窒素となって廃水Wから放出される(脱窒)。攪拌によって、廃水の局所的な水質変化が防止される。脱窒が完遂されて硝酸態窒素が無くなれば、リン蓄積細菌が活性化されてリン蓄積細菌が繁殖に優位になる。次の好気性工程では、攪拌装置12を停止して曝気装置11から廃水W及び活性汚泥Sに空気を吹き込むことにより好気性状態となり、廃水W中のアンモニア態窒素が硝化細菌によって酸化されて硝酸を生じる。この時、リン蓄積細菌は、取り込んでいた有機質を用いて繁殖すると共にリン酸態リンを取り込むが、この段階で廃水のリン酸態リンの除去が満足に進行するにはリン蓄積細菌が汚泥中で十分に繁殖する必要があり、処理槽10内でリン蓄積細菌が繁殖に優位になる機会は極めて限られる。このため、汚泥中のリン蓄積細菌の繁殖及びリンの取り込み能の増強を可能にするための処理を、後述の下処理槽30において行う。又、リンを取り込んだ細菌は、廃水から分離廃棄しなければ嫌気性条件下で廃水中にリンを再度放出するので、廃水処理の繰り返しに従って、リン除去のための汚泥廃棄が必要となる。これは、分離槽20において行われる。   The treatment tank 10 includes an aeration apparatus 11 which is an oxygen supply means capable of switching operation for adjusting waste water and activated sludge in the tank to an aerobic condition, and a stirring apparatus 12 for mixing the waste water and activated sludge. It acts as a treatment mechanism for performing activated sludge treatment of wastewater. The activated sludge treatment performed in the treatment tank 10 includes an anaerobic process for adjusting wastewater to an anaerobic condition and an aerobic process for adjusting subsequent wastewater to an aerobic condition. In the anaerobic process, the waste water W and the activated sludge S are mixed in the treatment tank 10 by the stirring device 12, and at this time, the inside of the tank is shut off from outside air as necessary in order to obtain an anaerobic state. If the dissolved oxygen is negligible, it is not necessary to shut off the outside air. In this step, nitrate nitrogen in the wastewater W is reduced by the activity of the denitrifying bacteria and is released as nitrogen from the wastewater W (denitrification). Agitation prevents local water quality changes in the wastewater. If denitrification is completed and nitrate nitrogen disappears, the phosphorus accumulating bacteria are activated and the phosphorus accumulating bacteria become dominant in reproduction. In the next aerobic process, the stirrer 12 is stopped and air is blown into the waste water W and the activated sludge S from the aerator 11 so as to be in an aerobic state, and the ammonia nitrogen in the waste water W is oxidized by nitrifying bacteria and nitric acid. Produce. At this time, the phosphorus-accumulating bacteria propagate using the organic matter that has been taken in and also take up phosphorous phosphorus. At this stage, the phosphorus-accumulating bacteria must be contained in the sludge so that the removal of phosphate phosphorus in the wastewater can proceed satisfactorily. In the treatment tank 10, the opportunity for the phosphorus-accumulating bacteria to have an advantage in reproduction is extremely limited. For this reason, the process for enabling the propagation of phosphorus accumulating bacteria in the sludge and the enhancement of the phosphorus uptake capacity is performed in the aftertreatment tank 30 described later. In addition, if the bacteria that have incorporated phosphorus are separated and discarded from the wastewater, they will be released again into the wastewater under anaerobic conditions, so that it is necessary to dispose of sludge for phosphorus removal as the wastewater treatment is repeated. This is done in the separation tank 20.

処理槽10において脱窒、硝化及びリンの取り込みを施した後の廃水W及び活性汚泥Sは、その一部が、処理槽10からラインL12、開閉弁V12及びポンプ装置40によって排出され、ラインL21,開閉弁V21を通じて分離槽20に収容される(つまり、開閉弁V12,V21を一定時間開放)。   Part of the waste water W and activated sludge S after denitrification, nitrification and phosphorus uptake in the treatment tank 10 are discharged from the treatment tank 10 by the line L12, the on-off valve V12 and the pump device 40, and the line L21. , And is accommodated in the separation tank 20 through the on-off valve V21 (that is, the on-off valves V12, V21 are opened for a predetermined time).

分離槽20では、処理槽10から分取される汚泥を含んだ廃水を、活性汚泥Sと廃水Wとに分離する。この実施形態では、沈降分離によって活性汚泥Sが分離槽底部に収集されるが、分離手段として、レーキの様な汚泥を掻き寄せて収集する機械的分離手段を用いても良い。活性汚泥Sから分離された廃水Wは、ラインL22,開閉弁V22及びポンプ装置40を用いて分離槽20からラインL50,開閉弁V50を通じて廃棄される(つまり、開閉弁V22,V50を一定時間開放)。活性汚泥Sは、廃水Wを含む濃縮汚泥の状態で分離槽20に残るが、後続の下処理の効率の点から、活性汚泥Sに残留する廃水Wが少ないように可能な限り分離効率を高めることが望ましい。   In the separation tank 20, waste water containing sludge separated from the treatment tank 10 is separated into activated sludge S and waste water W. In this embodiment, the activated sludge S is collected at the bottom of the separation tank by sedimentation separation. However, mechanical separation means for collecting sludge such as lake may be used as the separation means. The waste water W separated from the activated sludge S is discarded from the separation tank 20 through the line L50 and the on-off valve V50 using the line L22, the on-off valve V22 and the pump device 40 (that is, the on-off valves V22 and V50 are opened for a certain period of time). ). The activated sludge S remains in the separation tank 20 in the state of the concentrated sludge containing the waste water W. From the viewpoint of the efficiency of the subsequent pretreatment, the separation efficiency is increased as much as possible so that the waste water W remaining in the activated sludge S is small. It is desirable.

分離槽20の濃縮汚泥Sは、その一部がラインL23,開閉弁V23及びポンプ装置40によって排出されて、ラインL31及び開閉弁V31を通じて下処理槽30に供給される(つまり、開閉弁V23,V31を一定時間開放)。残りの汚泥は、リン蓄積細菌に取り込まれたリンを処理系から除去するために分離槽20から排出し(分離槽20の底部排出ラインを用いるか、開閉弁V23,V50を一定時間開放してラインL23,L50から排出)、焼却処理等を施して廃棄される。但し、活性汚泥Sのリン蓄積細菌のリン取り込み容量に余裕があって、更にリン取り込みが可能である場合には、分離槽20の濃縮汚泥を全て下処理槽30へ供給すれば良い。この判断は、分離槽20の廃水のリン酸濃度の測定値に基づいて行うことができる。   A part of the concentrated sludge S in the separation tank 20 is discharged by the line L23, the on-off valve V23 and the pump device 40 and supplied to the lower treatment tank 30 through the line L31 and the on-off valve V31 (that is, the on-off valve V23, V31 is opened for a certain period of time). The remaining sludge is discharged from the separation tank 20 in order to remove phosphorus taken up by the phosphorus accumulating bacteria from the treatment system (using the bottom discharge line of the separation tank 20 or opening the on-off valves V23 and V50 for a certain period of time. Discharged from the lines L23 and L50), incinerated, etc. and discarded. However, if the activated sludge S has a sufficient phosphorus uptake capacity for the phosphorus accumulating bacteria and can further take up phosphorus, the concentrated sludge in the separation tank 20 may be supplied to the pretreatment tank 30. This determination can be made based on the measured value of the phosphoric acid concentration of the wastewater in the separation tank 20.

下処理槽30では、分離槽20から供給される汚泥に、ラインL1、開閉弁V1及びポンプ装置40を用いて取り込まれる新たな廃水WaがラインL31及び開閉弁V31を通じて供給され(つまり、開閉弁V1,V31を一定時間開放)、必要ならば槽内を外気から遮断することによって、取水した新たな廃水Wa及び活性汚泥Sを嫌気性条件下におく。下処理槽30には、廃水Wa及び活性汚泥Sを混合するための攪拌装置32が装備されており、廃水Waを攪拌することによって活性汚泥Sが分散し、局所的な品質変化が防止されて汚泥の活性化が均一になる。この状態では、活性汚泥Sに含まれていた廃水Wによる残留硝酸体窒素が脱窒細菌によって窒素に変換され、脱窒が完遂されて硝酸態窒素がなくなる(硝酸態窒素のない嫌気性状態を絶対嫌気性と記載する)と、リン蓄積細菌が活性化して廃水中の豊富な有機質を取り込んで、他の細菌より繁殖に優位になる。従って、後の処理槽10での好気性状態で増殖して活性汚泥Sのリン蓄積容量が増大する。この増殖により増大する分のリン蓄積容量によって、前述の分離槽20から系外へ廃棄された分の汚泥のリン蓄積容量が補充される。下処理が有効に機能するには、濃縮汚泥に供給される新たな廃水Waの量が、活性汚泥Sに残留する硝酸態窒素の脱窒を実質的に完遂させて絶対嫌気性とするのに充分な(つまり、完遂当量を超える)量の有機質を供給可能な量であることが重要である。汚泥処理後の廃水は有機質量が少なくなっているので、取り扱いによっては汚泥に糸状細菌が増殖する可能性があるが、下処理槽30で有機質濃度の高い新たな廃水に接触することにより、糸状細菌の増殖は防止される。この下処理槽30は、処理槽10における不慮の糸状細菌の増殖を回避する手段としても作用する。詳細には、処理槽10の汚泥処理後の廃水の有機質濃度はゼロに近く、新たな廃水を直接処理槽10に追加する時に、混合状況によっては糸状細菌の増殖が促進される可能性が生じ、特に処理前の廃水の有機質濃度が100mg-COD/L程度以下の場合に可能性が高くなるが、下処理槽30を経由した場合には、下処理槽30で活性化された硝化細菌及びフロック形成細菌が廃水と共に投入されるので、処理槽10では糸状細菌が活性化する前に硝化細菌及びフロック形成細菌が先行して有機質を摂取するので、糸状細菌の繁殖抑制に有効となる。従って、廃水の水質変動や分離槽の分離効率などに起因して下処理槽で絶対嫌気性とならずリン蓄積細菌が活性化されない場合にも、下処理槽30は有用な手段である。また、リン除去を必要としない廃水処理に本願発明を適用すれば、糸状細菌の増殖防止を確実にする手段として下処理槽30を活用することができ、この場合、下処理槽30において脱窒を完遂する必要はない。   In the lower treatment tank 30, new waste water Wa taken into the sludge supplied from the separation tank 20 using the line L 1, the on-off valve V 1 and the pump device 40 is supplied through the line L 31 and the on-off valve V 31 (that is, the on-off valve V1 and V31 are opened for a certain period of time), and if necessary, the inside of the tank is shut off from the outside air, so that the new waste water Wa and the activated sludge S are taken under anaerobic conditions. The pretreatment tank 30 is equipped with a stirring device 32 for mixing the waste water Wa and the activated sludge S. By stirring the waste water Wa, the activated sludge S is dispersed and local quality change is prevented. Sludge activation becomes uniform. In this state, the residual nitrate nitrogen from the waste water W contained in the activated sludge S is converted to nitrogen by the denitrifying bacteria, and the denitrification is completed and the nitrate nitrogen disappears (anaerobic state without nitrate nitrogen) When described as absolute anaerobic), the phosphorus-accumulating bacteria are activated and take in abundant organic matter in the wastewater, leading to better reproduction than other bacteria. Therefore, it grows in an aerobic state in the subsequent treatment tank 10 and the phosphorus accumulation capacity of the activated sludge S increases. The phosphorus storage capacity of the sludge discarded from the separation tank 20 to the outside of the system is replenished by the phosphorus storage capacity that is increased by this multiplication. In order for the pretreatment to function effectively, the amount of the new waste water Wa supplied to the concentrated sludge makes the absolute nitrogen anaerobic by substantially completing the denitrification of nitrate nitrogen remaining in the activated sludge S. It is important to be able to supply a sufficient amount of organic matter (ie more than the complete equivalent). Since wastewater after sludge treatment has a small organic mass, there is a possibility that filamentous bacteria will grow in the sludge depending on the handling. However, when it comes into contact with new wastewater with a high organic concentration in the sludge treatment tank 30, Bacterial growth is prevented. The pretreatment tank 30 also functions as a means for avoiding inadvertent growth of filamentous bacteria in the treatment tank 10. Specifically, the organic concentration of wastewater after sludge treatment in the treatment tank 10 is close to zero, and when new wastewater is added directly to the treatment tank 10, there is a possibility that the growth of filamentous bacteria may be accelerated depending on the mixing situation. In particular, the possibility is high when the organic concentration of wastewater before treatment is about 100 mg-COD / L or less, but when passing through the pretreatment tank 30, nitrifying bacteria activated in the pretreatment tank 30 and Since the floc-forming bacteria are introduced together with the waste water, the nitrifying bacteria and the floc-forming bacteria ingest the organic matter before the filamentous bacteria are activated in the treatment tank 10, which is effective for suppressing the propagation of the filamentous bacteria. Accordingly, the pretreatment tank 30 is a useful means even when the anaerobic bacteria are not anaerobic in the pretreatment tank and the phosphorus accumulating bacteria are not activated due to fluctuations in waste water quality, separation efficiency of the separation tank, and the like. In addition, if the present invention is applied to wastewater treatment that does not require phosphorus removal, the lower treatment tank 30 can be used as a means for ensuring the prevention of the growth of filamentous bacteria. It is not necessary to complete.

上述の下処理に先立って濃縮汚泥Sに酸素を供給すると、残留廃水の有機質及び汚泥に蓄積されていた貯蔵有機質が酸化分解して汚泥中の細菌が飢餓状態になるので、新たな廃水Waによって有機質が供給された時に細菌が有機質を取り込む速度が増加し、下処理の有効性が向上する。この酸素供給は、曝気処理によって可能であり、酸素又はこれを含む空気等のガスを供給するための曝気装置31を下処理槽30に設けて空気等を吹き込むことによって効率よく実施できる。尚、曝気装置31に代えて攪拌装置を用いて同様の効果を得ることもできる。この場合、酸素の代わりに硝酸の結合酸素が消費(脱窒)される。   If oxygen is supplied to the concentrated sludge S prior to the above-mentioned pretreatment, the organic matter in the residual wastewater and the stored organic matter accumulated in the sludge are oxidatively decomposed and the bacteria in the sludge are starved, so the new wastewater Wa When the organic substance is supplied, the rate at which the bacteria take up the organic substance increases, and the effectiveness of the pretreatment is improved. This oxygen supply is possible by an aeration process, and can be efficiently carried out by providing an aeration apparatus 31 for supplying a gas such as oxygen or air containing this in the lower treatment tank 30 and blowing air or the like. In addition, it can replace with the aeration apparatus 31, and can also obtain the same effect using a stirring apparatus. In this case, the combined oxygen of nitric acid is consumed (denitrified) instead of oxygen.

下処理後の新たな廃水Wa及び活性汚泥Sは、ラインL32、開閉弁V32を介してポンプ装置40によって還流されてラインL11及び開閉弁V11から処理槽10へ供給される(つまり、開閉弁V32,V11を一定時間開放)。処理槽10の水量は満水レベル(図中、破線Fで示す)に戻り、新たな廃水Waを加えた残留廃水Wに対して、下処理後の活性化したリン蓄積細菌を含む活性汚泥Sによって再び汚泥処理が施される。還流後の空の下処理槽30は、新たな廃水を収容して原廃水用貯水槽として利用しても良い。   The new waste water Wa and activated sludge S after the pretreatment are recirculated by the pump device 40 via the line L32 and the on-off valve V32 and supplied to the treatment tank 10 from the line L11 and the on-off valve V11 (that is, the on-off valve V32). , V11 is opened for a certain period of time). The amount of water in the treatment tank 10 returns to the full water level (indicated by a broken line F in the figure), and the residual waste water W added with the new waste water Wa is activated by the activated sludge S containing activated phosphorus-accumulating bacteria after the pretreatment. Sludge treatment is performed again. The empty pretreatment tank 30 after reflux may contain new wastewater and be used as a reservoir for raw wastewater.

従って、制御部の動作制御に応じて供給制御弁及び取込制御弁が上記のように切り換わると、ポンプ装置40の駆動によって廃水源から供給される廃水は、配水ラインを介して、下処理槽(第1処理槽)30から、処理槽10(第2処理槽)、分離槽20の順に活性汚泥と共に移動した後に、汚泥から分離されて外部へ排出される。供給制御弁及び取込制御弁の開閉動作は、配水ラインによる廃水又は汚泥の移送(供給及び取込)が、下処理槽30に収容される廃水又は活性汚泥の容量を単位として断続的に繰り返し行われるように制御される。   Therefore, when the supply control valve and the intake control valve are switched as described above in accordance with the operation control of the control unit, the wastewater supplied from the wastewater source by driving the pump device 40 is treated as a pretreatment through the water distribution line. After moving together with activated sludge in the order of the treatment tank 10 (second treatment tank) and the separation tank 20 from the tank (first treatment tank) 30, it is separated from the sludge and discharged to the outside. The opening and closing operation of the supply control valve and the intake control valve is repeated intermittently in units of waste water or activated sludge capacity accommodated in the sewage treatment tank 30 (transfer and supply) of waste water or sludge through the distribution line. Controlled to be done.

上述のようにして、新たな廃水Waを下処理槽30に断続的に供給しながら、上述の汚泥処理、分取操作、分離操作、下処理及び還流操作を繰り返すことによって、廃水中のアンモニア態窒素及びリン酸態リンが除去され、硝酸態窒素濃度が許容可能な低濃度に減少した被処理廃水が活性汚泥処理装置の分離槽20から排出される。廃水中のリンは、活性汚泥のリン蓄積細菌に取り込まれ、分離槽20で収集された活性汚泥Sの一部と共に廃棄処分される。この際、分離槽20から排出される廃水の容積と、下処理槽30で活性汚泥Sに供給される新たな廃水Waの容積とを等しくすることによって、処理槽10において汚泥処理を施す廃水の容積(全量)が一定になる。   As described above, the ammonia state in the wastewater is obtained by repeating the above-described sludge treatment, fractionation operation, separation operation, pretreatment and reflux operation while intermittently supplying new wastewater Wa to the pretreatment tank 30. Nitrogen and phosphate phosphorus are removed, and the wastewater to be treated whose nitrate nitrogen concentration is reduced to an acceptable low concentration is discharged from the separation tank 20 of the activated sludge treatment apparatus. The phosphorus in the wastewater is taken up by the phosphorus accumulating bacteria of the activated sludge and discarded together with a part of the activated sludge S collected in the separation tank 20. At this time, by equalizing the volume of the waste water discharged from the separation tank 20 and the volume of the new waste water Wa supplied to the activated sludge S in the lower treatment tank 30, the waste water subjected to the sludge treatment in the treatment tank 10. The volume (total amount) becomes constant.

一般に、活性汚泥の沈降分離は長時間を要するので、分離槽20における分離操作と並行して処理槽10における廃水の汚泥処理を進めると、処理及び操作の効率化の点で有利であり、廃水処理設備1の3つの槽10,20,30を無駄無く活用できる。このためには、例えば、初期処理として、予め、下処理槽30において新たな廃水と活性汚泥とで下処理を行っておき、汚泥処理後の廃水及び汚泥の一部を分離槽20に分取した後(図1が示す状態)の処理槽10に、下処理後の廃水Wa及び活性汚泥Sを補充することにより、分離操作と汚泥処理とを並行して進行できる状態になり、時間当たりに処理可能な廃水量を多くでき、実質的に処理に要する時間の短縮と同等となる。この場合、分離後の活性汚泥に下処理を施す間に汚泥処理が終了したら、処理槽10からの分取操作を並行して行えばよく、(a:汚泥処理/分離、b:廃水廃棄、c:下処理/廃水分取、d:還流)を一サイクルとして、処理及び操作が繰り返し行われる。この間の配水システムの操作において開放される開閉弁の符号は、b:V22,V50(分離槽20から外部)、b−c間:1)V23,V31(分離槽20から下処理槽30)、2)V1,V31(廃水源から下処理槽30)、c:V12,V21(処理槽10から分離槽20)、d:V32,V11(下処理槽30から処理槽10)、となり、各廃水移送に必要な時間開放される。リン取り込み飽和に達した活性汚泥をラインL50から排出する場合には、上記b−c間に開放する開閉弁の符号が、1)V23,V31(分離槽20から下処理槽30)、2)V23,V50(分離槽20から外部)、3)V1,V31(廃水源から下処理槽30)、となるか、或いは、1)と2)とが逆順でも良く、上記aの汚泥の分離が不充分な状態で上記bの廃水を廃棄すると、一部の汚泥が一緒に廃棄できる。   In general, sedimentation and separation of activated sludge requires a long time. Therefore, proceeding with sludge treatment of wastewater in the treatment tank 10 in parallel with the separation operation in the separation tank 20 is advantageous in terms of efficiency of treatment and operation, and wastewater The three tanks 10, 20, and 30 of the processing facility 1 can be utilized without waste. For this purpose, for example, as an initial treatment, a pretreatment is performed in advance in the pretreatment tank 30 with new wastewater and activated sludge, and a part of the wastewater and sludge after the sludge treatment is separated into the separation tank 20. After replenishing (the state shown in FIG. 1) the treatment tank 10 with the treated waste water Wa and activated sludge S, the separation operation and the sludge treatment can proceed in parallel. The amount of wastewater that can be treated can be increased, which is substantially equivalent to a reduction in time required for treatment. In this case, when the sludge treatment is completed while the activated sludge after separation is subjected to the pretreatment, the fractionation operation from the treatment tank 10 may be performed in parallel, (a: sludge treatment / separation, b: wastewater disposal, c: Pretreatment / waste water removal, d: reflux) is taken as one cycle, and the treatment and operation are repeated. The sign of the on-off valve opened in the operation of the water distribution system during this period is b: V22, V50 (external from the separation tank 20), bc: 1) V23, V31 (separation tank 20 to the pretreatment tank 30), 2) V1, V31 (waste water source to lower treatment tank 30), c: V12, V21 (treatment tank 10 to separation tank 20), d: V32, V11 (lower treatment tank 30 to treatment tank 10), and each waste water Opened for the time required for transfer. When the activated sludge that has reached phosphorus uptake saturation is discharged from the line L50, the sign of the on-off valve opened between bc is 1) V23, V31 (from the separation tank 20 to the pretreatment tank 30), 2) V23, V50 (from the separation tank 20 to the outside), 3) V1, V31 (from the wastewater source to the sewage treatment tank 30), or 1) and 2) may be in reverse order, and the sludge separation in the above a may be performed. When the waste water b is discarded in an insufficient state, some sludge can be discarded together.

処理槽10での汚泥処理においては、追加される新たな廃水に含有されるアンモニア態窒素が、汚泥処理後の廃水中に硝酸態窒素として残存するので、処理槽10から分取される被処理廃水の硝酸態窒素濃度は、処理開始時つまり1回目の汚泥処理後においては、廃水のアンモニア態窒素濃度と同程度になるが、上記サイクルに従って処理を繰り返すことによって減少して定常化し、ほぼ一定状態の被処理廃水が分離槽20から廃棄されるようになる。   In the sludge treatment in the treatment tank 10, ammonia nitrogen contained in the new wastewater to be added remains as nitrate nitrogen in the wastewater after the sludge treatment. The concentration of nitrate nitrogen in the wastewater is about the same as the ammonia nitrogen concentration in the wastewater at the start of the treatment, that is, after the first sludge treatment. The waste water to be treated is discarded from the separation tank 20.

廃水処理が定常化した状態では、処理前の廃水のアンモニア態窒素濃度Aと汚泥処理後の廃水の硝酸態窒素濃度Nとの濃度比率は、汚泥処理が施される廃水(全量)の容積Vと下処理で加える新たな廃水の容積vとの比率(水量比率)に実質的に相当し、排出される廃水の硝酸態窒素濃度Nは、N=A×(v/V)となり、新たな廃水の割合に依存する。廃棄する水に許容される最大硝酸態窒素濃度をNmaxとすると、N≦Nmaxとなるためには、v/V≦Nmax/Aとなるので、水量比率v/Vを、濃度比率Nmax/Aに基づいて大まかに設定する。この時の新たな廃水の容積vの最小値は、下処理が有効となるのに必要な量であり、最大値は、廃棄する廃水の硝酸態窒素濃度がNmaxとなる量である。前述の濃度比率に応じて設定される値より初期の水量比率v/Vを小さく設定して段階的に増加させる方法や、初期の汚泥処理における廃水量を全量Vより少なく設定(例えば、V−v)して、汚泥処理後の廃水に分取及び分離を行うことなく下処理後の新たな廃水を加える方法などがあり、諸状況を勘案して適宜選択する。但し、分離した汚泥中の残留廃水量を勘案する必要があり、分離槽30における廃水と汚泥との分離効率を考慮して決定される。   In a state where the wastewater treatment is in a steady state, the concentration ratio between the ammonia nitrogen concentration A of the wastewater before treatment and the nitrate nitrogen concentration N of the wastewater after sludge treatment is the volume V of the wastewater (total amount) subjected to sludge treatment. Is substantially equivalent to the ratio (water volume ratio) of the volume of waste water to be added in the pretreatment, and the nitrate nitrogen concentration N of the discharged waste water is N = A × (v / V). Depends on the proportion of wastewater. Assuming that the maximum nitrate nitrogen concentration allowed for the water to be discarded is Nmax, in order to satisfy N ≦ Nmax, v / V ≦ Nmax / A, so the water volume ratio v / V is changed to the concentration ratio Nmax / A. Set roughly based on. At this time, the minimum value of the volume v of the new wastewater is an amount necessary for the pretreatment to be effective, and the maximum value is an amount at which the nitrate nitrogen concentration of the wastewater to be discarded becomes Nmax. A method in which the initial water amount ratio v / V is set smaller than the value set in accordance with the concentration ratio described above and is increased stepwise, or the amount of waste water in the initial sludge treatment is set to be less than the total amount V (for example, V− v) Then, there is a method of adding new wastewater after the pretreatment without separating and separating the wastewater after the sludge treatment. However, it is necessary to consider the amount of residual wastewater in the separated sludge, which is determined in consideration of the separation efficiency of wastewater and sludge in the separation tank 30.

上記繰り返しによる定常化において、活性汚泥S中のリン蓄積細菌は、下処理槽30で活性化されて好気性工程で繁殖し、これによって活性汚泥のリン蓄積能は増加するが、新たな廃水が繰り返し加えられることによって、処理系内のリン量は、細菌の取り込み飽和量に達する。従って、取り込み飽和量に達したら、前述のように分離槽20の活性汚泥Sの一部のみに下処理を施すが、取り込み飽和量に達するまでは、分離槽の活性汚泥は全て下処理に供することができる。取り込み飽和に達したか否かは、汚泥処理後の廃水のリン酸態リン濃度のモニター結果に基づいて判断でき、廃水のリン濃度の上昇によって検知可能である。廃棄する活性汚泥の量は、新たな廃水によって加わるリン量に依存し、下処理によって増加可能なリン取り込み量を考慮して設定する。汚泥処理において使用される活性汚泥の量は、概して、1日に処理する有機質kg当たりの値で0.2〜0.6kgCOD/(kg活性汚泥・日)程度であるが、活性汚泥Sの全量に対して1日当たり3〜7乾燥質量%(又は容積%)程度を廃棄することが好ましい。   In the regularization by the above repetition, the phosphorus accumulating bacteria in the activated sludge S are activated in the pretreatment tank 30 and propagated in the aerobic process, thereby increasing the phosphorus accumulating ability of the activated sludge, but new waste water is By being repeatedly added, the amount of phosphorus in the treatment system reaches the saturation amount of bacterial uptake. Therefore, when the uptake saturation amount is reached, only a part of the activated sludge S in the separation tank 20 is subjected to the pretreatment as described above. However, until the uptake saturation amount is reached, all of the activated sludge in the separation tank is subjected to the pretreatment. be able to. Whether or not the intake saturation has been reached can be determined based on the monitoring result of the phosphate phosphorus concentration of the wastewater after the sludge treatment, and can be detected by the increase of the phosphorus concentration of the wastewater. The amount of activated sludge to be discarded depends on the amount of phosphorus added by the new wastewater, and is set in consideration of the amount of phosphorus uptake that can be increased by the pretreatment. The amount of activated sludge used in the sludge treatment is generally about 0.2 to 0.6 kg COD / (kg activated sludge / day) per kg of organic matter treated per day, but the total amount of activated sludge S. It is preferable to discard about 3-7 dry mass% (or volume%) per day.

上述においては、廃水処理設備1に供給される廃水の水質は一定で、硝酸態窒素を含まないことを前提とするが、廃水のアンモニア態窒素濃度が変動する場合、この変動に対応するには、廃水のアンモニア態窒素濃度を常時モニターしながら濃度比率の変動に応じて水量比率及び嫌気/好気の時間配分を適切に調節することによって、排出される被処理廃水の硝酸態窒素濃度を好適に制御できる。   In the above description, it is assumed that the quality of the wastewater supplied to the wastewater treatment facility 1 is constant and does not contain nitrate nitrogen. Optimize the nitrate nitrogen concentration of the wastewater to be treated by appropriately adjusting the water ratio and anaerobic / aerobic time distribution according to the fluctuation of the concentration ratio while constantly monitoring the ammonia nitrogen concentration of the wastewater Can be controlled.

上述の分離槽20及び下処理槽30に必要とされる容量は同じと見なせる(但し、実際には、廃水の水質変動による追加廃水量の変更分が容量に考慮される)ので、これらを区別せずに2つの槽(第1及び第2分離槽)を交互に使用するように上記実施形態を変更することができる。具体的には、処理槽10から排出された廃水を第1分離槽に収容し、汚泥を沈降させて廃水を除去した後の汚泥に新たな廃水を加えて下処理を行う。処理槽10から次に分取される被処理廃水は、第2分離槽に収容して同様に沈降分離及び廃水の排出を行い、第2分離槽内で下処理を行う。第1分離槽で下処理を施した廃水は、第2分離槽への分取後に処理槽へ還流すればよい。従って、ポンプ装置の駆動によって廃水源から第1分離槽及び第2分離槽の一方へ交互に供給される廃水が、活性汚泥と共に処理槽を経て第1分離槽及び第2分離槽の一方へ交互に移送され、この後、汚泥から分離されて外部へ排出されるように開閉弁の動作が制御される。廃水及び汚泥の移送単位は、第1及び第2分離槽の各々に収容される廃水及び汚泥の容量となる。この実施形態では、図1の下処理槽30で使用する攪拌装置32及び汚泥に曝気処理を施すための曝気手段31を、第1及び第2分離槽の両方(分離槽20及び下処理槽30)に設けて動作を切り替え制御する。又、リン取り込み飽和の汚泥を排出するには、図1の分離槽20の底部の余剰汚泥排出口を下処理槽30にも設けることができ、この場合は、汚泥排出用のラインL23及び開閉弁V23は不要となる。或いは、汚泥排出用のラインL23及び開閉弁V23を、下処理槽30(第2分離槽)にもラインL33,開閉弁V33として設置し、ライン50を介して外部へ汚泥を排出してもよい。2つの分離槽による活性汚泥処理の配水操作は、例えば、(a:汚泥処理/分離1、b:廃水廃棄1、c:下処理1/廃水分取2、d:還流1、e:汚泥処理/分離2、f:廃水廃棄2、g:下処理2/廃水分取1、h:還流2)を一サイクルとして、処理及び操作が繰り返し行われる。この間の配水システムの操作において開放される開閉弁の符号は、b:V22,V50、b−c間:V1,V21、c:V12,V31、d:V22,V11、f:V32,V50、f−g間:V1,31、g:V12,V21、h:V32,V11、となる。リン取り込み飽和に達した活性汚泥をラインL50から排出する場合には、上記b−c間及びf−g間の各々で開放する開閉弁の符号は、例えば、b−c間:1)V23,V50、2)V1,V21、f−g間:1)V33,V50、2)V1,V31、となる。或いは、1)を上記操作a,eでの分離が不充分な状態でb,fの廃水廃棄と共に汚泥の一部を廃棄しても良い。   The capacities required for the separation tank 20 and the pretreatment tank 30 described above can be regarded as the same (however, the change in the amount of additional wastewater due to fluctuations in the quality of the wastewater is actually taken into account). The above-described embodiment can be modified so that two tanks (first and second separation tanks) are used alternately. Specifically, waste water discharged from the treatment tank 10 is accommodated in a first separation tank, and new waste water is added to the sludge after the sludge is settled and the waste water is removed to perform the pretreatment. The wastewater to be treated that is separated next from the treatment tank 10 is accommodated in the second separation tank, and similarly, sedimentation and discharge of the wastewater are performed, and the pretreatment is performed in the second separation tank. The wastewater that has been subjected to the pretreatment in the first separation tank may be returned to the treatment tank after being separated into the second separation tank. Therefore, the waste water supplied alternately from the waste water source to one of the first separation tank and the second separation tank by driving the pump device passes through the treatment tank together with the activated sludge to one of the first separation tank and the second separation tank. Thereafter, the operation of the on-off valve is controlled so as to be separated from the sludge and discharged to the outside. The transfer unit of waste water and sludge is the capacity of waste water and sludge stored in each of the first and second separation tanks. In this embodiment, the agitating device 32 used in the lower treatment tank 30 of FIG. 1 and the aeration means 31 for aeration treatment of sludge are used for both the first and second separation tanks (the separation tank 20 and the lower treatment tank 30). ) To control switching operation. In order to discharge the sludge saturated with phosphorus uptake, an excess sludge discharge port at the bottom of the separation tank 20 in FIG. 1 can also be provided in the pretreatment tank 30. In this case, the sludge discharge line L23 and the open / close The valve V23 becomes unnecessary. Alternatively, the sludge discharge line L23 and the open / close valve V23 may be installed in the lower treatment tank 30 (second separation tank) as the line L33 and the open / close valve V33, and the sludge may be discharged to the outside through the line 50. . For example, (a: sludge treatment / separation 1, b: waste water disposal 1, c: pretreatment 1 / waste water removal 2, d: reflux 1, e: sludge treatment) / Separation 2, f: waste water disposal 2, g: pretreatment 2 / waste water removal 1, h: reflux 2), and treatment and operation are repeated. The sign of the on-off valve opened in the operation of the water distribution system during this period is as follows: b: V22, V50, bc: V1, V21, c: V12, V31, d: V22, V11, f: V32, V50, f Between -g: V1, 31, g: V12, V21, h: V32, V11. When the activated sludge that has reached saturation of phosphorus uptake is discharged from the line L50, the open / close valve that opens between b-c and f-g is, for example, between b-c: 1) V23, V50, 2) V1, V21, f-g: 1) V33, V50, 2) V1, V31. Alternatively, part of sludge may be discarded together with the wastewater disposal of b and f in a state where the separation in the above operations a and e is insufficient.

処理槽10での汚泥処理(嫌気性処理+好気性処理)に要する時間に比べて分離槽30での分離操作に要する時間が極めて長い場合、効率よく廃水処理設備を利用するために、例えば、a)処理槽10での汚泥処理を繰り返す、b)汚泥の分離操作を2段階に分けて初期段階の分離を処理槽10において行う、等の応用が可能である。   When the time required for the separation operation in the separation tank 30 is extremely long compared to the time required for the sludge treatment (anaerobic treatment + aerobic treatment) in the treatment tank 10, in order to efficiently use the wastewater treatment facility, for example, Applications such as a) repeating the sludge treatment in the treatment tank 10 and b) separating the sludge in two stages and performing the initial separation in the treatment tank 10 are possible.

上記a)では、好気性処理後の廃水は有機質が不足するので、汚泥処理を繰り返す前に、廃水の追加によって有機質を補充して嫌気性処理における脱窒が進行可能とする必要がある。従って、処理槽10での汚泥処理を繰り返す場合には、1回目の汚泥処理における廃水量は、汚泥処理を繰り返す際に追加する廃水量を考慮して設定する。   In the a), since the wastewater after the aerobic treatment is insufficient in organic matter, it is necessary to replenish the organic matter by adding wastewater so that denitrification in the anaerobic treatment can proceed before the sludge treatment is repeated. Therefore, when the sludge treatment in the treatment tank 10 is repeated, the amount of wastewater in the first sludge treatment is set in consideration of the amount of wastewater added when the sludge treatment is repeated.

上記b)では、処理槽10において汚泥処理を終えた廃水に沈降分離等による分離操作を行うことによって処理槽10の下部に活性汚泥Sが収集され、ある程度濃縮される。分離槽20(又は第1及び第2分離槽の一方)が空いた時点で、処理槽10内の半濃縮された汚泥を分離槽20に排出する。この場合、排出物中の汚泥の廃水に対する比率が大きくなるので、分離操作を経て下処理を施す汚泥の量を増加することができ、リン蓄積能の増強の点で有利である。この時の濃縮汚泥の排出・分取量は、分離槽20の分離汚泥の残留廃水v’を含む(v+v’)として分離効率を考慮して調節され、これが新たな廃水量vに近づくように分離槽30での操作を最適化する。このような調節は、例えば、分離槽20に汚泥界面計を装備し、分離槽20での分離状況を分取操作における排出量に反映させる形で実現できる。具体的には、分離槽20で汚泥を沈降分離した際に汚泥界面計で界面位置を検出することによって、分離槽20から排出可能な上澄み廃水量、及び、濃縮汚泥に対する上澄み廃水の割合が決定される。上澄み廃水量と新たな廃水量vとの差を求めて、この差分に相当する割合だけ、処理槽10から排出する濃縮汚泥を減少させることによって、分離操作時の残留廃水量v’を分離効率に対応して減少でき、より多くの汚泥及びリン蓄積細菌に対して下処理を施して高い効率で活性化できる。   In b), the activated sludge S is collected in the lower part of the treatment tank 10 and concentrated to some extent by performing a separation operation such as sedimentation on the wastewater that has been subjected to the sludge treatment in the treatment tank 10. When the separation tank 20 (or one of the first and second separation tanks) is empty, the semi-concentrated sludge in the treatment tank 10 is discharged to the separation tank 20. In this case, since the ratio of the sludge to the wastewater in the discharge is increased, the amount of sludge to be subjected to the pretreatment through the separation operation can be increased, which is advantageous in enhancing the phosphorus storage capacity. The amount of concentrated sludge discharged and collected at this time is adjusted in consideration of the separation efficiency as including the residual waste water v ′ of the separated sludge in the separation tank 20 (v + v ′), so that this approaches the new waste water amount v. The operation in the separation tank 30 is optimized. Such adjustment can be realized, for example, by installing a sludge interface meter in the separation tank 20 and reflecting the separation state in the separation tank 20 in the discharge amount in the sorting operation. Specifically, the amount of supernatant wastewater that can be discharged from the separation tank 20 and the ratio of the supernatant wastewater to the concentrated sludge are determined by detecting the interface position with a sludge interface meter when sludge is settled and separated in the separation tank 20. Is done. By calculating the difference between the amount of supernatant wastewater and the amount of new wastewater v and reducing the concentrated sludge discharged from the treatment tank 10 by a ratio corresponding to this difference, the residual wastewater amount v ′ during the separation operation is separated. It is possible to reduce the amount of the sludge and the phosphorus accumulating bacteria, and to activate them with high efficiency.

廃水源から廃水処理設備への廃水の供給を中断できず、廃水を常時受け入れる必要がある場合には、2つの対処が可能である。第1の対処は、もう1つの槽(4番目の槽)又はタンクを使用可能であれば、これに廃水源からの廃水を貯留し、上記a:汚泥処理/分離の間に、ラインL1から供給する。第2の対処は、追加の槽等が使用できない場合、廃水源から廃水を供給するラインL1を、直接、下処理槽30へ廃水を供給するように配設して、下処理槽30を貯水槽としても使用可能にし、ラインL31及び開閉弁V1,V31を省略する。この場合、下処理槽30において活性汚泥の曝気処理は省略するので、リン蓄積細菌の活性化効果はその分減少する。   If the supply of wastewater from the wastewater source to the wastewater treatment facility cannot be interrupted and it is necessary to always accept the wastewater, two measures can be taken. The first countermeasure is to store the waste water from the waste water source in another tank (fourth tank) or the tank if it can be used. From the above-mentioned a: sludge treatment / separation, from the line L1 Supply. As a second countermeasure, when an additional tank or the like cannot be used, a line L1 for supplying wastewater from a wastewater source is arranged so as to supply wastewater directly to the lowertreatment tank 30, and the lower treatment tank 30 is stored in water. It can also be used as a tank, and the line L31 and the open / close valves V1, V31 are omitted. In this case, since the activated sludge aeration process is omitted in the lower treatment tank 30, the activation effect of the phosphorus accumulating bacteria is reduced accordingly.

図2は、図1において複数の開閉弁で構成される供給制御弁及び取込制御弁を、各々、単一の切換装置Vs,Vrで構成した実施形態を示す。この切替装置は、例えば、図1の複数の開閉弁を統合して単一の入口(又は出口)と複数の出口(又は入口)とを有するバルブユニットに構成したものを用いたり、単一の入口(又は出口)と複数の出口(又は入口)とを有する多分岐路の分岐点において連通路を切換えシフトする構造のものなどを用いることができ、これらに限定されない。このような構成では、配水ラインの構造が簡素化されるので、ライン負荷等の取り扱いが容易になる。   FIG. 2 shows an embodiment in which the supply control valve and the intake control valve constituted by a plurality of on-off valves in FIG. 1 are each constituted by a single switching device Vs, Vr. This switching device uses, for example, a configuration in which a plurality of on-off valves in FIG. 1 are integrated into a valve unit having a single inlet (or outlet) and a plurality of outlets (or inlets). A structure in which the communication path is switched and shifted at a branch point of a multi-branch path having an inlet (or outlet) and a plurality of outlets (or inlets) can be used, but is not limited thereto. In such a configuration, the structure of the water distribution line is simplified, so that handling of line load and the like becomes easy.

図2の形態においても、図1の形態と同様の応用・変形が可能であり、ラインL1をラインL31に直接接続して下処理槽30を貯水用に兼用したり、分離槽20と下処理槽30とを交互に交換使用することが可能である。   2 can be applied and modified in the same manner as in FIG. 1, and the line L1 is directly connected to the line L31 so that the lower treatment tank 30 is also used for water storage, or the separation tank 20 and the lower treatment. It is possible to exchange and use the tank 30 alternately.

上述のように配水ラインを構成して、処理槽10で処理された廃水の一部のみを分取して活性汚泥の分離及び下処理による活性化を行うことによって、活性汚泥の分離を施す容積が小さく、分離効率を高め易い。又、下処理の曝気に要するエネルギーが節約でき、廃水の有機質を高濃度の状態で利用できるので、細菌の活性化の効率も高い。又、廃水の汚泥処理と汚泥分離とを並行して行えるので、処理効率が高く、単一槽で全てを行う回分式装置よりも小型の装置で対応可能になる。   Volume which performs separation of activated sludge by constituting a water distribution line as mentioned above, fractionating only a part of waste water processed in processing tank 10, and performing activated sludge separation and pretreatment Is easy to improve separation efficiency. In addition, the energy required for aeration in the pretreatment can be saved, and the organic matter of the wastewater can be used in a high concentration state, so that the activation efficiency of bacteria is also high. Moreover, since sludge treatment and sludge separation of wastewater can be performed in parallel, the treatment efficiency is high, and it is possible to cope with a smaller device than a batch-type device that performs all in a single tank.

以下、実施例を参照して、本発明に係る廃水の活性汚泥処理方法及び装置について具体的に説明する。   Hereinafter, the activated sludge treatment method and apparatus for wastewater according to the present invention will be specifically described with reference to examples.

3つの槽を有する廃水処理設備を用いて、以下の操作を行った。   The following operations were performed using a wastewater treatment facility having three tanks.

図1に示す配水システム、曝気装置11,31及び攪拌装置12,32を廃水処理設備に設置して、容量5Lの処理槽10、容量830mlの分離槽30、及び、容量830mlの下処理槽40を構成した。この廃水処理設備を用いて、アンモニア濃度650mg-N/L、硝酸・亜硝酸濃度0mg-N/L、リン酸濃度25mg-P/Lの原廃水の処理を以下のようにして行った。   1 is installed in a wastewater treatment facility, a treatment tank 10 having a capacity of 5 L, a separation tank 30 having a capacity of 830 ml, and a pretreatment tank 40 having a capacity of 830 ml. Configured. Using this wastewater treatment facility, raw wastewater having an ammonia concentration of 650 mg-N / L, nitric acid / nitrous acid concentration of 0 mg-N / L, and phosphoric acid concentration of 25 mg-P / L was treated as follows.

先ず、初期処理として、活性汚泥を処理槽10に投入して、ポンプ装置40を作動させ、開閉弁V1,V11を開けて原廃水(5L)を満たして閉じた。窒素ガスを用いて外気を遮断して嫌気性状態とし、52分間攪拌装置12を作動させて嫌気性処理を施し、脱窒細菌による脱窒を進行させた。この後、曝気装置11を作動させて好気性条件とし、197分間好気性処理を施すことによって下硝化細菌による硝化を進行させて汚泥処理を終了した。この処理槽10における汚泥処理と並行して、下処理槽30に活性汚泥を投入して曝気装置31で59分間空気を吹き込んだ後、窒素ガスを用いて外気から遮断して嫌気性状態とし、開閉弁V1,V31を開けて原廃水(830ml)を満たして閉じ、攪拌装置32で21分間攪拌して脱窒を進行させて絶対嫌気性にした。開閉弁V12,V21を開けて処理槽10内の活性汚泥を含んだ廃水のうちの830mlを分離槽30へ排出した後に閉じて、開閉弁V32,V11を開けて下処理槽30の活性汚泥を含んだ廃水を処理槽10へ供給した。   First, as an initial treatment, activated sludge was charged into the treatment tank 10, the pump device 40 was operated, the on-off valves V1 and V11 were opened, filled with raw waste water (5L) and closed. Nitrogen gas was used to block the outside air to make the anaerobic state, the stirrer 12 was operated for 52 minutes to perform anaerobic treatment, and denitrification by denitrifying bacteria was advanced. Thereafter, the aeration apparatus 11 was operated to make an aerobic condition, and the nitrification by the lower nitrifying bacteria was advanced by performing the aerobic treatment for 197 minutes, and the sludge treatment was completed. In parallel with the sludge treatment in the treatment tank 10, activated sludge is introduced into the lower treatment tank 30 and air is blown in the aeration apparatus 31 for 59 minutes, and then an anaerobic state is established by shutting off from the outside air using nitrogen gas. The on-off valves V1 and V31 were opened and filled with raw waste water (830 ml), closed, and stirred for 21 minutes with the stirring device 32 to advance denitrification to make it absolutely anaerobic. Open / close valves V12, V21 are opened and 830 ml of waste water containing activated sludge in the treatment tank 10 is discharged to the separation tank 30 and then closed, and the open / close valves V32, V11 are opened to remove the activated sludge in the lower treatment tank 30. The contained waste water was supplied to the treatment tank 10.

次に、定常化のために、前述と同じ嫌気性処理及び好気性処理からなる汚泥処理(52分+197分)を施した。この汚泥処理の間に、分離槽20の廃水を静置することにより沈降分離して汚泥を底部に濃縮した後、開閉弁V22,V50を開けて上澄み廃水415mlを分離槽20から廃棄してから閉じ、開閉弁V23,V31を開けて分離槽20の底部に残留する濃縮汚泥(廃水415mlを含む)は下処理槽30へ移送した。下処理槽30の濃縮汚泥に曝気装置31で59分間空気を吹き込んだ後、窒素ガスを用いて外気から遮断して嫌気性状態とし、開閉弁V1,V31を開けて原廃水415mlを供給した後に閉じて21分間攪拌装置44で攪拌して脱窒を進行させ、絶対嫌気性にした。この後、汚泥処理後の廃水の分取(830ml)及び下処理後の廃水の処理槽10への還流(830ml)を前述と同様に行った。この定常化の操作を繰り返して合計70回行った。   Next, the sludge process (52 minutes + 197 minutes) which consists of the anaerobic process and aerobic process same as the above-mentioned was performed for regularization. During the sludge treatment, the waste water in the separation tank 20 is allowed to settle and separate to concentrate the sludge to the bottom, and then the on-off valves V22 and V50 are opened to discard 415 ml of the supernatant waste water from the separation tank 20. Closed, the on-off valves V23 and V31 were opened, and the concentrated sludge (including 415 ml of wastewater) remaining at the bottom of the separation tank 20 was transferred to the pretreatment tank 30. After air was blown into the concentrated sludge in the sewage treatment tank 30 for 59 minutes with an aeration device 31, the air was shut off from the outside air using nitrogen gas to make it anaerobic, and the on-off valves V 1 and V 31 were opened and 415 ml of raw waste water was supplied. The mixture was closed and stirred for 21 minutes with the stirring device 44 to advance denitrification to make it absolutely anaerobic. Thereafter, separation of the wastewater after the sludge treatment (830 ml) and return of the wastewater after the pretreatment to the treatment tank 10 (830 ml) were performed in the same manner as described above. This steadying operation was repeated for a total of 70 times.

上記繰り返しにおいて、処理槽10における汚泥処理後の廃水の硝酸・亜硝酸濃度は段階的に減少し、60回目の汚泥処理後には、アンモニア濃度6mg-N/L、硝酸・亜硝酸濃度73mg-N/Lとなった。又、リン酸濃度については、急激に減少して60回目以降はほぼ5mg-P/L程度の値であったが、70回目に若干増加して8mg-P/Lとなった。このため、これ以後の分離操作においては、上澄み廃水の廃棄と共に残留汚泥の約4%/日も廃棄することとした。下処理後の廃水は、概して、アンモニア濃度325mg-N/L、硝酸・亜硝酸濃度0mg-N/L、リン酸濃度40mg-P/Lとなった。   In the above repetition, the concentration of nitric acid and nitrous acid in the wastewater after the sludge treatment in the treatment tank 10 gradually decreases, and after the 60th sludge treatment, the ammonia concentration is 6 mg-N / L and the nitric acid / nitrite concentration is 73 mg-N. / L. Further, the phosphoric acid concentration rapidly decreased and was about 5 mg-P / L after the 60th time, but slightly increased to 8 mg-P / L at the 70th time. For this reason, in the subsequent separation operation, about 4% / day of the residual sludge was discarded along with the disposal of the supernatant wastewater. The wastewater after the pretreatment generally had an ammonia concentration of 325 mg-N / L, nitric acid / nitrite concentration of 0 mg-N / L, and phosphoric acid concentration of 40 mg-P / L.

上記繰り返しの後、更に、上記と同様の条件で、処理槽10での汚泥処理及び分離槽20での沈降分離を行った。処理槽10内の廃水は、汚泥処理開始前のアンモニア濃度70mg-N/L、硝酸・亜硝酸濃度58mg-N/L、リン酸濃度15mg-P/Lから、嫌気性処理後にはアンモニア濃度70mg-N/L、硝酸・亜硝酸濃度0mg-N/L、リン酸濃度20mg-P/Lとなり、好気性処理後にはアンモニア濃度6mg-N/L、硝酸・亜硝酸濃度73mg-N/L、リン酸濃度5mg-P/Lとなった。一方、分離槽20の廃水は、沈降分離され、廃水の上澄み415ml(アンモニア濃度6mg-N/L、硝酸・亜硝酸濃度73mg-N/L、リン酸濃度5mg-N/P)を廃棄し、同時に残留活性汚泥の約1%も廃棄した。残りを下処理槽30へ移送して上記と同様に曝気処理を行った後に原廃水(アンモニア濃度650mg-N/L、硝酸・亜硝酸濃度0mg-N/L、リン酸濃度25mg-P/L)415mlを加えた。この時、下処理槽30の廃水は、アンモニア濃度325mg-N/L、硝酸・亜硝酸濃度37mg-N/L、リン酸濃度15mg-P/Lとなった。この廃水は、下処理後には、アンモニア濃度325mg-N/L、硝酸・亜硝酸濃度0mg-N/L、リン酸濃度40mg-P/Lとなった。   After the repetition, sludge treatment in the treatment tank 10 and sedimentation separation in the separation tank 20 were further performed under the same conditions as described above. The wastewater in the treatment tank 10 has an ammonia concentration of 70 mg-N / L before starting sludge treatment, nitric acid / nitrite concentration of 58 mg-N / L, phosphoric acid concentration of 15 mg-P / L, and after anaerobic treatment, an ammonia concentration of 70 mg. -N / L, nitric acid / nitrite concentration 0 mg-N / L, phosphoric acid concentration 20 mg-P / L, after aerobic treatment, ammonia concentration 6 mg-N / L, nitric acid / nitrite concentration 73 mg-N / L, The phosphoric acid concentration was 5 mg-P / L. On the other hand, the waste water in the separation tank 20 is settled and discarded, and 415 ml of waste water supernatant (ammonia concentration 6 mg-N / L, nitric acid / nitrite concentration 73 mg-N / L, phosphoric acid concentration 5 mg-N / P) is discarded. At the same time, about 1% of the residual activated sludge was discarded. The rest is transferred to the pretreatment tank 30 and subjected to aeration treatment in the same manner as described above, followed by raw wastewater (ammonia concentration 650 mg-N / L, nitric acid / nitrite concentration 0 mg-N / L, phosphoric acid concentration 25 mg-P / L ) 415 ml was added. At this time, the wastewater in the pretreatment tank 30 had an ammonia concentration of 325 mg-N / L, a nitric acid / nitrite concentration of 37 mg-N / L, and a phosphoric acid concentration of 15 mg-P / L. After the pretreatment, the wastewater had an ammonia concentration of 325 mg-N / L, nitric acid / nitrite concentration of 0 mg-N / L, and phosphoric acid concentration of 40 mg-P / L.

本発明に係る配水システムを設置した廃水処理設備の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the waste water treatment facility which installed the water distribution system which concerns on this invention. 本発明に係る配水システムを設置した廃水処理設備の他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the waste water treatment facility which installed the water distribution system which concerns on this invention.

符号の説明Explanation of symbols

10:処理槽、20:分離槽、30:下処理槽、40:ポンプ装置
12,32:攪拌装置、11,31:曝気装置
W,Wa:廃水、S:活性汚泥、V1〜V50:開閉弁
10: Treatment tank, 20: Separation tank, 30: Pretreatment tank, 40: Pump device 12, 32: Stirrer, 11, 31: Aeration device W, Wa: Waste water, S: Activated sludge, V1 to V50: Open / close valve

Claims (14)

廃水処理設備の3つの槽を、第1処理槽、第2処理槽、及び、廃水から活性汚泥を分離する分離槽として稼動して活性汚泥処理を実施するための配水システムであって、
廃水及び/又は活性汚泥を移送するためのポンプ装置と;
前記ポンプ装置の排出口から前記第1処理槽、前記第2処理槽、前記分離槽及び外部の各々への移送が可能な供給ラインと;
前記供給ラインによる前記第1処理槽、前記第2処理槽、前記分離槽及び外部の各々への移送を制御するための供給制御弁と;
前記第1処理槽、前記第2処理槽、前記分離槽及び廃水源の各々から前記ポンプ装置の取入口への移送が可能で、前記分離槽から廃水及び活性汚泥を個別に移送可能な取込ラインと;
前記取込ラインによる前記第1処理槽、前記第2処理槽、前記分離槽及び廃水源の各々からの移送を制御するための取込制御弁と;
前記ポンプ装置の駆動により、廃水源から供給される廃水が、外部へ排出される前に、前記第1処理槽、前記第2処理槽、前記分離槽の順に活性汚泥と共に移送されるように前記供給制御弁及び前記取込制御弁の動作を制御する制御部と
を有することを特徴とする配水システム。
A water distribution system for operating three sludge wastewater treatment facilities as a first treatment tank, a second treatment tank, and a separation tank for separating activated sludge from wastewater,
A pumping device for transferring wastewater and / or activated sludge;
A supply line capable of being transferred from the discharge port of the pump device to the first processing tank, the second processing tank, the separation tank, and the outside;
A supply control valve for controlling transfer to the first processing tank, the second processing tank, the separation tank and the outside by the supply line;
The first treatment tank, the second treatment tank, the separation tank, and the wastewater source can be transferred to the intake of the pump device, and the wastewater and activated sludge can be individually transferred from the separation tank. Line;
An intake control valve for controlling transfer from each of the first treatment tank, the second treatment tank, the separation tank, and the wastewater source by the intake line;
By driving the pump device, the waste water supplied from the waste water source is transferred together with the activated sludge in the order of the first treatment tank, the second treatment tank, and the separation tank before being discharged to the outside. A water distribution system comprising: a supply control valve; and a control unit that controls operations of the intake control valve.
前記第1処理槽及び前記第2処理槽は、各々、廃水を好気性条件に調整するための作動切り換え可能な酸素供給手段を有する請求項1記載の配水システム。   2. The water distribution system according to claim 1, wherein each of the first treatment tank and the second treatment tank has a switchable oxygen supply means for adjusting wastewater to an aerobic condition. 前記第2処理槽の容量は前記第1処理槽の容量より多く、前記制御部は、廃水が、前記第1処理槽に収容される廃水の容量を移送単位として供給又は取込まれるように、前記供給制御弁及び前記取込制御弁の動作を制御する請求項1又は2に記載の配水システム。   The capacity of the second treatment tank is larger than the capacity of the first treatment tank, and the control unit is configured to supply or take in the waste water as a transfer unit with the capacity of the waste water stored in the first treatment tank. The water distribution system according to claim 1 or 2, which controls operations of the supply control valve and the intake control valve. 前記供給ラインは、前記第1処理槽、前記第2処理槽、前記分離槽及び外部の各々に接続する4つのラインを有し、前記取込ラインは、前記第1処理槽、前記第2処理槽及び廃水源の各々に接続する3つのラインと、前記分離槽に接続し廃水及び活性汚泥の各々を移送するための2つのラインとを有し、前記制御部は、前記供給ラインの1つのラインと前記取込ラインの1つのラインとが連通するように前記供給制御弁及び前記取込制御弁を制御することによって廃水及び/又は活性汚泥を移送する請求項1〜3の何れかに記載の配水システム。   The supply line has four lines connected to each of the first processing tank, the second processing tank, the separation tank, and the outside, and the intake line includes the first processing tank and the second processing tank. Three lines connected to each of the tank and the waste water source, and two lines connected to the separation tank for transferring each of the waste water and activated sludge, and the control unit is one of the supply lines The wastewater and / or activated sludge is transferred by controlling the supply control valve and the intake control valve so that a line and one of the intake lines communicate with each other. Water distribution system. 前記廃水及び/又は活性汚泥の移送が、(1)前記第2処理槽から前記分離槽へ、(2)前記第1処理槽から前記第2処理槽へ、(3)前記分離槽から外部へ、(4)前記分離槽から前記第1処理槽へ、(5)廃水源から前記第1処理槽へ、の順に従って繰り返されるように、前記制御部は前記供給制御弁及び前記取込制御弁の動作を制御する請求項4記載の配水システム。   Transfer of the waste water and / or activated sludge is (1) from the second treatment tank to the separation tank, (2) from the first treatment tank to the second treatment tank, and (3) from the separation tank to the outside. (4) The control unit repeats the supply control valve and the intake control valve so as to be repeated in the order of the separation tank to the first treatment tank and (5) the wastewater source to the first treatment tank. The water distribution system of Claim 4 which controls operation | movement of. 前記(1),(2)の移送で廃水及び活性汚泥を移送し、前記(3),(5)の移送で廃水を移送し、前記(4)の移送で活性汚泥を移送する請求項5記載の配水システム。   6. Waste water and activated sludge are transferred by the transfer of (1) and (2), waste water is transferred by the transfer of (3) and (5), and activated sludge is transferred by the transfer of (4). The described water distribution system. 前記(3)の移送において活性汚泥も移送する請求項6記載の配水システム。   The water distribution system according to claim 6, wherein activated sludge is also transferred in the transfer of (3). 前記供給制御弁は、前記4つのラインの各々に設けられる4つの開閉弁であり、前記取込制御弁は、前記3つのライン及び前記2つのラインの各々に設けられる5つの開閉弁である請求項4〜7の何れかに記載の配水システム。   The supply control valve is four open / close valves provided in each of the four lines, and the intake control valve is five open / close valves provided in each of the three lines and the two lines. Item 8. A water distribution system according to any one of Items 4 to 7. 廃水処理設備の3つの槽を、処理槽、及び、廃水から活性汚泥を分離する第1分離槽及び第2分離槽として稼動して活性汚泥処理を実施するための配水システムであって、
廃水及び/又は活性汚泥を移送するための1つのポンプ装置と;
前記ポンプ装置の排出口から前記処理槽、前記第1分離槽、前記第2分離槽及び外部の各々への移送が可能な供給ラインと;
前記供給ラインによる前記処理槽、前記第1分離槽、前記第2分離槽及び外部の各々への移送を制御するための供給制御弁と;
前記処理槽、前記第1分離槽、前記第2分離槽及び廃水源の各々から前記ポンプ装置の取入口への移送が可能な取込ラインと;
前記取込ラインによる前記処理槽、前記第1分離槽、前記第2分離槽及び廃水源の各々からの移送を制御するための取込制御弁と;
前記ポンプ装置の駆動により、廃水源から前記第1分離槽及び第2分離槽の一方に交互に供給される廃水が、外部へ排出される前に、活性汚泥と共に前記処理槽を経て前記第1分離槽及び第2分離槽の一方へ交互に移送されるように前記供給制御弁及び前記取込制御弁の動作を制御する制御部と
を有することを特徴とする配水システム。
A water distribution system for carrying out activated sludge treatment by operating three tanks of a wastewater treatment facility as a treatment tank and a first separation tank and a second separation tank for separating activated sludge from waste water,
One pumping device for transferring wastewater and / or activated sludge;
A supply line capable of being transferred from the discharge port of the pump device to the treatment tank, the first separation tank, the second separation tank, and the outside;
A supply control valve for controlling the transfer to the processing tank, the first separation tank, the second separation tank and the outside by the supply line;
An intake line capable of being transferred from each of the treatment tank, the first separation tank, the second separation tank, and a wastewater source to an intake port of the pump device;
An intake control valve for controlling transfer from each of the treatment tank, the first separation tank, the second separation tank, and a wastewater source by the intake line;
By driving the pump device, waste water supplied alternately from the waste water source to one of the first separation tank and the second separation tank is discharged through the treatment tank together with activated sludge before being discharged to the outside. A water distribution system comprising: a control unit that controls operations of the supply control valve and the intake control valve so as to be alternately transferred to one of the separation tank and the second separation tank.
前記処理槽、前記第1分離槽及び前記第2分離槽は、各々、廃水を好気性条件に調整するための作動切り換え可能な酸素供給手段を有する請求項9記載の配水システム。   The water distribution system according to claim 9, wherein the treatment tank, the first separation tank, and the second separation tank each have an oxygen supply means capable of switching operation to adjust wastewater to an aerobic condition. 前記処理槽の容量は、前記第1分離槽及び第2分離槽の容量より多く、前記制御部は、廃水が、前記第1分離槽及び第2分離槽の各々に収容される廃水の容量を移送単位として供給又は取込まれるように、前記供給制御弁及び前記取込制御弁の動作を制御する請求項9又は10に記載の配水システム。   The capacity of the treatment tank is greater than the capacity of the first separation tank and the second separation tank, and the control unit determines the capacity of waste water stored in each of the first separation tank and the second separation tank. The water distribution system according to claim 9 or 10, wherein operations of the supply control valve and the intake control valve are controlled so as to be supplied or taken in as a transfer unit. 前記取込ラインは、前記第1分離槽及び前記第2分離槽の各々から、廃水から分離される活性汚泥を取込可能なラインを有する請求項9〜11の何れかに記載の配水システム。   The water distribution system according to any one of claims 9 to 11, wherein the intake line has a line capable of taking activated sludge separated from waste water from each of the first separation tank and the second separation tank. 少なくとも3つの槽を有し、請求項1〜8の何れかに記載の配水システムが設けられて、前記3つの槽が、活性汚泥処理用の第1処理槽、第2処理槽、及び、廃水から活性汚泥を分離する分離槽として稼動する廃水処理設備。   It has at least three tanks, the water distribution system according to claim 1 is provided, and the three tanks are a first treatment tank, a second treatment tank, and wastewater for activated sludge treatment. Wastewater treatment facility that operates as a separation tank that separates activated sludge from wastewater. 少なくとも3つの槽を有し、請求項9〜12の何れかに記載の配水システムが設けられて、前記3つの槽が、活性汚泥処理用の処理槽、及び、廃水から活性汚泥を分離する第1分離槽及び第2分離槽として稼動する廃水処理設備。   A water distribution system according to any one of claims 9 to 12, which has at least three tanks, wherein the three tanks are a treatment tank for activated sludge treatment, and a first tank for separating activated sludge from wastewater. Wastewater treatment facility that operates as 1 separation tank and 2nd separation tank.
JP2008292116A 2008-11-14 2008-11-14 Water distribution system and wastewater treatment facility Expired - Fee Related JP5195335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292116A JP5195335B2 (en) 2008-11-14 2008-11-14 Water distribution system and wastewater treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292116A JP5195335B2 (en) 2008-11-14 2008-11-14 Water distribution system and wastewater treatment facility

Publications (2)

Publication Number Publication Date
JP2010115621A true JP2010115621A (en) 2010-05-27
JP5195335B2 JP5195335B2 (en) 2013-05-08

Family

ID=42303616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292116A Expired - Fee Related JP5195335B2 (en) 2008-11-14 2008-11-14 Water distribution system and wastewater treatment facility

Country Status (1)

Country Link
JP (1) JP5195335B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016007449A1 (en) 2016-06-17 2017-12-21 Saurer Germany Gmbh & Co. Kg Transport reinforcement for a bobbin-producing textile machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202195A (en) * 1989-12-28 1991-09-03 Inax Corp Waste water treatment method and apparatus
JPH0760287A (en) * 1993-08-24 1995-03-07 Sumitomo Heavy Ind Ltd Method and device for denitrification treatment of polluted water
JP2008023498A (en) * 2006-07-25 2008-02-07 Ihi Corp Activated sludge treating method and apparatus of wastewater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202195A (en) * 1989-12-28 1991-09-03 Inax Corp Waste water treatment method and apparatus
JPH0760287A (en) * 1993-08-24 1995-03-07 Sumitomo Heavy Ind Ltd Method and device for denitrification treatment of polluted water
JP2008023498A (en) * 2006-07-25 2008-02-07 Ihi Corp Activated sludge treating method and apparatus of wastewater

Also Published As

Publication number Publication date
JP5195335B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
KR100524426B1 (en) Multi-phase dual cycle influent process
US7344643B2 (en) Process to enhance phosphorus removal for activated sludge wastewater treatment systems
US7172699B1 (en) Energy efficient wastewater treatment for nitrogen and phosphorus removal
US7993522B2 (en) Conditioning system for activated sludge wastewater treatment processes
US6787035B2 (en) Bioreactor for treating wastewater
KR100231084B1 (en) Biological phosphor and nitrogen removal device and method modificating phostrip method
KR100917839B1 (en) Treatment method for waste water
JP5115252B2 (en) Activated sludge treatment method and activated sludge treatment apparatus for wastewater
JP4687597B2 (en) Activated sludge treatment method and activated sludge treatment apparatus for wastewater
KR101087673B1 (en) Advanced wastewater treatment system using multi-story system and method for improvement of settling pond
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
CN114269695B (en) System and method for removing ammonium from a wastewater stream
JP4114128B2 (en) Waste water purification apparatus and method
JP5195335B2 (en) Water distribution system and wastewater treatment facility
US5972220A (en) Pre-thickened aerobic digester system
KR101679174B1 (en) Sequencing batch reaction system
CN104016483A (en) Single-tank alternative inflow and aeration sewage nitrogen and phosphorus removal system and method
CN110255713A (en) A kind of sequencing batch active sludge modification and equipment applied to small-scale sewage processing
KR20210040632A (en) Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement
US6592757B2 (en) Selector contact stabilization process and apparatus for wastewater treatment
JP2841131B2 (en) Activated sludge treatment method for sewage
KR100520324B1 (en) Advanced treatment apparatus that superiority phosphorus removal.
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
KR20000049300A (en) System and Method for Treating Activated Sludge of Sewage
KR20170109321A (en) Advanced wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees